7efe7b50a206b116b2fcb763ccb499e18e56737d
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6 #include "ice_rxtx_common_avx.h"
7
8 #include <rte_vect.h>
9
10 #ifndef __INTEL_COMPILER
11 #pragma GCC diagnostic ignored "-Wcast-qual"
12 #endif
13
14 #define ICE_DESCS_PER_LOOP_AVX 8
15
16 static __rte_always_inline void
17 ice_rxq_rearm(struct ice_rx_queue *rxq)
18 {
19         int i;
20         uint16_t rx_id;
21         volatile union ice_rx_flex_desc *rxdp;
22         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
23         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
24                         rte_lcore_id());
25
26         rxdp = rxq->rx_ring + rxq->rxrearm_start;
27
28         if (unlikely(!cache))
29                 return ice_rxq_rearm_common(rxq, true);
30
31         /* We need to pull 'n' more MBUFs into the software ring */
32         if (cache->len < ICE_RXQ_REARM_THRESH) {
33                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
34                                 cache->len);
35
36                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
37                                 &cache->objs[cache->len], req);
38                 if (ret == 0) {
39                         cache->len += req;
40                 } else {
41                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
42                             rxq->nb_rx_desc) {
43                                 __m128i dma_addr0;
44
45                                 dma_addr0 = _mm_setzero_si128();
46                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
47                                         rxep[i].mbuf = &rxq->fake_mbuf;
48                                         _mm_store_si128
49                                                 ((__m128i *)&rxdp[i].read,
50                                                         dma_addr0);
51                                 }
52                         }
53                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
54                                 ICE_RXQ_REARM_THRESH;
55                         return;
56                 }
57         }
58
59         const __m512i iova_offsets =  _mm512_set1_epi64
60                 (offsetof(struct rte_mbuf, buf_iova));
61         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
62
63 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
64         /* shuffle the iova into correct slots. Values 4-7 will contain
65          * zeros, so use 7 for a zero-value.
66          */
67         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
68 #else
69         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
70 #endif
71
72         /* fill up the rxd in vector, process 8 mbufs in one loop */
73         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
74                 const __m512i mbuf_ptrs = _mm512_loadu_si512
75                         (&cache->objs[cache->len - 8]);
76                 _mm512_store_si512(rxep, mbuf_ptrs);
77
78                 /* gather iova of mbuf0-7 into one zmm reg */
79                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
80                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
81                                 0, /* base */
82                                 1  /* scale */);
83                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
84                                 headroom);
85 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
86                 const __m512i iovas0 = _mm512_castsi256_si512
87                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
88                 const __m512i iovas1 = _mm512_castsi256_si512
89                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
90
91                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
92                  * but these are ignored by driver since header split not
93                  * enabled. Similarly for desc 4 & 5.
94                  */
95                 const __m512i desc0_1 = _mm512_permutexvar_epi64
96                         (permute_idx, iovas0);
97                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
98
99                 const __m512i desc4_5 = _mm512_permutexvar_epi64
100                         (permute_idx, iovas1);
101                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
102
103                 _mm512_store_si512((void *)rxdp, desc0_1);
104                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
105                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
106                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
107 #else
108                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
109                  * but these are ignored by driver since header split not
110                  * enabled.
111                  */
112                 const __m512i desc0_3 = _mm512_permutexvar_epi64
113                         (permute_idx, iova_addrs);
114                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
115
116                 _mm512_store_si512((void *)rxdp, desc0_3);
117                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
118 #endif
119                 rxep += 8, rxdp += 8, cache->len -= 8;
120         }
121
122         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 static inline __m256i
136 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
137 {
138 #define FDID_MIS_MAGIC 0xFFFFFFFF
139         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
140         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
141         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
142                         PKT_RX_FDIR_ID);
143         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
144         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
145         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
146                         fdir_mis_mask);
147         /* this XOR op results to bit-reverse the fdir_mask */
148         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
149         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
150
151         return fdir_flags;
152 }
153
154 static __rte_always_inline uint16_t
155 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
156                               struct rte_mbuf **rx_pkts,
157                               uint16_t nb_pkts,
158                               uint8_t *split_packet,
159                               bool do_offload)
160 {
161         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
162         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
163                         0, rxq->mbuf_initializer);
164         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
165         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
166
167         rte_prefetch0(rxdp);
168
169         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
170         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
171
172         /* See if we need to rearm the RX queue - gives the prefetch a bit
173          * of time to act
174          */
175         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
176                 ice_rxq_rearm(rxq);
177
178         /* Before we start moving massive data around, check to see if
179          * there is actually a packet available
180          */
181         if (!(rxdp->wb.status_error0 &
182                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
183                 return 0;
184
185         /* constants used in processing loop */
186         const __m512i crc_adjust =
187                 _mm512_set4_epi32
188                         (0,             /* ignore non-length fields */
189                          -rxq->crc_len, /* sub crc on data_len */
190                          -rxq->crc_len, /* sub crc on pkt_len */
191                          0              /* ignore non-length fields */
192                         );
193
194         /* 8 packets DD mask, LSB in each 32-bit value */
195         const __m256i dd_check = _mm256_set1_epi32(1);
196
197         /* 8 packets EOP mask, second-LSB in each 32-bit value */
198         const __m256i eop_check = _mm256_slli_epi32(dd_check,
199                         ICE_RX_DESC_STATUS_EOF_S);
200
201         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
202         const __m512i shuf_msk =
203                 _mm512_set4_epi32
204                         (/* rss hash parsed separately */
205                          0xFFFFFFFF,
206                          /* octet 10~11, 16 bits vlan_macip */
207                          /* octet 4~5, 16 bits data_len */
208                          11 << 24 | 10 << 16 | 5 << 8 | 4,
209                          /* skip hi 16 bits pkt_len, zero out */
210                          /* octet 4~5, 16 bits pkt_len */
211                          0xFFFF << 16 | 5 << 8 | 4,
212                          /* pkt_type set as unknown */
213                          0xFFFFFFFF
214                         );
215
216         /**
217          * compile-time check the above crc and shuffle layout is correct.
