net/ice: remove legacy Rx descriptor definition
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union ice_rx_flex_desc *rxdp;
19         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxep,
26                                  ICE_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33                                 rxep[i].mbuf = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         ICE_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < ICE_RXQ_REARM_THRESH;
79                         i += 4, rxep += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxep[0].mbuf;
84                 mb1 = rxep[1].mbuf;
85                 mb2 = rxep[2].mbuf;
86                 mb3 = rxep[3].mbuf;
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 static inline uint16_t
136 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
137                             uint16_t nb_pkts, uint8_t *split_packet)
138 {
139 #define ICE_DESCS_PER_LOOP_AVX 8
140
141         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
142         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
143                         0, rxq->mbuf_initializer);
144         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
145         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
146         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
147
148         rte_prefetch0(rxdp);
149
150         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
151         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
152
153         /* See if we need to rearm the RX queue - gives the prefetch a bit
154          * of time to act
155          */
156         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
157                 ice_rxq_rearm(rxq);
158
159         /* Before we start moving massive data around, check to see if
160          * there is actually a packet available
161          */
162         if (!(rxdp->wb.status_error0 &
163                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
164                 return 0;
165
166         /* constants used in processing loop */
167         const __m256i crc_adjust =
168                 _mm256_set_epi16
169                         (/* first descriptor */
170                          0, 0, 0,       /* ignore non-length fields */
171                          -rxq->crc_len, /* sub crc on data_len */
172                          0,             /* ignore high-16bits of pkt_len */
173                          -rxq->crc_len, /* sub crc on pkt_len */
174                          0, 0,          /* ignore pkt_type field */
175                          /* second descriptor */
176                          0, 0, 0,       /* ignore non-length fields */
177                          -rxq->crc_len, /* sub crc on data_len */
178                          0,             /* ignore high-16bits of pkt_len */
179                          -rxq->crc_len, /* sub crc on pkt_len */
180                          0, 0           /* ignore pkt_type field */
181                         );
182
183         /* 8 packets DD mask, LSB in each 32-bit value */
184         const __m256i dd_check = _mm256_set1_epi32(1);
185
186         /* 8 packets EOP mask, second-LSB in each 32-bit value */
187         const __m256i eop_check = _mm256_slli_epi32(dd_check,
188                         ICE_RX_DESC_STATUS_EOF_S);
189
190         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
191         const __m256i shuf_msk =
192                 _mm256_set_epi8
193                         (/* first descriptor */
194                          0xFF, 0xFF,
195                          0xFF, 0xFF,    /* rss not supported */
196                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
197                          5, 4,          /* octet 4~5, 16 bits data_len */
198                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
199                          5, 4,          /* octet 4~5, 16 bits pkt_len */
200                          0xFF, 0xFF,    /* pkt_type set as unknown */
201                          0xFF, 0xFF,    /*pkt_type set as unknown */
202                          /* second descriptor */
203                          0xFF, 0xFF,
204                          0xFF, 0xFF,    /* rss not supported */
205                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
206                          5, 4,          /* octet 4~5, 16 bits data_len */
207                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
208                          5, 4,          /* octet 4~5, 16 bits pkt_len */
209                          0xFF, 0xFF,    /* pkt_type set as unknown */
210                          0xFF, 0xFF     /*pkt_type set as unknown */
211                         );
212         /**
213          * compile-time check the above crc and shuffle layout is correct.
214          * NOTE: the first field (lowest address) is given last in set_epi
215          * calls above.
216          */
217         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
218                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
219         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
220                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
223         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
224                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
225
226         /* Status/Error flag masks */
227         /**
228          * mask everything except Checksum Reports, RSS indication
229          * and VLAN indication.
230          * bit6:4 for IP/L4 checksum errors.
231          * bit12 is for RSS indication.
232          * bit13 is for VLAN indication.
233          */
234         const __m256i flags_mask =
235                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
236         /**
237          * data to be shuffled by the result of the flags mask shifted by 4
238          * bits.  This gives use the l3_l4 flags.
239          */
240         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
241                         /* shift right 1 bit to make sure it not exceed 255 */
242                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
243                          PKT_RX_IP_CKSUM_BAD) >> 1,
244                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
245                          PKT_RX_IP_CKSUM_GOOD) >> 1,
246                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
247                          PKT_RX_IP_CKSUM_BAD) >> 1,
248                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
249                          PKT_RX_IP_CKSUM_GOOD) >> 1,
250                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
251                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
252                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
253                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
254                         /* second 128-bits */
255                         0, 0, 0, 0, 0, 0, 0, 0,
256                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
257                          PKT_RX_IP_CKSUM_BAD) >> 1,
258                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
259                          PKT_RX_IP_CKSUM_GOOD) >> 1,
260                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
261                          PKT_RX_IP_CKSUM_BAD) >> 1,
262                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
263                          PKT_RX_IP_CKSUM_GOOD) >> 1,
264                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
265                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
266                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
267                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
268         const __m256i cksum_mask =
269                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
270                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
271                                    PKT_RX_EIP_CKSUM_BAD);
272         /**
273          * data to be shuffled by result of flag mask, shifted down 12.
