mbuf: add namespace to offload flags
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24
25         volatile union iavf_rx_desc *rxdp;
26         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29                         RTE_PKTMBUF_HEADROOM);
30         __m128i dma_addr0, dma_addr1;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36                                  rxq->rx_free_thresh) < 0) {
37                 if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38                         dma_addr0 = _mm_setzero_si128();
39                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40                                 rxp[i] = &rxq->fake_mbuf;
41                                 _mm_store_si128((__m128i *)&rxdp[i].read,
42                                                 dma_addr0);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         rxq->rx_free_thresh;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52                 __m128i vaddr0, vaddr1;
53
54                 mb0 = rxp[0];
55                 mb1 = rxp[1];
56
57                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59                                 offsetof(struct rte_mbuf, buf_addr) + 8);
60                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62
63                 /* convert pa to dma_addr hdr/data */
64                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66
67                 /* add headroom to pa values */
68                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70
71                 /* flush desc with pa dma_addr */
72                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74         }
75
76         rxq->rxrearm_start += rxq->rx_free_thresh;
77         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78                 rxq->rxrearm_start = 0;
79
80         rxq->rxrearm_nb -= rxq->rx_free_thresh;
81
82         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84
85         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86                    "rearm_start=%u rearm_nb=%u",
87                    rxq->port_id, rxq->queue_id,
88                    rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89
90         /* Update the tail pointer on the NIC */
91         IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
92 }
93
94 static inline void
95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96                   struct rte_mbuf **rx_pkts)
97 {
98         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99         __m128i rearm0, rearm1, rearm2, rearm3;
100
101         __m128i vlan0, vlan1, rss, l3_l4e;
102
103         /* mask everything except RSS, flow director and VLAN flags
104          * bit2 is for VLAN tag, bit11 for flow director indication
105          * bit13:12 for RSS indication.
106          */
107         const __m128i rss_vlan_msk = _mm_set_epi32(
108                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109
110         const __m128i cksum_mask = _mm_set_epi32(
111                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
112                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
113                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
114                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
115                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
116                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
117                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
118                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
119                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
120                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
121                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
122                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
123
124         /* map rss and vlan type to rss hash and vlan flag */
125         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126                         0, 0, 0, 0,
127                         0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
128                         0, 0, 0, 0);
129
130         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131                         0, 0, 0, 0,
132                         RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0,
133                         0, 0, RTE_MBUF_F_RX_FDIR, 0);
134
135         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136                         /* shift right 1 bit to make sure it not exceed 255 */
137                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
138                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
139                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
140                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
141                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
142                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
143                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
144                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
145                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
146                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
147
148         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151
152         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154
155         rss = _mm_srli_epi32(vlan1, 11);
156         rss = _mm_shuffle_epi8(rss_flags, rss);
157
158         l3_l4e = _mm_srli_epi32(vlan1, 22);
159         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160         /* then we shift left 1 bit */
161         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162         /* we need to mask out the reduntant bits */
163         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164
165         vlan0 = _mm_or_si128(vlan0, rss);
166         vlan0 = _mm_or_si128(vlan0, l3_l4e);
167
168         /* At this point, we have the 4 sets of flags in the low 16-bits
169          * of each 32-bit value in vlan0.
170          * We want to extract these, and merge them with the mbuf init data
171          * so we can do a single 16-byte write to the mbuf to set the flags
172          * and all the other initialization fields. Extracting the
173          * appropriate flags means that we have to do a shift and blend for
174          * each mbuf before we do the write.
175          */
176         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180
181         /* write the rearm data and the olflags in one write */
182         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183                         offsetof(struct rte_mbuf, rearm_data) + 8);
184         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191
192 static inline __m128i
193 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
194 {
195 #define FDID_MIS_MAGIC 0xFFFFFFFF
196         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
197         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
198         const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
199                         RTE_MBUF_F_RX_FDIR_ID);
200         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
201         const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
202         __m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
203                         fdir_mis_mask);
204         /* this XOR op results to bit-reverse the fdir_mask */
205         fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
206         const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
207
208         return fdir_flags;
209 }
210
211 static inline void
212 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
213                        struct rte_mbuf **rx_pkts)
214 {
215         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
216         __m128i rearm0, rearm1, rearm2, rearm3;
217
218         __m128i tmp_desc, flags, rss_vlan;
219
220         /* mask everything except checksum, RSS and VLAN flags.
