net/igc: fix Rx packet size
[dpdk.git] / drivers / net / igc / igc_txrx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include <rte_config.h>
6 #include <rte_flow.h>
7 #include <rte_malloc.h>
8 #include <ethdev_driver.h>
9 #include <rte_net.h>
10
11 #include "igc_logs.h"
12 #include "igc_txrx.h"
13
14 #ifdef RTE_PMD_USE_PREFETCH
15 #define rte_igc_prefetch(p)             rte_prefetch0(p)
16 #else
17 #define rte_igc_prefetch(p)             do {} while (0)
18 #endif
19
20 #ifdef RTE_PMD_PACKET_PREFETCH
21 #define rte_packet_prefetch(p)          rte_prefetch1(p)
22 #else
23 #define rte_packet_prefetch(p)          do {} while (0)
24 #endif
25
26 /* Multicast / Unicast table offset mask. */
27 #define IGC_RCTL_MO_MSK                 (3u << IGC_RCTL_MO_SHIFT)
28
29 /* Loopback mode. */
30 #define IGC_RCTL_LBM_SHIFT              6
31 #define IGC_RCTL_LBM_MSK                (3u << IGC_RCTL_LBM_SHIFT)
32
33 /* Hash select for MTA */
34 #define IGC_RCTL_HSEL_SHIFT             8
35 #define IGC_RCTL_HSEL_MSK               (3u << IGC_RCTL_HSEL_SHIFT)
36 #define IGC_RCTL_PSP                    (1u << 21)
37
38 /* Receive buffer size for header buffer */
39 #define IGC_SRRCTL_BSIZEHEADER_SHIFT    8
40
41 /* RX descriptor status and error flags */
42 #define IGC_RXD_STAT_L4CS               (1u << 5)
43 #define IGC_RXD_STAT_VEXT               (1u << 9)
44 #define IGC_RXD_STAT_LLINT              (1u << 11)
45 #define IGC_RXD_STAT_SCRC               (1u << 12)
46 #define IGC_RXD_STAT_SMDT_MASK          (3u << 13)
47 #define IGC_RXD_STAT_MC                 (1u << 19)
48 #define IGC_RXD_EXT_ERR_L4E             (1u << 29)
49 #define IGC_RXD_EXT_ERR_IPE             (1u << 30)
50 #define IGC_RXD_EXT_ERR_RXE             (1u << 31)
51 #define IGC_RXD_RSS_TYPE_MASK           0xfu
52 #define IGC_RXD_PCTYPE_MASK             (0x7fu << 4)
53 #define IGC_RXD_ETQF_SHIFT              12
54 #define IGC_RXD_ETQF_MSK                (0xfu << IGC_RXD_ETQF_SHIFT)
55 #define IGC_RXD_VPKT                    (1u << 16)
56
57 /* TXD control bits */
58 #define IGC_TXDCTL_PTHRESH_SHIFT        0
59 #define IGC_TXDCTL_HTHRESH_SHIFT        8
60 #define IGC_TXDCTL_WTHRESH_SHIFT        16
61 #define IGC_TXDCTL_PTHRESH_MSK          (0x1fu << IGC_TXDCTL_PTHRESH_SHIFT)
62 #define IGC_TXDCTL_HTHRESH_MSK          (0x1fu << IGC_TXDCTL_HTHRESH_SHIFT)
63 #define IGC_TXDCTL_WTHRESH_MSK          (0x1fu << IGC_TXDCTL_WTHRESH_SHIFT)
64
65 /* RXD control bits */
66 #define IGC_RXDCTL_PTHRESH_SHIFT        0
67 #define IGC_RXDCTL_HTHRESH_SHIFT        8
68 #define IGC_RXDCTL_WTHRESH_SHIFT        16
69 #define IGC_RXDCTL_PTHRESH_MSK          (0x1fu << IGC_RXDCTL_PTHRESH_SHIFT)
70 #define IGC_RXDCTL_HTHRESH_MSK          (0x1fu << IGC_RXDCTL_HTHRESH_SHIFT)
71 #define IGC_RXDCTL_WTHRESH_MSK          (0x1fu << IGC_RXDCTL_WTHRESH_SHIFT)
72
73 #define IGC_TSO_MAX_HDRLEN              512
74 #define IGC_TSO_MAX_MSS                 9216
75
76 /* Bit Mask to indicate what bits required for building TX context */
77 #define IGC_TX_OFFLOAD_MASK (           \
78                 PKT_TX_OUTER_IPV4 |     \
79                 PKT_TX_IPV6 |           \
80                 PKT_TX_IPV4 |           \
81                 PKT_TX_VLAN_PKT |       \
82                 PKT_TX_IP_CKSUM |       \
83                 PKT_TX_L4_MASK |        \
84                 PKT_TX_TCP_SEG |        \
85                 PKT_TX_UDP_SEG)
86
87 #define IGC_TX_OFFLOAD_SEG      (PKT_TX_TCP_SEG | PKT_TX_UDP_SEG)
88
89 #define IGC_ADVTXD_POPTS_TXSM   0x00000200 /* L4 Checksum offload request */
90 #define IGC_ADVTXD_POPTS_IXSM   0x00000100 /* IP Checksum offload request */
91
92 /* L4 Packet TYPE of Reserved */
93 #define IGC_ADVTXD_TUCMD_L4T_RSV        0x00001800
94
95 #define IGC_TX_OFFLOAD_NOTSUP_MASK (PKT_TX_OFFLOAD_MASK ^ IGC_TX_OFFLOAD_MASK)
96
97 /**
98  * Structure associated with each descriptor of the RX ring of a RX queue.
99  */
100 struct igc_rx_entry {
101         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
102 };
103
104 /**
105  * Structure associated with each RX queue.
106  */
107 struct igc_rx_queue {
108         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
109         volatile union igc_adv_rx_desc *rx_ring;
110         /**< RX ring virtual address. */
111         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
112         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
113         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
114         struct igc_rx_entry *sw_ring;   /**< address of RX software ring. */
115         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
116         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
117         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
118         uint16_t            rx_tail;    /**< current value of RDT register. */
119         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
120         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
121         uint16_t            queue_id;   /**< RX queue index. */
122         uint16_t            reg_idx;    /**< RX queue register index. */
123         uint16_t            port_id;    /**< Device port identifier. */
124         uint8_t             pthresh;    /**< Prefetch threshold register. */
125         uint8_t             hthresh;    /**< Host threshold register. */
126         uint8_t             wthresh;    /**< Write-back threshold register. */
127         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
128         uint8_t             drop_en;    /**< If not 0, set SRRCTL.Drop_En. */
129         uint32_t            flags;      /**< RX flags. */
130         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
131 };
132
133 /** Offload features */
134 union igc_tx_offload {
135         uint64_t data;
136         struct {
137                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
138                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
139                 uint64_t vlan_tci:16;
140                 /**< VLAN Tag Control Identifier(CPU order). */
141                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
142                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
143                 /* uint64_t unused:8; */
144         };
145 };
146
147 /*
148  * Compare mask for igc_tx_offload.data,
149  * should be in sync with igc_tx_offload layout.
150  */
151 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
152 #define TX_VLAN_CMP_MASK        0x00000000FFFF0000ULL /**< Vlan mask. */
153 #define TX_TCP_LEN_CMP_MASK     0x000000FF00000000ULL /**< TCP header mask. */
154 #define TX_TSO_MSS_CMP_MASK     0x00FFFF0000000000ULL /**< TSO segsz mask. */
155 /** Mac + IP + TCP + Mss mask. */
156 #define TX_TSO_CMP_MASK \
157         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
158
159 /**
160  * Structure to check if new context need be built
161  */
162 struct igc_advctx_info {
163         uint64_t flags;           /**< ol_flags related to context build. */
164         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
165         union igc_tx_offload tx_offload;
166         /** compare mask for tx offload. */
167         union igc_tx_offload tx_offload_mask;
168 };
169
170 /**
171  * Hardware context number
172  */
173 enum {
174         IGC_CTX_0    = 0, /**< CTX0    */
175         IGC_CTX_1    = 1, /**< CTX1    */
176         IGC_CTX_NUM  = 2, /**< CTX_NUM */
177 };
178
179 /**
180  * Structure associated with each descriptor of the TX ring of a TX queue.
181  */
182 struct igc_tx_entry {
183         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
184         uint16_t next_id; /**< Index of next descriptor in ring. */
185         uint16_t last_id; /**< Index of last scattered descriptor. */
186 };
187
188 /**
189  * Structure associated with each TX queue.