218          * NOTE: the first field (lowest address) is given last in set_epi
219          * calls above.
220          */
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
223         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
224                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
225         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
226                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
227         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
228                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
229
230         /* following code block is for Rx Checksum Offload */
231         /* Status/Error flag masks */
232         /**
233          * mask everything except Checksum Reports, RSS indication
234          * and VLAN indication.
235          * bit6:4 for IP/L4 checksum errors.
236          * bit12 is for RSS indication.
237          * bit13 is for VLAN indication.
238          */
239         const __m256i flags_mask =
240                  _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
241         /**
242          * data to be shuffled by the result of the flags mask shifted by 4
243          * bits.  This gives use the l3_l4 flags.
244          */
245         const __m256i l3_l4_flags_shuf =
246                 _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
247                  PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
248                   PKT_RX_IP_CKSUM_BAD) >> 1,
249                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
250                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
251                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
252                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
253                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
254                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
255                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
256                  PKT_RX_IP_CKSUM_BAD) >> 1,
257                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
258                  PKT_RX_IP_CKSUM_GOOD) >> 1,
259                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
260                  PKT_RX_IP_CKSUM_BAD) >> 1,
261                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
262                  PKT_RX_IP_CKSUM_GOOD) >> 1,
263                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
264                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
265                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
266                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
267                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
268                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
269                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
270                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
271                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
272                  PKT_RX_IP_CKSUM_BAD) >> 1,
273                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
274                  PKT_RX_IP_CKSUM_GOOD) >> 1,
275                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
276                  PKT_RX_IP_CKSUM_BAD) >> 1,
277                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
278                  PKT_RX_IP_CKSUM_GOOD) >> 1,
279                 /**
280                  * second 128-bits
281                  * shift right 20 bits to use the low two bits to indicate
282                  * outer checksum status
283                  * shift right 1 bit to make sure it not exceed 255
284                  */
285                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
286                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
287                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
288                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
289                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
290                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
291                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
292                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
293                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
294                  PKT_RX_IP_CKSUM_BAD) >> 1,
295                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
296                  PKT_RX_IP_CKSUM_GOOD) >> 1,
297                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
298                  PKT_RX_IP_CKSUM_BAD) >> 1,
299                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
300                  PKT_RX_IP_CKSUM_GOOD) >> 1,
301                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
302                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
303                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
304                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
305                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
306                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
307                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
308                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
309                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
310                  PKT_RX_IP_CKSUM_BAD) >> 1,
311                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
312                  PKT_RX_IP_CKSUM_GOOD) >> 1,
313                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
314                  PKT_RX_IP_CKSUM_BAD) >> 1,
315                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
316                  PKT_RX_IP_CKSUM_GOOD) >> 1);
317         const __m256i cksum_mask =
318                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
319                                    PKT_RX_L4_CKSUM_MASK |
320                                    PKT_RX_OUTER_IP_CKSUM_BAD |
321                                    PKT_RX_OUTER_L4_CKSUM_MASK);
322         /**
323          * data to be shuffled by result of flag mask, shifted down 12.
324          * If RSS(bit12)/VLAN(bit13) are set,
325          * shuffle moves appropriate flags in place.