274          * If RSS(bit12)/VLAN(bit13) are set,
275          * shuffle moves appropriate flags in place.
276          */
277         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
278                         0, 0, 0, 0,
279                         0, 0, 0, 0,
280                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
281                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
282                         PKT_RX_RSS_HASH, 0,
283                         /* end up 128-bits */
284                         0, 0, 0, 0,
285                         0, 0, 0, 0,
286                         0, 0, 0, 0,
287                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
288                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
289                         PKT_RX_RSS_HASH, 0);
290
291         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
292
293         uint16_t i, received;
294
295         for (i = 0, received = 0; i < nb_pkts;
296              i += ICE_DESCS_PER_LOOP_AVX,
297              rxdp += ICE_DESCS_PER_LOOP_AVX) {
298                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
299                 _mm256_storeu_si256((void *)&rx_pkts[i],
300                                     _mm256_loadu_si256((void *)&sw_ring[i]));
301 #ifdef RTE_ARCH_X86_64
302                 _mm256_storeu_si256
303                         ((void *)&rx_pkts[i + 4],
304                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
305 #endif
306
307                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
308 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
309                 /* for AVX we need alignment otherwise loads are not atomic */
310                 if (avx_aligned) {
311                         /* load in descriptors, 2 at a time, in reverse order */
312                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
313                         rte_compiler_barrier();
314                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
315                         rte_compiler_barrier();
316                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
317                         rte_compiler_barrier();
318                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
319                 } else
320 #endif
321                 {
322                         const __m128i raw_desc7 =
323                                 _mm_load_si128((void *)(rxdp + 7));
324                         rte_compiler_barrier();
325                         const __m128i raw_desc6 =
326                                 _mm_load_si128((void *)(rxdp + 6));
327                         rte_compiler_barrier();
328                         const __m128i raw_desc5 =
329                                 _mm_load_si128((void *)(rxdp + 5));
330                         rte_compiler_barrier();
331                         const __m128i raw_desc4 =
332                                 _mm_load_si128((void *)(rxdp + 4));
333                         rte_compiler_barrier();
334                         const __m128i raw_desc3 =
335                                 _mm_load_si128((void *)(rxdp + 3));
336                         rte_compiler_barrier();
337                         const __m128i raw_desc2 =
338                                 _mm_load_si128((void *)(rxdp + 2));
339                         rte_compiler_barrier();
340                         const __m128i raw_desc1 =
341                                 _mm_load_si128((void *)(rxdp + 1));
342                         rte_compiler_barrier();
343                         const __m128i raw_desc0 =
344                                 _mm_load_si128((void *)(rxdp + 0));
345
346                         raw_desc6_7 =
347                                 _mm256_inserti128_si256
348                                         (_mm256_castsi128_si256(raw_desc6),
349                                          raw_desc7, 1);
350                         raw_desc4_5 =
351                                 _mm256_inserti128_si256
352                                         (_mm256_castsi128_si256(raw_desc4),
353                                          raw_desc5, 1);
354                         raw_desc2_3 =
355                                 _mm256_inserti128_si256
356                                         (_mm256_castsi128_si256(raw_desc2),
357                                          raw_desc3, 1);
358                         raw_desc0_1 =
359                                 _mm256_inserti128_si256
360                                         (_mm256_castsi128_si256(raw_desc0),
361                                          raw_desc1, 1);
362                 }
363
364                 if (split_packet) {
365                         int j;
366
367                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
368                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
369                 }
370
371                 /**
372                  * convert descriptors 4-7 into mbufs, re-arrange fields.
373                  * Then write into the mbuf.
374                  */
375                 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
376                 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
377
378                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
379                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
380                 /**
381                  * to get packet types, ptype is located in bit16-25
382                  * of each 128bits
383                  */
384                 const __m256i ptype_mask =
385                         _mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
386                 const __m256i ptypes6_7 =
387                         _mm256_and_si256(raw_desc6_7, ptype_mask);
388                 const __m256i ptypes4_5 =
389                         _mm256_and_si256(raw_desc4_5, ptype_mask);
390                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
391                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
392                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
393                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
394
395                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
396                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
397                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
398                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
399                 /* merge the status bits into one register */
400                 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
401                                 raw_desc4_5);
402
403                 /**
404                  * convert descriptors 0-3 into mbufs, re-arrange fields.