221          * bit6:4 for checksum.
222          * bit12 for RSS indication.
223          * bit13 for VLAN indication.
224          */
225         const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
226                                                 0x3070, 0x3070);
227
228         const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
229                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
230                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
231                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
232                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
233                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
234                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
235                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
236                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
237                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
238                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
239                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
240
241         /* map the checksum, rss and vlan fields to the checksum, rss
242          * and vlan flag
243          */
244         const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
245                         /* shift right 1 bit to make sure it not exceed 255 */
246                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
247                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
248                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
249                          RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
250                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
251                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
252                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
253                          RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
254                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
255                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
256                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
257                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
258
259         const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
260                         0, 0, 0, 0,
261                         0, 0, 0, 0,
262                         RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
263                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
264                         RTE_MBUF_F_RX_RSS_HASH, 0);
265
266         /* merge 4 descriptors */
267         flags = _mm_unpackhi_epi32(descs[0], descs[1]);
268         tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
269         tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
270         tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
271
272         /* checksum flags */
273         tmp_desc = _mm_srli_epi32(tmp_desc, 4);
274         flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
275         /* then we shift left 1 bit */
276         flags = _mm_slli_epi32(flags, 1);
277         /* we need to mask out the redundant bits introduced by RSS or
278          * VLAN fields.
279          */
280         flags = _mm_and_si128(flags, cksum_mask);
281
282         /* RSS, VLAN flag */
283         tmp_desc = _mm_srli_epi32(tmp_desc, 8);
284         rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
285
286         /* merge the flags */
287         flags = _mm_or_si128(flags, rss_vlan);
288
289         if (rxq->fdir_enabled) {
290                 const __m128i fdir_id0_1 =
291                         _mm_unpackhi_epi32(descs[0], descs[1]);
292
293                 const __m128i fdir_id2_3 =
294                         _mm_unpackhi_epi32(descs[2], descs[3]);
295
296                 const __m128i fdir_id0_3 =
297                         _mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
298
299                 const __m128i fdir_flags =
300                         flex_rxd_to_fdir_flags_vec(fdir_id0_3);
301
302                 /* merge with fdir_flags */
303                 flags = _mm_or_si128(flags, fdir_flags);
304
305                 /* write fdir_id to mbuf */
306                 rx_pkts[0]->hash.fdir.hi =
307                         _mm_extract_epi32(fdir_id0_3, 0);
308
309                 rx_pkts[1]->hash.fdir.hi =
310                         _mm_extract_epi32(fdir_id0_3, 1);
311
312                 rx_pkts[2]->hash.fdir.hi =
313                         _mm_extract_epi32(fdir_id0_3, 2);
314
315                 rx_pkts[3]->hash.fdir.hi =
316                         _mm_extract_epi32(fdir_id0_3, 3);
317         } /* if() on fdir_enabled */
318
319         /**
320          * At this point, we have the 4 sets of flags in the low 16-bits
321          * of each 32-bit value in flags.
322          * We want to extract these, and merge them with the mbuf init data
323          * so we can do a single 16-byte write to the mbuf to set the flags
324          * and all the other initialization fields. Extracting the
325          * appropriate flags means that we have to do a shift and blend for
326          * each mbuf before we do the write.