190  */
191 struct igc_tx_queue {
192         volatile union igc_adv_tx_desc *tx_ring; /**< TX ring address */
193         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
194         struct igc_tx_entry    *sw_ring; /**< virtual address of SW ring. */
195         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
196         uint32_t               txd_type;      /**< Device-specific TXD type */
197         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
198         uint16_t               tx_tail;  /**< Current value of TDT register. */
199         uint16_t               tx_head;
200         /**< Index of first used TX descriptor. */
201         uint16_t               queue_id; /**< TX queue index. */
202         uint16_t               reg_idx;  /**< TX queue register index. */
203         uint16_t               port_id;  /**< Device port identifier. */
204         uint8_t                pthresh;  /**< Prefetch threshold register. */
205         uint8_t                hthresh;  /**< Host threshold register. */
206         uint8_t                wthresh;  /**< Write-back threshold register. */
207         uint8_t                ctx_curr;
208
209         /**< Start context position for transmit queue. */
210         struct igc_advctx_info ctx_cache[IGC_CTX_NUM];
211         /**< Hardware context history.*/
212         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
213 };
214
215 static inline uint64_t
216 rx_desc_statuserr_to_pkt_flags(uint32_t statuserr)
217 {
218         static uint64_t l4_chksum_flags[] = {0, 0, PKT_RX_L4_CKSUM_GOOD,
219                         PKT_RX_L4_CKSUM_BAD};
220
221         static uint64_t l3_chksum_flags[] = {0, 0, PKT_RX_IP_CKSUM_GOOD,
222                         PKT_RX_IP_CKSUM_BAD};
223         uint64_t pkt_flags = 0;
224         uint32_t tmp;
225
226         if (statuserr & IGC_RXD_STAT_VP)
227                 pkt_flags |= PKT_RX_VLAN_STRIPPED;
228
229         tmp = !!(statuserr & (IGC_RXD_STAT_L4CS | IGC_RXD_STAT_UDPCS));
230         tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_L4E);
231         pkt_flags |= l4_chksum_flags[tmp];
232
233         tmp = !!(statuserr & IGC_RXD_STAT_IPCS);
234         tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_IPE);
235         pkt_flags |= l3_chksum_flags[tmp];
236
237         return pkt_flags;
238 }
239
240 #define IGC_PACKET_TYPE_IPV4              0X01
241 #define IGC_PACKET_TYPE_IPV4_TCP          0X11
242 #define IGC_PACKET_TYPE_IPV4_UDP          0X21
243 #define IGC_PACKET_TYPE_IPV4_SCTP         0X41
244 #define IGC_PACKET_TYPE_IPV4_EXT          0X03
245 #define IGC_PACKET_TYPE_IPV4_EXT_SCTP     0X43
246 #define IGC_PACKET_TYPE_IPV6              0X04
247 #define IGC_PACKET_TYPE_IPV6_TCP          0X14
248 #define IGC_PACKET_TYPE_IPV6_UDP          0X24
249 #define IGC_PACKET_TYPE_IPV6_EXT          0X0C
250 #define IGC_PACKET_TYPE_IPV6_EXT_TCP      0X1C
251 #define IGC_PACKET_TYPE_IPV6_EXT_UDP      0X2C
252 #define IGC_PACKET_TYPE_IPV4_IPV6         0X05
253 #define IGC_PACKET_TYPE_IPV4_IPV6_TCP     0X15
254 #define IGC_PACKET_TYPE_IPV4_IPV6_UDP     0X25
255 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
256 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
257 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
258 #define IGC_PACKET_TYPE_MAX               0X80
259 #define IGC_PACKET_TYPE_MASK              0X7F
260 #define IGC_PACKET_TYPE_SHIFT             0X04
261
262 static inline uint32_t
263 rx_desc_pkt_info_to_pkt_type(uint32_t pkt_info)
264 {
265         static const uint32_t
266                 ptype_table[IGC_PACKET_TYPE_MAX] __rte_cache_aligned = {
267                 [IGC_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
268                         RTE_PTYPE_L3_IPV4,
269                 [IGC_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
270                         RTE_PTYPE_L3_IPV4_EXT,
271                 [IGC_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
272                         RTE_PTYPE_L3_IPV6,
273                 [IGC_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
274                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
275                         RTE_PTYPE_INNER_L3_IPV6,
276                 [IGC_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
277                         RTE_PTYPE_L3_IPV6_EXT,
278                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
279                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
280                         RTE_PTYPE_INNER_L3_IPV6_EXT,
281                 [IGC_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
282                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
283                 [IGC_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
284                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
285                 [IGC_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
286                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
287                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
288                 [IGC_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
289                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
290                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
291                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
292                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
293                 [IGC_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
294                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
295                 [IGC_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
296                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
297                 [IGC_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
298                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
299                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
300                 [IGC_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
301                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
302                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
303                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
304                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
305                 [IGC_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
306                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
307                 [IGC_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
308                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
309         };
310         if (unlikely(pkt_info & IGC_RXDADV_PKTTYPE_ETQF))
311                 return RTE_PTYPE_UNKNOWN;
312
313         pkt_info = (pkt_info >> IGC_PACKET_TYPE_SHIFT) & IGC_PACKET_TYPE_MASK;
314
315         return ptype_table[pkt_info];
316 }
317
318 static inline void
319 rx_desc_get_pkt_info(struct igc_rx_queue *rxq, struct rte_mbuf *rxm,
320                 union igc_adv_rx_desc *rxd, uint32_t staterr)
321 {
322         uint64_t pkt_flags;
323         uint32_t hlen_type_rss;
324         uint16_t pkt_info;
325
326         /* Prefetch data of first segment, if configured to do so. */
327         rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
328
329         rxm->port = rxq->port_id;
330         hlen_type_rss = rte_le_to_cpu_32(rxd->wb.lower.lo_dword.data);
331         rxm->hash.rss = rte_le_to_cpu_32(rxd->wb.lower.hi_dword.rss);
332         rxm->vlan_tci = rte_le_to_cpu_16(rxd->wb.upper.vlan);
333
334         pkt_flags = (hlen_type_rss & IGC_RXD_RSS_TYPE_MASK) ?
335                         PKT_RX_RSS_HASH : 0;
336
337         if (hlen_type_rss & IGC_RXD_VPKT)
338                 pkt_flags |= PKT_RX_VLAN;
339
340         pkt_flags |= rx_desc_statuserr_to_pkt_flags(staterr);
341
342         rxm->ol_flags = pkt_flags;
343         pkt_info = rte_le_to_cpu_16(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
344         rxm->packet_type = rx_desc_pkt_info_to_pkt_type(pkt_info);
345 }
346
347 static uint16_t
348 igc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
349 {
350         struct igc_rx_queue * const rxq = rx_queue;
351         volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
352         struct igc_rx_entry * const sw_ring = rxq->sw_ring;
353         uint16_t rx_id = rxq->rx_tail;
354         uint16_t nb_rx = 0;
355         uint16_t nb_hold = 0;
356
357         while (nb_rx < nb_pkts) {
358                 volatile union igc_adv_rx_desc *rxdp;
359                 struct igc_rx_entry *rxe;
360                 struct rte_mbuf *rxm;
361                 struct rte_mbuf *nmb;
362                 union igc_adv_rx_desc rxd;
363                 uint32_t staterr;
364                 uint16_t data_len;
365
366                 /*
367                  * The order of operations here is important as the DD status
368                  * bit must not be read after any other descriptor fields.
369                  * rx_ring and rxdp are pointing to volatile data so the order
370                  * of accesses cannot be reordered by the compiler. If they were
371                  * not volatile, they could be reordered which could lead to
372                  * using invalid descriptor fields when read from rxd.
373                  */
374                 rxdp = &rx_ring[rx_id];
375                 staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
376                 if (!(staterr & IGC_RXD_STAT_DD))
377                         break;
378                 rxd = *rxdp;
379
380                 /*
381                  * End of packet.
382                  *
383                  * If the IGC_RXD_STAT_EOP flag is not set, the RX packet is
384                  * likely to be invalid and to be dropped by the various
385                  * validation checks performed by the network stack.
386                  *
387                  * Allocate a new mbuf to replenish the RX ring descriptor.
388                  * If the allocation fails:
389                  *    - arrange for that RX descriptor to be the first one
390                  *      being parsed the next time the receive function is
391                  *      invoked [on the same queue].
392                  *
393                  *    - Stop parsing the RX ring and return immediately.
394                  *
395                  * This policy does not drop the packet received in the RX
396                  * descriptor for which the allocation of a new mbuf failed.
397                  * Thus, it allows that packet to be later retrieved if
398                  * mbuf have been freed in the mean time.
399                  * As a side effect, holding RX descriptors instead of
400                  * systematically giving them back to the NIC may lead to
401                  * RX ring exhaustion situations.
402                  * However, the NIC can gracefully prevent such situations
403                  * to happen by sending specific "back-pressure" flow control
404                  * frames to its peer(s).
405                  */
406                 PMD_RX_LOG(DEBUG,
407                         "port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
408                         rxq->port_id, rxq->queue_id, rx_id, staterr,
409                         rte_le_to_cpu_16(rxd.wb.upper.length));
410
411                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
412                 if (nmb == NULL) {
413                         unsigned int id;
414                         PMD_RX_LOG(DEBUG,
415                                 "RX mbuf alloc failed, port_id=%u queue_id=%u",
416                                 rxq->port_id, rxq->queue_id);
417                         id = rxq->port_id;
418                         rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
419                         break;
420                 }
421
422                 nb_hold++;
423                 rxe = &sw_ring[rx_id];
424                 rx_id++;
425                 if (rx_id >= rxq->nb_rx_desc)
426                         rx_id = 0;
427
428                 /* Prefetch next mbuf while processing current one. */
429                 rte_igc_prefetch(sw_ring[rx_id].mbuf);
430
431                 /*
432                  * When next RX descriptor is on a cache-line boundary,
433                  * prefetch the next 4 RX descriptors and the next 8 pointers
434                  * to mbufs.
435                  */
436                 if ((rx_id & 0x3) == 0) {
437                         rte_igc_prefetch(&rx_ring[rx_id]);
438                         rte_igc_prefetch(&sw_ring[rx_id]);
439                 }
440
441                 /*
442                  * Update RX descriptor with the physical address of the new
443                  * data buffer of the new allocated mbuf.
444                  */
445                 rxm = rxe->mbuf;
446                 rxe->mbuf = nmb;
447                 rxdp->read.hdr_addr = 0;
448                 rxdp->read.pkt_addr =
449                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
450                 rxm->next = NULL;
451
452                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
453                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length) - rxq->crc_len;
454                 rxm->data_len = data_len;
455                 rxm->pkt_len = data_len;
456                 rxm->nb_segs = 1;
457
458                 rx_desc_get_pkt_info(rxq, rxm, &rxd, staterr);
459
460                 /*
461                  * Store the mbuf address into the next entry of the array
462                  * of returned packets.
463                  */
464                 rx_pkts[nb_rx++] = rxm;
465         }
466         rxq->rx_tail = rx_id;
467
468         /*
469          * If the number of free RX descriptors is greater than the RX free
470          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
471          * register.
472          * Update the RDT with the value of the last processed RX descriptor
473          * minus 1, to guarantee that the RDT register is never equal to the
474          * RDH register, which creates a "full" ring situation from the
475          * hardware point of view...
476          */
477         nb_hold = nb_hold + rxq->nb_rx_hold;
478         if (nb_hold > rxq->rx_free_thresh) {
479                 PMD_RX_LOG(DEBUG,
480                         "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
481                         rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
482                 rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
483                 IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
484                 nb_hold = 0;
485         }
486         rxq->nb_rx_hold = nb_hold;
487         return nb_rx;
488 }
489
490 static uint16_t
491 igc_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
492                         uint16_t nb_pkts)
493 {
494         struct igc_rx_queue * const rxq = rx_queue;
495         volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
496         struct igc_rx_entry * const sw_ring = rxq->sw_ring;
497         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
498         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
499
500         uint16_t rx_id = rxq->rx_tail;
501         uint16_t nb_rx = 0;
502         uint16_t nb_hold = 0;
503
504         while (nb_rx < nb_pkts) {
505                 volatile union igc_adv_rx_desc *rxdp;
506                 struct igc_rx_entry *rxe;
507                 struct rte_mbuf *rxm;
508                 struct rte_mbuf *nmb;
509                 union igc_adv_rx_desc rxd;
510                 uint32_t staterr;
511                 uint16_t data_len;
512
513 next_desc:
514                 /*
515                  * The order of operations here is important as the DD status
516                  * bit must not be read after any other descriptor fields.
517                  * rx_ring and rxdp are pointing to volatile data so the order
518                  * of accesses cannot be reordered by the compiler. If they were
519                  * not volatile, they could be reordered which could lead to
520                  * using invalid descriptor fields when read from rxd.
521                  */
522                 rxdp = &rx_ring[rx_id];
523                 staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
524                 if (!(staterr & IGC_RXD_STAT_DD))
525                         break;
526                 rxd = *rxdp;
527
528                 /*
529                  * Descriptor done.
530                  *
531                  * Allocate a new mbuf to replenish the RX ring descriptor.
532                  * If the allocation fails:
533                  *    - arrange for that RX descriptor to be the first one
534                  *      being parsed the next time the receive function is
535                  *      invoked [on the same queue].
536                  *
537                  *    - Stop parsing the RX ring and return immediately.
538                  *
539                  * This policy does not drop the packet received in the RX
540                  * descriptor for which the allocation of a new mbuf failed.
541                  * Thus, it allows that packet to be later retrieved if
542                  * mbuf have been freed in the mean time.
