net/ixgbe: fix missing support of multi-segs offloading
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_VLAN_PKT |                \
62                 PKT_TX_IP_CKSUM |                \
63                 PKT_TX_L4_MASK |                 \
64                 PKT_TX_TCP_SEG |                 \
65                 PKT_TX_MACSEC |                  \
66                 PKT_TX_OUTER_IP_CKSUM |          \
67                 PKT_TX_SEC_OFFLOAD |     \
68                 IXGBE_TX_IEEE1588_TMST)
69
70 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
71                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
72
73 #if 1
74 #define RTE_PMD_USE_PREFETCH
75 #endif
76
77 #ifdef RTE_PMD_USE_PREFETCH
78 /*
79  * Prefetch a cache line into all cache levels.
80  */
81 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
82 #else
83 #define rte_ixgbe_prefetch(p)   do {} while (0)
84 #endif
85
86 #ifdef RTE_IXGBE_INC_VECTOR
87 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
88                                     uint16_t nb_pkts);
89 #endif
90
91 /*********************************************************************
92  *
93  *  TX functions
94  *
95  **********************************************************************/
96
97 /*
98  * Check for descriptors with their DD bit set and free mbufs.
99  * Return the total number of buffers freed.
100  */
101 static __rte_always_inline int
102 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
103 {
104         struct ixgbe_tx_entry *txep;
105         uint32_t status;
106         int i, nb_free = 0;
107         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
108
109         /* check DD bit on threshold descriptor */
110         status = txq->tx_ring[txq->tx_next_dd].wb.status;
111         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
112                 return 0;
113
114         /*
115          * first buffer to free from S/W ring is at index
116          * tx_next_dd - (tx_rs_thresh-1)
117          */
118         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
119
120         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
121                 /* free buffers one at a time */
122                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
123                 txep->mbuf = NULL;
124
125                 if (unlikely(m == NULL))
126                         continue;
127
128                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
129                     (nb_free > 0 && m->pool != free[0]->pool)) {
130                         rte_mempool_put_bulk(free[0]->pool,
131                                              (void **)free, nb_free);
132                         nb_free = 0;
133                 }
134
135                 free[nb_free++] = m;
136         }
137
138         if (nb_free > 0)
139                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
140
141         /* buffers were freed, update counters */
142         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
143         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
144         if (txq->tx_next_dd >= txq->nb_tx_desc)
145                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
146
147         return txq->tx_rs_thresh;
148 }
149
150 /* Populate 4 descriptors with data from 4 mbufs */
151 static inline void
152 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
153 {
154         uint64_t buf_dma_addr;
155         uint32_t pkt_len;
156         int i;
157
158         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
159                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
160                 pkt_len = (*pkts)->data_len;
161
162                 /* write data to descriptor */
163                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
164
165                 txdp->read.cmd_type_len =
166                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
167
168                 txdp->read.olinfo_status =
169                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
170
171                 rte_prefetch0(&(*pkts)->pool);
172         }
173 }
174
175 /* Populate 1 descriptor with data from 1 mbuf */
176 static inline void
177 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
178 {
179         uint64_t buf_dma_addr;
180         uint32_t pkt_len;
181
182         buf_dma_addr = rte_mbuf_data_iova(*pkts);
183         pkt_len = (*pkts)->data_len;
184
185         /* write data to descriptor */
186         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
187         txdp->read.cmd_type_len =
188                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
189         txdp->read.olinfo_status =
190                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
191         rte_prefetch0(&(*pkts)->pool);
192 }
193
194 /*
195  * Fill H/W descriptor ring with mbuf data.
196  * Copy mbuf pointers to the S/W ring.
197  */
198 static inline void
199 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
200                       uint16_t nb_pkts)
201 {
202         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
203         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
204         const int N_PER_LOOP = 4;
205         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
206         int mainpart, leftover;
207         int i, j;
208
209         /*
210          * Process most of the packets in chunks of N pkts.  Any
211          * leftover packets will get processed one at a time.
212          */
213         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
214         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
215         for (i = 0; i < mainpart; i += N_PER_LOOP) {
216                 /* Copy N mbuf pointers to the S/W ring */
217                 for (j = 0; j < N_PER_LOOP; ++j) {
218                         (txep + i + j)->mbuf = *(pkts + i + j);
219                 }
220                 tx4(txdp + i, pkts + i);
221         }
222
223         if (unlikely(leftover > 0)) {
224                 for (i = 0; i < leftover; ++i) {
225                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
226                         tx1(txdp + mainpart + i, pkts + mainpart + i);
227                 }
228         }
229 }
230
231 static inline uint16_t
232 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
233              uint16_t nb_pkts)
234 {
235         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
236         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
237         uint16_t n = 0;
238
239         /*
240          * Begin scanning the H/W ring for done descriptors when the
241          * number of available descriptors drops below tx_free_thresh.  For
242          * each done descriptor, free the associated buffer.
243          */
244         if (txq->nb_tx_free < txq->tx_free_thresh)
245                 ixgbe_tx_free_bufs(txq);
246
247         /* Only use descriptors that are available */
248         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
249         if (unlikely(nb_pkts == 0))
250                 return 0;
251
252         /* Use exactly nb_pkts descriptors */
253         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
254
255         /*
256          * At this point, we know there are enough descriptors in the
257          * ring to transmit all the packets.  This assumes that each
258          * mbuf contains a single segment, and that no new offloads
259          * are expected, which would require a new context descriptor.
260          */
261
262         /*
263          * See if we're going to wrap-around. If so, handle the top
264          * of the descriptor ring first, then do the bottom.  If not,
265          * the processing looks just like the "bottom" part anyway...
266          */
267         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
268                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
269                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
270
271                 /*
272                  * We know that the last descriptor in the ring will need to
273                  * have its RS bit set because tx_rs_thresh has to be
274                  * a divisor of the ring size
275                  */
276                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
277                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
278                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
279
280                 txq->tx_tail = 0;
281         }
282
283         /* Fill H/W descriptor ring with mbuf data */
284         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
285         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
286
287         /*
288          * Determine if RS bit should be set
289          * This is what we actually want:
290          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
291          * but instead of subtracting 1 and doing >=, we can just do
292          * greater than without subtracting.
293          */
294         if (txq->tx_tail > txq->tx_next_rs) {
295                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
296                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
297                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
298                                                 txq->tx_rs_thresh);
299                 if (txq->tx_next_rs >= txq->nb_tx_desc)
300                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
301         }
302
303         /*
304          * Check for wrap-around. This would only happen if we used
305          * up to the last descriptor in the ring, no more, no less.
306          */
307         if (txq->tx_tail >= txq->nb_tx_desc)
308                 txq->tx_tail = 0;
309
310         /* update tail pointer */
311         rte_wmb();
312         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
313
314         return nb_pkts;
315 }
316
317 uint16_t
318 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
319                        uint16_t nb_pkts)
320 {
321         uint16_t nb_tx;
322
323         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
324         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
325                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
326
327         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
328         nb_tx = 0;
329         while (nb_pkts) {
330                 uint16_t ret, n;
331
332                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
333                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
334                 nb_tx = (uint16_t)(nb_tx + ret);
335                 nb_pkts = (uint16_t)(nb_pkts - ret);
336                 if (ret < n)
337                         break;
338         }
339
340         return nb_tx;
341 }
342
343 #ifdef RTE_IXGBE_INC_VECTOR
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365 #endif
366
367 static inline void
368 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
369                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
370                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
371                 __rte_unused uint64_t *mdata)
372 {
373         uint32_t type_tucmd_mlhl;
374         uint32_t mss_l4len_idx = 0;
375         uint32_t ctx_idx;
376         uint32_t vlan_macip_lens;
377         union ixgbe_tx_offload tx_offload_mask;
378         uint32_t seqnum_seed = 0;
379
380         ctx_idx = txq->ctx_curr;
381         tx_offload_mask.data[0] = 0;
382         tx_offload_mask.data[1] = 0;
383         type_tucmd_mlhl = 0;
384
385         /* Specify which HW CTX to upload. */
386         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
387
388         if (ol_flags & PKT_TX_VLAN_PKT) {
389                 tx_offload_mask.vlan_tci |= ~0;
390         }
391
392         /* check if TCP segmentation required for this packet */
393         if (ol_flags & PKT_TX_TCP_SEG) {
394                 /* implies IP cksum in IPv4 */
395                 if (ol_flags & PKT_TX_IP_CKSUM)
396                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
397                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
398                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
399                 else
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403
404                 tx_offload_mask.l2_len |= ~0;
405                 tx_offload_mask.l3_len |= ~0;
406                 tx_offload_mask.l4_len |= ~0;
407                 tx_offload_mask.tso_segsz |= ~0;
408                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
409                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
410         } else { /* no TSO, check if hardware checksum is needed */
411                 if (ol_flags & PKT_TX_IP_CKSUM) {
412                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
413                         tx_offload_mask.l2_len |= ~0;
414                         tx_offload_mask.l3_len |= ~0;
415                 }
416
417                 switch (ol_flags & PKT_TX_L4_MASK) {
418                 case PKT_TX_UDP_CKSUM:
419                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
420                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
421                         mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
429                         tx_offload_mask.l2_len |= ~0;
430                         tx_offload_mask.l3_len |= ~0;
431                         break;
432                 case PKT_TX_SCTP_CKSUM:
433                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
434                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
435                         mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
436                         tx_offload_mask.l2_len |= ~0;
437                         tx_offload_mask.l3_len |= ~0;
438                         break;
439                 default:
440                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
441                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
442                         break;
443                 }
444         }
445
446         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
447                 tx_offload_mask.outer_l2_len |= ~0;
448                 tx_offload_mask.outer_l3_len |= ~0;
449                 tx_offload_mask.l2_len |= ~0;
450                 seqnum_seed |= tx_offload.outer_l3_len
451                                << IXGBE_ADVTXD_OUTER_IPLEN;
452                 seqnum_seed |= tx_offload.l2_len
453                                << IXGBE_ADVTXD_TUNNEL_LEN;
454         }
455 #ifdef RTE_LIBRTE_SECURITY
456         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
457                 union ixgbe_crypto_tx_desc_md *md =
458                                 (union ixgbe_crypto_tx_desc_md *)mdata;
459                 seqnum_seed |=
460                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
461                 type_tucmd_mlhl |= md->enc ?
462                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
463                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
464                 type_tucmd_mlhl |=
465                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
466                 tx_offload_mask.sa_idx |= ~0;
467                 tx_offload_mask.sec_pad_len |= ~0;
468         }
469 #endif
470
471         txq->ctx_cache[ctx_idx].flags = ol_flags;
472         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
473                 tx_offload_mask.data[0] & tx_offload.data[0];
474         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
475                 tx_offload_mask.data[1] & tx_offload.data[1];
476         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
477
478         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
479         vlan_macip_lens = tx_offload.l3_len;
480         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
481                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
482                                     IXGBE_ADVTXD_MACLEN_SHIFT);
483         else
484                 vlan_macip_lens |= (tx_offload.l2_len <<
485                                     IXGBE_ADVTXD_MACLEN_SHIFT);
486         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
487         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
488         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
489         ctx_txd->seqnum_seed     = seqnum_seed;
490 }
491
492 /*
493  * Check which hardware context can be used. Use the existing match
494  * or create a new context descriptor.
495  */
496 static inline uint32_t
497 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
498                    union ixgbe_tx_offload tx_offload)
499 {
500         /* If match with the current used context */
501         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
502                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
503                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
504                      & tx_offload.data[0])) &&
505                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
506                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
507                      & tx_offload.data[1]))))
508                 return txq->ctx_curr;
509
510         /* What if match with the next context  */
511         txq->ctx_curr ^= 1;
512         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
513                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
514                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
515                      & tx_offload.data[0])) &&
516                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
517                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
518                      & tx_offload.data[1]))))
519                 return txq->ctx_curr;
520
521         /* Mismatch, use the previous context */
522         return IXGBE_CTX_NUM;
523 }
524
525 static inline uint32_t
526 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
527 {
528         uint32_t tmp = 0;
529
530         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
531                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
532         if (ol_flags & PKT_TX_IP_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
534         if (ol_flags & PKT_TX_TCP_SEG)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         return tmp;
537 }
538
539 static inline uint32_t
540 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
541 {
542         uint32_t cmdtype = 0;
543
544         if (ol_flags & PKT_TX_VLAN_PKT)
545                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
546         if (ol_flags & PKT_TX_TCP_SEG)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
548         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
549                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
550         if (ol_flags & PKT_TX_MACSEC)
551                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
552         return cmdtype;
553 }
554
555 /* Default RS bit threshold values */
556 #ifndef DEFAULT_TX_RS_THRESH
557 #define DEFAULT_TX_RS_THRESH   32
558 #endif
559 #ifndef DEFAULT_TX_FREE_THRESH
560 #define DEFAULT_TX_FREE_THRESH 32
561 #endif
562
563 /* Reset transmit descriptors after they have been used */
564 static inline int
565 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
566 {
567         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
568         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
570         uint16_t nb_tx_desc = txq->nb_tx_desc;
571         uint16_t desc_to_clean_to;
572         uint16_t nb_tx_to_clean;
573         uint32_t status;
574
575         /* Determine the last descriptor needing to be cleaned */
576         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
577         if (desc_to_clean_to >= nb_tx_desc)
578                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
579
580         /* Check to make sure the last descriptor to clean is done */
581         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
582         status = txr[desc_to_clean_to].wb.status;
583         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
584                 PMD_TX_FREE_LOG(DEBUG,
585                                 "TX descriptor %4u is not done"
586                                 "(port=%d queue=%d)",
587                                 desc_to_clean_to,
588                                 txq->port_id, txq->queue_id);
589                 /* Failed to clean any descriptors, better luck next time */
590                 return -(1);
591         }
592
593         /* Figure out how many descriptors will be cleaned */
594         if (last_desc_cleaned > desc_to_clean_to)
595                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
596                                                         desc_to_clean_to);
597         else
598                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
599                                                 last_desc_cleaned);
600
601         PMD_TX_FREE_LOG(DEBUG,
602                         "Cleaning %4u TX descriptors: %4u to %4u "
603                         "(port=%d queue=%d)",
604                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
605                         txq->port_id, txq->queue_id);
606
607         /*
608          * The last descriptor to clean is done, so that means all the
609          * descriptors from the last descriptor that was cleaned
610          * up to the last descriptor with the RS bit set
611          * are done. Only reset the threshold descriptor.
612          */
613         txr[desc_to_clean_to].wb.status = 0;
614
615         /* Update the txq to reflect the last descriptor that was cleaned */
616         txq->last_desc_cleaned = desc_to_clean_to;
617         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
618
619         /* No Error */
620         return 0;
621 }
622
623 uint16_t
624 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
625                 uint16_t nb_pkts)
626 {
627         struct ixgbe_tx_queue *txq;
628         struct ixgbe_tx_entry *sw_ring;
629         struct ixgbe_tx_entry *txe, *txn;
630         volatile union ixgbe_adv_tx_desc *txr;
631         volatile union ixgbe_adv_tx_desc *txd, *txp;
632         struct rte_mbuf     *tx_pkt;
633         struct rte_mbuf     *m_seg;
634         uint64_t buf_dma_addr;
635         uint32_t olinfo_status;
636         uint32_t cmd_type_len;
637         uint32_t pkt_len;
638         uint16_t slen;
639         uint64_t ol_flags;
640         uint16_t tx_id;
641         uint16_t tx_last;
642         uint16_t nb_tx;
643         uint16_t nb_used;
644         uint64_t tx_ol_req;
645         uint32_t ctx = 0;
646         uint32_t new_ctx;
647         union ixgbe_tx_offload tx_offload;
648 #ifdef RTE_LIBRTE_SECURITY
649         uint8_t use_ipsec;
650 #endif
651
652         tx_offload.data[0] = 0;
653         tx_offload.data[1] = 0;
654         txq = tx_queue;
655         sw_ring = txq->sw_ring;
656         txr     = txq->tx_ring;
657         tx_id   = txq->tx_tail;
658         txe = &sw_ring[tx_id];
659         txp = NULL;
660
661         /* Determine if the descriptor ring needs to be cleaned. */
662         if (txq->nb_tx_free < txq->tx_free_thresh)
663                 ixgbe_xmit_cleanup(txq);
664
665         rte_prefetch0(&txe->mbuf->pool);
666
667         /* TX loop */
668         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
669                 new_ctx = 0;
670                 tx_pkt = *tx_pkts++;
671                 pkt_len = tx_pkt->pkt_len;
672
673                 /*
674                  * Determine how many (if any) context descriptors
675                  * are needed for offload functionality.