327          */
328         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
329         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
330         rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
331         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
332
333         /* write the rearm data and the olflags in one write */
334         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
335                          offsetof(struct rte_mbuf, rearm_data) + 8);
336         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
337                          RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
338         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
339         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
340         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
341         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
342 }
343
344 #define PKTLEN_SHIFT     10
345
346 static inline void
347 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
348                 const uint32_t *type_table)
349 {
350         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
351         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
352
353         ptype0 = _mm_srli_epi64(ptype0, 30);
354         ptype1 = _mm_srli_epi64(ptype1, 30);
355
356         rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
357         rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
358         rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
359         rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
360 }
361
362 static inline void
363 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
364                      const uint32_t *type_table)
365 {
366         const __m128i ptype_mask = _mm_set_epi16(0, IAVF_RX_FLEX_DESC_PTYPE_M,
367                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
368                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
369                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M);
370         __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
371         __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
372         __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
373
374         ptype_all = _mm_and_si128(ptype_all, ptype_mask);
375
376         rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
377         rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
378         rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
379         rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
380 }
381
382 /**
383  * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
384  *
385  * Notice:
386  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
387  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
388  */
389 static inline uint16_t
390 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
391                    uint16_t nb_pkts, uint8_t *split_packet)
392 {
393         volatile union iavf_rx_desc *rxdp;
394         struct rte_mbuf **sw_ring;
395         uint16_t nb_pkts_recd;
396         int pos;
397         uint64_t var;
398         __m128i shuf_msk;
399         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
400
401         __m128i crc_adjust = _mm_set_epi16(
402                                 0, 0, 0,    /* ignore non-length fields */
403                                 -rxq->crc_len, /* sub crc on data_len */
404                                 0,          /* ignore high-16bits of pkt_len */
405                                 -rxq->crc_len, /* sub crc on pkt_len */
406                                 0, 0            /* ignore pkt_type field */
407                         );
408         /* compile-time check the above crc_adjust layout is correct.
409          * NOTE: the first field (lowest address) is given last in set_epi16
410          * call above.
411          */
412         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
413                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
414         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
415                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
416         __m128i dd_check, eop_check;
417
418         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
419         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
420
421         /* Just the act of getting into the function from the application is
422          * going to cost about 7 cycles
423          */
424         rxdp = rxq->rx_ring + rxq->rx_tail;
425
426         rte_prefetch0(rxdp);
427
428         /* See if we need to rearm the RX queue - gives the prefetch a bit
429          * of time to act
430          */
431         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
432                 iavf_rxq_rearm(rxq);
433
434         /* Before we start moving massive data around, check to see if
435          * there is actually a packet available
436          */
437         if (!(rxdp->wb.qword1.status_error_len &
438               rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
439                 return 0;
440
441         /* 4 packets DD mask */
442         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
443
444         /* 4 packets EOP mask */
445         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
446
447         /* mask to shuffle from desc. to mbuf */
448         shuf_msk = _mm_set_epi8(
449                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
450                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
451                 15, 14,      /* octet 15~14, 16 bits data_len */
452                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
453                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
454                 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
455                 );
456         /* Compile-time verify the shuffle mask
457          * NOTE: some field positions already verified above, but duplicated
458          * here for completeness in case of future modifications.
459          */
460         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
461                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
462         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
463                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
464         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
465                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
466         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
467                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
468
469         /* Cache is empty -> need to scan the buffer rings, but first move
470          * the next 'n' mbufs into the cache
471          */
472         sw_ring = &rxq->sw_ring[rxq->rx_tail];
473
474         /* A. load 4 packet in one loop
475          * [A*. mask out 4 unused dirty field in desc]
476          * B. copy 4 mbuf point from swring to rx_pkts
477          * C. calc the number of DD bits among the 4 packets
478          * [C*. extract the end-of-packet bit, if requested]
479          * D. fill info. from desc to mbuf
480          */
481
482         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
483              pos += IAVF_VPMD_DESCS_PER_LOOP,
484              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
485                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
486                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
487                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
488                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
489                 __m128i mbp1;
490 #if defined(RTE_ARCH_X86_64)
491                 __m128i mbp2;
492 #endif
493
494                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
495                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
496                 /* Read desc statuses backwards to avoid race condition */
497                 /* A.1 load desc[3] */
498                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
499                 rte_compiler_barrier();
500
501                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
502                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
503
504 #if defined(RTE_ARCH_X86_64)
505                 /* B.1 load 2 64 bit mbuf points */
506                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
507 #endif
508
509                 /* A.1 load desc[2-0] */
510                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
511                 rte_compiler_barrier();