543                  * As a side effect, holding RX descriptors instead of
544                  * systematically giving them back to the NIC may lead to
545                  * RX ring exhaustion situations.
546                  * However, the NIC can gracefully prevent such situations
547                  * to happen by sending specific "back-pressure" flow control
548                  * frames to its peer(s).
549                  */
550                 PMD_RX_LOG(DEBUG,
551                         "port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
552                         rxq->port_id, rxq->queue_id, rx_id, staterr,
553                         rte_le_to_cpu_16(rxd.wb.upper.length));
554
555                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
556                 if (nmb == NULL) {
557                         unsigned int id;
558                         PMD_RX_LOG(DEBUG,
559                                 "RX mbuf alloc failed, port_id=%u queue_id=%u",
560                                 rxq->port_id, rxq->queue_id);
561                         id = rxq->port_id;
562                         rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
563                         break;
564                 }
565
566                 nb_hold++;
567                 rxe = &sw_ring[rx_id];
568                 rx_id++;
569                 if (rx_id >= rxq->nb_rx_desc)
570                         rx_id = 0;
571
572                 /* Prefetch next mbuf while processing current one. */
573                 rte_igc_prefetch(sw_ring[rx_id].mbuf);
574
575                 /*
576                  * When next RX descriptor is on a cache-line boundary,
577                  * prefetch the next 4 RX descriptors and the next 8 pointers
578                  * to mbufs.
579                  */
580                 if ((rx_id & 0x3) == 0) {
581                         rte_igc_prefetch(&rx_ring[rx_id]);
582                         rte_igc_prefetch(&sw_ring[rx_id]);
583                 }
584
585                 /*
586                  * Update RX descriptor with the physical address of the new
587                  * data buffer of the new allocated mbuf.
588                  */
589                 rxm = rxe->mbuf;
590                 rxe->mbuf = nmb;
591                 rxdp->read.hdr_addr = 0;
592                 rxdp->read.pkt_addr =
593                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
594                 rxm->next = NULL;
595
596                 /*
597                  * Set data length & data buffer address of mbuf.
598                  */
599                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
600                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
601                 rxm->data_len = data_len;
602
603                 /*
604                  * If this is the first buffer of the received packet,
605                  * set the pointer to the first mbuf of the packet and
606                  * initialize its context.
607                  * Otherwise, update the total length and the number of segments
608                  * of the current scattered packet, and update the pointer to
609                  * the last mbuf of the current packet.
610                  */
611                 if (first_seg == NULL) {
612                         first_seg = rxm;
613                         first_seg->pkt_len = data_len;
614                         first_seg->nb_segs = 1;
615                 } else {
616                         first_seg->pkt_len += data_len;
617                         first_seg->nb_segs++;
618                         last_seg->next = rxm;
619                 }
620
621                 /*
622                  * If this is not the last buffer of the received packet,
623                  * update the pointer to the last mbuf of the current scattered
624                  * packet and continue to parse the RX ring.
625                  */
626                 if (!(staterr & IGC_RXD_STAT_EOP)) {
627                         last_seg = rxm;
628                         goto next_desc;
629                 }
630
631                 /*
632                  * This is the last buffer of the received packet.
633                  * If the CRC is not stripped by the hardware:
634                  *   - Subtract the CRC length from the total packet length.
635                  *   - If the last buffer only contains the whole CRC or a part
636                  *     of it, free the mbuf associated to the last buffer.
637                  *     If part of the CRC is also contained in the previous
638                  *     mbuf, subtract the length of that CRC part from the
639                  *     data length of the previous mbuf.
640                  */
641                 if (unlikely(rxq->crc_len > 0)) {
642                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
643                         if (data_len <= RTE_ETHER_CRC_LEN) {
644                                 rte_pktmbuf_free_seg(rxm);
645                                 first_seg->nb_segs--;
646                                 last_seg->data_len = last_seg->data_len -
647                                          (RTE_ETHER_CRC_LEN - data_len);
648                                 last_seg->next = NULL;
649                         } else {
650                                 rxm->data_len = (uint16_t)
651                                         (data_len - RTE_ETHER_CRC_LEN);
652                         }
653                 }
654
655                 rx_desc_get_pkt_info(rxq, first_seg, &rxd, staterr);
656
657                 /*
658                  * Store the mbuf address into the next entry of the array
659                  * of returned packets.
660                  */
661                 rx_pkts[nb_rx++] = first_seg;
662
663                 /* Setup receipt context for a new packet. */
664                 first_seg = NULL;
665         }
666         rxq->rx_tail = rx_id;
667
668         /*
669          * Save receive context.
670          */
671         rxq->pkt_first_seg = first_seg;
672         rxq->pkt_last_seg = last_seg;
673
674         /*
675          * If the number of free RX descriptors is greater than the RX free
676          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
677          * register.
678          * Update the RDT with the value of the last processed RX descriptor
679          * minus 1, to guarantee that the RDT register is never equal to the
680          * RDH register, which creates a "full" ring situation from the
681          * hardware point of view...
682          */
683         nb_hold = nb_hold + rxq->nb_rx_hold;
684         if (nb_hold > rxq->rx_free_thresh) {
685                 PMD_RX_LOG(DEBUG,
686                         "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
687                         rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
688                 rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
689                 IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
690                 nb_hold = 0;
691         }
692         rxq->nb_rx_hold = nb_hold;
693         return nb_rx;
694 }
695
696 static void
697 igc_rx_queue_release_mbufs(struct igc_rx_queue *rxq)
698 {
699         unsigned int i;
700
701         if (rxq->sw_ring != NULL) {
702                 for (i = 0; i < rxq->nb_rx_desc; i++) {
703                         if (rxq->sw_ring[i].mbuf != NULL) {
704                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
705                                 rxq->sw_ring[i].mbuf = NULL;
706                         }
707                 }
708         }
709 }
710
711 static void
712 igc_rx_queue_release(struct igc_rx_queue *rxq)
713 {
714         igc_rx_queue_release_mbufs(rxq);
715         rte_free(rxq->sw_ring);
716         rte_free(rxq);
717 }
718
719 void eth_igc_rx_queue_release(void *rxq)
720 {
721         if (rxq)
722                 igc_rx_queue_release(rxq);
723 }
724
725 uint32_t eth_igc_rx_queue_count(struct rte_eth_dev *dev,
726                 uint16_t rx_queue_id)
727 {
728         /**
729          * Check the DD bit of a rx descriptor of each 4 in a group,
730          * to avoid checking too frequently and downgrading performance
731          * too much.
732          */
733 #define IGC_RXQ_SCAN_INTERVAL 4
734
735         volatile union igc_adv_rx_desc *rxdp;
736         struct igc_rx_queue *rxq;
737         uint16_t desc = 0;
738
739         rxq = dev->data->rx_queues[rx_queue_id];
740         rxdp = &rxq->rx_ring[rxq->rx_tail];
741
742         while (desc < rxq->nb_rx_desc - rxq->rx_tail) {
743                 if (unlikely(!(rxdp->wb.upper.status_error &
744                                 IGC_RXD_STAT_DD)))
745                         return desc;
746                 desc += IGC_RXQ_SCAN_INTERVAL;
747                 rxdp += IGC_RXQ_SCAN_INTERVAL;
748         }
749         rxdp = &rxq->rx_ring[rxq->rx_tail + desc - rxq->nb_rx_desc];
750
751         while (desc < rxq->nb_rx_desc &&
752                 (rxdp->wb.upper.status_error & IGC_RXD_STAT_DD)) {
753                 desc += IGC_RXQ_SCAN_INTERVAL;
754                 rxdp += IGC_RXQ_SCAN_INTERVAL;
755         }
756
757         return desc;
758 }
759
760 int eth_igc_rx_descriptor_done(void *rx_queue, uint16_t offset)
761 {
762         volatile union igc_adv_rx_desc *rxdp;
763         struct igc_rx_queue *rxq = rx_queue;
764         uint32_t desc;
765
766         if (unlikely(!rxq || offset >= rxq->nb_rx_desc))
767                 return 0;
768
769         desc = rxq->rx_tail + offset;
770         if (desc >= rxq->nb_rx_desc)
771                 desc -= rxq->nb_rx_desc;
772
773         rxdp = &rxq->rx_ring[desc];
774         return !!(rxdp->wb.upper.status_error &
775                         rte_cpu_to_le_32(IGC_RXD_STAT_DD));
776 }
777
778 int eth_igc_rx_descriptor_status(void *rx_queue, uint16_t offset)
779 {
780         struct igc_rx_queue *rxq = rx_queue;
781         volatile uint32_t *status;
782         uint32_t desc;
783
784         if (unlikely(!rxq || offset >= rxq->nb_rx_desc))
785                 return -EINVAL;
786
787         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
788                 return RTE_ETH_RX_DESC_UNAVAIL;
789
790         desc = rxq->rx_tail + offset;
791         if (desc >= rxq->nb_rx_desc)
792                 desc -= rxq->nb_rx_desc;
793
794         status = &rxq->rx_ring[desc].wb.upper.status_error;
795         if (*status & rte_cpu_to_le_32(IGC_RXD_STAT_DD))
796                 return RTE_ETH_RX_DESC_DONE;
797
798         return RTE_ETH_RX_DESC_AVAIL;
799 }
800
801 static int
802 igc_alloc_rx_queue_mbufs(struct igc_rx_queue *rxq)
803 {
804         struct igc_rx_entry *rxe = rxq->sw_ring;
805         uint64_t dma_addr;
806         unsigned int i;
807
808         /* Initialize software ring entries. */
809         for (i = 0; i < rxq->nb_rx_desc; i++) {
810                 volatile union igc_adv_rx_desc *rxd;
811                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
812
813                 if (mbuf == NULL) {
814                         PMD_DRV_LOG(ERR, "RX mbuf alloc failed, queue_id=%hu",
815                                 rxq->queue_id);
816                         return -ENOMEM;
817                 }
818                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
819                 rxd = &rxq->rx_ring[i];
820                 rxd->read.hdr_addr = 0;
821                 rxd->read.pkt_addr = dma_addr;
822                 rxe[i].mbuf = mbuf;
823         }
824
825         return 0;
826 }
827
828 /*
829  * RSS random key supplied in section 7.1.2.9.3 of the Intel I225 datasheet.
830  * Used as the default key.