326          */
327         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
328                         0, 0, 0, 0,
329                         0, 0, 0, 0,
330                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
331                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
332                         PKT_RX_RSS_HASH, 0,
333                         /* 2nd 128-bits */
334                         0, 0, 0, 0,
335                         0, 0, 0, 0,
336                         0, 0, 0, 0,
337                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
338                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
339                         PKT_RX_RSS_HASH, 0);
340
341         uint16_t i, received;
342
343         for (i = 0, received = 0; i < nb_pkts;
344              i += ICE_DESCS_PER_LOOP_AVX,
345              rxdp += ICE_DESCS_PER_LOOP_AVX) {
346                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
347                 _mm256_storeu_si256((void *)&rx_pkts[i],
348                                     _mm256_loadu_si256((void *)&sw_ring[i]));
349 #ifdef RTE_ARCH_X86_64
350                 _mm256_storeu_si256
351                         ((void *)&rx_pkts[i + 4],
352                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
353 #endif
354
355                 __m512i raw_desc0_3, raw_desc4_7;
356                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
357
358                 /* load in descriptors, in reverse order */
359                 const __m128i raw_desc7 =
360                         _mm_load_si128((void *)(rxdp + 7));
361                 rte_compiler_barrier();
362                 const __m128i raw_desc6 =
363                         _mm_load_si128((void *)(rxdp + 6));
364                 rte_compiler_barrier();
365                 const __m128i raw_desc5 =
366                         _mm_load_si128((void *)(rxdp + 5));
367                 rte_compiler_barrier();
368                 const __m128i raw_desc4 =
369                         _mm_load_si128((void *)(rxdp + 4));
370                 rte_compiler_barrier();
371                 const __m128i raw_desc3 =
372                         _mm_load_si128((void *)(rxdp + 3));
373                 rte_compiler_barrier();
374                 const __m128i raw_desc2 =
375                         _mm_load_si128((void *)(rxdp + 2));
376                 rte_compiler_barrier();
377                 const __m128i raw_desc1 =
378                         _mm_load_si128((void *)(rxdp + 1));
379                 rte_compiler_barrier();
380                 const __m128i raw_desc0 =
381                         _mm_load_si128((void *)(rxdp + 0));
382
383                 raw_desc6_7 =
384                         _mm256_inserti128_si256
385                                 (_mm256_castsi128_si256(raw_desc6),
386                                  raw_desc7, 1);
387                 raw_desc4_5 =
388                         _mm256_inserti128_si256
389                                 (_mm256_castsi128_si256(raw_desc4),
390                                  raw_desc5, 1);
391                 raw_desc2_3 =
392                         _mm256_inserti128_si256
393                                 (_mm256_castsi128_si256(raw_desc2),
394                                  raw_desc3, 1);
395                 raw_desc0_1 =
396                         _mm256_inserti128_si256
397                                 (_mm256_castsi128_si256(raw_desc0),
398                                  raw_desc1, 1);
399
400                 raw_desc4_7 =
401                         _mm512_inserti64x4
402                                 (_mm512_castsi256_si512(raw_desc4_5),
403                                  raw_desc6_7, 1);
404                 raw_desc0_3 =
405                         _mm512_inserti64x4
406                                 (_mm512_castsi256_si512(raw_desc0_1),
407                                  raw_desc2_3, 1);
408
409                 if (split_packet) {
410                         int j;
411
412                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
413                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
414                 }
415
416                 /**
417                  * convert descriptors 0-7 into mbufs, re-arrange fields.
418                  * Then write into the mbuf.
419                  */
420                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
421                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
422
423                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
424                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
425
426                 /**
427                  * to get packet types, ptype is located in bit16-25
428                  * of each 128bits
429                  */
430                 const __m512i ptype_mask =
431                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
432
433                 /**
434                  * to get packet types, ptype is located in bit16-25
435                  * of each 128bits
436                  */
437                 const __m512i ptypes4_7 =
438                         _mm512_and_si512(raw_desc4_7, ptype_mask);
439                 const __m512i ptypes0_3 =
440                         _mm512_and_si512(raw_desc0_3, ptype_mask);
441
442                 const __m256i ptypes6_7 =
443                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
444                 const __m256i ptypes4_5 =
445                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
446                 const __m256i ptypes2_3 =
447                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
448                 const __m256i ptypes0_1 =
449                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
450                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
451                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
452                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
453                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
454                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
455                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
456                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
457                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
458
459                 const __m512i ptype4_7 = _mm512_set_epi32
460                         (0, 0, 0, ptype_tbl[ptype7],
461                          0, 0, 0, ptype_tbl[ptype6],
462                          0, 0, 0, ptype_tbl[ptype5],
463                          0, 0, 0, ptype_tbl[ptype4]);
464                 const __m512i ptype0_3 = _mm512_set_epi32
465                         (0, 0, 0, ptype_tbl[ptype3],
466                          0, 0, 0, ptype_tbl[ptype2],
467                          0, 0, 0, ptype_tbl[ptype1],
468                          0, 0, 0, ptype_tbl[ptype0]);
469
470                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
471                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
472
473                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
474                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
475                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
476                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
477
478                 /**
479                  * use permute/extract to get status content
480                  * After the operations, the packets status flags are in the
481                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
482                  */
483                 /* merge the status bits into one register */
484                 const __m512i status_permute_msk = _mm512_set_epi32
485                         (0, 0, 0, 0,
486                          0, 0, 0, 0,
487                          22, 30, 6, 14,
488                          18, 26, 2, 10);
489                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
490                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