676                  */
677                 ol_flags = tx_pkt->ol_flags;
678 #ifdef RTE_LIBRTE_SECURITY
679                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
680 #endif
681
682                 /* If hardware offload required */
683                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
684                 if (tx_ol_req) {
685                         tx_offload.l2_len = tx_pkt->l2_len;
686                         tx_offload.l3_len = tx_pkt->l3_len;
687                         tx_offload.l4_len = tx_pkt->l4_len;
688                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
689                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
690                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
691                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
692 #ifdef RTE_LIBRTE_SECURITY
693                         if (use_ipsec) {
694                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
695                                         (union ixgbe_crypto_tx_desc_md *)
696                                                         &tx_pkt->udata64;
697                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
698                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
699                         }
700 #endif
701
702                         /* If new context need be built or reuse the exist ctx. */
703                         ctx = what_advctx_update(txq, tx_ol_req,
704                                 tx_offload);
705                         /* Only allocate context descriptor if required*/
706                         new_ctx = (ctx == IXGBE_CTX_NUM);
707                         ctx = txq->ctx_curr;
708                 }
709
710                 /*
711                  * Keep track of how many descriptors are used this loop
712                  * This will always be the number of segments + the number of
713                  * Context descriptors required to transmit the packet
714                  */
715                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
716
717                 if (txp != NULL &&
718                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
719                         /* set RS on the previous packet in the burst */
720                         txp->read.cmd_type_len |=
721                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
722
723                 /*
724                  * The number of descriptors that must be allocated for a
725                  * packet is the number of segments of that packet, plus 1
726                  * Context Descriptor for the hardware offload, if any.
727                  * Determine the last TX descriptor to allocate in the TX ring
728                  * for the packet, starting from the current position (tx_id)
729                  * in the ring.
730                  */
731                 tx_last = (uint16_t) (tx_id + nb_used - 1);
732
733                 /* Circular ring */
734                 if (tx_last >= txq->nb_tx_desc)
735                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
736
737                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
738                            " tx_first=%u tx_last=%u",
739                            (unsigned) txq->port_id,
740                            (unsigned) txq->queue_id,
741                            (unsigned) pkt_len,
742                            (unsigned) tx_id,
743                            (unsigned) tx_last);
744
745                 /*
746                  * Make sure there are enough TX descriptors available to
747                  * transmit the entire packet.
748                  * nb_used better be less than or equal to txq->tx_rs_thresh
749                  */
750                 if (nb_used > txq->nb_tx_free) {
751                         PMD_TX_FREE_LOG(DEBUG,
752                                         "Not enough free TX descriptors "
753                                         "nb_used=%4u nb_free=%4u "
754                                         "(port=%d queue=%d)",
755                                         nb_used, txq->nb_tx_free,
756                                         txq->port_id, txq->queue_id);
757
758                         if (ixgbe_xmit_cleanup(txq) != 0) {
759                                 /* Could not clean any descriptors */
760                                 if (nb_tx == 0)
761                                         return 0;
762                                 goto end_of_tx;
763                         }
764
765                         /* nb_used better be <= txq->tx_rs_thresh */
766                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
767                                 PMD_TX_FREE_LOG(DEBUG,
768                                         "The number of descriptors needed to "
769                                         "transmit the packet exceeds the "
770                                         "RS bit threshold. This will impact "
771                                         "performance."
772                                         "nb_used=%4u nb_free=%4u "
773                                         "tx_rs_thresh=%4u. "
774                                         "(port=%d queue=%d)",
775                                         nb_used, txq->nb_tx_free,
776                                         txq->tx_rs_thresh,
777                                         txq->port_id, txq->queue_id);
778                                 /*
779                                  * Loop here until there are enough TX
780                                  * descriptors or until the ring cannot be
781                                  * cleaned.
782                                  */
783                                 while (nb_used > txq->nb_tx_free) {
784                                         if (ixgbe_xmit_cleanup(txq) != 0) {
785                                                 /*
786                                                  * Could not clean any
787                                                  * descriptors
788                                                  */
789                                                 if (nb_tx == 0)
790                                                         return 0;
791                                                 goto end_of_tx;
792                                         }
793                                 }
794                         }
795                 }
796
797                 /*
798                  * By now there are enough free TX descriptors to transmit
799                  * the packet.
800                  */
801
802                 /*
803                  * Set common flags of all TX Data Descriptors.
804                  *
805                  * The following bits must be set in all Data Descriptors:
806                  *   - IXGBE_ADVTXD_DTYP_DATA
807                  *   - IXGBE_ADVTXD_DCMD_DEXT
808                  *
809                  * The following bits must be set in the first Data Descriptor
810                  * and are ignored in the other ones:
811                  *   - IXGBE_ADVTXD_DCMD_IFCS
812                  *   - IXGBE_ADVTXD_MAC_1588
813                  *   - IXGBE_ADVTXD_DCMD_VLE
814                  *
815                  * The following bits must only be set in the last Data
816                  * Descriptor:
817                  *   - IXGBE_TXD_CMD_EOP
818                  *
819                  * The following bits can be set in any Data Descriptor, but
820                  * are only set in the last Data Descriptor:
821                  *   - IXGBE_TXD_CMD_RS
822                  */
823                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
824                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
825
826 #ifdef RTE_LIBRTE_IEEE1588
827                 if (ol_flags & PKT_TX_IEEE1588_TMST)
828                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
829 #endif
830
831                 olinfo_status = 0;
832                 if (tx_ol_req) {
833
834                         if (ol_flags & PKT_TX_TCP_SEG) {
835                                 /* when TSO is on, paylen in descriptor is the
836                                  * not the packet len but the tcp payload len */
837                                 pkt_len -= (tx_offload.l2_len +
838                                         tx_offload.l3_len + tx_offload.l4_len);
839                         }
840
841                         /*
842                          * Setup the TX Advanced Context Descriptor if required
843                          */
844                         if (new_ctx) {
845                                 volatile struct ixgbe_adv_tx_context_desc *
846                                     ctx_txd;
847
848                                 ctx_txd = (volatile struct
849                                     ixgbe_adv_tx_context_desc *)
850                                     &txr[tx_id];
851
852                                 txn = &sw_ring[txe->next_id];
853                                 rte_prefetch0(&txn->mbuf->pool);
854
855                                 if (txe->mbuf != NULL) {
856                                         rte_pktmbuf_free_seg(txe->mbuf);
857                                         txe->mbuf = NULL;
858                                 }
859
860                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
861                                         tx_offload, &tx_pkt->udata64);
862
863                                 txe->last_id = tx_last;
864                                 tx_id = txe->next_id;
865                                 txe = txn;
866                         }
867
868                         /*
869                          * Setup the TX Advanced Data Descriptor,
870                          * This path will go through
871                          * whatever new/reuse the context descriptor
872                          */
873                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
874                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
875                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
876                 }
877
878                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
879 #ifdef RTE_LIBRTE_SECURITY
880                 if (use_ipsec)
881                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
882 #endif
883
884                 m_seg = tx_pkt;
885                 do {
886                         txd = &txr[tx_id];
887                         txn = &sw_ring[txe->next_id];
888                         rte_prefetch0(&txn->mbuf->pool);
889
890                         if (txe->mbuf != NULL)
891                                 rte_pktmbuf_free_seg(txe->mbuf);
892                         txe->mbuf = m_seg;
893
894                         /*
895                          * Set up Transmit Data Descriptor.
896                          */
897                         slen = m_seg->data_len;
898                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
899                         txd->read.buffer_addr =
900                                 rte_cpu_to_le_64(buf_dma_addr);
901                         txd->read.cmd_type_len =
902                                 rte_cpu_to_le_32(cmd_type_len | slen);
903                         txd->read.olinfo_status =
904                                 rte_cpu_to_le_32(olinfo_status);
905                         txe->last_id = tx_last;
906                         tx_id = txe->next_id;
907                         txe = txn;
908                         m_seg = m_seg->next;
909                 } while (m_seg != NULL);
910
911                 /*
912                  * The last packet data descriptor needs End Of Packet (EOP)
913                  */
914                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
915                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
916                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
917
918                 /* Set RS bit only on threshold packets' last descriptor */
919                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
920                         PMD_TX_FREE_LOG(DEBUG,
921                                         "Setting RS bit on TXD id="
922                                         "%4u (port=%d queue=%d)",
923                                         tx_last, txq->port_id, txq->queue_id);
924
925                         cmd_type_len |= IXGBE_TXD_CMD_RS;
926
927                         /* Update txq RS bit counters */
928                         txq->nb_tx_used = 0;
929                         txp = NULL;
930                 } else
931                         txp = txd;
932
933                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
934         }
935
936 end_of_tx:
937         /* set RS on last packet in the burst */
938         if (txp != NULL)
939                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
940
941         rte_wmb();
942
943         /*
944          * Set the Transmit Descriptor Tail (TDT)
945          */
946         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
947                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
948                    (unsigned) tx_id, (unsigned) nb_tx);
949         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
950         txq->tx_tail = tx_id;
951
952         return nb_tx;
953 }
954
955 /*********************************************************************
956  *
957  *  TX prep functions
958  *
959  **********************************************************************/
960 uint16_t
961 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
962 {
963         int i, ret;
964         uint64_t ol_flags;
965         struct rte_mbuf *m;
966         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
967
968         for (i = 0; i < nb_pkts; i++) {
969                 m = tx_pkts[i];
970                 ol_flags = m->ol_flags;
971
972                 /**
973                  * Check if packet meets requirements for number of segments
974                  *
975                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
976                  *       non-TSO
977                  */
978
979                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
980                         rte_errno = -EINVAL;
981                         return i;
982                 }
983
984                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
985                         rte_errno = -ENOTSUP;
986                         return i;
987                 }
988
989 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
990                 ret = rte_validate_tx_offload(m);
991                 if (ret != 0) {
992                         rte_errno = ret;
993                         return i;
994                 }
995 #endif
996                 ret = rte_net_intel_cksum_prepare(m);
997                 if (ret != 0) {
998                         rte_errno = ret;
999                         return i;
1000                 }
1001         }
1002
1003         return i;
1004 }
1005
1006 /*********************************************************************
1007  *
1008  *  RX functions
1009  *
1010  **********************************************************************/
1011
1012 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1013 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1014 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1015 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1016 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1017 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1018 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1019 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1020 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1021 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1022 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1023 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1024 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1025 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1026 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1027 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1028 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1029 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1030 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1031 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1032 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1033 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1034 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1035 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1036 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1045
1046 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1047 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1048 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1049 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1050 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1051 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1052 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1053 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1069
1070 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1071 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1072 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1073 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1074 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1075 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1076 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1077 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1093
1094 /**
1095  * Use 2 different table for normal packet and tunnel packet
1096  * to save the space.
1097  */
1098 const uint32_t
1099         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1100         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1101         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1102                 RTE_PTYPE_L3_IPV4,
1103         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1104                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1105         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1106                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1107         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1108                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1109         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1110                 RTE_PTYPE_L3_IPV4_EXT,
1111         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1112                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1113         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1114                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1115         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1116                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1117         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1118                 RTE_PTYPE_L3_IPV6,
1119         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1120                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1121         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1122                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1123         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1124                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1125         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1126                 RTE_PTYPE_L3_IPV6_EXT,
1127         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1128                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1129         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1130                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1131         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1132                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1133         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1134                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1135                 RTE_PTYPE_INNER_L3_IPV6,
1136         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1138                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1139         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1140                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1141         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1145         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6,
1148         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1150                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1151         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1157         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1160         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1163         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1169         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1172         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1175         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1179                 RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1182 };
1183
1184 const uint32_t
1185         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1186         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1188                 RTE_PTYPE_INNER_L2_ETHER,
1189         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1190                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1191                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1192         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1193                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1194                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1195         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1210                 RTE_PTYPE_INNER_L4_TCP,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1214                 RTE_PTYPE_INNER_L4_TCP,
1215         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1216                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1217                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1223                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1224                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1225                 RTE_PTYPE_INNER_L3_IPV4,
1226         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1227                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1228                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1229                 RTE_PTYPE_INNER_L4_UDP,
1230         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1231                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1232                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1233                 RTE_PTYPE_INNER_L4_UDP,
1234         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1235                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1236                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1237                 RTE_PTYPE_INNER_L4_SCTP,
1238         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1239                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1240                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1244                 RTE_PTYPE_INNER_L4_UDP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1248                 RTE_PTYPE_INNER_L4_SCTP,
1249         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1250                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1251                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1252                 RTE_PTYPE_INNER_L3_IPV4,
1253         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1254                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1255                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1256                 RTE_PTYPE_INNER_L4_SCTP,
1257         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1258                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1259                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1260                 RTE_PTYPE_INNER_L4_SCTP,
1261         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1262                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1263                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1264                 RTE_PTYPE_INNER_L4_TCP,
1265         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1266                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1267                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1268                 RTE_PTYPE_INNER_L4_UDP,
1269
1270         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1272                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1273         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1274                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1275                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1276                 RTE_PTYPE_INNER_L3_IPV4,
1277         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1280                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1281         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1282                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1283                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1284                 RTE_PTYPE_INNER_L3_IPV6,
1285         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1286                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1287                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1288                 RTE_PTYPE_INNER_L3_IPV4,
1289         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1290                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1291                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1292                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1293         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1294                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1295                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1296                 RTE_PTYPE_INNER_L3_IPV4,
1297         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1298                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1299                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1300                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1301         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1302                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1303                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1304                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1305         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1306                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1307                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1308                 RTE_PTYPE_INNER_L3_IPV4,
1309         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1310                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1311                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1312                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1313         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1314                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1315                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1316                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1317         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1318                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1319                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1320                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1321         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1322                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1323                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1324                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1325         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1326                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1327                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1328                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1329         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1330                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1331                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1332                 RTE_PTYPE_INNER_L3_IPV4,
1333         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1334                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1335                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1336                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1337         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1338                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1339                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1340                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1341         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1342                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1343                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1344                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1345         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1346                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1347                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1348                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1349         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1350                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1351                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1352                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1353         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1354                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1355                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1356                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1357         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1358                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1359                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1360                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1361 };
1362
1363 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1364 static inline uint32_t
1365 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1366 {
1367
1368         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1369                 return RTE_PTYPE_UNKNOWN;
1370
1371         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1372
1373         /* For tunnel packet */
1374         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1375                 /* Remove the tunnel bit to save the space. */
1376                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1377                 return ptype_table_tn[pkt_info];
1378         }
1379
1380         /**
1381          * For x550, if it's not tunnel,
1382          * tunnel type bit should be set to 0.
1383          * Reuse 82599's mask.
1384          */
1385         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1386
1387         return ptype_table[pkt_info];
1388 }
1389
1390 static inline uint64_t
1391 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1392 {
1393         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1394                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1395                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1396                 PKT_RX_RSS_HASH, 0, 0, 0,
1397                 0, 0, 0,  PKT_RX_FDIR,
1398         };
1399 #ifdef RTE_LIBRTE_IEEE1588
1400         static uint64_t ip_pkt_etqf_map[8] = {
1401                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1402                 0, 0, 0, 0,
1403         };
1404
1405         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1406                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1407                                 ip_rss_types_map[pkt_info & 0XF];
1408         else
1409                 return ip_rss_types_map[pkt_info & 0XF];
1410 #else
1411         return ip_rss_types_map[pkt_info & 0XF];
1412 #endif
1413 }
1414
1415 static inline uint64_t
1416 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1417 {
1418         uint64_t pkt_flags;
1419
1420         /*
1421          * Check if VLAN present only.