831  */
832 static uint8_t default_rss_key[40] = {
833         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
834         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
835         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
836         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
837         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
838 };
839
840 void
841 igc_rss_disable(struct rte_eth_dev *dev)
842 {
843         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
844         uint32_t mrqc;
845
846         mrqc = IGC_READ_REG(hw, IGC_MRQC);
847         mrqc &= ~IGC_MRQC_ENABLE_MASK;
848         IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
849 }
850
851 void
852 igc_hw_rss_hash_set(struct igc_hw *hw, struct rte_eth_rss_conf *rss_conf)
853 {
854         uint32_t *hash_key = (uint32_t *)rss_conf->rss_key;
855         uint32_t mrqc;
856         uint64_t rss_hf;
857
858         if (hash_key != NULL) {
859                 uint8_t i;
860
861                 /* Fill in RSS hash key */
862                 for (i = 0; i < IGC_HKEY_MAX_INDEX; i++)
863                         IGC_WRITE_REG_LE_VALUE(hw, IGC_RSSRK(i), hash_key[i]);
864         }
865
866         /* Set configured hashing protocols in MRQC register */
867         rss_hf = rss_conf->rss_hf;
868         mrqc = IGC_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
869         if (rss_hf & ETH_RSS_IPV4)
870                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4;
871         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
872                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_TCP;
873         if (rss_hf & ETH_RSS_IPV6)
874                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6;
875         if (rss_hf & ETH_RSS_IPV6_EX)
876                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_EX;
877         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
878                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP;
879         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
880                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
881         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
882                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
883         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
884                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
885         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
886                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP_EX;
887         IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
888 }
889
890 static void
891 igc_rss_configure(struct rte_eth_dev *dev)
892 {
893         struct rte_eth_rss_conf rss_conf;
894         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
895         uint16_t i;
896
897         /* Fill in redirection table. */
898         for (i = 0; i < IGC_RSS_RDT_SIZD; i++) {
899                 union igc_rss_reta_reg reta;
900                 uint16_t q_idx, reta_idx;
901
902                 q_idx = (uint8_t)((dev->data->nb_rx_queues > 1) ?
903                                    i % dev->data->nb_rx_queues : 0);
904                 reta_idx = i % sizeof(reta);
905                 reta.bytes[reta_idx] = q_idx;
906                 if (reta_idx == sizeof(reta) - 1)
907                         IGC_WRITE_REG_LE_VALUE(hw,
908                                 IGC_RETA(i / sizeof(reta)), reta.dword);
909         }
910
911         /*
912          * Configure the RSS key and the RSS protocols used to compute
913          * the RSS hash of input packets.
914          */
915         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
916         if (rss_conf.rss_key == NULL)
917                 rss_conf.rss_key = default_rss_key;
918         igc_hw_rss_hash_set(hw, &rss_conf);
919 }
920
921 int
922 igc_del_rss_filter(struct rte_eth_dev *dev)
923 {
924         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
925
926         if (rss_filter->enable) {
927                 /* recover default RSS configuration */
928                 igc_rss_configure(dev);
929
930                 /* disable RSS logic and clear filter data */
931                 igc_rss_disable(dev);
932                 memset(rss_filter, 0, sizeof(*rss_filter));
933                 return 0;
934         }
935         PMD_DRV_LOG(ERR, "filter not exist!");
936         return -ENOENT;
937 }
938
939 /* Initiate the filter structure by the structure of rte_flow_action_rss */
940 void
941 igc_rss_conf_set(struct igc_rss_filter *out,
942                 const struct rte_flow_action_rss *rss)
943 {
944         out->conf.func = rss->func;
945         out->conf.level = rss->level;
946         out->conf.types = rss->types;
947
948         if (rss->key_len == sizeof(out->key)) {
949                 memcpy(out->key, rss->key, rss->key_len);
950                 out->conf.key = out->key;
951                 out->conf.key_len = rss->key_len;
952         } else {
953                 out->conf.key = NULL;
954                 out->conf.key_len = 0;
955         }
956
957         if (rss->queue_num <= IGC_RSS_RDT_SIZD) {
958                 memcpy(out->queue, rss->queue,
959                         sizeof(*out->queue) * rss->queue_num);
960                 out->conf.queue = out->queue;
961                 out->conf.queue_num = rss->queue_num;
962         } else {
963                 out->conf.queue = NULL;
964                 out->conf.queue_num = 0;
965         }
966 }
967
968 int
969 igc_add_rss_filter(struct rte_eth_dev *dev, struct igc_rss_filter *rss)
970 {
971         struct rte_eth_rss_conf rss_conf = {
972                 .rss_key = rss->conf.key_len ?
973                         (void *)(uintptr_t)rss->conf.key : NULL,
974                 .rss_key_len = rss->conf.key_len,
975                 .rss_hf = rss->conf.types,
976         };
977         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
978         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
979         uint32_t i, j;
980
981         /* check RSS type is valid */
982         if ((rss_conf.rss_hf & IGC_RSS_OFFLOAD_ALL) == 0) {
983                 PMD_DRV_LOG(ERR,
984                         "RSS type(0x%" PRIx64 ") error!, only 0x%" PRIx64
985                         " been supported", rss_conf.rss_hf,
986                         (uint64_t)IGC_RSS_OFFLOAD_ALL);
987                 return -EINVAL;
988         }
989
990         /* check queue count is not zero */
991         if (!rss->conf.queue_num) {
992                 PMD_DRV_LOG(ERR, "Queue number should not be 0!");
993                 return -EINVAL;
994         }
995
996         /* check queue id is valid */
997         for (i = 0; i < rss->conf.queue_num; i++)
998                 if (rss->conf.queue[i] >= dev->data->nb_rx_queues) {
999                         PMD_DRV_LOG(ERR, "Queue id %u is invalid!",
1000                                         rss->conf.queue[i]);
1001                         return -EINVAL;
1002                 }
1003
1004         /* only support one filter */
1005         if (rss_filter->enable) {
1006                 PMD_DRV_LOG(ERR, "Only support one RSS filter!");
1007                 return -ENOTSUP;
1008         }
1009         rss_filter->enable = 1;
1010
1011         igc_rss_conf_set(rss_filter, &rss->conf);
1012
1013         /* Fill in redirection table. */
1014         for (i = 0, j = 0; i < IGC_RSS_RDT_SIZD; i++, j++) {
1015                 union igc_rss_reta_reg reta;
1016                 uint16_t q_idx, reta_idx;
1017
1018                 if (j == rss->conf.queue_num)
1019                         j = 0;
1020                 q_idx = rss->conf.queue[j];
1021                 reta_idx = i % sizeof(reta);
1022                 reta.bytes[reta_idx] = q_idx;
1023                 if (reta_idx == sizeof(reta) - 1)
1024                         IGC_WRITE_REG_LE_VALUE(hw,
1025                                 IGC_RETA(i / sizeof(reta)), reta.dword);
1026         }
1027
1028         if (rss_conf.rss_key == NULL)
1029                 rss_conf.rss_key = default_rss_key;
1030         igc_hw_rss_hash_set(hw, &rss_conf);
1031         return 0;
1032 }
1033
1034 void
1035 igc_clear_rss_filter(struct rte_eth_dev *dev)
1036 {
1037         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
1038
1039         if (!rss_filter->enable)
1040                 return;
1041
1042         /* recover default RSS configuration */
1043         igc_rss_configure(dev);
1044
1045         /* disable RSS logic and clear filter data */
1046         igc_rss_disable(dev);
1047         memset(rss_filter, 0, sizeof(*rss_filter));
1048 }
1049
1050 static int
1051 igc_dev_mq_rx_configure(struct rte_eth_dev *dev)
1052 {
1053         if (RTE_ETH_DEV_SRIOV(dev).active) {
1054                 PMD_DRV_LOG(ERR, "SRIOV unsupported!");
1055                 return -EINVAL;
1056         }
1057
1058         switch (dev->data->dev_conf.rxmode.mq_mode) {
1059         case ETH_MQ_RX_RSS:
1060                 igc_rss_configure(dev);
1061                 break;
1062         case ETH_MQ_RX_NONE:
1063                 /*
1064                  * configure RSS register for following,
1065                  * then disable the RSS logic
1066                  */
1067                 igc_rss_configure(dev);
1068                 igc_rss_disable(dev);
1069                 break;
1070         default:
1071                 PMD_DRV_LOG(ERR, "rx mode(%d) not supported!",
1072                         dev->data->dev_conf.rxmode.mq_mode);
1073                 return -EINVAL;
1074         }
1075         return 0;
1076 }
1077
1078 int
1079 igc_rx_init(struct rte_eth_dev *dev)
1080 {
1081         struct igc_rx_queue *rxq;
1082         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
1083         uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
1084         uint32_t max_rx_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
1085         uint32_t rctl;
1086         uint32_t rxcsum;
1087         uint16_t buf_size;
1088         uint16_t rctl_bsize;
1089         uint16_t i;
1090         int ret;
1091
1092         dev->rx_pkt_burst = igc_recv_pkts;
1093
1094         /*
1095          * Make sure receives are disabled while setting
1096          * up the descriptor ring.
1097          */
1098         rctl = IGC_READ_REG(hw, IGC_RCTL);
1099         IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
1100
1101         /* Configure support of jumbo frames, if any. */
1102         if (offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1103                 rctl |= IGC_RCTL_LPE;
1104
1105                 /*
1106                  * Set maximum packet length by default, and might be updated
1107                  * together with enabling/disabling dual VLAN.
1108                  */
1109                 IGC_WRITE_REG(hw, IGC_RLPML, max_rx_pkt_len);
1110         } else {
1111                 rctl &= ~IGC_RCTL_LPE;
1112         }
1113
1114         /* Configure and enable each RX queue. */
1115         rctl_bsize = 0;
1116         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1117                 uint64_t bus_addr;
1118                 uint32_t rxdctl;
1119                 uint32_t srrctl;
1120
1121                 rxq = dev->data->rx_queues[i];
1122                 rxq->flags = 0;
1123
1124                 /* Allocate buffers for descriptor rings and set up queue */
1125                 ret = igc_alloc_rx_queue_mbufs(rxq);
1126                 if (ret)
1127                         return ret;
1128
1129                 /*
1130                  * Reset crc_len in case it was changed after queue setup by a
1131                  * call to configure
1132                  */
1133                 rxq->crc_len = (offloads & DEV_RX_OFFLOAD_KEEP_CRC) ?
1134                                 RTE_ETHER_CRC_LEN : 0;
1135
1136                 bus_addr = rxq->rx_ring_phys_addr;
1137                 IGC_WRITE_REG(hw, IGC_RDLEN(rxq->reg_idx),
1138                                 rxq->nb_rx_desc *
1139                                 sizeof(union igc_adv_rx_desc));
1140                 IGC_WRITE_REG(hw, IGC_RDBAH(rxq->reg_idx),
1141                                 (uint32_t)(bus_addr >> 32));
1142                 IGC_WRITE_REG(hw, IGC_RDBAL(rxq->reg_idx),
1143                                 (uint32_t)bus_addr);
1144
1145                 /* set descriptor configuration */
1146                 srrctl = IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
1147
1148                 srrctl |= (uint32_t)(RTE_PKTMBUF_HEADROOM / 64) <<
1149                                 IGC_SRRCTL_BSIZEHEADER_SHIFT;
1150                 /*
1151                  * Configure RX buffer size.
1152                  */
1153                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1154                         RTE_PKTMBUF_HEADROOM);
1155                 if (buf_size >= 1024) {
1156                         /*
1157                          * Configure the BSIZEPACKET field of the SRRCTL
1158                          * register of the queue.
1159                          * Value is in 1 KB resolution, from 1 KB to 16 KB.
1160                          * If this field is equal to 0b, then RCTL.BSIZE
1161                          * determines the RX packet buffer size.