491                 __m256i status0_7 = _mm512_extracti64x4_epi64
492                         (raw_status0_7, 0);
493
494                 __m256i mbuf_flags = _mm256_set1_epi32(0);
495
496                 if (do_offload) {
497                         /* now do flag manipulation */
498
499                         /* get only flag/error bits we want */
500                         const __m256i flag_bits =
501                                 _mm256_and_si256(status0_7, flags_mask);
502                         /**
503                          * l3_l4_error flags, shuffle, then shift to correct adjustment
504                          * of flags in flags_shuf, and finally mask out extra bits
505                          */
506                         __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
507                                         _mm256_srli_epi32(flag_bits, 4));
508                         l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
509                         __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
510                         __m256i l4_outer_flags =
511                                         _mm256_and_si256(l3_l4_flags, l4_outer_mask);
512                         l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
513
514                         __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
515
516                         l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
517                         l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
518                         l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
519                         /* set rss and vlan flags */
520                         const __m256i rss_vlan_flag_bits =
521                                 _mm256_srli_epi32(flag_bits, 12);
522                         const __m256i rss_vlan_flags =
523                                 _mm256_shuffle_epi8(rss_vlan_flags_shuf,
524                                                     rss_vlan_flag_bits);
525
526                         /* merge flags */
527                         mbuf_flags = _mm256_or_si256(l3_l4_flags,
528                                                      rss_vlan_flags);
529                 }
530
531                 if (rxq->fdir_enabled) {
532                         const __m256i fdir_id4_7 =
533                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
534
535                         const __m256i fdir_id0_3 =
536                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
537
538                         const __m256i fdir_id0_7 =
539                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
540
541                         if (do_offload) {
542                                 const __m256i fdir_flags =
543                                         ice_flex_rxd_to_fdir_flags_vec_avx512
544                                                 (fdir_id0_7);
545
546                                 /* merge with fdir_flags */
547                                 mbuf_flags = _mm256_or_si256
548                                                 (mbuf_flags, fdir_flags);
549                         } else {
550                                 mbuf_flags =
551                                         ice_flex_rxd_to_fdir_flags_vec_avx512
552                                                 (fdir_id0_7);
553                         }
554
555                         /* write to mbuf: have to use scalar store here */
556                         rx_pkts[i + 0]->hash.fdir.hi =
557                                 _mm256_extract_epi32(fdir_id0_7, 3);
558
559                         rx_pkts[i + 1]->hash.fdir.hi =
560                                 _mm256_extract_epi32(fdir_id0_7, 7);
561
562                         rx_pkts[i + 2]->hash.fdir.hi =
563                                 _mm256_extract_epi32(fdir_id0_7, 2);
564
565                         rx_pkts[i + 3]->hash.fdir.hi =
566                                 _mm256_extract_epi32(fdir_id0_7, 6);
567
568                         rx_pkts[i + 4]->hash.fdir.hi =
569                                 _mm256_extract_epi32(fdir_id0_7, 1);
570
571                         rx_pkts[i + 5]->hash.fdir.hi =
572                                 _mm256_extract_epi32(fdir_id0_7, 5);
573
574                         rx_pkts[i + 6]->hash.fdir.hi =
575                                 _mm256_extract_epi32(fdir_id0_7, 0);
576
577                         rx_pkts[i + 7]->hash.fdir.hi =
578                                 _mm256_extract_epi32(fdir_id0_7, 4);
579                 } /* if() on fdir_enabled */
580
581                 if (do_offload) {
582 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
583                         /**
584                          * needs to load 2nd 16B of each desc for RSS hash parsing,
585                          * will cause performance drop to get into this context.
586                          */
587                         if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
588                                         DEV_RX_OFFLOAD_RSS_HASH) {
589                                 /* load bottom half of every 32B desc */
590                                 const __m128i raw_desc_bh7 =
591                                         _mm_load_si128
592                                                 ((void *)(&rxdp[7].wb.status_error1));
593                                 rte_compiler_barrier();
594                                 const __m128i raw_desc_bh6 =
595                                         _mm_load_si128
596                                                 ((void *)(&rxdp[6].wb.status_error1));
597                                 rte_compiler_barrier();
598                                 const __m128i raw_desc_bh5 =
599                                         _mm_load_si128
600                                                 ((void *)(&rxdp[5].wb.status_error1));
601                                 rte_compiler_barrier();
602                                 const __m128i raw_desc_bh4 =
603                                         _mm_load_si128
604                                                 ((void *)(&rxdp[4].wb.status_error1));
605                                 rte_compiler_barrier();
606                                 const __m128i raw_desc_bh3 =
607                                         _mm_load_si128
608                                                 ((void *)(&rxdp[3].wb.status_error1));
609                                 rte_compiler_barrier();
610                                 const __m128i raw_desc_bh2 =
611                                         _mm_load_si128
612                                                 ((void *)(&rxdp[2].wb.status_error1));
613                                 rte_compiler_barrier();
614                                 const __m128i raw_desc_bh1 =
615                                         _mm_load_si128
616                                                 ((void *)(&rxdp[1].wb.status_error1));
617                                 rte_compiler_barrier();
618                                 const __m128i raw_desc_bh0 =
619                                         _mm_load_si128
620                                                 ((void *)(&rxdp[0].wb.status_error1));
621
622                                 __m256i raw_desc_bh6_7 =
623                                         _mm256_inserti128_si256
624                                                 (_mm256_castsi128_si256(raw_desc_bh6),
625                                                 raw_desc_bh7, 1);
626                                 __m256i raw_desc_bh4_5 =
627                                         _mm256_inserti128_si256
628                                                 (_mm256_castsi128_si256(raw_desc_bh4),
629                                                 raw_desc_bh5, 1);
630                                 __m256i raw_desc_bh2_3 =
631                                         _mm256_inserti128_si256
632                                                 (_mm256_castsi128_si256(raw_desc_bh2),
633                                                 raw_desc_bh3, 1);