1422          * Do not check whether L3/L4 rx checksum done by NIC or not,
1423          * That can be found from rte_eth_rxmode.hw_ip_checksum flag
1424          */
1425         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1426
1427 #ifdef RTE_LIBRTE_IEEE1588
1428         if (rx_status & IXGBE_RXD_STAT_TMST)
1429                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1430 #endif
1431         return pkt_flags;
1432 }
1433
1434 static inline uint64_t
1435 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1436 {
1437         uint64_t pkt_flags;
1438
1439         /*
1440          * Bit 31: IPE, IPv4 checksum error
1441          * Bit 30: L4I, L4I integrity error
1442          */
1443         static uint64_t error_to_pkt_flags_map[4] = {
1444                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1445                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1446                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1447                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1448         };
1449         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1450                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1451
1452         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1453             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1454                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1455         }
1456
1457 #ifdef RTE_LIBRTE_SECURITY
1458         if (rx_status & IXGBE_RXD_STAT_SECP) {
1459                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1460                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1461                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1462         }
1463 #endif
1464
1465         return pkt_flags;
1466 }
1467
1468 /*
1469  * LOOK_AHEAD defines how many desc statuses to check beyond the
1470  * current descriptor.
1471  * It must be a pound define for optimal performance.
1472  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1473  * function only works with LOOK_AHEAD=8.
1474  */
1475 #define LOOK_AHEAD 8
1476 #if (LOOK_AHEAD != 8)
1477 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1478 #endif
1479 static inline int
1480 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1481 {
1482         volatile union ixgbe_adv_rx_desc *rxdp;
1483         struct ixgbe_rx_entry *rxep;
1484         struct rte_mbuf *mb;
1485         uint16_t pkt_len;
1486         uint64_t pkt_flags;
1487         int nb_dd;
1488         uint32_t s[LOOK_AHEAD];
1489         uint32_t pkt_info[LOOK_AHEAD];
1490         int i, j, nb_rx = 0;
1491         uint32_t status;
1492         uint64_t vlan_flags = rxq->vlan_flags;
1493
1494         /* get references to current descriptor and S/W ring entry */
1495         rxdp = &rxq->rx_ring[rxq->rx_tail];
1496         rxep = &rxq->sw_ring[rxq->rx_tail];
1497
1498         status = rxdp->wb.upper.status_error;
1499         /* check to make sure there is at least 1 packet to receive */
1500         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1501                 return 0;
1502
1503         /*
1504          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1505          * reference packets that are ready to be received.
1506          */
1507         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1508              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1509                 /* Read desc statuses backwards to avoid race condition */
1510                 for (j = 0; j < LOOK_AHEAD; j++)
1511                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1512
1513                 rte_smp_rmb();
1514
1515                 /* Compute how many status bits were set */
1516                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1517                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1518                         ;
1519
1520                 for (j = 0; j < nb_dd; j++)
1521                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1522                                                        lo_dword.data);
1523
1524                 nb_rx += nb_dd;
1525
1526                 /* Translate descriptor info to mbuf format */
1527                 for (j = 0; j < nb_dd; ++j) {
1528                         mb = rxep[j].mbuf;
1529                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1530                                   rxq->crc_len;
1531                         mb->data_len = pkt_len;
1532                         mb->pkt_len = pkt_len;
1533                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1534
1535                         /* convert descriptor fields to rte mbuf flags */
1536                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1537                                 vlan_flags);
1538                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1539                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1540                                         ((uint16_t)pkt_info[j]);
1541                         mb->ol_flags = pkt_flags;
1542                         mb->packet_type =
1543                                 ixgbe_rxd_pkt_info_to_pkt_type
1544                                         (pkt_info[j], rxq->pkt_type_mask);
1545
1546                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1547                                 mb->hash.rss = rte_le_to_cpu_32(
1548                                     rxdp[j].wb.lower.hi_dword.rss);
1549                         else if (pkt_flags & PKT_RX_FDIR) {
1550                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1551                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1552                                     IXGBE_ATR_HASH_MASK;
1553                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1554                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1555                         }
1556                 }
1557
1558                 /* Move mbuf pointers from the S/W ring to the stage */
1559                 for (j = 0; j < LOOK_AHEAD; ++j) {
1560                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1561                 }
1562
1563                 /* stop if all requested packets could not be received */
1564                 if (nb_dd != LOOK_AHEAD)
1565                         break;
1566         }
1567
1568         /* clear software ring entries so we can cleanup correctly */
1569         for (i = 0; i < nb_rx; ++i) {
1570                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1571         }
1572
1573
1574         return nb_rx;
1575 }
1576
1577 static inline int
1578 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1579 {
1580         volatile union ixgbe_adv_rx_desc *rxdp;
1581         struct ixgbe_rx_entry *rxep;
1582         struct rte_mbuf *mb;
1583         uint16_t alloc_idx;
1584         __le64 dma_addr;
1585         int diag, i;
1586
1587         /* allocate buffers in bulk directly into the S/W ring */
1588         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1589         rxep = &rxq->sw_ring[alloc_idx];
1590         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1591                                     rxq->rx_free_thresh);
1592         if (unlikely(diag != 0))
1593                 return -ENOMEM;
1594
1595         rxdp = &rxq->rx_ring[alloc_idx];
1596         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1597                 /* populate the static rte mbuf fields */
1598                 mb = rxep[i].mbuf;
1599                 if (reset_mbuf) {
1600                         mb->port = rxq->port_id;
1601                 }
1602
1603                 rte_mbuf_refcnt_set(mb, 1);
1604                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1605
1606                 /* populate the descriptors */
1607                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1608                 rxdp[i].read.hdr_addr = 0;
1609                 rxdp[i].read.pkt_addr = dma_addr;
1610         }
1611
1612         /* update state of internal queue structure */
1613         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1614         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1615                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1616
1617         /* no errors */
1618         return 0;
1619 }
1620
1621 static inline uint16_t
1622 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1623                          uint16_t nb_pkts)
1624 {
1625         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1626         int i;
1627
1628         /* how many packets are ready to return? */
1629         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1630
1631         /* copy mbuf pointers to the application's packet list */
1632         for (i = 0; i < nb_pkts; ++i)
1633                 rx_pkts[i] = stage[i];
1634
1635         /* update internal queue state */
1636         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1637         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1638
1639         return nb_pkts;
1640 }
1641
1642 static inline uint16_t
1643 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1644              uint16_t nb_pkts)
1645 {
1646         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1647         uint16_t nb_rx = 0;
1648
1649         /* Any previously recv'd pkts will be returned from the Rx stage */
1650         if (rxq->rx_nb_avail)
1651                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1652
1653         /* Scan the H/W ring for packets to receive */
1654         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1655
1656         /* update internal queue state */
1657         rxq->rx_next_avail = 0;
1658         rxq->rx_nb_avail = nb_rx;
1659         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1660
1661         /* if required, allocate new buffers to replenish descriptors */
1662         if (rxq->rx_tail > rxq->rx_free_trigger) {
1663                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1664
1665                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1666                         int i, j;
1667
1668                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1669                                    "queue_id=%u", (unsigned) rxq->port_id,
1670                                    (unsigned) rxq->queue_id);
1671
1672                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1673                                 rxq->rx_free_thresh;
1674
1675                         /*
1676                          * Need to rewind any previous receives if we cannot
1677                          * allocate new buffers to replenish the old ones.
1678                          */
1679                         rxq->rx_nb_avail = 0;
1680                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1681                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1682                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1683
1684                         return 0;
1685                 }
1686
1687                 /* update tail pointer */
1688                 rte_wmb();
1689                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1690                                             cur_free_trigger);
1691         }
1692
1693         if (rxq->rx_tail >= rxq->nb_rx_desc)
1694                 rxq->rx_tail = 0;
1695
1696         /* received any packets this loop? */
1697         if (rxq->rx_nb_avail)
1698                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1699
1700         return 0;
1701 }
1702
1703 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1704 uint16_t
1705 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1706                            uint16_t nb_pkts)
1707 {
1708         uint16_t nb_rx;
1709
1710         if (unlikely(nb_pkts == 0))
1711                 return 0;
1712
1713         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1714                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1715
1716         /* request is relatively large, chunk it up */
1717         nb_rx = 0;
1718         while (nb_pkts) {
1719                 uint16_t ret, n;
1720
1721                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1722                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1723                 nb_rx = (uint16_t)(nb_rx + ret);
1724                 nb_pkts = (uint16_t)(nb_pkts - ret);
1725                 if (ret < n)
1726                         break;
1727         }
1728
1729         return nb_rx;
1730 }
1731
1732 uint16_t
1733 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1734                 uint16_t nb_pkts)
1735 {
1736         struct ixgbe_rx_queue *rxq;
1737         volatile union ixgbe_adv_rx_desc *rx_ring;
1738         volatile union ixgbe_adv_rx_desc *rxdp;
1739         struct ixgbe_rx_entry *sw_ring;
1740         struct ixgbe_rx_entry *rxe;
1741         struct rte_mbuf *rxm;
1742         struct rte_mbuf *nmb;
1743         union ixgbe_adv_rx_desc rxd;
1744         uint64_t dma_addr;
1745         uint32_t staterr;
1746         uint32_t pkt_info;
1747         uint16_t pkt_len;
1748         uint16_t rx_id;
1749         uint16_t nb_rx;
1750         uint16_t nb_hold;
1751         uint64_t pkt_flags;
1752         uint64_t vlan_flags;
1753
1754         nb_rx = 0;
1755         nb_hold = 0;
1756         rxq = rx_queue;
1757         rx_id = rxq->rx_tail;
1758         rx_ring = rxq->rx_ring;
1759         sw_ring = rxq->sw_ring;
1760         vlan_flags = rxq->vlan_flags;
1761         while (nb_rx < nb_pkts) {
1762                 /*
1763                  * The order of operations here is important as the DD status
1764                  * bit must not be read after any other descriptor fields.
1765                  * rx_ring and rxdp are pointing to volatile data so the order
1766                  * of accesses cannot be reordered by the compiler. If they were
1767                  * not volatile, they could be reordered which could lead to
1768                  * using invalid descriptor fields when read from rxd.
1769                  */
1770                 rxdp = &rx_ring[rx_id];
1771                 staterr = rxdp->wb.upper.status_error;
1772                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1773                         break;
1774                 rxd = *rxdp;
1775
1776                 /*
1777                  * End of packet.
1778                  *
1779                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1780                  * is likely to be invalid and to be dropped by the various
1781                  * validation checks performed by the network stack.
1782                  *
1783                  * Allocate a new mbuf to replenish the RX ring descriptor.
1784                  * If the allocation fails:
1785                  *    - arrange for that RX descriptor to be the first one
1786                  *      being parsed the next time the receive function is
1787                  *      invoked [on the same queue].
1788                  *
1789                  *    - Stop parsing the RX ring and return immediately.
1790                  *
1791                  * This policy do not drop the packet received in the RX
1792                  * descriptor for which the allocation of a new mbuf failed.
1793                  * Thus, it allows that packet to be later retrieved if
1794                  * mbuf have been freed in the mean time.
1795                  * As a side effect, holding RX descriptors instead of
1796                  * systematically giving them back to the NIC may lead to
1797                  * RX ring exhaustion situations.
1798                  * However, the NIC can gracefully prevent such situations
1799                  * to happen by sending specific "back-pressure" flow control
1800                  * frames to its peer(s).
1801                  */
1802                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1803                            "ext_err_stat=0x%08x pkt_len=%u",
1804                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1805                            (unsigned) rx_id, (unsigned) staterr,
1806                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1807
1808                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1809                 if (nmb == NULL) {
1810                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1811                                    "queue_id=%u", (unsigned) rxq->port_id,
1812                                    (unsigned) rxq->queue_id);
1813                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1814                         break;
1815                 }
1816
1817                 nb_hold++;
1818                 rxe = &sw_ring[rx_id];
1819                 rx_id++;
1820                 if (rx_id == rxq->nb_rx_desc)
1821                         rx_id = 0;
1822
1823                 /* Prefetch next mbuf while processing current one. */
1824                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1825
1826                 /*
1827                  * When next RX descriptor is on a cache-line boundary,
1828                  * prefetch the next 4 RX descriptors and the next 8 pointers
1829                  * to mbufs.
1830                  */
1831                 if ((rx_id & 0x3) == 0) {
1832                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1833                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1834                 }
1835
1836                 rxm = rxe->mbuf;
1837                 rxe->mbuf = nmb;
1838                 dma_addr =
1839                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1840                 rxdp->read.hdr_addr = 0;
1841                 rxdp->read.pkt_addr = dma_addr;
1842
1843                 /*
1844                  * Initialize the returned mbuf.
1845                  * 1) setup generic mbuf fields:
1846                  *    - number of segments,
1847                  *    - next segment,
1848                  *    - packet length,
1849                  *    - RX port identifier.
1850                  * 2) integrate hardware offload data, if any:
1851                  *    - RSS flag & hash,
1852                  *    - IP checksum flag,
1853                  *    - VLAN TCI, if any,
1854                  *    - error flags.
1855                  */
1856                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1857                                       rxq->crc_len);
1858                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1859                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1860                 rxm->nb_segs = 1;
1861                 rxm->next = NULL;
1862                 rxm->pkt_len = pkt_len;
1863                 rxm->data_len = pkt_len;
1864                 rxm->port = rxq->port_id;
1865
1866                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1867                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1868                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1869
1870                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1871                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1872                 pkt_flags = pkt_flags |
1873                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1874                 rxm->ol_flags = pkt_flags;
1875                 rxm->packet_type =
1876                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1877                                                        rxq->pkt_type_mask);
1878
1879                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1880                         rxm->hash.rss = rte_le_to_cpu_32(
1881                                                 rxd.wb.lower.hi_dword.rss);
1882                 else if (pkt_flags & PKT_RX_FDIR) {
1883                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1884                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1885                                         IXGBE_ATR_HASH_MASK;
1886                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1887                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1888                 }
1889                 /*
1890                  * Store the mbuf address into the next entry of the array
1891                  * of returned packets.
1892                  */
1893                 rx_pkts[nb_rx++] = rxm;
1894         }
1895         rxq->rx_tail = rx_id;
1896
1897         /*
1898          * If the number of free RX descriptors is greater than the RX free
1899          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1900          * register.
1901          * Update the RDT with the value of the last processed RX descriptor
1902          * minus 1, to guarantee that the RDT register is never equal to the
1903          * RDH register, which creates a "full" ring situtation from the
1904          * hardware point of view...
1905          */
1906         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1907         if (nb_hold > rxq->rx_free_thresh) {
1908                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1909                            "nb_hold=%u nb_rx=%u",
1910                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1911                            (unsigned) rx_id, (unsigned) nb_hold,
1912                            (unsigned) nb_rx);
1913                 rx_id = (uint16_t) ((rx_id == 0) ?
1914                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1915                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1916                 nb_hold = 0;
1917         }
1918         rxq->nb_rx_hold = nb_hold;
1919         return nb_rx;
1920 }
1921
1922 /**
1923  * Detect an RSC descriptor.
1924  */
1925 static inline uint32_t
1926 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1927 {
1928         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1929                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1930 }
1931
1932 /**
1933  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1934  *
1935  * Fill the following info in the HEAD buffer of the Rx cluster:
1936  *    - RX port identifier
1937  *    - hardware offload data, if any:
1938  *      - RSS flag & hash
1939  *      - IP checksum flag
1940  *      - VLAN TCI, if any
1941  *      - error flags
1942  * @head HEAD of the packet cluster
1943  * @desc HW descriptor to get data from
1944  * @rxq Pointer to the Rx queue
1945  */
1946 static inline void
1947 ixgbe_fill_cluster_head_buf(
1948         struct rte_mbuf *head,
1949         union ixgbe_adv_rx_desc *desc,
1950         struct ixgbe_rx_queue *rxq,
1951         uint32_t staterr)
1952 {
1953         uint32_t pkt_info;
1954         uint64_t pkt_flags;
1955
1956         head->port = rxq->port_id;
1957
1958         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1959          * set in the pkt_flags field.