512                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
513                 rte_compiler_barrier();
514                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
515
516 #if defined(RTE_ARCH_X86_64)
517                 /* B.2 copy 2 mbuf point into rx_pkts  */
518                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
519 #endif
520
521                 if (split_packet) {
522                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
523                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
524                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
525                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
526                 }
527
528                 /* avoid compiler reorder optimization */
529                 rte_compiler_barrier();
530
531                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
532                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
533                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
534
535                 /* merge the now-aligned packet length fields back in */
536                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
537                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
538
539                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
540                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
541                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
542
543                 /* C.1 4=>2 status err info only */
544                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
545                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
546
547                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
548
549                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
550                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
551                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
552
553                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
554                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
555                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
556
557                 /* merge the now-aligned packet length fields back in */
558                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
559                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
560
561                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
562                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
563                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
564
565                 /* C.2 get 4 pkts status err value  */
566                 zero = _mm_xor_si128(dd_check, dd_check);
567                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
568
569                 /* D.3 copy final 3,4 data to rx_pkts */
570                 _mm_storeu_si128(
571                         (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
572                         pkt_mb4);
573                 _mm_storeu_si128(
574                         (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
575                         pkt_mb3);
576
577                 /* D.2 pkt 1,2 remove crc */
578                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
579                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
580
581                 /* C* extract and record EOP bit */
582                 if (split_packet) {
583                         __m128i eop_shuf_mask = _mm_set_epi8(
584                                         0xFF, 0xFF, 0xFF, 0xFF,
585                                         0xFF, 0xFF, 0xFF, 0xFF,
586                                         0xFF, 0xFF, 0xFF, 0xFF,
587                                         0x04, 0x0C, 0x00, 0x08
588                                         );
589
590                         /* and with mask to extract bits, flipping 1-0 */
591                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
592                         /* the staterr values are not in order, as the count
593                          * of dd bits doesn't care. However, for end of
594                          * packet tracking, we do care, so shuffle. This also
595                          * compresses the 32-bit values to 8-bit
596                          */
597                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
598                         /* store the resulting 32-bit value */
599                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
600                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
601                 }
602
603                 /* C.3 calc available number of desc */
604                 staterr = _mm_and_si128(staterr, dd_check);
605                 staterr = _mm_packs_epi32(staterr, zero);
606
607                 /* D.3 copy final 1,2 data to rx_pkts */
608                 _mm_storeu_si128(
609                         (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
610                         pkt_mb2);
611                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
612                                  pkt_mb1);
613                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
614                 /* C.4 calc avaialbe number of desc */
615                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
616                 nb_pkts_recd += var;
617                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
618                         break;
619         }
620
621         /* Update our internal tail pointer */
622         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
623         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
624         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
625
626         return nb_pkts_recd;
627 }
628
629 /**
630  * vPMD raw receive routine for flex RxD,
631  * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
632  *
633  * Notice:
634  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
635  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
636  */
637 static inline uint16_t
638 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
639                             struct rte_mbuf **rx_pkts,
640                             uint16_t nb_pkts, uint8_t *split_packet)
641 {
642         volatile union iavf_rx_flex_desc *rxdp;
643         struct rte_mbuf **sw_ring;
644         uint16_t nb_pkts_recd;
645         int pos;
646         uint64_t var;
647         struct iavf_adapter *adapter = rxq->vsi->adapter;
648         uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
649         const uint32_t *ptype_tbl = adapter->ptype_tbl;
650         __m128i crc_adjust = _mm_set_epi16
651                                 (0, 0, 0,       /* ignore non-length fields */
652                                  -rxq->crc_len, /* sub crc on data_len */
653                                  0,          /* ignore high-16bits of pkt_len */
654                                  -rxq->crc_len, /* sub crc on pkt_len */
655                                  0, 0           /* ignore pkt_type field */
656                                 );
657         const __m128i zero = _mm_setzero_si128();
658         /* mask to shuffle from desc. to mbuf */
659         const __m128i shuf_msk = _mm_set_epi8
660                         (0xFF, 0xFF,
661                          0xFF, 0xFF,  /* rss hash parsed separately */
662                          11, 10,      /* octet 10~11, 16 bits vlan_macip */
663                          5, 4,        /* octet 4~5, 16 bits data_len */
664                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
665                          5, 4,        /* octet 4~5, low 16 bits pkt_len */
666                          0xFF, 0xFF,  /* pkt_type set as unknown */
667                          0xFF, 0xFF   /* pkt_type set as unknown */
668                         );
669         const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
670                                                    0xFF, 0xFF,
671                                                    0xFF, 0xFF,
672                                                    0xFF, 0xFF,
673                                                    0xFF, 0xFF,
674                                                    0xFF, 0xFF,
675                                                    0x04, 0x0C,
676                                                    0x00, 0x08);
677
678         /**
679          * compile-time check the above crc_adjust layout is correct.