1162                          */
1163
1164                         srrctl |= ((buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT) &
1165                                    IGC_SRRCTL_BSIZEPKT_MASK);
1166                         buf_size = (uint16_t)((srrctl &
1167                                         IGC_SRRCTL_BSIZEPKT_MASK) <<
1168                                         IGC_SRRCTL_BSIZEPKT_SHIFT);
1169
1170                         /* It adds dual VLAN length for supporting dual VLAN */
1171                         if (max_rx_pkt_len + 2 * VLAN_TAG_SIZE > buf_size)
1172                                 dev->data->scattered_rx = 1;
1173                 } else {
1174                         /*
1175                          * Use BSIZE field of the device RCTL register.
1176                          */
1177                         if (rctl_bsize == 0 || rctl_bsize > buf_size)
1178                                 rctl_bsize = buf_size;
1179                         dev->data->scattered_rx = 1;
1180                 }
1181
1182                 /* Set if packets are dropped when no descriptors available */
1183                 if (rxq->drop_en)
1184                         srrctl |= IGC_SRRCTL_DROP_EN;
1185
1186                 IGC_WRITE_REG(hw, IGC_SRRCTL(rxq->reg_idx), srrctl);
1187
1188                 /* Enable this RX queue. */
1189                 rxdctl = IGC_RXDCTL_QUEUE_ENABLE;
1190                 rxdctl |= ((uint32_t)rxq->pthresh << IGC_RXDCTL_PTHRESH_SHIFT) &
1191                                 IGC_RXDCTL_PTHRESH_MSK;
1192                 rxdctl |= ((uint32_t)rxq->hthresh << IGC_RXDCTL_HTHRESH_SHIFT) &
1193                                 IGC_RXDCTL_HTHRESH_MSK;
1194                 rxdctl |= ((uint32_t)rxq->wthresh << IGC_RXDCTL_WTHRESH_SHIFT) &
1195                                 IGC_RXDCTL_WTHRESH_MSK;
1196                 IGC_WRITE_REG(hw, IGC_RXDCTL(rxq->reg_idx), rxdctl);
1197         }
1198
1199         if (offloads & DEV_RX_OFFLOAD_SCATTER)
1200                 dev->data->scattered_rx = 1;
1201
1202         if (dev->data->scattered_rx) {
1203                 PMD_DRV_LOG(DEBUG, "forcing scatter mode");
1204                 dev->rx_pkt_burst = igc_recv_scattered_pkts;
1205         }
1206         /*
1207          * Setup BSIZE field of RCTL register, if needed.
1208          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
1209          * register, since the code above configures the SRRCTL register of
1210          * the RX queue in such a case.
1211          * All configurable sizes are:
1212          * 16384: rctl |= (IGC_RCTL_SZ_16384 | IGC_RCTL_BSEX);
1213          *  8192: rctl |= (IGC_RCTL_SZ_8192  | IGC_RCTL_BSEX);
1214          *  4096: rctl |= (IGC_RCTL_SZ_4096  | IGC_RCTL_BSEX);
1215          *  2048: rctl |= IGC_RCTL_SZ_2048;
1216          *  1024: rctl |= IGC_RCTL_SZ_1024;
1217          *   512: rctl |= IGC_RCTL_SZ_512;
1218          *   256: rctl |= IGC_RCTL_SZ_256;
1219          */
1220         if (rctl_bsize > 0) {
1221                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
1222                         rctl |= IGC_RCTL_SZ_512;
1223                 else /* 256 <= buf_size < 512 - use 256 */
1224                         rctl |= IGC_RCTL_SZ_256;
1225         }
1226
1227         /*
1228          * Configure RSS if device configured with multiple RX queues.
1229          */
1230         igc_dev_mq_rx_configure(dev);
1231
1232         /* Update the rctl since igc_dev_mq_rx_configure may change its value */
1233         rctl |= IGC_READ_REG(hw, IGC_RCTL);
1234
1235         /*
1236          * Setup the Checksum Register.
1237          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1238          */
1239         rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
1240         rxcsum |= IGC_RXCSUM_PCSD;
1241
1242         /* Enable both L3/L4 rx checksum offload */
1243         if (offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
1244                 rxcsum |= IGC_RXCSUM_IPOFL;
1245         else
1246                 rxcsum &= ~IGC_RXCSUM_IPOFL;
1247
1248         if (offloads &
1249                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM)) {
1250                 rxcsum |= IGC_RXCSUM_TUOFL;
1251                 offloads |= DEV_RX_OFFLOAD_SCTP_CKSUM;
1252         } else {
1253                 rxcsum &= ~IGC_RXCSUM_TUOFL;
1254         }
1255
1256         if (offloads & DEV_RX_OFFLOAD_SCTP_CKSUM)
1257                 rxcsum |= IGC_RXCSUM_CRCOFL;
1258         else
1259                 rxcsum &= ~IGC_RXCSUM_CRCOFL;
1260
1261         IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
1262
1263         /* Setup the Receive Control Register. */
1264         if (offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1265                 rctl &= ~IGC_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1266         else
1267                 rctl |= IGC_RCTL_SECRC; /* Strip Ethernet CRC. */
1268
1269         rctl &= ~IGC_RCTL_MO_MSK;
1270         rctl &= ~IGC_RCTL_LBM_MSK;
1271         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
1272                         IGC_RCTL_DPF |
1273                         (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
1274
1275         if (dev->data->dev_conf.lpbk_mode == 1)
1276                 rctl |= IGC_RCTL_LBM_MAC;
1277
1278         rctl &= ~(IGC_RCTL_HSEL_MSK | IGC_RCTL_CFIEN | IGC_RCTL_CFI |
1279                         IGC_RCTL_PSP | IGC_RCTL_PMCF);
1280
1281         /* Make sure VLAN Filters are off. */
1282         rctl &= ~IGC_RCTL_VFE;
1283         /* Don't store bad packets. */
1284         rctl &= ~IGC_RCTL_SBP;
1285
1286         /* Enable Receives. */
1287         IGC_WRITE_REG(hw, IGC_RCTL, rctl);
1288
1289         /*
1290          * Setup the HW Rx Head and Tail Descriptor Pointers.
1291          * This needs to be done after enable.
1292          */
1293         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1294                 uint32_t dvmolr;
1295
1296                 rxq = dev->data->rx_queues[i];
1297                 IGC_WRITE_REG(hw, IGC_RDH(rxq->reg_idx), 0);
1298                 IGC_WRITE_REG(hw, IGC_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
1299
1300                 dvmolr = IGC_READ_REG(hw, IGC_DVMOLR(rxq->reg_idx));
1301                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1302                         dvmolr |= IGC_DVMOLR_STRVLAN;
1303                 else
1304                         dvmolr &= ~IGC_DVMOLR_STRVLAN;
1305
1306                 if (offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1307                         dvmolr &= ~IGC_DVMOLR_STRCRC;
1308                 else
1309                         dvmolr |= IGC_DVMOLR_STRCRC;
1310
1311                 IGC_WRITE_REG(hw, IGC_DVMOLR(rxq->reg_idx), dvmolr);
1312         }
1313
1314         return 0;
1315 }
1316
1317 static void
1318 igc_reset_rx_queue(struct igc_rx_queue *rxq)
1319 {
1320         static const union igc_adv_rx_desc zeroed_desc = { {0} };
1321         unsigned int i;
1322
1323         /* Zero out HW ring memory */
1324         for (i = 0; i < rxq->nb_rx_desc; i++)
1325                 rxq->rx_ring[i] = zeroed_desc;
1326
1327         rxq->rx_tail = 0;
1328         rxq->pkt_first_seg = NULL;
1329         rxq->pkt_last_seg = NULL;
1330 }
1331
1332 int
1333 eth_igc_rx_queue_setup(struct rte_eth_dev *dev,
1334                          uint16_t queue_idx,
1335                          uint16_t nb_desc,
1336                          unsigned int socket_id,
1337                          const struct rte_eth_rxconf *rx_conf,
1338                          struct rte_mempool *mp)
1339 {
1340         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
1341         const struct rte_memzone *rz;
1342         struct igc_rx_queue *rxq;
1343         unsigned int size;
1344
1345         /*
1346          * Validate number of receive descriptors.
1347          * It must not exceed hardware maximum, and must be multiple
1348          * of IGC_RX_DESCRIPTOR_MULTIPLE.
1349          */
1350         if (nb_desc % IGC_RX_DESCRIPTOR_MULTIPLE != 0 ||
1351                 nb_desc > IGC_MAX_RXD || nb_desc < IGC_MIN_RXD) {
1352                 PMD_DRV_LOG(ERR,
1353                         "RX descriptor must be multiple of %u(cur: %u) and between %u and %u",
1354                         IGC_RX_DESCRIPTOR_MULTIPLE, nb_desc,
1355                         IGC_MIN_RXD, IGC_MAX_RXD);
1356                 return -EINVAL;
1357         }
1358
1359         /* Free memory prior to re-allocation if needed */
1360         if (dev->data->rx_queues[queue_idx] != NULL) {
1361                 igc_rx_queue_release(dev->data->rx_queues[queue_idx]);
1362                 dev->data->rx_queues[queue_idx] = NULL;
1363         }
1364
1365         /* First allocate the RX queue data structure. */
1366         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igc_rx_queue),
1367                           RTE_CACHE_LINE_SIZE);
1368         if (rxq == NULL)
1369                 return -ENOMEM;
1370         rxq->offloads = rx_conf->offloads;
1371         rxq->mb_pool = mp;
1372         rxq->nb_rx_desc = nb_desc;
1373         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1374         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1375         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1376         rxq->drop_en = rx_conf->rx_drop_en;
1377         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1378         rxq->queue_id = queue_idx;
1379         rxq->reg_idx = queue_idx;
1380         rxq->port_id = dev->data->port_id;
1381
1382         /*
1383          *  Allocate RX ring hardware descriptors. A memzone large enough to
1384          *  handle the maximum ring size is allocated in order to allow for
1385          *  resizing in later calls to the queue setup function.