1960          */
1961         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1962         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1963         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1964         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1965         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1966         head->ol_flags = pkt_flags;
1967         head->packet_type =
1968                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1969
1970         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1971                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1972         else if (pkt_flags & PKT_RX_FDIR) {
1973                 head->hash.fdir.hash =
1974                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1975                                                           & IXGBE_ATR_HASH_MASK;
1976                 head->hash.fdir.id =
1977                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1978         }
1979 }
1980
1981 /**
1982  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1983  *
1984  * @rx_queue Rx queue handle
1985  * @rx_pkts table of received packets
1986  * @nb_pkts size of rx_pkts table
1987  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1988  *
1989  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1990  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1991  *
1992  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
1993  * 1) When non-EOP RSC completion arrives:
1994  *    a) Update the HEAD of the current RSC aggregation cluster with the new
1995  *       segment's data length.
1996  *    b) Set the "next" pointer of the current segment to point to the segment
1997  *       at the NEXTP index.
1998  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
1999  *       in the sw_rsc_ring.
2000  * 2) When EOP arrives we just update the cluster's total length and offload
2001  *    flags and deliver the cluster up to the upper layers. In our case - put it
2002  *    in the rx_pkts table.
2003  *
2004  * Returns the number of received packets/clusters (according to the "bulk
2005  * receive" interface).
2006  */
2007 static inline uint16_t
2008 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2009                     bool bulk_alloc)
2010 {
2011         struct ixgbe_rx_queue *rxq = rx_queue;
2012         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2013         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2014         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2015         uint16_t rx_id = rxq->rx_tail;
2016         uint16_t nb_rx = 0;
2017         uint16_t nb_hold = rxq->nb_rx_hold;
2018         uint16_t prev_id = rxq->rx_tail;
2019
2020         while (nb_rx < nb_pkts) {
2021                 bool eop;
2022                 struct ixgbe_rx_entry *rxe;
2023                 struct ixgbe_scattered_rx_entry *sc_entry;
2024                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2025                 struct ixgbe_rx_entry *next_rxe = NULL;
2026                 struct rte_mbuf *first_seg;
2027                 struct rte_mbuf *rxm;
2028                 struct rte_mbuf *nmb;
2029                 union ixgbe_adv_rx_desc rxd;
2030                 uint16_t data_len;
2031                 uint16_t next_id;
2032                 volatile union ixgbe_adv_rx_desc *rxdp;
2033                 uint32_t staterr;
2034
2035 next_desc:
2036                 /*
2037                  * The code in this whole file uses the volatile pointer to
2038                  * ensure the read ordering of the status and the rest of the
2039                  * descriptor fields (on the compiler level only!!!). This is so
2040                  * UGLY - why not to just use the compiler barrier instead? DPDK
2041                  * even has the rte_compiler_barrier() for that.
2042                  *
2043                  * But most importantly this is just wrong because this doesn't
2044                  * ensure memory ordering in a general case at all. For
2045                  * instance, DPDK is supposed to work on Power CPUs where
2046                  * compiler barrier may just not be enough!
2047                  *
2048                  * I tried to write only this function properly to have a
2049                  * starting point (as a part of an LRO/RSC series) but the
2050                  * compiler cursed at me when I tried to cast away the
2051                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2052                  * keeping it the way it is for now.
2053                  *
2054                  * The code in this file is broken in so many other places and
2055                  * will just not work on a big endian CPU anyway therefore the
2056                  * lines below will have to be revisited together with the rest
2057                  * of the ixgbe PMD.
2058                  *
2059                  * TODO:
2060                  *    - Get rid of "volatile" crap and let the compiler do its
2061                  *      job.
2062                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2063                  *      memory ordering below.
2064                  */
2065                 rxdp = &rx_ring[rx_id];
2066                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2067
2068                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2069                         break;
2070
2071                 rxd = *rxdp;
2072
2073                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2074                                   "staterr=0x%x data_len=%u",
2075                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2076                            rte_le_to_cpu_16(rxd.wb.upper.length));
2077
2078                 if (!bulk_alloc) {
2079                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2080                         if (nmb == NULL) {
2081                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2082                                                   "port_id=%u queue_id=%u",
2083                                            rxq->port_id, rxq->queue_id);
2084
2085                                 rte_eth_devices[rxq->port_id].data->
2086                                                         rx_mbuf_alloc_failed++;
2087                                 break;
2088                         }
2089                 } else if (nb_hold > rxq->rx_free_thresh) {
2090                         uint16_t next_rdt = rxq->rx_free_trigger;
2091
2092                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2093                                 rte_wmb();
2094                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2095                                                             next_rdt);
2096                                 nb_hold -= rxq->rx_free_thresh;
2097                         } else {
2098                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2099                                                   "port_id=%u queue_id=%u",
2100                                            rxq->port_id, rxq->queue_id);
2101
2102                                 rte_eth_devices[rxq->port_id].data->
2103                                                         rx_mbuf_alloc_failed++;
2104                                 break;
2105                         }
2106                 }
2107
2108                 nb_hold++;
2109                 rxe = &sw_ring[rx_id];
2110                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2111
2112                 next_id = rx_id + 1;
2113                 if (next_id == rxq->nb_rx_desc)
2114                         next_id = 0;
2115
2116                 /* Prefetch next mbuf while processing current one. */
2117                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2118
2119                 /*
2120                  * When next RX descriptor is on a cache-line boundary,
2121                  * prefetch the next 4 RX descriptors and the next 4 pointers
2122                  * to mbufs.
2123                  */
2124                 if ((next_id & 0x3) == 0) {
2125                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2126                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2127                 }
2128
2129                 rxm = rxe->mbuf;
2130
2131                 if (!bulk_alloc) {
2132                         __le64 dma =
2133                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2134                         /*
2135                          * Update RX descriptor with the physical address of the
2136                          * new data buffer of the new allocated mbuf.
2137                          */
2138                         rxe->mbuf = nmb;
2139
2140                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2141                         rxdp->read.hdr_addr = 0;
2142                         rxdp->read.pkt_addr = dma;
2143                 } else
2144                         rxe->mbuf = NULL;
2145
2146                 /*
2147                  * Set data length & data buffer address of mbuf.
2148                  */
2149                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2150                 rxm->data_len = data_len;
2151
2152                 if (!eop) {
2153                         uint16_t nextp_id;
2154                         /*
2155                          * Get next descriptor index:
2156                          *  - For RSC it's in the NEXTP field.
2157                          *  - For a scattered packet - it's just a following
2158                          *    descriptor.
2159                          */
2160                         if (ixgbe_rsc_count(&rxd))
2161                                 nextp_id =
2162                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2163                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2164                         else
2165                                 nextp_id = next_id;
2166
2167                         next_sc_entry = &sw_sc_ring[nextp_id];
2168                         next_rxe = &sw_ring[nextp_id];
2169                         rte_ixgbe_prefetch(next_rxe);
2170                 }
2171
2172                 sc_entry = &sw_sc_ring[rx_id];
2173                 first_seg = sc_entry->fbuf;
2174                 sc_entry->fbuf = NULL;
2175
2176                 /*
2177                  * If this is the first buffer of the received packet,
2178                  * set the pointer to the first mbuf of the packet and
2179                  * initialize its context.
2180                  * Otherwise, update the total length and the number of segments
2181                  * of the current scattered packet, and update the pointer to
2182                  * the last mbuf of the current packet.
2183                  */
2184                 if (first_seg == NULL) {
2185                         first_seg = rxm;
2186                         first_seg->pkt_len = data_len;
2187                         first_seg->nb_segs = 1;
2188                 } else {
2189                         first_seg->pkt_len += data_len;
2190                         first_seg->nb_segs++;
2191                 }
2192
2193                 prev_id = rx_id;
2194                 rx_id = next_id;
2195
2196                 /*
2197                  * If this is not the last buffer of the received packet, update
2198                  * the pointer to the first mbuf at the NEXTP entry in the
2199                  * sw_sc_ring and continue to parse the RX ring.
2200                  */
2201                 if (!eop && next_rxe) {
2202                         rxm->next = next_rxe->mbuf;
2203                         next_sc_entry->fbuf = first_seg;
2204                         goto next_desc;
2205                 }
2206
2207                 /* Initialize the first mbuf of the returned packet */
2208                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2209
2210                 /*
2211                  * Deal with the case, when HW CRC srip is disabled.
2212                  * That can't happen when LRO is enabled, but still could
2213                  * happen for scattered RX mode.
2214                  */
2215                 first_seg->pkt_len -= rxq->crc_len;
2216                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2217                         struct rte_mbuf *lp;
2218
2219                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2220                                 ;
2221
2222                         first_seg->nb_segs--;
2223                         lp->data_len -= rxq->crc_len - rxm->data_len;
2224                         lp->next = NULL;
2225                         rte_pktmbuf_free_seg(rxm);
2226                 } else
2227                         rxm->data_len -= rxq->crc_len;
2228
2229                 /* Prefetch data of first segment, if configured to do so. */
2230                 rte_packet_prefetch((char *)first_seg->buf_addr +
2231                         first_seg->data_off);
2232
2233                 /*
2234                  * Store the mbuf address into the next entry of the array
2235                  * of returned packets.
2236                  */
2237                 rx_pkts[nb_rx++] = first_seg;
2238         }
2239
2240         /*
2241          * Record index of the next RX descriptor to probe.
2242          */
2243         rxq->rx_tail = rx_id;
2244
2245         /*
2246          * If the number of free RX descriptors is greater than the RX free
2247          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2248          * register.
2249          * Update the RDT with the value of the last processed RX descriptor
2250          * minus 1, to guarantee that the RDT register is never equal to the
2251          * RDH register, which creates a "full" ring situtation from the
2252          * hardware point of view...
2253          */
2254         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2255                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2256                            "nb_hold=%u nb_rx=%u",
2257                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2258
2259                 rte_wmb();
2260                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2261                 nb_hold = 0;
2262         }
2263
2264         rxq->nb_rx_hold = nb_hold;
2265         return nb_rx;
2266 }
2267
2268 uint16_t
2269 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2270                                  uint16_t nb_pkts)
2271 {
2272         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2273 }
2274
2275 uint16_t
2276 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2277                                uint16_t nb_pkts)
2278 {
2279         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2280 }
2281
2282 /*********************************************************************
2283  *
2284  *  Queue management functions
2285  *
2286  **********************************************************************/
2287
2288 static void __attribute__((cold))
2289 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2290 {
2291         unsigned i;
2292
2293         if (txq->sw_ring != NULL) {
2294                 for (i = 0; i < txq->nb_tx_desc; i++) {
2295                         if (txq->sw_ring[i].mbuf != NULL) {
2296                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2297                                 txq->sw_ring[i].mbuf = NULL;
2298                         }
2299                 }
2300         }
2301 }
2302
2303 static void __attribute__((cold))
2304 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2305 {
2306         if (txq != NULL &&
2307             txq->sw_ring != NULL)
2308                 rte_free(txq->sw_ring);
2309 }
2310
2311 static void __attribute__((cold))
2312 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2313 {
2314         if (txq != NULL && txq->ops != NULL) {
2315                 txq->ops->release_mbufs(txq);
2316                 txq->ops->free_swring(txq);
2317                 rte_free(txq);
2318         }
2319 }
2320
2321 void __attribute__((cold))
2322 ixgbe_dev_tx_queue_release(void *txq)
2323 {
2324         ixgbe_tx_queue_release(txq);
2325 }
2326
2327 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2328 static void __attribute__((cold))
2329 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2330 {
2331         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2332         struct ixgbe_tx_entry *txe = txq->sw_ring;
2333         uint16_t prev, i;
2334
2335         /* Zero out HW ring memory */
2336         for (i = 0; i < txq->nb_tx_desc; i++) {
2337                 txq->tx_ring[i] = zeroed_desc;
2338         }
2339
2340         /* Initialize SW ring entries */
2341         prev = (uint16_t) (txq->nb_tx_desc - 1);
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2344
2345                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2346                 txe[i].mbuf = NULL;
2347                 txe[i].last_id = i;
2348                 txe[prev].next_id = i;
2349                 prev = i;
2350         }
2351
2352         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2353         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2354
2355         txq->tx_tail = 0;
2356         txq->nb_tx_used = 0;
2357         /*
2358          * Always allow 1 descriptor to be un-allocated to avoid
2359          * a H/W race condition
2360          */
2361         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2362         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2363         txq->ctx_curr = 0;
2364         memset((void *)&txq->ctx_cache, 0,
2365                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2366 }
2367
2368 static const struct ixgbe_txq_ops def_txq_ops = {
2369         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2370         .free_swring = ixgbe_tx_free_swring,
2371         .reset = ixgbe_reset_tx_queue,
2372 };
2373
2374 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2375  * the queue parameters. Used in tx_queue_setup by primary process and then
2376  * in dev_init by secondary process when attaching to an existing ethdev.
2377  */
2378 void __attribute__((cold))
2379 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2380 {
2381         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2382         if ((txq->offloads == 0) &&
2383 #ifdef RTE_LIBRTE_SECURITY
2384                         !(txq->using_ipsec) &&
2385 #endif
2386                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2387                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2388                 dev->tx_pkt_prepare = NULL;
2389 #ifdef RTE_IXGBE_INC_VECTOR
2390                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2391                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2392                                         ixgbe_txq_vec_setup(txq) == 0)) {
2393                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2394                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2395                 } else
2396 #endif
2397                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2398         } else {
2399                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2400                 PMD_INIT_LOG(DEBUG,
2401                                 " - offloads = 0x%" PRIx64,
2402                                 txq->offloads);
2403                 PMD_INIT_LOG(DEBUG,
2404                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2405                                 (unsigned long)txq->tx_rs_thresh,
2406                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2407                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2408                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2409         }
2410 }
2411
2412 uint64_t
2413 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2414 {
2415         RTE_SET_USED(dev);
2416
2417         return 0;
2418 }
2419
2420 uint64_t
2421 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2422 {
2423         uint64_t tx_offload_capa;
2424         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2425
2426         tx_offload_capa =
2427                 DEV_TX_OFFLOAD_VLAN_INSERT |
2428                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2429                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2430                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2431                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2432                 DEV_TX_OFFLOAD_TCP_TSO     |
2433                 DEV_TX_OFFLOAD_MULTI_SEGS;
2434
2435         if (hw->mac.type == ixgbe_mac_82599EB ||
2436             hw->mac.type == ixgbe_mac_X540)
2437                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2438
2439         if (hw->mac.type == ixgbe_mac_X550 ||
2440             hw->mac.type == ixgbe_mac_X550EM_x ||
2441             hw->mac.type == ixgbe_mac_X550EM_a)
2442                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2443
2444 #ifdef RTE_LIBRTE_SECURITY
2445         if (dev->security_ctx)
2446                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2447 #endif
2448         return tx_offload_capa;
2449 }
2450
2451 static int
2452 ixgbe_check_tx_queue_offloads(struct rte_eth_dev *dev, uint64_t requested)
2453 {
2454         uint64_t port_offloads = dev->data->dev_conf.txmode.offloads;
2455         uint64_t queue_supported = ixgbe_get_tx_queue_offloads(dev);
2456         uint64_t port_supported = ixgbe_get_tx_port_offloads(dev);
2457
2458         if ((requested & (queue_supported | port_supported)) != requested)
2459                 return 0;
2460
2461         if ((port_offloads ^ requested) & port_supported)
2462                 return 0;
2463
2464         return 1;
2465 }
2466
2467 int __attribute__((cold))
2468 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2469                          uint16_t queue_idx,
2470                          uint16_t nb_desc,
2471                          unsigned int socket_id,
2472                          const struct rte_eth_txconf *tx_conf)
2473 {
2474         const struct rte_memzone *tz;
2475         struct ixgbe_tx_queue *txq;
2476         struct ixgbe_hw     *hw;
2477         uint16_t tx_rs_thresh, tx_free_thresh;
2478
2479         PMD_INIT_FUNC_TRACE();
2480         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2481
2482         /*
2483          * Don't verify port offloads for application which
2484          * use the old API.