680          * NOTE: the first field (lowest address) is given last in set_epi16
681          * call above.
682          */
683         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
684                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
685         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
686                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
687
688         /* 4 packets DD mask */
689         const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
690                                                 0x0000000100000001LL);
691         /* 4 packets EOP mask */
692         const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
693                                                  0x0000000200000002LL);
694
695         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
696         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
697
698         /* Just the act of getting into the function from the application is
699          * going to cost about 7 cycles
700          */
701         rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
702
703         rte_prefetch0(rxdp);
704
705         /* See if we need to rearm the RX queue - gives the prefetch a bit
706          * of time to act
707          */
708         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
709                 iavf_rxq_rearm(rxq);
710
711         /* Before we start moving massive data around, check to see if
712          * there is actually a packet available
713          */
714         if (!(rxdp->wb.status_error0 &
715               rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
716                 return 0;
717
718         /**
719          * Compile-time verify the shuffle mask
720          * NOTE: some field positions already verified above, but duplicated
721          * here for completeness in case of future modifications.
722          */
723         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
724                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
725         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
726                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
727         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
728                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
729         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
730                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
731
732         /* Cache is empty -> need to scan the buffer rings, but first move
733          * the next 'n' mbufs into the cache
734          */
735         sw_ring = &rxq->sw_ring[rxq->rx_tail];
736
737         /* A. load 4 packet in one loop
738          * [A*. mask out 4 unused dirty field in desc]
739          * B. copy 4 mbuf point from swring to rx_pkts
740          * C. calc the number of DD bits among the 4 packets
741          * [C*. extract the end-of-packet bit, if requested]
742          * D. fill info. from desc to mbuf
743          */
744
745         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
746              pos += IAVF_VPMD_DESCS_PER_LOOP,
747              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
748                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
749                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
750                 __m128i staterr, sterr_tmp1, sterr_tmp2;
751                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
752                 __m128i mbp1;
753 #if defined(RTE_ARCH_X86_64)
754                 __m128i mbp2;
755 #endif
756
757                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
758                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
759                 /* Read desc statuses backwards to avoid race condition */
760                 /* A.1 load desc[3] */
761                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
762                 rte_compiler_barrier();
763
764                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
765                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
766
767 #if defined(RTE_ARCH_X86_64)
768                 /* B.1 load 2 64 bit mbuf points */
769                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
770 #endif
771
772                 /* A.1 load desc[2-0] */
773                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
774                 rte_compiler_barrier();
775                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
776                 rte_compiler_barrier();
777                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
778
779 #if defined(RTE_ARCH_X86_64)
780                 /* B.2 copy 2 mbuf point into rx_pkts  */
781                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
782 #endif
783
784                 if (split_packet) {
785                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
786                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
787                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
788                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
789                 }
790
791                 /* avoid compiler reorder optimization */
792                 rte_compiler_barrier();
793
794                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
795                 pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
796                 pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
797
798                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
799                 pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
800                 pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
801
802                 /* C.1 4=>2 filter staterr info only */
803                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
804                 /* C.1 4=>2 filter staterr info only */
805                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
806
807                 flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
808
809                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
810                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
811                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
812
813                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
814                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
815                 pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
816
817 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
818                 /**
819                  * needs to load 2nd 16B of each desc for RSS hash parsing,
820                  * will cause performance drop to get into this context.