634                                 __m256i raw_desc_bh0_1 =
635                                         _mm256_inserti128_si256
636                                                 (_mm256_castsi128_si256(raw_desc_bh0),
637                                                 raw_desc_bh1, 1);
638
639                                 /**
640                                  * to shift the 32b RSS hash value to the
641                                  * highest 32b of each 128b before mask
642                                  */
643                                 __m256i rss_hash6_7 =
644                                         _mm256_slli_epi64(raw_desc_bh6_7, 32);
645                                 __m256i rss_hash4_5 =
646                                         _mm256_slli_epi64(raw_desc_bh4_5, 32);
647                                 __m256i rss_hash2_3 =
648                                         _mm256_slli_epi64(raw_desc_bh2_3, 32);
649                                 __m256i rss_hash0_1 =
650                                         _mm256_slli_epi64(raw_desc_bh0_1, 32);
651
652                                 __m256i rss_hash_msk =
653                                         _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
654                                                          0xFFFFFFFF, 0, 0, 0);
655
656                                 rss_hash6_7 = _mm256_and_si256
657                                                 (rss_hash6_7, rss_hash_msk);
658                                 rss_hash4_5 = _mm256_and_si256
659                                                 (rss_hash4_5, rss_hash_msk);
660                                 rss_hash2_3 = _mm256_and_si256
661                                                 (rss_hash2_3, rss_hash_msk);
662                                 rss_hash0_1 = _mm256_and_si256
663                                                 (rss_hash0_1, rss_hash_msk);
664
665                                 mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
666                                 mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
667                                 mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
668                                 mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
669                         } /* if() on RSS hash parsing */
670 #endif
671                 }
672
673                 /**
674                  * At this point, we have the 8 sets of flags in the low 16-bits
675                  * of each 32-bit value in vlan0.
676                  * We want to extract these, and merge them with the mbuf init
677                  * data so we can do a single write to the mbuf to set the flags
678                  * and all the other initialization fields. Extracting the
679                  * appropriate flags means that we have to do a shift and blend
680                  * for each mbuf before we do the write. However, we can also
681                  * add in the previously computed rx_descriptor fields to
682                  * make a single 256-bit write per mbuf
683                  */
684                 /* check the structure matches expectations */
685                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
686                                  offsetof(struct rte_mbuf, rearm_data) + 8);
687                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
688                                  RTE_ALIGN(offsetof(struct rte_mbuf,
689                                                     rearm_data),
690                                            16));
691                 /* build up data and do writes */
692                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
693                         rearm6, rearm7;
694
695                 rearm6 = _mm256_blend_epi32(mbuf_init,
696                                             _mm256_slli_si256(mbuf_flags, 8),
697                                             0x04);
698                 rearm4 = _mm256_blend_epi32(mbuf_init,
699                                             _mm256_slli_si256(mbuf_flags, 4),
700                                             0x04);
701                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
702                 rearm0 = _mm256_blend_epi32(mbuf_init,
703                                             _mm256_srli_si256(mbuf_flags, 4),
704                                             0x04);
705
706                 /* permute to add in the rx_descriptor e.g. rss fields */
707                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
708                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
709                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
710                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
711
712                 /* write to mbuf */
713                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
714                                     rearm6);
715                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
716                                     rearm4);
717                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
718                                     rearm2);
719                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
720                                     rearm0);
721
722                 /* repeat for the odd mbufs */
723                 const __m256i odd_flags =
724                         _mm256_castsi128_si256
725                                 (_mm256_extracti128_si256(mbuf_flags, 1));
726                 rearm7 = _mm256_blend_epi32(mbuf_init,
727                                             _mm256_slli_si256(odd_flags, 8),
728                                             0x04);
729                 rearm5 = _mm256_blend_epi32(mbuf_init,
730                                             _mm256_slli_si256(odd_flags, 4),
731                                             0x04);
732                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
733                 rearm1 = _mm256_blend_epi32(mbuf_init,
734                                             _mm256_srli_si256(odd_flags, 4),
735                                             0x04);
736
737                 /* since odd mbufs are already in hi 128-bits use blend */
738                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
739                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
740                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
741                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
742                 /* again write to mbufs */
743                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
744                                     rearm7);
745                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
746                                     rearm5);
747                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
748                                     rearm3);
749                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
750                                     rearm1);
751
752                 /* extract and record EOP bit */
753                 if (split_packet) {
754                         const __m128i eop_mask =
755                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
756                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
757                                                                      eop_check);
758                         /* pack status bits into a single 128-bit register */
759                         const __m128i eop_bits =
760                                 _mm_packus_epi32
761                                         (_mm256_castsi256_si128(eop_bits256),
762                                          _mm256_extractf128_si256(eop_bits256,
763                                                                   1));
764                         /**
765                          * flip bits, and mask out the EOP bit, which is now
766                          * a split-packet bit i.e. !EOP, rather than EOP one.