2485          */
2486         if (!ixgbe_check_tx_queue_offloads(dev, tx_conf->offloads)) {
2487                 PMD_INIT_LOG(ERR, "%p: Tx queue offloads 0x%" PRIx64
2488                         " don't match port offloads 0x%" PRIx64
2489                         " or supported queue offloads 0x%" PRIx64
2490                         " or supported port offloads 0x%" PRIx64,
2491                         (void *)dev, tx_conf->offloads,
2492                         dev->data->dev_conf.txmode.offloads,
2493                         ixgbe_get_tx_queue_offloads(dev),
2494                         ixgbe_get_tx_port_offloads(dev));
2495                 return -ENOTSUP;
2496         }
2497
2498         /*
2499          * Validate number of transmit descriptors.
2500          * It must not exceed hardware maximum, and must be multiple
2501          * of IXGBE_ALIGN.
2502          */
2503         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2504                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2505                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2506                 return -EINVAL;
2507         }
2508
2509         /*
2510          * The following two parameters control the setting of the RS bit on
2511          * transmit descriptors.
2512          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2513          * descriptors have been used.
2514          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2515          * descriptors are used or if the number of descriptors required
2516          * to transmit a packet is greater than the number of free TX
2517          * descriptors.
2518          * The following constraints must be satisfied:
2519          *  tx_rs_thresh must be greater than 0.
2520          *  tx_rs_thresh must be less than the size of the ring minus 2.
2521          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2522          *  tx_rs_thresh must be a divisor of the ring size.
2523          *  tx_free_thresh must be greater than 0.
2524          *  tx_free_thresh must be less than the size of the ring minus 3.
2525          * One descriptor in the TX ring is used as a sentinel to avoid a
2526          * H/W race condition, hence the maximum threshold constraints.
2527          * When set to zero use default values.
2528          */
2529         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2530                         tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2531         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2532                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2533         if (tx_rs_thresh >= (nb_desc - 2)) {
2534                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2535                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2536                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2537                         (int)dev->data->port_id, (int)queue_idx);
2538                 return -(EINVAL);
2539         }
2540         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2541                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2542                         "(tx_rs_thresh=%u port=%d queue=%d)",
2543                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2544                         (int)dev->data->port_id, (int)queue_idx);
2545                 return -(EINVAL);
2546         }
2547         if (tx_free_thresh >= (nb_desc - 3)) {
2548                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2549                              "tx_free_thresh must be less than the number of "
2550                              "TX descriptors minus 3. (tx_free_thresh=%u "
2551                              "port=%d queue=%d)",
2552                              (unsigned int)tx_free_thresh,
2553                              (int)dev->data->port_id, (int)queue_idx);
2554                 return -(EINVAL);
2555         }
2556         if (tx_rs_thresh > tx_free_thresh) {
2557                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2558                              "tx_free_thresh. (tx_free_thresh=%u "
2559                              "tx_rs_thresh=%u port=%d queue=%d)",
2560                              (unsigned int)tx_free_thresh,
2561                              (unsigned int)tx_rs_thresh,
2562                              (int)dev->data->port_id,
2563                              (int)queue_idx);
2564                 return -(EINVAL);
2565         }
2566         if ((nb_desc % tx_rs_thresh) != 0) {
2567                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2568                              "number of TX descriptors. (tx_rs_thresh=%u "
2569                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2570                              (int)dev->data->port_id, (int)queue_idx);
2571                 return -(EINVAL);
2572         }
2573
2574         /*
2575          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2576          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2577          * by the NIC and all descriptors are written back after the NIC
2578          * accumulates WTHRESH descriptors.
2579          */
2580         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2581                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2582                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2583                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2584                              (int)dev->data->port_id, (int)queue_idx);
2585                 return -(EINVAL);
2586         }
2587
2588         /* Free memory prior to re-allocation if needed... */
2589         if (dev->data->tx_queues[queue_idx] != NULL) {
2590                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2591                 dev->data->tx_queues[queue_idx] = NULL;
2592         }
2593
2594         /* First allocate the tx queue data structure */
2595         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2596                                  RTE_CACHE_LINE_SIZE, socket_id);
2597         if (txq == NULL)
2598                 return -ENOMEM;
2599
2600         /*
2601          * Allocate TX ring hardware descriptors. A memzone large enough to
2602          * handle the maximum ring size is allocated in order to allow for
2603          * resizing in later calls to the queue setup function.
2604          */
2605         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2606                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2607                         IXGBE_ALIGN, socket_id);
2608         if (tz == NULL) {
2609                 ixgbe_tx_queue_release(txq);
2610                 return -ENOMEM;
2611         }
2612
2613         txq->nb_tx_desc = nb_desc;
2614         txq->tx_rs_thresh = tx_rs_thresh;
2615         txq->tx_free_thresh = tx_free_thresh;
2616         txq->pthresh = tx_conf->tx_thresh.pthresh;
2617         txq->hthresh = tx_conf->tx_thresh.hthresh;
2618         txq->wthresh = tx_conf->tx_thresh.wthresh;
2619         txq->queue_id = queue_idx;
2620         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2621                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2622         txq->port_id = dev->data->port_id;
2623         txq->txq_flags = tx_conf->txq_flags;
2624         txq->offloads = tx_conf->offloads;
2625         txq->ops = &def_txq_ops;
2626         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2627 #ifdef RTE_LIBRTE_SECURITY
2628         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2629                         DEV_TX_OFFLOAD_SECURITY);
2630 #endif
2631
2632         /*
2633          * Modification to set VFTDT for virtual function if vf is detected
2634          */
2635         if (hw->mac.type == ixgbe_mac_82599_vf ||
2636             hw->mac.type == ixgbe_mac_X540_vf ||
2637             hw->mac.type == ixgbe_mac_X550_vf ||
2638             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2639             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2640                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2641         else
2642                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2643
2644         txq->tx_ring_phys_addr = tz->iova;
2645         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2646
2647         /* Allocate software ring */
2648         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2649                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2650                                 RTE_CACHE_LINE_SIZE, socket_id);
2651         if (txq->sw_ring == NULL) {
2652                 ixgbe_tx_queue_release(txq);
2653                 return -ENOMEM;
2654         }
2655         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2656                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2657
2658         /* set up vector or scalar TX function as appropriate */
2659         ixgbe_set_tx_function(dev, txq);
2660
2661         txq->ops->reset(txq);
2662
2663         dev->data->tx_queues[queue_idx] = txq;
2664
2665
2666         return 0;
2667 }
2668
2669 /**
2670  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2671  *
2672  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2673  * in the sw_rsc_ring is not set to NULL but rather points to the next
2674  * mbuf of this RSC aggregation (that has not been completed yet and still
2675  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2676  * will just free first "nb_segs" segments of the cluster explicitly by calling
2677  * an rte_pktmbuf_free_seg().
2678  *
2679  * @m scattered cluster head
2680  */
2681 static void __attribute__((cold))
2682 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2683 {
2684         uint16_t i, nb_segs = m->nb_segs;
2685         struct rte_mbuf *next_seg;
2686
2687         for (i = 0; i < nb_segs; i++) {
2688                 next_seg = m->next;
2689                 rte_pktmbuf_free_seg(m);
2690                 m = next_seg;
2691         }
2692 }
2693
2694 static void __attribute__((cold))
2695 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2696 {
2697         unsigned i;
2698
2699 #ifdef RTE_IXGBE_INC_VECTOR
2700         /* SSE Vector driver has a different way of releasing mbufs. */
2701         if (rxq->rx_using_sse) {
2702                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2703                 return;
2704         }
2705 #endif
2706
2707         if (rxq->sw_ring != NULL) {
2708                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2709                         if (rxq->sw_ring[i].mbuf != NULL) {
2710                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2711                                 rxq->sw_ring[i].mbuf = NULL;
2712                         }
2713                 }
2714                 if (rxq->rx_nb_avail) {
2715                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2716                                 struct rte_mbuf *mb;
2717
2718                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2719                                 rte_pktmbuf_free_seg(mb);
2720                         }
2721                         rxq->rx_nb_avail = 0;
2722                 }
2723         }
2724
2725         if (rxq->sw_sc_ring)
2726                 for (i = 0; i < rxq->nb_rx_desc; i++)
2727                         if (rxq->sw_sc_ring[i].fbuf) {
2728                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2729                                 rxq->sw_sc_ring[i].fbuf = NULL;
2730                         }
2731 }
2732
2733 static void __attribute__((cold))
2734 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2735 {
2736         if (rxq != NULL) {
2737                 ixgbe_rx_queue_release_mbufs(rxq);
2738                 rte_free(rxq->sw_ring);
2739                 rte_free(rxq->sw_sc_ring);
2740                 rte_free(rxq);
2741         }
2742 }
2743
2744 void __attribute__((cold))
2745 ixgbe_dev_rx_queue_release(void *rxq)
2746 {
2747         ixgbe_rx_queue_release(rxq);
2748 }
2749
2750 /*
2751  * Check if Rx Burst Bulk Alloc function can be used.
2752  * Return
2753  *        0: the preconditions are satisfied and the bulk allocation function
2754  *           can be used.
2755  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2756  *           function must be used.
2757  */
2758 static inline int __attribute__((cold))
2759 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2760 {
2761         int ret = 0;
2762
2763         /*
2764          * Make sure the following pre-conditions are satisfied:
2765          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2766          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2767          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2768          * Scattered packets are not supported.  This should be checked
2769          * outside of this function.
2770          */
2771         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2772                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2773                              "rxq->rx_free_thresh=%d, "
2774                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2775                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2776                 ret = -EINVAL;
2777         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2778                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2779                              "rxq->rx_free_thresh=%d, "
2780                              "rxq->nb_rx_desc=%d",
2781                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2782                 ret = -EINVAL;
2783         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2784                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2785                              "rxq->nb_rx_desc=%d, "
2786                              "rxq->rx_free_thresh=%d",
2787                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2788                 ret = -EINVAL;
2789         }
2790
2791         return ret;
2792 }
2793
2794 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2795 static void __attribute__((cold))
2796 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2797 {
2798         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2799         unsigned i;
2800         uint16_t len = rxq->nb_rx_desc;
2801
2802         /*
2803          * By default, the Rx queue setup function allocates enough memory for
2804          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2805          * extra memory at the end of the descriptor ring to be zero'd out.
2806          */
2807         if (adapter->rx_bulk_alloc_allowed)
2808                 /* zero out extra memory */
2809                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2810
2811         /*
2812          * Zero out HW ring memory. Zero out extra memory at the end of
2813          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2814          * reads extra memory as zeros.
2815          */
2816         for (i = 0; i < len; i++) {
2817                 rxq->rx_ring[i] = zeroed_desc;
2818         }
2819
2820         /*
2821          * initialize extra software ring entries. Space for these extra
2822          * entries is always allocated
2823          */
2824         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2825         for (i = rxq->nb_rx_desc; i < len; ++i) {
2826                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2827         }
2828
2829         rxq->rx_nb_avail = 0;
2830         rxq->rx_next_avail = 0;
2831         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2832         rxq->rx_tail = 0;
2833         rxq->nb_rx_hold = 0;
2834         rxq->pkt_first_seg = NULL;
2835         rxq->pkt_last_seg = NULL;
2836
2837 #ifdef RTE_IXGBE_INC_VECTOR
2838         rxq->rxrearm_start = 0;
2839         rxq->rxrearm_nb = 0;
2840 #endif
2841 }
2842
2843 static int
2844 ixgbe_is_vf(struct rte_eth_dev *dev)
2845 {
2846         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2847
2848         switch (hw->mac.type) {
2849         case ixgbe_mac_82599_vf:
2850         case ixgbe_mac_X540_vf:
2851         case ixgbe_mac_X550_vf:
2852         case ixgbe_mac_X550EM_x_vf:
2853         case ixgbe_mac_X550EM_a_vf:
2854                 return 1;
2855         default:
2856                 return 0;
2857         }
2858 }
2859
2860 uint64_t
2861 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2862 {
2863         uint64_t offloads = 0;
2864         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2865
2866         if (hw->mac.type != ixgbe_mac_82598EB)
2867                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2868
2869         return offloads;
2870 }
2871
2872 uint64_t
2873 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2874 {
2875         uint64_t offloads;
2876         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2877
2878         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2879                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2880                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2881                    DEV_RX_OFFLOAD_CRC_STRIP   |
2882                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2883                    DEV_RX_OFFLOAD_SCATTER;
2884
2885         if (hw->mac.type == ixgbe_mac_82598EB)
2886                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2887
2888         if (ixgbe_is_vf(dev) == 0)
2889                 offloads |= (DEV_RX_OFFLOAD_VLAN_FILTER |
2890                              DEV_RX_OFFLOAD_VLAN_EXTEND);
2891
2892         /*
2893          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2894          * mode.
2895          */
2896         if ((hw->mac.type == ixgbe_mac_82599EB ||
2897              hw->mac.type == ixgbe_mac_X540) &&
2898             !RTE_ETH_DEV_SRIOV(dev).active)
2899                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2900
2901         if (hw->mac.type == ixgbe_mac_82599EB ||
2902             hw->mac.type == ixgbe_mac_X540)
2903                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2904
2905         if (hw->mac.type == ixgbe_mac_X550 ||
2906             hw->mac.type == ixgbe_mac_X550EM_x ||
2907             hw->mac.type == ixgbe_mac_X550EM_a)
2908                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2909
2910 #ifdef RTE_LIBRTE_SECURITY
2911         if (dev->security_ctx)
2912                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2913 #endif
2914
2915         return offloads;
2916 }
2917
2918 static int
2919 ixgbe_check_rx_queue_offloads(struct rte_eth_dev *dev, uint64_t requested)
2920 {
2921         uint64_t port_offloads = dev->data->dev_conf.rxmode.offloads;
2922         uint64_t queue_supported = ixgbe_get_rx_queue_offloads(dev);
2923         uint64_t port_supported = ixgbe_get_rx_port_offloads(dev);
2924
2925         if ((requested & (queue_supported | port_supported)) != requested)
2926                 return 0;
2927
2928         if ((port_offloads ^ requested) & port_supported)
2929                 return 0;
2930
2931         return 1;
2932 }
2933
2934 int __attribute__((cold))
2935 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2936                          uint16_t queue_idx,
2937                          uint16_t nb_desc,
2938                          unsigned int socket_id,
2939                          const struct rte_eth_rxconf *rx_conf,
2940                          struct rte_mempool *mp)
2941 {
2942         const struct rte_memzone *rz;
2943         struct ixgbe_rx_queue *rxq;
2944         struct ixgbe_hw     *hw;
2945         uint16_t len;
2946         struct ixgbe_adapter *adapter =
2947                 (struct ixgbe_adapter *)dev->data->dev_private;
2948
2949         PMD_INIT_FUNC_TRACE();
2950         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2951
2952         if (!ixgbe_check_rx_queue_offloads(dev, rx_conf->offloads)) {
2953                 PMD_INIT_LOG(ERR, "%p: Rx queue offloads 0x%" PRIx64
2954                         " don't match port offloads 0x%" PRIx64
2955                         " or supported port offloads 0x%" PRIx64
2956                         " or supported queue offloads 0x%" PRIx64,
2957                         (void *)dev, rx_conf->offloads,
2958                         dev->data->dev_conf.rxmode.offloads,
2959                         ixgbe_get_rx_port_offloads(dev),
2960                         ixgbe_get_rx_queue_offloads(dev));
2961                 return -ENOTSUP;
2962         }
2963
2964         /*
2965          * Validate number of receive descriptors.