821                  */
822                 if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
823                         /* load bottom half of every 32B desc */
824                         const __m128i raw_desc_bh3 =
825                                 _mm_load_si128
826                                         ((void *)(&rxdp[3].wb.status_error1));
827                         rte_compiler_barrier();
828                         const __m128i raw_desc_bh2 =
829                                 _mm_load_si128
830                                         ((void *)(&rxdp[2].wb.status_error1));
831                         rte_compiler_barrier();
832                         const __m128i raw_desc_bh1 =
833                                 _mm_load_si128
834                                         ((void *)(&rxdp[1].wb.status_error1));
835                         rte_compiler_barrier();
836                         const __m128i raw_desc_bh0 =
837                                 _mm_load_si128
838                                         ((void *)(&rxdp[0].wb.status_error1));
839
840                         /**
841                          * to shift the 32b RSS hash value to the
842                          * highest 32b of each 128b before mask
843                          */
844                         __m128i rss_hash3 =
845                                 _mm_slli_epi64(raw_desc_bh3, 32);
846                         __m128i rss_hash2 =
847                                 _mm_slli_epi64(raw_desc_bh2, 32);
848                         __m128i rss_hash1 =
849                                 _mm_slli_epi64(raw_desc_bh1, 32);
850                         __m128i rss_hash0 =
851                                 _mm_slli_epi64(raw_desc_bh0, 32);
852
853                         __m128i rss_hash_msk =
854                                 _mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
855
856                         rss_hash3 = _mm_and_si128
857                                         (rss_hash3, rss_hash_msk);
858                         rss_hash2 = _mm_and_si128
859                                         (rss_hash2, rss_hash_msk);
860                         rss_hash1 = _mm_and_si128
861                                         (rss_hash1, rss_hash_msk);
862                         rss_hash0 = _mm_and_si128
863                                         (rss_hash0, rss_hash_msk);
864
865                         pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
866                         pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
867                         pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
868                         pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
869                 } /* if() on RSS hash parsing */
870 #endif
871
872                 /* C.2 get 4 pkts staterr value  */
873                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
874
875                 /* D.3 copy final 3,4 data to rx_pkts */
876                 _mm_storeu_si128
877                         ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
878                          pkt_mb3);
879                 _mm_storeu_si128
880                         ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
881                          pkt_mb2);
882
883                 /* C* extract and record EOP bit */
884                 if (split_packet) {
885                         /* and with mask to extract bits, flipping 1-0 */
886                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
887                         /* the staterr values are not in order, as the count
888                          * of dd bits doesn't care. However, for end of
889                          * packet tracking, we do care, so shuffle. This also
890                          * compresses the 32-bit values to 8-bit
891                          */
892                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
893                         /* store the resulting 32-bit value */
894                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
895                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
896                 }
897
898                 /* C.3 calc available number of desc */
899                 staterr = _mm_and_si128(staterr, dd_check);
900                 staterr = _mm_packs_epi32(staterr, zero);
901
902                 /* D.3 copy final 1,2 data to rx_pkts */
903                 _mm_storeu_si128
904                         ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
905                          pkt_mb1);
906                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
907                                  pkt_mb0);
908                 flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
909                 /* C.4 calc available number of desc */
910                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
911                 nb_pkts_recd += var;
912                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
913                         break;
914         }
915
916         /* Update our internal tail pointer */
917         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
918         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
919         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
920
921         return nb_pkts_recd;
922 }
923
924 /* Notice:
925  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
926  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
927  *   numbers of DD bits
928  */
929 uint16_t
930 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
931                   uint16_t nb_pkts)
932 {
933         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
934 }
935
936 /* Notice:
937  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
938  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
939  *   numbers of DD bits
940  */
941 uint16_t
942 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
943                             uint16_t nb_pkts)
944 {
945         return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
946 }
947
948 /**
949  * vPMD receive routine that reassembles single burst of 32 scattered packets
950  *
951  * Notice:
952  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
953  */
954 static uint16_t
955 iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
956                               uint16_t nb_pkts)
957 {
958         struct iavf_rx_queue *rxq = rx_queue;
959         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
960         unsigned int i = 0;
961
962         /* get some new buffers */
963         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
964                                               split_flags);
965         if (nb_bufs == 0)
966                 return 0;
967
968         /* happy day case, full burst + no packets to be joined */
969         const uint64_t *split_fl64 = (uint64_t *)split_flags;
970
971         if (!rxq->pkt_first_seg &&
972             split_fl64[0] == 0 && split_fl64[1] == 0 &&
973             split_fl64[2] == 0 && split_fl64[3] == 0)
974                 return nb_bufs;
975
976         /* reassemble any packets that need reassembly*/
977         if (!rxq->pkt_first_seg) {
978                 /* find the first split flag, and only reassemble then*/
979                 while (i < nb_bufs && !split_flags[i])
980                         i++;
981                 if (i == nb_bufs)
982                         return nb_bufs;
983                 rxq->pkt_first_seg = rx_pkts[i];
984         }
985         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
986                 &split_flags[i]);
987 }
988
989 /**
990  * vPMD receive routine that reassembles scattered packets.