405                  * Then write into the mbuf.
406                  */
407                 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
408                 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
409
410                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
411                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
412                 /**
413                  * to get packet types, ptype is located in bit16-25
414                  * of each 128bits
415                  */
416                 const __m256i ptypes2_3 =
417                         _mm256_and_si256(raw_desc2_3, ptype_mask);
418                 const __m256i ptypes0_1 =
419                         _mm256_and_si256(raw_desc0_1, ptype_mask);
420                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
421                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
422                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
423                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
424
425                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
426                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
427                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
428                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
429                 /* merge the status bits into one register */
430                 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
431                                                                 raw_desc0_1);
432
433                 /**
434                  * take the two sets of status bits and merge to one
435                  * After merge, the packets status flags are in the
436                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
437                  */
438                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
439                                                           status0_3);
440
441                 /* now do flag manipulation */
442
443                 /* get only flag/error bits we want */
444                 const __m256i flag_bits =
445                         _mm256_and_si256(status0_7, flags_mask);
446                 /**
447                  * l3_l4_error flags, shuffle, then shift to correct adjustment
448                  * of flags in flags_shuf, and finally mask out extra bits
449                  */
450                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
451                                 _mm256_srli_epi32(flag_bits, 4));
452                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
453                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
454                 /* set rss and vlan flags */
455                 const __m256i rss_vlan_flag_bits =
456                         _mm256_srli_epi32(flag_bits, 12);
457                 const __m256i rss_vlan_flags =
458                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
459                                             rss_vlan_flag_bits);
460
461                 /* merge flags */
462                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
463                                 rss_vlan_flags);
464                 /**
465                  * At this point, we have the 8 sets of flags in the low 16-bits
466                  * of each 32-bit value in vlan0.
467                  * We want to extract these, and merge them with the mbuf init
468                  * data so we can do a single write to the mbuf to set the flags
469                  * and all the other initialization fields. Extracting the
470                  * appropriate flags means that we have to do a shift and blend
471                  * for each mbuf before we do the write. However, we can also
472                  * add in the previously computed rx_descriptor fields to
473                  * make a single 256-bit write per mbuf
474                  */
475                 /* check the structure matches expectations */
476                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
477                                  offsetof(struct rte_mbuf, rearm_data) + 8);
478                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
479                                  RTE_ALIGN(offsetof(struct rte_mbuf,
480                                                     rearm_data),
481                                            16));
482                 /* build up data and do writes */
483                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
484                         rearm6, rearm7;
485                 rearm6 = _mm256_blend_epi32(mbuf_init,
486                                             _mm256_slli_si256(mbuf_flags, 8),
487                                             0x04);
488                 rearm4 = _mm256_blend_epi32(mbuf_init,
489                                             _mm256_slli_si256(mbuf_flags, 4),
490                                             0x04);
491                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
492                 rearm0 = _mm256_blend_epi32(mbuf_init,
493                                             _mm256_srli_si256(mbuf_flags, 4),
494                                             0x04);
495                 /* permute to add in the rx_descriptor e.g. rss fields */
496                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
497                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
498                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
499                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
500                 /* write to mbuf */
501                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
502                                     rearm6);
503                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
504                                     rearm4);
505                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
506                                     rearm2);
507                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
508                                     rearm0);
509
510                 /* repeat for the odd mbufs */
511                 const __m256i odd_flags =
512                         _mm256_castsi128_si256
513                                 (_mm256_extracti128_si256(mbuf_flags, 1));
514                 rearm7 = _mm256_blend_epi32(mbuf_init,
515                                             _mm256_slli_si256(odd_flags, 8),
516                                             0x04);
517                 rearm5 = _mm256_blend_epi32(mbuf_init,
518                                             _mm256_slli_si256(odd_flags, 4),
519                                             0x04);
520                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
521                 rearm1 = _mm256_blend_epi32(mbuf_init,
522                                             _mm256_srli_si256(odd_flags, 4),
523                                             0x04);
524                 /* since odd mbufs are already in hi 128-bits use blend */
525                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
526                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
527                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
528                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
529                 /* again write to mbufs */
530                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
531                                     rearm7);
532                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
533                                     rearm5);
534                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
535                                     rearm3);
536                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
537                                     rearm1);
538
539                 /* extract and record EOP bit */
540                 if (split_packet) {
541                         const __m128i eop_mask =
542                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
543                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
544                                                                      eop_check);
545                         /* pack status bits into a single 128-bit register */
546                         const __m128i eop_bits =
547                                 _mm_packus_epi32
548                                         (_mm256_castsi256_si128(eop_bits256),
549                                          _mm256_extractf128_si256(eop_bits256,
550                                                                   1));
551                         /**
552                          * flip bits, and mask out the EOP bit, which is now
553                          * a split-packet bit i.e. !EOP, rather than EOP one.