2966          * It must not exceed hardware maximum, and must be multiple
2967          * of IXGBE_ALIGN.
2968          */
2969         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2970                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2971                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2972                 return -EINVAL;
2973         }
2974
2975         /* Free memory prior to re-allocation if needed... */
2976         if (dev->data->rx_queues[queue_idx] != NULL) {
2977                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2978                 dev->data->rx_queues[queue_idx] = NULL;
2979         }
2980
2981         /* First allocate the rx queue data structure */
2982         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2983                                  RTE_CACHE_LINE_SIZE, socket_id);
2984         if (rxq == NULL)
2985                 return -ENOMEM;
2986         rxq->mb_pool = mp;
2987         rxq->nb_rx_desc = nb_desc;
2988         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2989         rxq->queue_id = queue_idx;
2990         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2991                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2992         rxq->port_id = dev->data->port_id;
2993         rxq->crc_len = (uint8_t)((dev->data->dev_conf.rxmode.offloads &
2994                 DEV_RX_OFFLOAD_CRC_STRIP) ? 0 : ETHER_CRC_LEN);
2995         rxq->drop_en = rx_conf->rx_drop_en;
2996         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2997         rxq->offloads = rx_conf->offloads;
2998
2999         /*
3000          * The packet type in RX descriptor is different for different NICs.
3001          * Some bits are used for x550 but reserved for other NICS.
3002          * So set different masks for different NICs.
3003          */
3004         if (hw->mac.type == ixgbe_mac_X550 ||
3005             hw->mac.type == ixgbe_mac_X550EM_x ||
3006             hw->mac.type == ixgbe_mac_X550EM_a ||
3007             hw->mac.type == ixgbe_mac_X550_vf ||
3008             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3009             hw->mac.type == ixgbe_mac_X550EM_a_vf)
3010                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
3011         else
3012                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
3013
3014         /*
3015          * Allocate RX ring hardware descriptors. A memzone large enough to
3016          * handle the maximum ring size is allocated in order to allow for
3017          * resizing in later calls to the queue setup function.
3018          */
3019         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
3020                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
3021         if (rz == NULL) {
3022                 ixgbe_rx_queue_release(rxq);
3023                 return -ENOMEM;
3024         }
3025
3026         /*
3027          * Zero init all the descriptors in the ring.
3028          */
3029         memset(rz->addr, 0, RX_RING_SZ);
3030
3031         /*
3032          * Modified to setup VFRDT for Virtual Function
3033          */
3034         if (hw->mac.type == ixgbe_mac_82599_vf ||
3035             hw->mac.type == ixgbe_mac_X540_vf ||
3036             hw->mac.type == ixgbe_mac_X550_vf ||
3037             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3038             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3039                 rxq->rdt_reg_addr =
3040                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3041                 rxq->rdh_reg_addr =
3042                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3043         } else {
3044                 rxq->rdt_reg_addr =
3045                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3046                 rxq->rdh_reg_addr =
3047                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3048         }
3049
3050         rxq->rx_ring_phys_addr = rz->iova;
3051         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3052
3053         /*
3054          * Certain constraints must be met in order to use the bulk buffer
3055          * allocation Rx burst function. If any of Rx queues doesn't meet them
3056          * the feature should be disabled for the whole port.
3057          */
3058         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3059                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3060                                     "preconditions - canceling the feature for "
3061                                     "the whole port[%d]",
3062                              rxq->queue_id, rxq->port_id);
3063                 adapter->rx_bulk_alloc_allowed = false;
3064         }
3065
3066         /*
3067          * Allocate software ring. Allow for space at the end of the
3068          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3069          * function does not access an invalid memory region.
3070          */
3071         len = nb_desc;
3072         if (adapter->rx_bulk_alloc_allowed)
3073                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3074
3075         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3076                                           sizeof(struct ixgbe_rx_entry) * len,
3077                                           RTE_CACHE_LINE_SIZE, socket_id);
3078         if (!rxq->sw_ring) {
3079                 ixgbe_rx_queue_release(rxq);
3080                 return -ENOMEM;
3081         }
3082
3083         /*
3084          * Always allocate even if it's not going to be needed in order to
3085          * simplify the code.
3086          *
3087          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3088          * be requested in ixgbe_dev_rx_init(), which is called later from
3089          * dev_start() flow.
3090          */
3091         rxq->sw_sc_ring =
3092                 rte_zmalloc_socket("rxq->sw_sc_ring",
3093                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3094                                    RTE_CACHE_LINE_SIZE, socket_id);
3095         if (!rxq->sw_sc_ring) {
3096                 ixgbe_rx_queue_release(rxq);
3097                 return -ENOMEM;
3098         }
3099
3100         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3101                             "dma_addr=0x%"PRIx64,
3102                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3103                      rxq->rx_ring_phys_addr);
3104
3105         if (!rte_is_power_of_2(nb_desc)) {
3106                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3107                                     "preconditions - canceling the feature for "
3108                                     "the whole port[%d]",
3109                              rxq->queue_id, rxq->port_id);
3110                 adapter->rx_vec_allowed = false;
3111         } else
3112                 ixgbe_rxq_vec_setup(rxq);
3113
3114         dev->data->rx_queues[queue_idx] = rxq;
3115
3116         ixgbe_reset_rx_queue(adapter, rxq);
3117
3118         return 0;
3119 }
3120
3121 uint32_t
3122 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3123 {
3124 #define IXGBE_RXQ_SCAN_INTERVAL 4
3125         volatile union ixgbe_adv_rx_desc *rxdp;
3126         struct ixgbe_rx_queue *rxq;
3127         uint32_t desc = 0;
3128
3129         rxq = dev->data->rx_queues[rx_queue_id];
3130         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3131
3132         while ((desc < rxq->nb_rx_desc) &&
3133                 (rxdp->wb.upper.status_error &
3134                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3135                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3136                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3137                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3138                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3139                                 desc - rxq->nb_rx_desc]);
3140         }
3141
3142         return desc;
3143 }
3144
3145 int
3146 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3147 {
3148         volatile union ixgbe_adv_rx_desc *rxdp;
3149         struct ixgbe_rx_queue *rxq = rx_queue;
3150         uint32_t desc;
3151
3152         if (unlikely(offset >= rxq->nb_rx_desc))
3153                 return 0;
3154         desc = rxq->rx_tail + offset;
3155         if (desc >= rxq->nb_rx_desc)
3156                 desc -= rxq->nb_rx_desc;
3157
3158         rxdp = &rxq->rx_ring[desc];
3159         return !!(rxdp->wb.upper.status_error &
3160                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3161 }
3162
3163 int
3164 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3165 {
3166         struct ixgbe_rx_queue *rxq = rx_queue;
3167         volatile uint32_t *status;
3168         uint32_t nb_hold, desc;
3169
3170         if (unlikely(offset >= rxq->nb_rx_desc))
3171                 return -EINVAL;
3172
3173 #ifdef RTE_IXGBE_INC_VECTOR
3174         if (rxq->rx_using_sse)
3175                 nb_hold = rxq->rxrearm_nb;
3176         else
3177 #endif
3178                 nb_hold = rxq->nb_rx_hold;
3179         if (offset >= rxq->nb_rx_desc - nb_hold)
3180                 return RTE_ETH_RX_DESC_UNAVAIL;
3181
3182         desc = rxq->rx_tail + offset;
3183         if (desc >= rxq->nb_rx_desc)
3184                 desc -= rxq->nb_rx_desc;
3185
3186         status = &rxq->rx_ring[desc].wb.upper.status_error;
3187         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3188                 return RTE_ETH_RX_DESC_DONE;
3189
3190         return RTE_ETH_RX_DESC_AVAIL;
3191 }
3192
3193 int
3194 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3195 {
3196         struct ixgbe_tx_queue *txq = tx_queue;
3197         volatile uint32_t *status;
3198         uint32_t desc;
3199
3200         if (unlikely(offset >= txq->nb_tx_desc))
3201                 return -EINVAL;
3202
3203         desc = txq->tx_tail + offset;
3204         /* go to next desc that has the RS bit */
3205         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3206                 txq->tx_rs_thresh;
3207         if (desc >= txq->nb_tx_desc) {
3208                 desc -= txq->nb_tx_desc;
3209                 if (desc >= txq->nb_tx_desc)
3210                         desc -= txq->nb_tx_desc;
3211         }
3212
3213         status = &txq->tx_ring[desc].wb.status;
3214         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3215                 return RTE_ETH_TX_DESC_DONE;
3216
3217         return RTE_ETH_TX_DESC_FULL;
3218 }
3219
3220 void __attribute__((cold))
3221 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3222 {
3223         unsigned i;
3224         struct ixgbe_adapter *adapter =
3225                 (struct ixgbe_adapter *)dev->data->dev_private;
3226
3227         PMD_INIT_FUNC_TRACE();
3228
3229         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3230                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3231
3232                 if (txq != NULL) {
3233                         txq->ops->release_mbufs(txq);
3234                         txq->ops->reset(txq);
3235                 }
3236         }
3237
3238         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3239                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3240
3241                 if (rxq != NULL) {
3242                         ixgbe_rx_queue_release_mbufs(rxq);
3243                         ixgbe_reset_rx_queue(adapter, rxq);
3244                 }
3245         }
3246 }
3247
3248 void
3249 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3250 {
3251         unsigned i;
3252
3253         PMD_INIT_FUNC_TRACE();
3254
3255         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3256                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3257                 dev->data->rx_queues[i] = NULL;
3258         }
3259         dev->data->nb_rx_queues = 0;
3260
3261         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3262                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3263                 dev->data->tx_queues[i] = NULL;
3264         }
3265         dev->data->nb_tx_queues = 0;
3266 }
3267
3268 /*********************************************************************
3269  *
3270  *  Device RX/TX init functions
3271  *
3272  **********************************************************************/
3273
3274 /**
3275  * Receive Side Scaling (RSS)
3276  * See section 7.1.2.8 in the following document:
3277  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3278  *
3279  * Principles:
3280  * The source and destination IP addresses of the IP header and the source
3281  * and destination ports of TCP/UDP headers, if any, of received packets are
3282  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3283  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3284  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3285  * RSS output index which is used as the RX queue index where to store the
3286  * received packets.
3287  * The following output is supplied in the RX write-back descriptor:
3288  *     - 32-bit result of the Microsoft RSS hash function,
3289  *     - 4-bit RSS type field.
3290  */
3291
3292 /*
3293  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3294  * Used as the default key.
3295  */
3296 static uint8_t rss_intel_key[40] = {
3297         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3298         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3299         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3300         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3301         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3302 };
3303
3304 static void
3305 ixgbe_rss_disable(struct rte_eth_dev *dev)
3306 {
3307         struct ixgbe_hw *hw;
3308         uint32_t mrqc;
3309         uint32_t mrqc_reg;
3310
3311         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3312         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3313         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3314         mrqc &= ~IXGBE_MRQC_RSSEN;
3315         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3316 }
3317
3318 static void
3319 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3320 {
3321         uint8_t  *hash_key;
3322         uint32_t mrqc;
3323         uint32_t rss_key;
3324         uint64_t rss_hf;
3325         uint16_t i;
3326         uint32_t mrqc_reg;
3327         uint32_t rssrk_reg;
3328
3329         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3330         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3331
3332         hash_key = rss_conf->rss_key;
3333         if (hash_key != NULL) {
3334                 /* Fill in RSS hash key */
3335                 for (i = 0; i < 10; i++) {
3336                         rss_key  = hash_key[(i * 4)];
3337                         rss_key |= hash_key[(i * 4) + 1] << 8;
3338                         rss_key |= hash_key[(i * 4) + 2] << 16;
3339                         rss_key |= hash_key[(i * 4) + 3] << 24;
3340                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3341                 }
3342         }
3343
3344         /* Set configured hashing protocols in MRQC register */
3345         rss_hf = rss_conf->rss_hf;
3346         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3347         if (rss_hf & ETH_RSS_IPV4)
3348                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3349         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3350                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3351         if (rss_hf & ETH_RSS_IPV6)
3352                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3353         if (rss_hf & ETH_RSS_IPV6_EX)
3354                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3355         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3356                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3357         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3358                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3359         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3360                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3361         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3362                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3363         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3364                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3365         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3366 }
3367
3368 int
3369 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3370                           struct rte_eth_rss_conf *rss_conf)
3371 {
3372         struct ixgbe_hw *hw;
3373         uint32_t mrqc;
3374         uint64_t rss_hf;
3375         uint32_t mrqc_reg;
3376
3377         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3378
3379         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3380                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3381                         "NIC.");
3382                 return -ENOTSUP;
3383         }
3384         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3385
3386         /*
3387          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3388          *     "RSS enabling cannot be done dynamically while it must be
3389          *      preceded by a software reset"
3390          * Before changing anything, first check that the update RSS operation
3391          * does not attempt to disable RSS, if RSS was enabled at
3392          * initialization time, or does not attempt to enable RSS, if RSS was
3393          * disabled at initialization time.
3394          */
3395         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3396         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3397         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3398                 if (rss_hf != 0) /* Enable RSS */
3399                         return -(EINVAL);
3400                 return 0; /* Nothing to do */
3401         }
3402         /* RSS enabled */
3403         if (rss_hf == 0) /* Disable RSS */
3404                 return -(EINVAL);
3405         ixgbe_hw_rss_hash_set(hw, rss_conf);
3406         return 0;
3407 }
3408
3409 int
3410 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3411                             struct rte_eth_rss_conf *rss_conf)
3412 {
3413         struct ixgbe_hw *hw;
3414         uint8_t *hash_key;
3415         uint32_t mrqc;
3416         uint32_t rss_key;
3417         uint64_t rss_hf;
3418         uint16_t i;
3419         uint32_t mrqc_reg;
3420         uint32_t rssrk_reg;
3421
3422         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3423         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3424         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3425         hash_key = rss_conf->rss_key;
3426         if (hash_key != NULL) {
3427                 /* Return RSS hash key */
3428                 for (i = 0; i < 10; i++) {
3429                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3430                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3431                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3432                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3433                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3434                 }
3435         }
3436
3437         /* Get RSS functions configured in MRQC register */
3438         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3439         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3440                 rss_conf->rss_hf = 0;
3441                 return 0;
3442         }
3443         rss_hf = 0;
3444         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3445                 rss_hf |= ETH_RSS_IPV4;
3446         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3447                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3448         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3449                 rss_hf |= ETH_RSS_IPV6;
3450         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3451                 rss_hf |= ETH_RSS_IPV6_EX;
3452         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3453                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3454         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3455                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3456         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3457                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3458         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3459                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3460         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3461                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3462         rss_conf->rss_hf = rss_hf;
3463         return 0;
3464 }
3465
3466 static void
3467 ixgbe_rss_configure(struct rte_eth_dev *dev)
3468 {
3469         struct rte_eth_rss_conf rss_conf;
3470         struct ixgbe_hw *hw;
3471         uint32_t reta;
3472         uint16_t i;
3473         uint16_t j;
3474         uint16_t sp_reta_size;
3475         uint32_t reta_reg;
3476
3477         PMD_INIT_FUNC_TRACE();
3478         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3479
3480         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3481
3482         /*
3483          * Fill in redirection table
3484          * The byte-swap is needed because NIC registers are in
3485          * little-endian order.
3486          */
3487         reta = 0;
3488         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3489                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3490
3491                 if (j == dev->data->nb_rx_queues)
3492                         j = 0;
3493                 reta = (reta << 8) | j;
3494                 if ((i & 3) == 3)
3495                         IXGBE_WRITE_REG(hw, reta_reg,
3496                                         rte_bswap32(reta));
3497         }
3498
3499         /*
3500          * Configure the RSS key and the RSS protocols used to compute
3501          * the RSS hash of input packets.