991  */
992 uint16_t
993 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
994                              uint16_t nb_pkts)
995 {
996         uint16_t retval = 0;
997
998         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
999                 uint16_t burst;
1000
1001                 burst = iavf_recv_scattered_burst_vec(rx_queue,
1002                                                       rx_pkts + retval,
1003                                                       IAVF_VPMD_RX_MAX_BURST);
1004                 retval += burst;
1005                 nb_pkts -= burst;
1006                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1007                         return retval;
1008         }
1009
1010         return retval + iavf_recv_scattered_burst_vec(rx_queue,
1011                                                       rx_pkts + retval,
1012                                                       nb_pkts);
1013 }
1014
1015 /**
1016  * vPMD receive routine that reassembles single burst of 32 scattered packets
1017  * for flex RxD
1018  *
1019  * Notice:
1020  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1021  */
1022 static uint16_t
1023 iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue,
1024                                        struct rte_mbuf **rx_pkts,
1025                                        uint16_t nb_pkts)
1026 {
1027         struct iavf_rx_queue *rxq = rx_queue;
1028         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1029         unsigned int i = 0;
1030
1031         /* get some new buffers */
1032         uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1033                                               split_flags);
1034         if (nb_bufs == 0)
1035                 return 0;
1036
1037         /* happy day case, full burst + no packets to be joined */
1038         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1039
1040         if (!rxq->pkt_first_seg &&
1041             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1042             split_fl64[2] == 0 && split_fl64[3] == 0)
1043                 return nb_bufs;
1044
1045         /* reassemble any packets that need reassembly*/
1046         if (!rxq->pkt_first_seg) {
1047                 /* find the first split flag, and only reassemble then*/
1048                 while (i < nb_bufs && !split_flags[i])
1049                         i++;
1050                 if (i == nb_bufs)
1051                         return nb_bufs;
1052                 rxq->pkt_first_seg = rx_pkts[i];
1053         }
1054         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1055                 &split_flags[i]);
1056 }
1057
1058 /**
1059  * vPMD receive routine that reassembles scattered packets for flex RxD
1060  */
1061 uint16_t
1062 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
1063                                       struct rte_mbuf **rx_pkts,
1064                                       uint16_t nb_pkts)
1065 {
1066         uint16_t retval = 0;
1067
1068         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1069                 uint16_t burst;
1070
1071                 burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1072                                                 rx_pkts + retval,
1073                                                 IAVF_VPMD_RX_MAX_BURST);
1074                 retval += burst;
1075                 nb_pkts -= burst;
1076                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1077                         return retval;
1078         }
1079
1080         return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1081                                                       rx_pkts + retval,
1082                                                       nb_pkts);
1083 }
1084
1085 static inline void
1086 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1087 {
1088         uint64_t high_qw =
1089                         (IAVF_TX_DESC_DTYPE_DATA |
1090                          ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1091                          ((uint64_t)pkt->data_len <<
1092                           IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1093
1094         __m128i descriptor = _mm_set_epi64x(high_qw,
1095                                             pkt->buf_iova + pkt->data_off);
1096         _mm_store_si128((__m128i *)txdp, descriptor);
1097 }
1098
1099 static inline void
1100 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1101         uint16_t nb_pkts,  uint64_t flags)
1102 {
1103         int i;
1104