1386          */
1387         size = sizeof(union igc_adv_rx_desc) * IGC_MAX_RXD;
1388         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1389                                       IGC_ALIGN, socket_id);
1390         if (rz == NULL) {
1391                 igc_rx_queue_release(rxq);
1392                 return -ENOMEM;
1393         }
1394         rxq->rdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDT(rxq->reg_idx));
1395         rxq->rdh_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDH(rxq->reg_idx));
1396         rxq->rx_ring_phys_addr = rz->iova;
1397         rxq->rx_ring = (union igc_adv_rx_desc *)rz->addr;
1398
1399         /* Allocate software ring. */
1400         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1401                                    sizeof(struct igc_rx_entry) * nb_desc,
1402                                    RTE_CACHE_LINE_SIZE);
1403         if (rxq->sw_ring == NULL) {
1404                 igc_rx_queue_release(rxq);
1405                 return -ENOMEM;
1406         }
1407
1408         PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
1409                 rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1410
1411         dev->data->rx_queues[queue_idx] = rxq;
1412         igc_reset_rx_queue(rxq);
1413
1414         return 0;
1415 }
1416
1417 /* prepare packets for transmit */
1418 static uint16_t
1419 eth_igc_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1420                 uint16_t nb_pkts)
1421 {
1422         int i, ret;
1423         struct rte_mbuf *m;
1424
1425         for (i = 0; i < nb_pkts; i++) {
1426                 m = tx_pkts[i];
1427
1428                 /* Check some limitations for TSO in hardware */
1429                 if (m->ol_flags & IGC_TX_OFFLOAD_SEG)
1430                         if (m->tso_segsz > IGC_TSO_MAX_MSS ||
1431                                 m->l2_len + m->l3_len + m->l4_len >
1432                                 IGC_TSO_MAX_HDRLEN) {
1433                                 rte_errno = EINVAL;
1434                                 return i;
1435                         }
1436
1437                 if (m->ol_flags & IGC_TX_OFFLOAD_NOTSUP_MASK) {
1438                         rte_errno = ENOTSUP;
1439                         return i;
1440                 }
1441
1442 #ifdef RTE_ETHDEV_DEBUG_TX
1443                 ret = rte_validate_tx_offload(m);
1444                 if (ret != 0) {
1445                         rte_errno = -ret;
1446                         return i;
1447                 }
1448 #endif
1449                 ret = rte_net_intel_cksum_prepare(m);
1450                 if (ret != 0) {
1451                         rte_errno = -ret;
1452                         return i;
1453                 }
1454         }
1455
1456         return i;
1457 }
1458
1459 /*
1460  *There're some limitations in hardware for TCP segmentation offload. We
1461  *should check whether the parameters are valid.
1462  */
1463 static inline uint64_t
1464 check_tso_para(uint64_t ol_req, union igc_tx_offload ol_para)
1465 {
1466         if (!(ol_req & IGC_TX_OFFLOAD_SEG))
1467                 return ol_req;
1468         if (ol_para.tso_segsz > IGC_TSO_MAX_MSS || ol_para.l2_len +
1469                 ol_para.l3_len + ol_para.l4_len > IGC_TSO_MAX_HDRLEN) {
1470                 ol_req &= ~IGC_TX_OFFLOAD_SEG;
1471                 ol_req |= PKT_TX_TCP_CKSUM;
1472         }
1473         return ol_req;
1474 }
1475
1476 /*
1477  * Check which hardware context can be used. Use the existing match
1478  * or create a new context descriptor.
1479  */
1480 static inline uint32_t
1481 what_advctx_update(struct igc_tx_queue *txq, uint64_t flags,
1482                 union igc_tx_offload tx_offload)
1483 {
1484         uint32_t curr = txq->ctx_curr;
1485
1486         /* If match with the current context */
1487         if (likely(txq->ctx_cache[curr].flags == flags &&
1488                 txq->ctx_cache[curr].tx_offload.data ==
1489                 (txq->ctx_cache[curr].tx_offload_mask.data &
1490                 tx_offload.data))) {
1491                 return curr;
1492         }
1493
1494         /* Total two context, if match with the second context */
1495         curr ^= 1;
1496         if (likely(txq->ctx_cache[curr].flags == flags &&
1497                 txq->ctx_cache[curr].tx_offload.data ==
1498                 (txq->ctx_cache[curr].tx_offload_mask.data &
1499                 tx_offload.data))) {
1500                 txq->ctx_curr = curr;
1501                 return curr;
1502         }
1503
1504         /* Mismatch, create new one */
1505         return IGC_CTX_NUM;
1506 }
1507
1508 /*
1509  * This is a separate function, looking for optimization opportunity here
1510  * Rework required to go with the pre-defined values.
1511  */
1512 static inline void
1513 igc_set_xmit_ctx(struct igc_tx_queue *txq,
1514                 volatile struct igc_adv_tx_context_desc *ctx_txd,
1515                 uint64_t ol_flags, union igc_tx_offload tx_offload)
1516 {
1517         uint32_t type_tucmd_mlhl;
1518         uint32_t mss_l4len_idx;
1519         uint32_t ctx_curr;
1520         uint32_t vlan_macip_lens;
1521         union igc_tx_offload tx_offload_mask;
1522
1523         /* Use the previous context */
1524         txq->ctx_curr ^= 1;
1525         ctx_curr = txq->ctx_curr;
1526
1527         tx_offload_mask.data = 0;
1528         type_tucmd_mlhl = 0;
1529
1530         /* Specify which HW CTX to upload. */
1531         mss_l4len_idx = (ctx_curr << IGC_ADVTXD_IDX_SHIFT);
1532
1533         if (ol_flags & PKT_TX_VLAN_PKT)
1534                 tx_offload_mask.vlan_tci = 0xffff;
1535
1536         /* check if TCP segmentation required for this packet */
1537         if (ol_flags & IGC_TX_OFFLOAD_SEG) {
1538                 /* implies IP cksum in IPv4 */
1539                 if (ol_flags & PKT_TX_IP_CKSUM)
1540                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4 |
1541                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1542                 else
1543                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV6 |
1544                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1545
1546                 if (ol_flags & PKT_TX_TCP_SEG)
1547                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
1548                 else
1549                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
1550
1551                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
1552                 mss_l4len_idx |= (uint32_t)tx_offload.tso_segsz <<
1553                                 IGC_ADVTXD_MSS_SHIFT;
1554                 mss_l4len_idx |= (uint32_t)tx_offload.l4_len <<
1555                                 IGC_ADVTXD_L4LEN_SHIFT;
1556         } else { /* no TSO, check if hardware checksum is needed */
1557                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
1558                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
1559
1560                 if (ol_flags & PKT_TX_IP_CKSUM)
1561                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4;
1562
1563                 switch (ol_flags & PKT_TX_L4_MASK) {
1564                 case PKT_TX_TCP_CKSUM:
1565                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP |
1566                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1567                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_tcp_hdr)
1568                                 << IGC_ADVTXD_L4LEN_SHIFT;
1569                         break;
1570                 case PKT_TX_UDP_CKSUM:
1571                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP |
1572                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1573                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_udp_hdr)
1574                                 << IGC_ADVTXD_L4LEN_SHIFT;
1575                         break;
1576                 case PKT_TX_SCTP_CKSUM:
1577                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP |
1578                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1579                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_sctp_hdr)
1580                                 << IGC_ADVTXD_L4LEN_SHIFT;
1581                         break;
1582                 default:
1583                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_RSV |
1584                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1585                         break;
1586                 }
1587         }
1588
1589         txq->ctx_cache[ctx_curr].flags = ol_flags;
1590         txq->ctx_cache[ctx_curr].tx_offload.data =
1591                 tx_offload_mask.data & tx_offload.data;
1592         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
1593
1594         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
1595         vlan_macip_lens = (uint32_t)tx_offload.data;
1596         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
1597         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
1598         ctx_txd->u.launch_time = 0;
1599 }
1600
1601 static inline uint32_t
1602 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
1603 {
1604         uint32_t cmdtype;
1605         static uint32_t vlan_cmd[2] = {0, IGC_ADVTXD_DCMD_VLE};
1606         static uint32_t tso_cmd[2] = {0, IGC_ADVTXD_DCMD_TSE};
1607         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
1608         cmdtype |= tso_cmd[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
1609         return cmdtype;
1610 }
1611
1612 static inline uint32_t
1613 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
1614 {
1615         static const uint32_t l4_olinfo[2] = {0, IGC_ADVTXD_POPTS_TXSM};
1616         static const uint32_t l3_olinfo[2] = {0, IGC_ADVTXD_POPTS_IXSM};
1617         uint32_t tmp;
1618
1619         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
1620         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
1621         tmp |= l4_olinfo[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
1622         return tmp;
1623 }
1624
1625 static uint16_t
1626 igc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1627 {
1628         struct igc_tx_queue * const txq = tx_queue;
1629         struct igc_tx_entry * const sw_ring = txq->sw_ring;
1630         struct igc_tx_entry *txe, *txn;
1631         volatile union igc_adv_tx_desc * const txr = txq->tx_ring;
1632         volatile union igc_adv_tx_desc *txd;
1633         struct rte_mbuf *tx_pkt;
1634         struct rte_mbuf *m_seg;
1635         uint64_t buf_dma_addr;
1636         uint32_t olinfo_status;
1637         uint32_t cmd_type_len;
1638         uint32_t pkt_len;
1639         uint16_t slen;
1640         uint64_t ol_flags;
1641         uint16_t tx_end;
1642         uint16_t tx_id;
1643         uint16_t tx_last;
1644         uint16_t nb_tx;
1645         uint64_t tx_ol_req;
1646         uint32_t new_ctx = 0;
1647         union igc_tx_offload tx_offload = {0};
1648
1649         tx_id = txq->tx_tail;
1650         txe = &sw_ring[tx_id];
1651
1652         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1653                 tx_pkt = *tx_pkts++;
1654                 pkt_len = tx_pkt->pkt_len;
1655
1656                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1657
1658                 /*
1659                  * The number of descriptors that must be allocated for a
1660                  * packet is the number of segments of that packet, plus 1
1661                  * Context Descriptor for the VLAN Tag Identifier, if any.
1662                  * Determine the last TX descriptor to allocate in the TX ring
1663                  * for the packet, starting from the current position (tx_id)
1664                  * in the ring.
1665                  */
1666                 tx_last = (uint16_t)(tx_id + tx_pkt->nb_segs - 1);
1667
1668                 ol_flags = tx_pkt->ol_flags;
1669                 tx_ol_req = ol_flags & IGC_TX_OFFLOAD_MASK;
1670
1671                 /* If a Context Descriptor need be built . */
1672                 if (tx_ol_req) {
1673                         tx_offload.l2_len = tx_pkt->l2_len;
1674                         tx_offload.l3_len = tx_pkt->l3_len;
1675                         tx_offload.l4_len = tx_pkt->l4_len;
1676                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
1677                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
1678                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
1679
1680                         new_ctx = what_advctx_update(txq, tx_ol_req,
1681                                         tx_offload);
1682                         /* Only allocate context descriptor if required*/
1683                         new_ctx = (new_ctx >= IGC_CTX_NUM);
1684                         tx_last = (uint16_t)(tx_last + new_ctx);
1685                 }
1686                 if (tx_last >= txq->nb_tx_desc)
1687                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1688
1689                 PMD_TX_LOG(DEBUG,
1690                         "port_id=%u queue_id=%u pktlen=%u tx_first=%u tx_last=%u",
1691                         txq->port_id, txq->queue_id, pkt_len, tx_id, tx_last);
1692
1693                 /*
1694                  * Check if there are enough free descriptors in the TX ring
1695                  * to transmit the next packet.
1696                  * This operation is based on the two following rules:
1697                  *
1698                  *   1- Only check that the last needed TX descriptor can be
1699                  *      allocated (by construction, if that descriptor is free,
1700                  *      all intermediate ones are also free).
1701                  *
1702                  *      For this purpose, the index of the last TX descriptor
1703                  *      used for a packet (the "last descriptor" of a packet)
1704                  *      is recorded in the TX entries (the last one included)
1705                  *      that are associated with all TX descriptors allocated
1706                  *      for that packet.