3502          */
3503         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3504         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3505                 ixgbe_rss_disable(dev);
3506                 return;
3507         }
3508         if (rss_conf.rss_key == NULL)
3509                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3510         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3511 }
3512
3513 #define NUM_VFTA_REGISTERS 128
3514 #define NIC_RX_BUFFER_SIZE 0x200
3515 #define X550_RX_BUFFER_SIZE 0x180
3516
3517 static void
3518 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3519 {
3520         struct rte_eth_vmdq_dcb_conf *cfg;
3521         struct ixgbe_hw *hw;
3522         enum rte_eth_nb_pools num_pools;
3523         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3524         uint16_t pbsize;
3525         uint8_t nb_tcs; /* number of traffic classes */
3526         int i;
3527
3528         PMD_INIT_FUNC_TRACE();
3529         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3530         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3531         num_pools = cfg->nb_queue_pools;
3532         /* Check we have a valid number of pools */
3533         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3534                 ixgbe_rss_disable(dev);
3535                 return;
3536         }
3537         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3538         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3539
3540         /*
3541          * RXPBSIZE
3542          * split rx buffer up into sections, each for 1 traffic class
3543          */
3544         switch (hw->mac.type) {
3545         case ixgbe_mac_X550:
3546         case ixgbe_mac_X550EM_x:
3547         case ixgbe_mac_X550EM_a:
3548                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3549                 break;
3550         default:
3551                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3552                 break;
3553         }
3554         for (i = 0; i < nb_tcs; i++) {
3555                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3556
3557                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3558                 /* clear 10 bits. */
3559                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3560                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3561         }
3562         /* zero alloc all unused TCs */
3563         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3564                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3565
3566                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3567                 /* clear 10 bits. */
3568                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3569         }
3570
3571         /* MRQC: enable vmdq and dcb */
3572         mrqc = (num_pools == ETH_16_POOLS) ?
3573                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3574         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3575
3576         /* PFVTCTL: turn on virtualisation and set the default pool */
3577         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3578         if (cfg->enable_default_pool) {
3579                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3580         } else {
3581                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3582         }
3583
3584         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3585
3586         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3587         queue_mapping = 0;
3588         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3589                 /*
3590                  * mapping is done with 3 bits per priority,
3591                  * so shift by i*3 each time
3592                  */
3593                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3594
3595         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3596
3597         /* RTRPCS: DCB related */
3598         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3599
3600         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3601         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3602         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3603         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3604
3605         /* VFTA - enable all vlan filters */
3606         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3607                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3608         }
3609
3610         /* VFRE: pool enabling for receive - 16 or 32 */
3611         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3612                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3613
3614         /*
3615          * MPSAR - allow pools to read specific mac addresses
3616          * In this case, all pools should be able to read from mac addr 0
3617          */
3618         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3619         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3620
3621         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3622         for (i = 0; i < cfg->nb_pool_maps; i++) {
3623                 /* set vlan id in VF register and set the valid bit */
3624                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3625                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3626                 /*
3627                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3628                  * pools, we only need to use the first half of the register
3629                  * i.e. bits 0-31
3630                  */
3631                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3632         }
3633 }
3634
3635 /**
3636  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3637  * @dev: pointer to eth_dev structure
3638  * @dcb_config: pointer to ixgbe_dcb_config structure
3639  */
3640 static void
3641 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3642                        struct ixgbe_dcb_config *dcb_config)
3643 {
3644         uint32_t reg;
3645         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3646
3647         PMD_INIT_FUNC_TRACE();
3648         if (hw->mac.type != ixgbe_mac_82598EB) {
3649                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3650                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3651                 reg |= IXGBE_RTTDCS_ARBDIS;
3652                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3653
3654                 /* Enable DCB for Tx with 8 TCs */
3655                 if (dcb_config->num_tcs.pg_tcs == 8) {
3656                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3657                 } else {
3658                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3659                 }
3660                 if (dcb_config->vt_mode)
3661                         reg |= IXGBE_MTQC_VT_ENA;
3662                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3663
3664                 /* Enable the Tx desc arbiter */
3665                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3666                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3667                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3668
3669                 /* Enable Security TX Buffer IFG for DCB */
3670                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3671                 reg |= IXGBE_SECTX_DCB;
3672                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3673         }
3674 }
3675
3676 /**
3677  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3678  * @dev: pointer to rte_eth_dev structure
3679  * @dcb_config: pointer to ixgbe_dcb_config structure
3680  */
3681 static void
3682 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3683                         struct ixgbe_dcb_config *dcb_config)
3684 {
3685         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3686                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3687         struct ixgbe_hw *hw =
3688                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3689
3690         PMD_INIT_FUNC_TRACE();
3691         if (hw->mac.type != ixgbe_mac_82598EB)
3692                 /*PF VF Transmit Enable*/
3693                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3694                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3695
3696         /*Configure general DCB TX parameters*/
3697         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3698 }
3699
3700 static void
3701 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3702                         struct ixgbe_dcb_config *dcb_config)
3703 {
3704         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3705                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3706         struct ixgbe_dcb_tc_config *tc;
3707         uint8_t i, j;
3708
3709         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3710         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3711                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3712                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3713         } else {
3714                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3715                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3716         }
3717
3718         /* Initialize User Priority to Traffic Class mapping */
3719         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3720                 tc = &dcb_config->tc_config[j];
3721                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3722         }
3723
3724         /* User Priority to Traffic Class mapping */
3725         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3726                 j = vmdq_rx_conf->dcb_tc[i];
3727                 tc = &dcb_config->tc_config[j];
3728                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3729                                                 (uint8_t)(1 << i);
3730         }
3731 }
3732
3733 static void
3734 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3735                         struct ixgbe_dcb_config *dcb_config)
3736 {
3737         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3738                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3739         struct ixgbe_dcb_tc_config *tc;
3740         uint8_t i, j;
3741
3742         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3743         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3744                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3745                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3746         } else {
3747                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3748                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3749         }
3750
3751         /* Initialize User Priority to Traffic Class mapping */
3752         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3753                 tc = &dcb_config->tc_config[j];
3754                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3755         }
3756
3757         /* User Priority to Traffic Class mapping */
3758         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3759                 j = vmdq_tx_conf->dcb_tc[i];
3760                 tc = &dcb_config->tc_config[j];
3761                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3762                                                 (uint8_t)(1 << i);
3763         }
3764 }
3765
3766 static void
3767 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3768                 struct ixgbe_dcb_config *dcb_config)
3769 {
3770         struct rte_eth_dcb_rx_conf *rx_conf =
3771                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3772         struct ixgbe_dcb_tc_config *tc;
3773         uint8_t i, j;
3774
3775         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3776         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3777
3778         /* Initialize User Priority to Traffic Class mapping */
3779         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3780                 tc = &dcb_config->tc_config[j];
3781                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3782         }
3783
3784         /* User Priority to Traffic Class mapping */
3785         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3786                 j = rx_conf->dcb_tc[i];
3787                 tc = &dcb_config->tc_config[j];
3788                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3789                                                 (uint8_t)(1 << i);
3790         }
3791 }
3792
3793 static void
3794 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3795                 struct ixgbe_dcb_config *dcb_config)
3796 {
3797         struct rte_eth_dcb_tx_conf *tx_conf =
3798                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3799         struct ixgbe_dcb_tc_config *tc;
3800         uint8_t i, j;
3801
3802         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3803         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3804
3805         /* Initialize User Priority to Traffic Class mapping */
3806         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3807                 tc = &dcb_config->tc_config[j];
3808                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3809         }
3810
3811         /* User Priority to Traffic Class mapping */
3812         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3813                 j = tx_conf->dcb_tc[i];
3814                 tc = &dcb_config->tc_config[j];
3815                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3816                                                 (uint8_t)(1 << i);
3817         }
3818 }
3819
3820 /**
3821  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3822  * @dev: pointer to eth_dev structure
3823  * @dcb_config: pointer to ixgbe_dcb_config structure
3824  */
3825 static void
3826 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3827                        struct ixgbe_dcb_config *dcb_config)
3828 {
3829         uint32_t reg;
3830         uint32_t vlanctrl;
3831         uint8_t i;
3832         uint32_t q;
3833         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3834
3835         PMD_INIT_FUNC_TRACE();
3836         /*
3837          * Disable the arbiter before changing parameters
3838          * (always enable recycle mode; WSP)
3839          */
3840         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3841         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3842
3843         if (hw->mac.type != ixgbe_mac_82598EB) {
3844                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3845                 if (dcb_config->num_tcs.pg_tcs == 4) {
3846                         if (dcb_config->vt_mode)
3847                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3848                                         IXGBE_MRQC_VMDQRT4TCEN;
3849                         else {
3850                                 /* no matter the mode is DCB or DCB_RSS, just
3851                                  * set the MRQE to RSSXTCEN. RSS is controlled
3852                                  * by RSS_FIELD
3853                                  */
3854                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3855                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3856                                         IXGBE_MRQC_RTRSS4TCEN;
3857                         }
3858                 }
3859                 if (dcb_config->num_tcs.pg_tcs == 8) {
3860                         if (dcb_config->vt_mode)
3861                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3862                                         IXGBE_MRQC_VMDQRT8TCEN;
3863                         else {
3864                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3865                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3866                                         IXGBE_MRQC_RTRSS8TCEN;
3867                         }
3868                 }
3869
3870                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3871
3872                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3873                         /* Disable drop for all queues in VMDQ mode*/
3874                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3875                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3876                                                 (IXGBE_QDE_WRITE |
3877                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3878                 } else {
3879                         /* Enable drop for all queues in SRIOV mode */
3880                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3881                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3882                                                 (IXGBE_QDE_WRITE |
3883                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3884                                                  IXGBE_QDE_ENABLE));
3885                 }
3886         }
3887
3888         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3889         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3890         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3891         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3892
3893         /* VFTA - enable all vlan filters */
3894         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3895                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3896         }
3897
3898         /*
3899          * Configure Rx packet plane (recycle mode; WSP) and
3900          * enable arbiter
3901          */
3902         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3903         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3904 }
3905
3906 static void
3907 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3908                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3909 {
3910         switch (hw->mac.type) {
3911         case ixgbe_mac_82598EB:
3912                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3913                 break;
3914         case ixgbe_mac_82599EB:
3915         case ixgbe_mac_X540:
3916         case ixgbe_mac_X550:
3917         case ixgbe_mac_X550EM_x:
3918         case ixgbe_mac_X550EM_a:
3919                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3920                                                   tsa, map);
3921                 break;
3922         default:
3923                 break;
3924         }
3925 }
3926
3927 static void
3928 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3929                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3930 {
3931         switch (hw->mac.type) {
3932         case ixgbe_mac_82598EB:
3933                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3934                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3935                 break;
3936         case ixgbe_mac_82599EB:
3937         case ixgbe_mac_X540:
3938         case ixgbe_mac_X550:
3939         case ixgbe_mac_X550EM_x:
3940         case ixgbe_mac_X550EM_a:
3941                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3942                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3943                 break;
3944         default:
3945                 break;
3946         }
3947 }
3948
3949 #define DCB_RX_CONFIG  1
3950 #define DCB_TX_CONFIG  1
3951 #define DCB_TX_PB      1024
3952 /**
3953  * ixgbe_dcb_hw_configure - Enable DCB and configure
3954  * general DCB in VT mode and non-VT mode parameters
3955  * @dev: pointer to rte_eth_dev structure
3956  * @dcb_config: pointer to ixgbe_dcb_config structure
3957  */
3958 static int
3959 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3960                         struct ixgbe_dcb_config *dcb_config)
3961 {
3962         int     ret = 0;
3963         uint8_t i, pfc_en, nb_tcs;
3964         uint16_t pbsize, rx_buffer_size;
3965         uint8_t config_dcb_rx = 0;
3966         uint8_t config_dcb_tx = 0;
3967         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3968         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3969         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3970         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3971         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3972         struct ixgbe_dcb_tc_config *tc;
3973         uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
3974         struct ixgbe_hw *hw =
3975                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3976         struct ixgbe_bw_conf *bw_conf =
3977                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3978
3979         switch (dev->data->dev_conf.rxmode.mq_mode) {
3980         case ETH_MQ_RX_VMDQ_DCB:
3981                 dcb_config->vt_mode = true;
3982                 if (hw->mac.type != ixgbe_mac_82598EB) {
3983                         config_dcb_rx = DCB_RX_CONFIG;
3984                         /*
3985                          *get dcb and VT rx configuration parameters
3986                          *from rte_eth_conf
3987                          */
3988                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
3989                         /*Configure general VMDQ and DCB RX parameters*/
3990                         ixgbe_vmdq_dcb_configure(dev);
3991                 }
3992                 break;
3993         case ETH_MQ_RX_DCB:
3994         case ETH_MQ_RX_DCB_RSS:
3995                 dcb_config->vt_mode = false;
3996                 config_dcb_rx = DCB_RX_CONFIG;
3997                 /* Get dcb TX configuration parameters from rte_eth_conf */
3998                 ixgbe_dcb_rx_config(dev, dcb_config);
3999                 /*Configure general DCB RX parameters*/
4000                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4001                 break;
4002         default:
4003                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4004                 break;
4005         }
4006         switch (dev->data->dev_conf.txmode.mq_mode) {
4007         case ETH_MQ_TX_VMDQ_DCB:
4008                 dcb_config->vt_mode = true;
4009                 config_dcb_tx = DCB_TX_CONFIG;
4010                 /* get DCB and VT TX configuration parameters
4011                  * from rte_eth_conf
4012                  */
4013                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4014                 /*Configure general VMDQ and DCB TX parameters*/
4015                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4016                 break;
4017
4018         case ETH_MQ_TX_DCB:
4019                 dcb_config->vt_mode = false;
4020                 config_dcb_tx = DCB_TX_CONFIG;
4021                 /*get DCB TX configuration parameters from rte_eth_conf*/
4022                 ixgbe_dcb_tx_config(dev, dcb_config);
4023                 /*Configure general DCB TX parameters*/
4024                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4025                 break;
4026         default:
4027                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4028                 break;
4029         }
4030
4031         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4032         /* Unpack map */
4033         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4034         if (nb_tcs == ETH_4_TCS) {
4035                 /* Avoid un-configured priority mapping to TC0 */
4036                 uint8_t j = 4;
4037                 uint8_t mask = 0xFF;
4038
4039                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4040                         mask = (uint8_t)(mask & (~(1 << map[i])));
4041                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4042                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
4043                                 map[j++] = i;
4044                         mask >>= 1;
4045                 }
4046                 /* Re-configure 4 TCs BW */
4047                 for (i = 0; i < nb_tcs; i++) {
4048                         tc = &dcb_config->tc_config[i];
4049                         if (bw_conf->tc_num != nb_tcs)
4050                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4051                                         (uint8_t)(100 / nb_tcs);
4052                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4053                                                 (uint8_t)(100 / nb_tcs);
4054                 }
4055                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4056                         tc = &dcb_config->tc_config[i];
4057                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4058                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4059                 }
4060         } else {
4061                 /* Re-configure 8 TCs BW */
4062                 for (i = 0; i < nb_tcs; i++) {
4063                         tc = &dcb_config->tc_config[i];
4064                         if (bw_conf->tc_num != nb_tcs)
4065                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4066                                         (uint8_t)(100 / nb_tcs + (i & 1));
4067                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4068                                 (uint8_t)(100 / nb_tcs + (i & 1));
4069                 }
4070         }
4071
4072         switch (hw->mac.type) {
4073         case ixgbe_mac_X550:
4074         case ixgbe_mac_X550EM_x:
4075         case ixgbe_mac_X550EM_a:
4076                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4077                 break;
4078         default:
4079                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4080                 break;
4081         }
4082
4083         if (config_dcb_rx) {
4084                 /* Set RX buffer size */
4085                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4086                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4087
4088                 for (i = 0; i < nb_tcs; i++) {
4089                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4090                 }
4091                 /* zero alloc all unused TCs */
4092                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4093                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4094                 }
4095         }
4096         if (config_dcb_tx) {
4097                 /* Only support an equally distributed
4098                  *  Tx packet buffer strategy.