767                          */
768                         __m128i split_bits = _mm_andnot_si128(eop_bits,
769                                         eop_mask);
770                         /**
771                          * eop bits are out of order, so we need to shuffle them
772                          * back into order again. In doing so, only use low 8
773                          * bits, which acts like another pack instruction
774                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
775                          * [Since we use epi8, the 16-bit positions are
776                          * multiplied by 2 in the eop_shuffle value.]
777                          */
778                         __m128i eop_shuffle =
779                                 _mm_set_epi8(/* zero hi 64b */
780                                              0xFF, 0xFF, 0xFF, 0xFF,
781                                              0xFF, 0xFF, 0xFF, 0xFF,
782                                              /* move values to lo 64b */
783                                              8, 0, 10, 2,
784                                              12, 4, 14, 6);
785                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
786                         *(uint64_t *)split_packet =
787                                 _mm_cvtsi128_si64(split_bits);
788                         split_packet += ICE_DESCS_PER_LOOP_AVX;
789                 }
790
791                 /* perform dd_check */
792                 status0_7 = _mm256_and_si256(status0_7, dd_check);
793                 status0_7 = _mm256_packs_epi32(status0_7,
794                                                _mm256_setzero_si256());
795
796                 uint64_t burst = __builtin_popcountll
797                                         (_mm_cvtsi128_si64
798                                                 (_mm256_extracti128_si256
799                                                         (status0_7, 1)));
800                 burst += __builtin_popcountll
801                                 (_mm_cvtsi128_si64
802                                         (_mm256_castsi256_si128(status0_7)));
803                 received += burst;
804                 if (burst != ICE_DESCS_PER_LOOP_AVX)
805                         break;
806         }
807
808         /* update tail pointers */
809         rxq->rx_tail += received;
810         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
811         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
812                 rxq->rx_tail--;
813                 received--;
814         }
815         rxq->rxrearm_nb += received;
816         return received;
817 }
818
819 /**
820  * Notice:
821  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
822  */
823 uint16_t
824 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
825                          uint16_t nb_pkts)
826 {
827         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL, false);
828 }
829
830 /**
831  * Notice:
832  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
833  */
834 uint16_t
835 ice_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
836                                  uint16_t nb_pkts)
837 {
838         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
839                                              nb_pkts, NULL, true);
840 }
841
842 /**
843  * vPMD receive routine that reassembles single burst of 32 scattered packets
844  * Notice:
845  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
846  */
847 static uint16_t
848 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
849                                     uint16_t nb_pkts)
850 {
851         struct ice_rx_queue *rxq = rx_queue;
852         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
853
854         /* get some new buffers */
855         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
856                                                        split_flags, false);
857         if (nb_bufs == 0)
858                 return 0;
859
860         /* happy day case, full burst + no packets to be joined */
861         const uint64_t *split_fl64 = (uint64_t *)split_flags;
862
863         if (!rxq->pkt_first_seg &&
864             split_fl64[0] == 0 && split_fl64[1] == 0 &&
865             split_fl64[2] == 0 && split_fl64[3] == 0)
866                 return nb_bufs;
867
868         /* reassemble any packets that need reassembly */
869         unsigned int i = 0;
870
871         if (!rxq->pkt_first_seg) {
872                 /* find the first split flag, and only reassemble then */
873                 while (i < nb_bufs && !split_flags[i])
874                         i++;
875                 if (i == nb_bufs)
876                         return nb_bufs;
877                 rxq->pkt_first_seg = rx_pkts[i];
878         }
879         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
880                                              &split_flags[i]);
881 }
882
883 /**
884  * vPMD receive routine that reassembles single burst of 32 scattered packets
885  * Notice:
886  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
887  */
888 static uint16_t
889 ice_recv_scattered_burst_vec_avx512_offload(void *rx_queue,
890                                             struct rte_mbuf **rx_pkts,
891                                             uint16_t nb_pkts)
892 {
893         struct ice_rx_queue *rxq = rx_queue;
894         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
895
896         /* get some new buffers */
897         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq,
898                                 rx_pkts, nb_pkts, split_flags, true);
899         if (nb_bufs == 0)
900                 return 0;
901
902         /* happy day case, full burst + no packets to be joined */
903         const uint64_t *split_fl64 = (uint64_t *)split_flags;
904
905         if (!rxq->pkt_first_seg &&
906             split_fl64[0] == 0 && split_fl64[1] == 0 &&
907             split_fl64[2] == 0 && split_fl64[3] == 0)
908                 return nb_bufs;
909
910         /* reassemble any packets that need reassembly */
911         unsigned int i = 0;
912
913         if (!rxq->pkt_first_seg) {
914                 /* find the first split flag, and only reassemble then */
915                 while (i < nb_bufs && !split_flags[i])
916                         i++;
917                 if (i == nb_bufs)
918                         return nb_bufs;
919                 rxq->pkt_first_seg = rx_pkts[i];
920         }
921         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
922                                              &split_flags[i]);
923 }
924
925 /**
926  * vPMD receive routine that reassembles scattered packets.