1707                  *
1708                  *   2- Avoid to allocate the last free TX descriptor of the
1709                  *      ring, in order to never set the TDT register with the
1710                  *      same value stored in parallel by the NIC in the TDH
1711                  *      register, which makes the TX engine of the NIC enter
1712                  *      in a deadlock situation.
1713                  *
1714                  *      By extension, avoid to allocate a free descriptor that
1715                  *      belongs to the last set of free descriptors allocated
1716                  *      to the same packet previously transmitted.
1717                  */
1718
1719                 /*
1720                  * The "last descriptor" of the previously sent packet, if any,
1721                  * which used the last descriptor to allocate.
1722                  */
1723                 tx_end = sw_ring[tx_last].last_id;
1724
1725                 /*
1726                  * The next descriptor following that "last descriptor" in the
1727                  * ring.
1728                  */
1729                 tx_end = sw_ring[tx_end].next_id;
1730
1731                 /*
1732                  * The "last descriptor" associated with that next descriptor.
1733                  */
1734                 tx_end = sw_ring[tx_end].last_id;
1735
1736                 /*
1737                  * Check that this descriptor is free.
1738                  */
1739                 if (!(txr[tx_end].wb.status & IGC_TXD_STAT_DD)) {
1740                         if (nb_tx == 0)
1741                                 return 0;
1742                         goto end_of_tx;
1743                 }
1744
1745                 /*
1746                  * Set common flags of all TX Data Descriptors.
1747                  *
1748                  * The following bits must be set in all Data Descriptors:
1749                  *   - IGC_ADVTXD_DTYP_DATA
1750                  *   - IGC_ADVTXD_DCMD_DEXT
1751                  *
1752                  * The following bits must be set in the first Data Descriptor
1753                  * and are ignored in the other ones:
1754                  *   - IGC_ADVTXD_DCMD_IFCS
1755                  *   - IGC_ADVTXD_MAC_1588
1756                  *   - IGC_ADVTXD_DCMD_VLE
1757                  *
1758                  * The following bits must only be set in the last Data
1759                  * Descriptor:
1760                  *   - IGC_TXD_CMD_EOP
1761                  *
1762                  * The following bits can be set in any Data Descriptor, but
1763                  * are only set in the last Data Descriptor:
1764                  *   - IGC_TXD_CMD_RS
1765                  */
1766                 cmd_type_len = txq->txd_type |
1767                         IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT;
1768                 if (tx_ol_req & IGC_TX_OFFLOAD_SEG)
1769                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len +
1770                                         tx_pkt->l4_len);
1771                 olinfo_status = (pkt_len << IGC_ADVTXD_PAYLEN_SHIFT);
1772
1773                 /*
1774                  * Timer 0 should be used to for packet timestamping,
1775                  * sample the packet timestamp to reg 0
1776                  */
1777                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1778                         cmd_type_len |= IGC_ADVTXD_MAC_TSTAMP;
1779
1780                 if (tx_ol_req) {
1781                         /* Setup TX Advanced context descriptor if required */
1782                         if (new_ctx) {
1783                                 volatile struct igc_adv_tx_context_desc *
1784                                         ctx_txd = (volatile struct
1785                                         igc_adv_tx_context_desc *)&txr[tx_id];
1786
1787                                 txn = &sw_ring[txe->next_id];
1788                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1789
1790                                 if (txe->mbuf != NULL) {
1791                                         rte_pktmbuf_free_seg(txe->mbuf);
1792                                         txe->mbuf = NULL;
1793                                 }
1794
1795                                 igc_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
1796                                                 tx_offload);
1797
1798                                 txe->last_id = tx_last;
1799                                 tx_id = txe->next_id;
1800                                 txe = txn;
1801                         }
1802
1803                         /* Setup the TX Advanced Data Descriptor */
1804                         cmd_type_len |=
1805                                 tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
1806                         olinfo_status |=
1807                                 tx_desc_cksum_flags_to_olinfo(tx_ol_req);
1808                         olinfo_status |= (uint32_t)txq->ctx_curr <<
1809                                         IGC_ADVTXD_IDX_SHIFT;
1810                 }
1811
1812                 m_seg = tx_pkt;
1813                 do {
1814                         txn = &sw_ring[txe->next_id];
1815                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1816
1817                         txd = &txr[tx_id];
1818
1819                         if (txe->mbuf != NULL)
1820                                 rte_pktmbuf_free_seg(txe->mbuf);
1821                         txe->mbuf = m_seg;
1822
1823                         /* Set up transmit descriptor */
1824                         slen = (uint16_t)m_seg->data_len;
1825                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1826                         txd->read.buffer_addr =
1827                                 rte_cpu_to_le_64(buf_dma_addr);
1828                         txd->read.cmd_type_len =
1829                                 rte_cpu_to_le_32(cmd_type_len | slen);
1830                         txd->read.olinfo_status =
1831                                 rte_cpu_to_le_32(olinfo_status);
1832                         txe->last_id = tx_last;
1833                         tx_id = txe->next_id;
1834                         txe = txn;
1835                         m_seg = m_seg->next;
1836                 } while (m_seg != NULL);
1837
1838                 /*
1839                  * The last packet data descriptor needs End Of Packet (EOP)
1840                  * and Report Status (RS).
1841                  */
1842                 txd->read.cmd_type_len |=
1843                         rte_cpu_to_le_32(IGC_TXD_CMD_EOP | IGC_TXD_CMD_RS);
1844         }
1845 end_of_tx:
1846         rte_wmb();
1847
1848         /*
1849          * Set the Transmit Descriptor Tail (TDT).
1850          */
1851         IGC_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
1852         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1853                 txq->port_id, txq->queue_id, tx_id, nb_tx);
1854         txq->tx_tail = tx_id;
1855
1856         return nb_tx;
1857 }
1858
1859 int eth_igc_tx_descriptor_status(void *tx_queue, uint16_t offset)
1860 {
1861         struct igc_tx_queue *txq = tx_queue;
1862         volatile uint32_t *status;
1863         uint32_t desc;
1864
1865         if (unlikely(!txq || offset >= txq->nb_tx_desc))
1866                 return -EINVAL;
1867
1868         desc = txq->tx_tail + offset;
1869         if (desc >= txq->nb_tx_desc)
1870                 desc -= txq->nb_tx_desc;
1871
1872         status = &txq->tx_ring[desc].wb.status;
1873         if (*status & rte_cpu_to_le_32(IGC_TXD_STAT_DD))
1874                 return RTE_ETH_TX_DESC_DONE;
1875
1876         return RTE_ETH_TX_DESC_FULL;
1877 }
1878
1879 static void
1880 igc_tx_queue_release_mbufs(struct igc_tx_queue *txq)
1881 {
1882         unsigned int i;
1883
1884         if (txq->sw_ring != NULL) {
1885                 for (i = 0; i < txq->nb_tx_desc; i++) {
1886                         if (txq->sw_ring[i].mbuf != NULL) {
1887                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1888                                 txq->sw_ring[i].mbuf = NULL;
1889                         }
1890                 }
1891         }
1892 }
1893
1894 static void
1895 igc_tx_queue_release(struct igc_tx_queue *txq)
1896 {
1897         igc_tx_queue_release_mbufs(txq);
1898         rte_free(txq->sw_ring);
1899         rte_free(txq);
1900 }
1901
1902 void eth_igc_tx_queue_release(void *txq)
1903 {
1904         if (txq)
1905                 igc_tx_queue_release(txq);
1906 }
1907
1908 static void
1909 igc_reset_tx_queue_stat(struct igc_tx_queue *txq)
1910 {
1911         txq->tx_head = 0;
1912         txq->tx_tail = 0;
1913         txq->ctx_curr = 0;
1914         memset((void *)&txq->ctx_cache, 0,
1915                 IGC_CTX_NUM * sizeof(struct igc_advctx_info));
1916 }
1917
1918 static void
1919 igc_reset_tx_queue(struct igc_tx_queue *txq)
1920 {
1921         struct igc_tx_entry *txe = txq->sw_ring;
1922         uint16_t i, prev;
1923
1924         /* Initialize ring entries */
1925         prev = (uint16_t)(txq->nb_tx_desc - 1);
1926         for (i = 0; i < txq->nb_tx_desc; i++) {
1927                 volatile union igc_adv_tx_desc *txd = &txq->tx_ring[i];
1928
1929                 txd->wb.status = IGC_TXD_STAT_DD;
1930                 txe[i].mbuf = NULL;
1931                 txe[i].last_id = i;
1932                 txe[prev].next_id = i;
1933                 prev = i;
1934         }
1935
1936         txq->txd_type = IGC_ADVTXD_DTYP_DATA;
1937         igc_reset_tx_queue_stat(txq);
1938 }
1939
1940 /*
1941  * clear all rx/tx queue
1942  */
1943 void
1944 igc_dev_clear_queues(struct rte_eth_dev *dev)
1945 {
1946         uint16_t i;
1947         struct igc_tx_queue *txq;
1948         struct igc_rx_queue *rxq;
1949
1950         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1951                 txq = dev->data->tx_queues[i];
1952                 if (txq != NULL) {
1953                         igc_tx_queue_release_mbufs(txq);
1954                         igc_reset_tx_queue(txq);
1955                 }
1956         }
1957
1958         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1959                 rxq = dev->data->rx_queues[i];
1960                 if (rxq != NULL) {
1961                         igc_rx_queue_release_mbufs(rxq);
1962                         igc_reset_rx_queue(rxq);
1963                 }
1964         }
1965 }
1966
1967 int eth_igc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
1968                 uint16_t nb_desc, unsigned int socket_id,
1969                 const struct rte_eth_txconf *tx_conf)
1970 {
1971         const struct rte_memzone *tz;
1972         struct igc_tx_queue *txq;
1973         struct igc_hw *hw;
1974         uint32_t size;
1975
1976         if (nb_desc % IGC_TX_DESCRIPTOR_MULTIPLE != 0 ||
1977                 nb_desc > IGC_MAX_TXD || nb_desc < IGC_MIN_TXD) {
1978                 PMD_DRV_LOG(ERR,
1979                         "TX-descriptor must be a multiple of %u and between %u and %u, cur: %u",
1980                         IGC_TX_DESCRIPTOR_MULTIPLE,
1981                         IGC_MAX_TXD, IGC_MIN_TXD, nb_desc);
1982                 return -EINVAL;
1983         }
1984
1985         hw = IGC_DEV_PRIVATE_HW(dev);
1986
1987         /*
1988          * The tx_free_thresh and tx_rs_thresh values are not used in the 2.5G
1989          * driver.