554                          */
555                         __m128i split_bits = _mm_andnot_si128(eop_bits,
556                                         eop_mask);
557                         /**
558                          * eop bits are out of order, so we need to shuffle them
559                          * back into order again. In doing so, only use low 8
560                          * bits, which acts like another pack instruction
561                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
562                          * [Since we use epi8, the 16-bit positions are
563                          * multiplied by 2 in the eop_shuffle value.]
564                          */
565                         __m128i eop_shuffle =
566                                 _mm_set_epi8(/* zero hi 64b */
567                                              0xFF, 0xFF, 0xFF, 0xFF,
568                                              0xFF, 0xFF, 0xFF, 0xFF,
569                                              /* move values to lo 64b */
570                                              8, 0, 10, 2,
571                                              12, 4, 14, 6);
572                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
573                         *(uint64_t *)split_packet =
574                                 _mm_cvtsi128_si64(split_bits);
575                         split_packet += ICE_DESCS_PER_LOOP_AVX;
576                 }
577
578                 /* perform dd_check */
579                 status0_7 = _mm256_and_si256(status0_7, dd_check);
580                 status0_7 = _mm256_packs_epi32(status0_7,
581                                                _mm256_setzero_si256());
582
583                 uint64_t burst = __builtin_popcountll
584                                         (_mm_cvtsi128_si64
585                                                 (_mm256_extracti128_si256
586                                                         (status0_7, 1)));
587                 burst += __builtin_popcountll
588                                 (_mm_cvtsi128_si64
589                                         (_mm256_castsi256_si128(status0_7)));
590                 received += burst;
591                 if (burst != ICE_DESCS_PER_LOOP_AVX)
592                         break;
593         }
594
595         /* update tail pointers */
596         rxq->rx_tail += received;
597         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
598         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
599                 rxq->rx_tail--;
600                 received--;
601         }
602         rxq->rxrearm_nb += received;
603         return received;
604 }
605
606 /**
607  * Notice:
608  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
609  */
610 uint16_t
611 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
612                        uint16_t nb_pkts)
613 {
614         return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
615 }
616
617 /**
618  * vPMD receive routine that reassembles single burst of 32 scattered packets
619  * Notice:
620  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
621  */
622 static uint16_t
623 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
624                                   uint16_t nb_pkts)
625 {
626         struct ice_rx_queue *rxq = rx_queue;
627         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
628
629         /* get some new buffers */
630         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
631                                                        split_flags);
632         if (nb_bufs == 0)
633                 return 0;
634
635         /* happy day case, full burst + no packets to be joined */
636         const uint64_t *split_fl64 = (uint64_t *)split_flags;
637
638         if (!rxq->pkt_first_seg &&
639             split_fl64[0] == 0 && split_fl64[1] == 0 &&
640             split_fl64[2] == 0 && split_fl64[3] == 0)
641                 return nb_bufs;
642
643         /* reassemble any packets that need reassembly*/
644         unsigned int i = 0;
645
646         if (!rxq->pkt_first_seg) {
647                 /* find the first split flag, and only reassemble then*/
648                 while (i < nb_bufs && !split_flags[i])
649                         i++;
650                 if (i == nb_bufs)
651                         return nb_bufs;
652                 rxq->pkt_first_seg = rx_pkts[i];
653         }
654         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
655                                              &split_flags[i]);
656 }
657
658 /**
659  * vPMD receive routine that reassembles scattered packets.