927  * Main receive routine that can handle arbitrary burst sizes
928  * Notice:
929  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
930  */
931 uint16_t
932 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
933                                    uint16_t nb_pkts)
934 {
935         uint16_t retval = 0;
936
937         while (nb_pkts > ICE_VPMD_RX_BURST) {
938                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
939                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
940                 retval += burst;
941                 nb_pkts -= burst;
942                 if (burst < ICE_VPMD_RX_BURST)
943                         return retval;
944         }
945         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
946                                 rx_pkts + retval, nb_pkts);
947 }
948
949 /**
950  * vPMD receive routine that reassembles scattered packets.
951  * Main receive routine that can handle arbitrary burst sizes
952  * Notice:
953  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
954  */
955 uint16_t
956 ice_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
957                                            struct rte_mbuf **rx_pkts,
958                                            uint16_t nb_pkts)
959 {
960         uint16_t retval = 0;
961
962         while (nb_pkts > ICE_VPMD_RX_BURST) {
963                 uint16_t burst =
964                         ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
965                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
966                 retval += burst;
967                 nb_pkts -= burst;
968                 if (burst < ICE_VPMD_RX_BURST)
969                         return retval;
970         }
971         return retval + ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
972                                 rx_pkts + retval, nb_pkts);
973 }
974
975 static __rte_always_inline int
976 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
977 {
978         struct ice_vec_tx_entry *txep;
979         uint32_t n;
980         uint32_t i;
981         int nb_free = 0;
982         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
983
984         /* check DD bits on threshold descriptor */
985         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
986                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
987                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
988                 return 0;
989
990         n = txq->tx_rs_thresh;
991
992         /* first buffer to free from S/W ring is at index
993          * tx_next_dd - (tx_rs_thresh - 1)
994          */
995         txep = (void *)txq->sw_ring;
996         txep += txq->tx_next_dd - (n - 1);
997
998         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
999                 struct rte_mempool *mp = txep[0].mbuf->pool;
1000                 void **cache_objs;
1001                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
1002                                 rte_lcore_id());
1003
1004                 if (!cache || cache->len == 0)
1005                         goto normal;
1006
1007                 cache_objs = &cache->objs[cache->len];
1008
1009                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
1010                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
1011                         goto done;
1012                 }
1013
1014                 /* The cache follows the following algorithm
1015                  *   1. Add the objects to the cache
1016                  *   2. Anything greater than the cache min value (if it
1017                  *   crosses the cache flush threshold) is flushed to the ring.
1018                  */
1019                 /* Add elements back into the cache */
1020                 uint32_t copied = 0;
1021                 /* n is multiple of 32 */
1022                 while (copied < n) {
1023                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
1024                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
1025                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
1026                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
1027
1028                         _mm512_storeu_si512(&cache_objs[copied], a);
1029                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
1030                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
1031                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
1032                         copied += 32;
1033                 }
1034                 cache->len += n;
1035
1036                 if (cache->len >= cache->flushthresh) {
1037                         rte_mempool_ops_enqueue_bulk
1038                                 (mp, &cache->objs[cache->size],
1039                                  cache->len - cache->size);
1040                         cache->len = cache->size;
1041                 }
1042                 goto done;
1043         }
1044
1045 normal:
1046         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
1047         if (likely(m)) {
1048                 free[0] = m;
1049                 nb_free = 1;
1050                 for (i = 1; i < n; i++) {
1051                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1052                         if (likely(m)) {
1053                                 if (likely(m->pool == free[0]->pool)) {
1054                                         free[nb_free++] = m;
1055                                 } else {
1056                                         rte_mempool_put_bulk(free[0]->pool,
1057                                                              (void *)free,
1058                                                              nb_free);
1059                                         free[0] = m;
1060                                         nb_free = 1;
1061                                 }
1062                         }
1063                 }
1064                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
1065         } else {
1066                 for (i = 1; i < n; i++) {
1067                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1068                         if (m)
1069                                 rte_mempool_put(m->pool, m);
1070                 }
1071         }
1072
1073 done:
1074         /* buffers were freed, update counters */
1075         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1076         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1077         if (txq->tx_next_dd >= txq->nb_tx_desc)
1078                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1079
1080         return txq->tx_rs_thresh;
1081 }
1082
1083 static __rte_always_inline void
1084 ice_vtx1(volatile struct ice_tx_desc *txdp,
1085          struct rte_mbuf *pkt, uint64_t flags, bool do_offload)
1086 {
1087         uint64_t high_qw =
1088                 (ICE_TX_DESC_DTYPE_DATA |
1089                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
1090                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