1990          */
1991         if (tx_conf->tx_free_thresh != 0)
1992                 PMD_DRV_LOG(INFO,
1993                         "The tx_free_thresh parameter is not used for the 2.5G driver");
1994         if (tx_conf->tx_rs_thresh != 0)
1995                 PMD_DRV_LOG(INFO,
1996                         "The tx_rs_thresh parameter is not used for the 2.5G driver");
1997         if (tx_conf->tx_thresh.wthresh == 0)
1998                 PMD_DRV_LOG(INFO,
1999                         "To improve 2.5G driver performance, consider setting the TX WTHRESH value to 4, 8, or 16.");
2000
2001         /* Free memory prior to re-allocation if needed */
2002         if (dev->data->tx_queues[queue_idx] != NULL) {
2003                 igc_tx_queue_release(dev->data->tx_queues[queue_idx]);
2004                 dev->data->tx_queues[queue_idx] = NULL;
2005         }
2006
2007         /* First allocate the tx queue data structure */
2008         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igc_tx_queue),
2009                                                 RTE_CACHE_LINE_SIZE);
2010         if (txq == NULL)
2011                 return -ENOMEM;
2012
2013         /*
2014          * Allocate TX ring hardware descriptors. A memzone large enough to
2015          * handle the maximum ring size is allocated in order to allow for
2016          * resizing in later calls to the queue setup function.
2017          */
2018         size = sizeof(union igc_adv_tx_desc) * IGC_MAX_TXD;
2019         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
2020                                       IGC_ALIGN, socket_id);
2021         if (tz == NULL) {
2022                 igc_tx_queue_release(txq);
2023                 return -ENOMEM;
2024         }
2025
2026         txq->nb_tx_desc = nb_desc;
2027         txq->pthresh = tx_conf->tx_thresh.pthresh;
2028         txq->hthresh = tx_conf->tx_thresh.hthresh;
2029         txq->wthresh = tx_conf->tx_thresh.wthresh;
2030
2031         txq->queue_id = queue_idx;
2032         txq->reg_idx = queue_idx;
2033         txq->port_id = dev->data->port_id;
2034
2035         txq->tdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_TDT(txq->reg_idx));
2036         txq->tx_ring_phys_addr = tz->iova;
2037
2038         txq->tx_ring = (union igc_adv_tx_desc *)tz->addr;
2039         /* Allocate software ring */
2040         txq->sw_ring = rte_zmalloc("txq->sw_ring",
2041                                    sizeof(struct igc_tx_entry) * nb_desc,
2042                                    RTE_CACHE_LINE_SIZE);
2043         if (txq->sw_ring == NULL) {
2044                 igc_tx_queue_release(txq);
2045                 return -ENOMEM;
2046         }
2047         PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
2048                 txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2049
2050         igc_reset_tx_queue(txq);
2051         dev->tx_pkt_burst = igc_xmit_pkts;
2052         dev->tx_pkt_prepare = &eth_igc_prep_pkts;
2053         dev->data->tx_queues[queue_idx] = txq;
2054         txq->offloads = tx_conf->offloads;
2055
2056         return 0;
2057 }
2058
2059 int
2060 eth_igc_tx_done_cleanup(void *txqueue, uint32_t free_cnt)
2061 {
2062         struct igc_tx_queue *txq = txqueue;
2063         struct igc_tx_entry *sw_ring;
2064         volatile union igc_adv_tx_desc *txr;
2065         uint16_t tx_first; /* First segment analyzed. */
2066         uint16_t tx_id;    /* Current segment being processed. */
2067         uint16_t tx_last;  /* Last segment in the current packet. */
2068         uint16_t tx_next;  /* First segment of the next packet. */
2069         uint32_t count;
2070
2071         if (txq == NULL)
2072                 return -ENODEV;
2073
2074         count = 0;
2075         sw_ring = txq->sw_ring;
2076         txr = txq->tx_ring;
2077
2078         /*
2079          * tx_tail is the last sent packet on the sw_ring. Goto the end
2080          * of that packet (the last segment in the packet chain) and
2081          * then the next segment will be the start of the oldest segment
2082          * in the sw_ring. This is the first packet that will be
2083          * attempted to be freed.
2084          */
2085
2086         /* Get last segment in most recently added packet. */
2087         tx_first = sw_ring[txq->tx_tail].last_id;
2088
2089         /* Get the next segment, which is the oldest segment in ring. */
2090         tx_first = sw_ring[tx_first].next_id;
2091
2092         /* Set the current index to the first. */
2093         tx_id = tx_first;
2094
2095         /*
2096          * Loop through each packet. For each packet, verify that an
2097          * mbuf exists and that the last segment is free. If so, free
2098          * it and move on.
2099          */
2100         while (1) {
2101                 tx_last = sw_ring[tx_id].last_id;
2102
2103                 if (sw_ring[tx_last].mbuf) {
2104                         if (!(txr[tx_last].wb.status &
2105                                         rte_cpu_to_le_32(IGC_TXD_STAT_DD)))
2106                                 break;
2107
2108                         /* Get the start of the next packet. */
2109                         tx_next = sw_ring[tx_last].next_id;
2110
2111                         /*
2112                          * Loop through all segments in a
2113                          * packet.
2114                          */
2115                         do {
2116                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
2117                                 sw_ring[tx_id].mbuf = NULL;
2118                                 sw_ring[tx_id].last_id = tx_id;
2119
2120                                 /* Move to next segemnt. */
2121                                 tx_id = sw_ring[tx_id].next_id;
2122                         } while (tx_id != tx_next);
2123
2124                         /*
2125                          * Increment the number of packets
2126                          * freed.
2127                          */
2128                         count++;
2129                         if (unlikely(count == free_cnt))
2130                                 break;
2131                 } else {
2132                         /*
2133                          * There are multiple reasons to be here:
2134                          * 1) All the packets on the ring have been
2135                          *    freed - tx_id is equal to tx_first
2136                          *    and some packets have been freed.
2137                          *    - Done, exit
2138                          * 2) Interfaces has not sent a rings worth of
2139                          *    packets yet, so the segment after tail is
2140                          *    still empty. Or a previous call to this
2141                          *    function freed some of the segments but
2142                          *    not all so there is a hole in the list.
2143                          *    Hopefully this is a rare case.
2144                          *    - Walk the list and find the next mbuf. If
2145                          *      there isn't one, then done.
2146                          */
2147                         if (likely(tx_id == tx_first && count != 0))
2148                                 break;
2149
2150                         /*
2151                          * Walk the list and find the next mbuf, if any.
2152                          */
2153                         do {
2154                                 /* Move to next segemnt. */
2155                                 tx_id = sw_ring[tx_id].next_id;
2156
2157                                 if (sw_ring[tx_id].mbuf)
2158                                         break;
2159
2160                         } while (tx_id != tx_first);
2161
2162                         /*
2163                          * Determine why previous loop bailed. If there
2164                          * is not an mbuf, done.
2165                          */
2166                         if (sw_ring[tx_id].mbuf == NULL)
2167                                 break;
2168                 }
2169         }
2170
2171         return count;
2172 }
2173
2174 void
2175 igc_tx_init(struct rte_eth_dev *dev)
2176 {
2177         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
2178         uint32_t tctl;
2179         uint32_t txdctl;
2180         uint16_t i;
2181
2182         /* Setup the Base and Length of the Tx Descriptor Rings. */
2183         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2184                 struct igc_tx_queue *txq = dev->data->tx_queues[i];
2185                 uint64_t bus_addr = txq->tx_ring_phys_addr;
2186
2187                 IGC_WRITE_REG(hw, IGC_TDLEN(txq->reg_idx),
2188                                 txq->nb_tx_desc *
2189                                 sizeof(union igc_adv_tx_desc));
2190                 IGC_WRITE_REG(hw, IGC_TDBAH(txq->reg_idx),
2191                                 (uint32_t)(bus_addr >> 32));
2192                 IGC_WRITE_REG(hw, IGC_TDBAL(txq->reg_idx),
2193                                 (uint32_t)bus_addr);
2194
2195                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2196                 IGC_WRITE_REG(hw, IGC_TDT(txq->reg_idx), 0);
2197                 IGC_WRITE_REG(hw, IGC_TDH(txq->reg_idx), 0);
2198
2199                 /* Setup Transmit threshold registers. */
2200                 txdctl = ((uint32_t)txq->pthresh << IGC_TXDCTL_PTHRESH_SHIFT) &
2201                                 IGC_TXDCTL_PTHRESH_MSK;
2202                 txdctl |= ((uint32_t)txq->hthresh << IGC_TXDCTL_HTHRESH_SHIFT) &
2203                                 IGC_TXDCTL_HTHRESH_MSK;
2204                 txdctl |= ((uint32_t)txq->wthresh << IGC_TXDCTL_WTHRESH_SHIFT) &
2205                                 IGC_TXDCTL_WTHRESH_MSK;
2206                 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
2207                 IGC_WRITE_REG(hw, IGC_TXDCTL(txq->reg_idx), txdctl);
2208         }
2209
2210         igc_config_collision_dist(hw);
2211
2212         /* Program the Transmit Control Register. */
2213         tctl = IGC_READ_REG(hw, IGC_TCTL);
2214         tctl &= ~IGC_TCTL_CT;
2215         tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
2216                  ((uint32_t)IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
2217
2218         /* This write will effectively turn on the transmit unit. */
2219         IGC_WRITE_REG(hw, IGC_TCTL, tctl);
2220 }
2221
2222 void
2223 eth_igc_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2224         struct rte_eth_rxq_info *qinfo)
2225 {
2226         struct igc_rx_queue *rxq;
2227
2228         rxq = dev->data->rx_queues[queue_id];
2229
2230         qinfo->mp = rxq->mb_pool;
2231         qinfo->scattered_rx = dev->data->scattered_rx;
2232         qinfo->nb_desc = rxq->nb_rx_desc;
2233
2234         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2235         qinfo->conf.rx_drop_en = rxq->drop_en;
2236         qinfo->conf.offloads = rxq->offloads;
2237         qinfo->conf.rx_thresh.hthresh = rxq->hthresh;
2238         qinfo->conf.rx_thresh.pthresh = rxq->pthresh;
2239         qinfo->conf.rx_thresh.wthresh = rxq->wthresh;
2240 }
2241
2242 void
2243 eth_igc_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2244         struct rte_eth_txq_info *qinfo)
2245 {
2246         struct igc_tx_queue *txq;
2247
2248         txq = dev->data->tx_queues[queue_id];
2249
2250         qinfo->nb_desc = txq->nb_tx_desc;
2251
2252         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2253         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2254         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2255         qinfo->conf.offloads = txq->offloads;
2256 }
2257
2258 void
2259 eth_igc_vlan_strip_queue_set(struct rte_eth_dev *dev,
2260                         uint16_t rx_queue_id, int on)
2261 {
2262         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
2263         struct igc_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
2264         uint32_t reg_val;
2265
2266         if (rx_queue_id >= IGC_QUEUE_PAIRS_NUM) {
2267                 PMD_DRV_LOG(ERR, "Queue index(%u) illegal, max is %u",
2268                         rx_queue_id, IGC_QUEUE_PAIRS_NUM - 1);
2269                 return;
2270         }
2271
2272         reg_val = IGC_READ_REG(hw, IGC_DVMOLR(rx_queue_id));
2273         if (on) {
2274                 reg_val |= IGC_DVMOLR_STRVLAN;
2275                 rxq->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2276         } else {
2277                 reg_val &= ~(IGC_DVMOLR_STRVLAN | IGC_DVMOLR_HIDVLAN);
2278                 rxq->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2279         }
2280
2281         IGC_WRITE_REG(hw, IGC_DVMOLR(rx_queue_id), reg_val);
2282 }