1105         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1106                 vtx1(txdp, *pkt, flags);
1107 }
1108
1109 uint16_t
1110 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1111                          uint16_t nb_pkts)
1112 {
1113         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1114         volatile struct iavf_tx_desc *txdp;
1115         struct iavf_tx_entry *txep;
1116         uint16_t n, nb_commit, tx_id;
1117         uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1118         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1119         int i;
1120
1121         /* cross rx_thresh boundary is not allowed */
1122         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1123
1124         if (txq->nb_free < txq->free_thresh)
1125                 iavf_tx_free_bufs(txq);
1126
1127         nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1128         if (unlikely(nb_pkts == 0))
1129                 return 0;
1130         nb_commit = nb_pkts;
1131
1132         tx_id = txq->tx_tail;
1133         txdp = &txq->tx_ring[tx_id];
1134         txep = &txq->sw_ring[tx_id];
1135
1136         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1137
1138         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1139         if (nb_commit >= n) {
1140                 tx_backlog_entry(txep, tx_pkts, n);
1141
1142                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1143                         vtx1(txdp, *tx_pkts, flags);
1144
1145                 vtx1(txdp, *tx_pkts++, rs);
1146
1147                 nb_commit = (uint16_t)(nb_commit - n);
1148
1149                 tx_id = 0;
1150                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1151
1152                 /* avoid reach the end of ring */
1153                 txdp = &txq->tx_ring[tx_id];
1154                 txep = &txq->sw_ring[tx_id];
1155         }
1156
1157         tx_backlog_entry(txep, tx_pkts, nb_commit);
1158
1159         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1160
1161         tx_id = (uint16_t)(tx_id + nb_commit);
1162         if (tx_id > txq->next_rs) {
1163                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1164                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1165                                          IAVF_TXD_QW1_CMD_SHIFT);
1166                 txq->next_rs =
1167                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1168         }
1169
1170         txq->tx_tail = tx_id;
1171
1172         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1173                    txq->port_id, txq->queue_id, tx_id, nb_pkts);
1174
1175         IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1176
1177         return nb_pkts;
1178 }
1179
1180 uint16_t
1181 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1182                    uint16_t nb_pkts)
1183 {
1184         uint16_t nb_tx = 0;
1185         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1186
1187         while (nb_pkts) {
1188                 uint16_t ret, num;
1189
1190                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1191                 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1192                 nb_tx += ret;
1193                 nb_pkts -= ret;
1194                 if (ret < num)
1195                         break;
1196         }
1197
1198         return nb_tx;
1199 }
1200
1201 static void __rte_cold
1202 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1203 {
1204         _iavf_rx_queue_release_mbufs_vec(rxq);
1205 }
1206
1207 static void __rte_cold
1208 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1209 {
1210         _iavf_tx_queue_release_mbufs_vec(txq);
1211 }
1212
1213 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1214         .release_mbufs = iavf_rx_queue_release_mbufs_sse,
1215 };
1216
1217 static const struct iavf_txq_ops sse_vec_txq_ops = {
1218         .release_mbufs = iavf_tx_queue_release_mbufs_sse,
1219 };
1220
1221 int __rte_cold
1222 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1223 {
1224         txq->ops = &sse_vec_txq_ops;
1225         return 0;
1226 }
1227
1228 int __rte_cold
1229 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1230 {
1231         rxq->ops = &sse_vec_rxq_ops;
1232         return iavf_rxq_vec_setup_default(rxq);
1233 }
1234
1235 int __rte_cold
1236 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1237 {
1238         return iavf_rx_vec_dev_check_default(dev);
1239 }
1240
1241 int __rte_cold
1242 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1243 {
1244         return iavf_tx_vec_dev_check_default(dev);
1245 }