1091
1092         if (do_offload)
1093                 ice_txd_enable_offload(pkt, &high_qw);
1094
1095         __m128i descriptor = _mm_set_epi64x(high_qw,
1096                                 pkt->buf_iova + pkt->data_off);
1097         _mm_store_si128((__m128i *)txdp, descriptor);
1098 }
1099
1100 static __rte_always_inline void
1101 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
1102         uint16_t nb_pkts,  uint64_t flags, bool do_offload)
1103 {
1104         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
1105                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
1106
1107         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1108                 uint64_t hi_qw3 =
1109                         hi_qw_tmpl |
1110                         ((uint64_t)pkt[3]->data_len <<
1111                          ICE_TXD_QW1_TX_BUF_SZ_S);
1112                 if (do_offload)
1113                         ice_txd_enable_offload(pkt[3], &hi_qw3);
1114                 uint64_t hi_qw2 =
1115                         hi_qw_tmpl |
1116                         ((uint64_t)pkt[2]->data_len <<
1117                          ICE_TXD_QW1_TX_BUF_SZ_S);
1118                 if (do_offload)
1119                         ice_txd_enable_offload(pkt[2], &hi_qw2);
1120                 uint64_t hi_qw1 =
1121                         hi_qw_tmpl |
1122                         ((uint64_t)pkt[1]->data_len <<
1123                          ICE_TXD_QW1_TX_BUF_SZ_S);
1124                 if (do_offload)
1125                         ice_txd_enable_offload(pkt[1], &hi_qw1);
1126                 uint64_t hi_qw0 =
1127                         hi_qw_tmpl |
1128                         ((uint64_t)pkt[0]->data_len <<
1129                          ICE_TXD_QW1_TX_BUF_SZ_S);
1130                 if (do_offload)
1131                         ice_txd_enable_offload(pkt[0], &hi_qw0);
1132
1133                 __m512i desc0_3 =
1134                         _mm512_set_epi64
1135                                 (hi_qw3,
1136                                  pkt[3]->buf_iova + pkt[3]->data_off,
1137                                  hi_qw2,
1138                                  pkt[2]->buf_iova + pkt[2]->data_off,
1139                                  hi_qw1,
1140                                  pkt[1]->buf_iova + pkt[1]->data_off,
1141                                  hi_qw0,
1142                                  pkt[0]->buf_iova + pkt[0]->data_off);
1143                 _mm512_storeu_si512((void *)txdp, desc0_3);
1144         }
1145
1146         /* do any last ones */
1147         while (nb_pkts) {
1148                 ice_vtx1(txdp, *pkt, flags, do_offload);
1149                 txdp++, pkt++, nb_pkts--;
1150         }
1151 }
1152
1153 static __rte_always_inline void
1154 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
1155                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1156 {
1157         int i;
1158
1159         for (i = 0; i < (int)nb_pkts; ++i)
1160                 txep[i].mbuf = tx_pkts[i];
1161 }
1162
1163 static __rte_always_inline uint16_t
1164 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1165                                 uint16_t nb_pkts, bool do_offload)
1166 {
1167         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1168         volatile struct ice_tx_desc *txdp;
1169         struct ice_vec_tx_entry *txep;
1170         uint16_t n, nb_commit, tx_id;
1171         uint64_t flags = ICE_TD_CMD;
1172         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1173
1174         /* cross rx_thresh boundary is not allowed */
1175         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1176
1177         if (txq->nb_tx_free < txq->tx_free_thresh)
1178                 ice_tx_free_bufs_avx512(txq);
1179
1180         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1181         if (unlikely(nb_pkts == 0))
1182                 return 0;
1183
1184         tx_id = txq->tx_tail;
1185         txdp = &txq->tx_ring[tx_id];
1186         txep = (void *)txq->sw_ring;
1187         txep += tx_id;
1188
1189         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1190
1191         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1192         if (nb_commit >= n) {
1193                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1194
1195                 ice_vtx(txdp, tx_pkts, n - 1, flags, do_offload);
1196                 tx_pkts += (n - 1);
1197                 txdp += (n - 1);
1198
1199                 ice_vtx1(txdp, *tx_pkts++, rs, do_offload);
1200
1201                 nb_commit = (uint16_t)(nb_commit - n);
1202
1203                 tx_id = 0;
1204                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1205
1206                 /* avoid reach the end of ring */
1207                 txdp = txq->tx_ring;
1208                 txep = (void *)txq->sw_ring;
1209         }
1210
1211         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1212
1213         ice_vtx(txdp, tx_pkts, nb_commit, flags, do_offload);
1214
1215         tx_id = (uint16_t)(tx_id + nb_commit);
1216         if (tx_id > txq->tx_next_rs) {
1217                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1218                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1219                                          ICE_TXD_QW1_CMD_S);
1220                 txq->tx_next_rs =
1221                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1222         }
1223
1224         txq->tx_tail = tx_id;
1225
1226         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1227
1228         return nb_pkts;
1229 }
1230
1231 uint16_t
1232 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1233                          uint16_t nb_pkts)
1234 {
1235         uint16_t nb_tx = 0;
1236         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1237
1238         while (nb_pkts) {
1239                 uint16_t ret, num;
1240
1241                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1242                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1243                                 &tx_pkts[nb_tx], num, false);
1244                 nb_tx += ret;
1245                 nb_pkts -= ret;
1246                 if (ret < num)
1247                         break;
1248         }
1249
1250         return nb_tx;
1251 }
1252
1253 uint16_t
1254 ice_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
1255                                  uint16_t nb_pkts)
1256 {
1257         uint16_t nb_tx = 0;
1258         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1259
1260         while (nb_pkts) {
1261                 uint16_t ret, num;
1262
1263                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1264                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1265                                 &tx_pkts[nb_tx], num, true);
1266
1267                 nb_tx += ret;
1268                 nb_pkts -= ret;
1269                 if (ret < num)
1270                         break;
1271         }
1272
1273         return nb_tx;
1274 }