660  * Main receive routine that can handle arbitrary burst sizes
661  * Notice:
662  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
663  */
664 uint16_t
665 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
666                                  uint16_t nb_pkts)
667 {
668         uint16_t retval = 0;
669
670         while (nb_pkts > ICE_VPMD_RX_BURST) {
671                 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
672                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
673                 retval += burst;
674                 nb_pkts -= burst;
675                 if (burst < ICE_VPMD_RX_BURST)
676                         return retval;
677         }
678         return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
679                                 rx_pkts + retval, nb_pkts);
680 }
681
682 static inline void
683 ice_vtx1(volatile struct ice_tx_desc *txdp,
684          struct rte_mbuf *pkt, uint64_t flags)
685 {
686         uint64_t high_qw =
687                 (ICE_TX_DESC_DTYPE_DATA |
688                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
689                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
690
691         __m128i descriptor = _mm_set_epi64x(high_qw,
692                                 pkt->buf_physaddr + pkt->data_off);
693         _mm_store_si128((__m128i *)txdp, descriptor);
694 }
695
696 static inline void
697 ice_vtx(volatile struct ice_tx_desc *txdp,
698         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
699 {
700         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
701                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
702
703         /* if unaligned on 32-bit boundary, do one to align */
704         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
705                 ice_vtx1(txdp, *pkt, flags);
706                 nb_pkts--, txdp++, pkt++;
707         }
708
709         /* do two at a time while possible, in bursts */
710         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
711                 uint64_t hi_qw3 =
712                         hi_qw_tmpl |
713                         ((uint64_t)pkt[3]->data_len <<
714                          ICE_TXD_QW1_TX_BUF_SZ_S);
715                 uint64_t hi_qw2 =
716                         hi_qw_tmpl |
717                         ((uint64_t)pkt[2]->data_len <<
718                          ICE_TXD_QW1_TX_BUF_SZ_S);
719                 uint64_t hi_qw1 =
720                         hi_qw_tmpl |
721                         ((uint64_t)pkt[1]->data_len <<
722                          ICE_TXD_QW1_TX_BUF_SZ_S);
723                 uint64_t hi_qw0 =
724                         hi_qw_tmpl |
725                         ((uint64_t)pkt[0]->data_len <<
726                          ICE_TXD_QW1_TX_BUF_SZ_S);
727
728                 __m256i desc2_3 =
729                         _mm256_set_epi64x
730                                 (hi_qw3,
731                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
732                                  hi_qw2,
733                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
734                 __m256i desc0_1 =
735                         _mm256_set_epi64x
736                                 (hi_qw1,
737                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
738                                  hi_qw0,
739                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
740                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
741                 _mm256_store_si256((void *)txdp, desc0_1);
742         }
743
744         /* do any last ones */
745         while (nb_pkts) {
746                 ice_vtx1(txdp, *pkt, flags);
747                 txdp++, pkt++, nb_pkts--;
748         }
749 }
750
751 static inline uint16_t
752 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
753                               uint16_t nb_pkts)
754 {
755         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
756         volatile struct ice_tx_desc *txdp;
757         struct ice_tx_entry *txep;
758         uint16_t n, nb_commit, tx_id;
759         uint64_t flags = ICE_TD_CMD;
760         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
761
762         /* cross rx_thresh boundary is not allowed */
763         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
764
765         if (txq->nb_tx_free < txq->tx_free_thresh)
766                 ice_tx_free_bufs(txq);
767
768         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
769         if (unlikely(nb_pkts == 0))
770                 return 0;
771
772         tx_id = txq->tx_tail;
773         txdp = &txq->tx_ring[tx_id];
774         txep = &txq->sw_ring[tx_id];
775
776         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
777
778         n = (uint16_t)(txq->nb_tx_desc - tx_id);
779         if (nb_commit >= n) {
780                 ice_tx_backlog_entry(txep, tx_pkts, n);
781
782                 ice_vtx(txdp, tx_pkts, n - 1, flags);
783                 tx_pkts += (n - 1);
784                 txdp += (n - 1);
785
786                 ice_vtx1(txdp, *tx_pkts++, rs);
787
788                 nb_commit = (uint16_t)(nb_commit - n);
789
790                 tx_id = 0;
791                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
792
793                 /* avoid reach the end of ring */
794                 txdp = &txq->tx_ring[tx_id];
795                 txep = &txq->sw_ring[tx_id];
796         }
797
798         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
799
800         ice_vtx(txdp, tx_pkts, nb_commit, flags);
801
802         tx_id = (uint16_t)(tx_id + nb_commit);
803         if (tx_id > txq->tx_next_rs) {
804                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
805                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
806                                          ICE_TXD_QW1_CMD_S);
807                 txq->tx_next_rs =
808                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
809         }
810
811         txq->tx_tail = tx_id;
812
813         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
814
815         return nb_pkts;
816 }
817
818 uint16_t
819 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
820                        uint16_t nb_pkts)
821 {
822         uint16_t nb_tx = 0;
823         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
824
825         while (nb_pkts) {
826                 uint16_t ret, num;
827
828                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
829                 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
830                                                     num);
831                 nb_tx += ret;
832                 nb_pkts -= ret;
833                 if (ret < num)
834                         break;
835         }
836
837         return nb_tx;
838 }