4099                  */
4100                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4101                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4102
4103                 for (i = 0; i < nb_tcs; i++) {
4104                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4105                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4106                 }
4107                 /* Clear unused TCs, if any, to zero buffer size*/
4108                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4109                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4110                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4111                 }
4112         }
4113
4114         /*Calculates traffic class credits*/
4115         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4116                                 IXGBE_DCB_TX_CONFIG);
4117         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4118                                 IXGBE_DCB_RX_CONFIG);
4119
4120         if (config_dcb_rx) {
4121                 /* Unpack CEE standard containers */
4122                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4123                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4124                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4125                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4126                 /* Configure PG(ETS) RX */
4127                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4128         }
4129
4130         if (config_dcb_tx) {
4131                 /* Unpack CEE standard containers */
4132                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4133                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4134                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4135                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4136                 /* Configure PG(ETS) TX */
4137                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4138         }
4139
4140         /*Configure queue statistics registers*/
4141         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4142
4143         /* Check if the PFC is supported */
4144         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4145                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4146                 for (i = 0; i < nb_tcs; i++) {
4147                         /*
4148                         * If the TC count is 8,and the default high_water is 48,
4149                         * the low_water is 16 as default.
4150                         */
4151                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4152                         hw->fc.low_water[i] = pbsize / 4;
4153                         /* Enable pfc for this TC */
4154                         tc = &dcb_config->tc_config[i];
4155                         tc->pfc = ixgbe_dcb_pfc_enabled;
4156                 }
4157                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4158                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4159                         pfc_en &= 0x0F;
4160                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4161         }
4162
4163         return ret;
4164 }
4165
4166 /**
4167  * ixgbe_configure_dcb - Configure DCB  Hardware
4168  * @dev: pointer to rte_eth_dev
4169  */
4170 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4171 {
4172         struct ixgbe_dcb_config *dcb_cfg =
4173                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4174         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4175
4176         PMD_INIT_FUNC_TRACE();
4177
4178         /* check support mq_mode for DCB */
4179         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4180             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4181             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4182                 return;
4183
4184         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4185                 return;
4186
4187         /** Configure DCB hardware **/
4188         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4189 }
4190
4191 /*
4192  * VMDq only support for 10 GbE NIC.
4193  */
4194 static void
4195 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4196 {
4197         struct rte_eth_vmdq_rx_conf *cfg;
4198         struct ixgbe_hw *hw;
4199         enum rte_eth_nb_pools num_pools;
4200         uint32_t mrqc, vt_ctl, vlanctrl;
4201         uint32_t vmolr = 0;
4202         int i;
4203
4204         PMD_INIT_FUNC_TRACE();
4205         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4206         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4207         num_pools = cfg->nb_queue_pools;
4208
4209         ixgbe_rss_disable(dev);
4210
4211         /* MRQC: enable vmdq */
4212         mrqc = IXGBE_MRQC_VMDQEN;
4213         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4214
4215         /* PFVTCTL: turn on virtualisation and set the default pool */
4216         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4217         if (cfg->enable_default_pool)
4218                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4219         else
4220                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4221
4222         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4223
4224         for (i = 0; i < (int)num_pools; i++) {
4225                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4226                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4227         }
4228
4229         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4230         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4231         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4232         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4233
4234         /* VFTA - enable all vlan filters */
4235         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4236                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4237
4238         /* VFRE: pool enabling for receive - 64 */
4239         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4240         if (num_pools == ETH_64_POOLS)
4241                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4242
4243         /*
4244          * MPSAR - allow pools to read specific mac addresses
4245          * In this case, all pools should be able to read from mac addr 0
4246          */
4247         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4248         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4249
4250         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4251         for (i = 0; i < cfg->nb_pool_maps; i++) {
4252                 /* set vlan id in VF register and set the valid bit */
4253                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4254                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4255                 /*
4256                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4257                  * pools, we only need to use the first half of the register
4258                  * i.e. bits 0-31
4259                  */
4260                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4261                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4262                                         (cfg->pool_map[i].pools & UINT32_MAX));
4263                 else
4264                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4265                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4266
4267         }
4268
4269         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4270         if (cfg->enable_loop_back) {
4271                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4272                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4273                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4274         }
4275
4276         IXGBE_WRITE_FLUSH(hw);
4277 }
4278
4279 /*
4280  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4281  * @hw: pointer to hardware structure
4282  */
4283 static void
4284 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4285 {
4286         uint32_t reg;
4287         uint32_t q;
4288
4289         PMD_INIT_FUNC_TRACE();
4290         /*PF VF Transmit Enable*/
4291         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4292         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4293
4294         /* Disable the Tx desc arbiter so that MTQC can be changed */
4295         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4296         reg |= IXGBE_RTTDCS_ARBDIS;
4297         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4298
4299         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4300         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4301
4302         /* Disable drop for all queues */
4303         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4304                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4305                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4306
4307         /* Enable the Tx desc arbiter */
4308         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4309         reg &= ~IXGBE_RTTDCS_ARBDIS;
4310         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4311
4312         IXGBE_WRITE_FLUSH(hw);
4313 }
4314
4315 static int __attribute__((cold))
4316 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4317 {
4318         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4319         uint64_t dma_addr;
4320         unsigned int i;
4321
4322         /* Initialize software ring entries */
4323         for (i = 0; i < rxq->nb_rx_desc; i++) {
4324                 volatile union ixgbe_adv_rx_desc *rxd;
4325                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4326
4327                 if (mbuf == NULL) {
4328                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4329                                      (unsigned) rxq->queue_id);
4330                         return -ENOMEM;
4331                 }
4332
4333                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4334                 mbuf->port = rxq->port_id;
4335
4336                 dma_addr =
4337                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4338                 rxd = &rxq->rx_ring[i];
4339                 rxd->read.hdr_addr = 0;
4340                 rxd->read.pkt_addr = dma_addr;
4341                 rxe[i].mbuf = mbuf;
4342         }
4343
4344         return 0;
4345 }
4346
4347 static int
4348 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4349 {
4350         struct ixgbe_hw *hw;
4351         uint32_t mrqc;
4352
4353         ixgbe_rss_configure(dev);
4354
4355         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4356
4357         /* MRQC: enable VF RSS */
4358         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4359         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4360         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4361         case ETH_64_POOLS:
4362                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4363                 break;
4364
4365         case ETH_32_POOLS:
4366                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4367                 break;
4368
4369         default:
4370                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4371                 return -EINVAL;
4372         }
4373
4374         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4375
4376         return 0;
4377 }
4378
4379 static int
4380 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4381 {
4382         struct ixgbe_hw *hw =
4383                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4384
4385         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4386         case ETH_64_POOLS:
4387                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4388                         IXGBE_MRQC_VMDQEN);
4389                 break;
4390
4391         case ETH_32_POOLS:
4392                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4393                         IXGBE_MRQC_VMDQRT4TCEN);
4394                 break;
4395
4396         case ETH_16_POOLS:
4397                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4398                         IXGBE_MRQC_VMDQRT8TCEN);
4399                 break;
4400         default:
4401                 PMD_INIT_LOG(ERR,
4402                         "invalid pool number in IOV mode");
4403                 break;
4404         }
4405         return 0;
4406 }
4407
4408 static int
4409 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4410 {
4411         struct ixgbe_hw *hw =
4412                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4413
4414         if (hw->mac.type == ixgbe_mac_82598EB)
4415                 return 0;
4416
4417         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4418                 /*
4419                  * SRIOV inactive scheme
4420                  * any DCB/RSS w/o VMDq multi-queue setting
4421                  */
4422                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4423                 case ETH_MQ_RX_RSS:
4424                 case ETH_MQ_RX_DCB_RSS:
4425                 case ETH_MQ_RX_VMDQ_RSS:
4426                         ixgbe_rss_configure(dev);
4427                         break;
4428
4429                 case ETH_MQ_RX_VMDQ_DCB:
4430                         ixgbe_vmdq_dcb_configure(dev);
4431                         break;
4432
4433                 case ETH_MQ_RX_VMDQ_ONLY:
4434                         ixgbe_vmdq_rx_hw_configure(dev);
4435                         break;
4436
4437                 case ETH_MQ_RX_NONE:
4438                 default:
4439                         /* if mq_mode is none, disable rss mode.*/
4440                         ixgbe_rss_disable(dev);
4441                         break;
4442                 }
4443         } else {
4444                 /* SRIOV active scheme
4445                  * Support RSS together with SRIOV.
4446                  */
4447                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4448                 case ETH_MQ_RX_RSS:
4449                 case ETH_MQ_RX_VMDQ_RSS:
4450                         ixgbe_config_vf_rss(dev);
4451                         break;
4452                 case ETH_MQ_RX_VMDQ_DCB:
4453                 case ETH_MQ_RX_DCB:
4454                 /* In SRIOV, the configuration is the same as VMDq case */
4455                         ixgbe_vmdq_dcb_configure(dev);
4456                         break;
4457                 /* DCB/RSS together with SRIOV is not supported */
4458                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4459                 case ETH_MQ_RX_DCB_RSS:
4460                         PMD_INIT_LOG(ERR,
4461                                 "Could not support DCB/RSS with VMDq & SRIOV");
4462                         return -1;
4463                 default:
4464                         ixgbe_config_vf_default(dev);
4465                         break;
4466                 }
4467         }
4468
4469         return 0;
4470 }
4471
4472 static int
4473 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4474 {
4475         struct ixgbe_hw *hw =
4476                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4477         uint32_t mtqc;
4478         uint32_t rttdcs;
4479
4480         if (hw->mac.type == ixgbe_mac_82598EB)
4481                 return 0;
4482
4483         /* disable arbiter before setting MTQC */
4484         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4485         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4486         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4487
4488         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4489                 /*
4490                  * SRIOV inactive scheme
4491                  * any DCB w/o VMDq multi-queue setting
4492                  */
4493                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4494                         ixgbe_vmdq_tx_hw_configure(hw);
4495                 else {
4496                         mtqc = IXGBE_MTQC_64Q_1PB;
4497                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4498                 }
4499         } else {
4500                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4501
4502                 /*
4503                  * SRIOV active scheme
4504                  * FIXME if support DCB together with VMDq & SRIOV
4505                  */
4506                 case ETH_64_POOLS:
4507                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4508                         break;
4509                 case ETH_32_POOLS:
4510                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4511                         break;
4512                 case ETH_16_POOLS:
4513                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4514                                 IXGBE_MTQC_8TC_8TQ;
4515                         break;
4516                 default:
4517                         mtqc = IXGBE_MTQC_64Q_1PB;
4518                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4519                 }
4520                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4521         }
4522
4523         /* re-enable arbiter */
4524         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4525         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4526
4527         return 0;
4528 }
4529
4530 /**
4531  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4532  *
4533  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4534  * spec rev. 3.0 chapter 8.2.3.8.13.
4535  *
4536  * @pool Memory pool of the Rx queue
4537  */
4538 static inline uint32_t
4539 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4540 {
4541         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4542
4543         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4544         uint16_t maxdesc =
4545                 IPV4_MAX_PKT_LEN /
4546                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4547
4548         if (maxdesc >= 16)
4549                 return IXGBE_RSCCTL_MAXDESC_16;
4550         else if (maxdesc >= 8)
4551                 return IXGBE_RSCCTL_MAXDESC_8;
4552         else if (maxdesc >= 4)
4553                 return IXGBE_RSCCTL_MAXDESC_4;
4554         else
4555                 return IXGBE_RSCCTL_MAXDESC_1;
4556 }
4557
4558 /**
4559  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4560  * interrupt
4561  *
4562  * (Taken from FreeBSD tree)
4563  * (yes this is all very magic and confusing :)
4564  *
4565  * @dev port handle
4566  * @entry the register array entry
4567  * @vector the MSIX vector for this queue
4568  * @type RX/TX/MISC
4569  */
4570 static void
4571 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4572 {
4573         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4574         u32 ivar, index;
4575
4576         vector |= IXGBE_IVAR_ALLOC_VAL;
4577
4578         switch (hw->mac.type) {
4579
4580         case ixgbe_mac_82598EB:
4581                 if (type == -1)
4582                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4583                 else
4584                         entry += (type * 64);
4585                 index = (entry >> 2) & 0x1F;
4586                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4587                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4588                 ivar |= (vector << (8 * (entry & 0x3)));
4589                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4590                 break;
4591
4592         case ixgbe_mac_82599EB:
4593         case ixgbe_mac_X540:
4594                 if (type == -1) { /* MISC IVAR */
4595                         index = (entry & 1) * 8;
4596                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4597                         ivar &= ~(0xFF << index);
4598                         ivar |= (vector << index);
4599                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4600                 } else {        /* RX/TX IVARS */
4601                         index = (16 * (entry & 1)) + (8 * type);
4602                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4603                         ivar &= ~(0xFF << index);
4604                         ivar |= (vector << index);
4605                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4606                 }
4607
4608                 break;
4609
4610         default:
4611                 break;
4612         }
4613 }
4614
4615 void __attribute__((cold))
4616 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4617 {
4618         uint16_t i, rx_using_sse;
4619         struct ixgbe_adapter *adapter =
4620                 (struct ixgbe_adapter *)dev->data->dev_private;
4621
4622         /*
4623          * In order to allow Vector Rx there are a few configuration
4624          * conditions to be met and Rx Bulk Allocation should be allowed.
4625          */
4626         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4627             !adapter->rx_bulk_alloc_allowed) {
4628                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4629                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4630                                     "not enabled",
4631                              dev->data->port_id);
4632
4633                 adapter->rx_vec_allowed = false;
4634         }
4635
4636         /*
4637          * Initialize the appropriate LRO callback.
4638          *
4639          * If all queues satisfy the bulk allocation preconditions
4640          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4641          * Otherwise use a single allocation version.
4642          */
4643         if (dev->data->lro) {
4644                 if (adapter->rx_bulk_alloc_allowed) {
4645                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4646                                            "allocation version");
4647                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4648                 } else {
4649                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4650                                            "allocation version");
4651                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4652                 }
4653         } else if (dev->data->scattered_rx) {
4654                 /*
4655                  * Set the non-LRO scattered callback: there are Vector and
4656                  * single allocation versions.
4657                  */
4658                 if (adapter->rx_vec_allowed) {
4659                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4660                                             "callback (port=%d).",
4661                                      dev->data->port_id);
4662
4663                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4664                 } else if (adapter->rx_bulk_alloc_allowed) {
4665                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4666                                            "allocation callback (port=%d).",
4667                                      dev->data->port_id);
4668                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4669                 } else {
4670                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4671                                             "single allocation) "
4672                                             "Scattered Rx callback "
4673                                             "(port=%d).",
4674                                      dev->data->port_id);
4675
4676                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4677                 }
4678         /*
4679          * Below we set "simple" callbacks according to port/queues parameters.
4680          * If parameters allow we are going to choose between the following
4681          * callbacks:
4682          *    - Vector
4683          *    - Bulk Allocation
4684          *    - Single buffer allocation (the simplest one)
4685          */
4686         } else if (adapter->rx_vec_allowed) {
4687                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4688                                     "burst size no less than %d (port=%d).",
4689                              RTE_IXGBE_DESCS_PER_LOOP,
4690                              dev->data->port_id);
4691
4692                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4693         } else if (adapter->rx_bulk_alloc_allowed) {
4694                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4695                                     "satisfied. Rx Burst Bulk Alloc function "
4696                                     "will be used on port=%d.",
4697                              dev->data->port_id);
4698
4699                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4700         } else {
4701                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4702                                     "satisfied, or Scattered Rx is requested "
4703                                     "(port=%d).",
4704                              dev->data->port_id);
4705
4706                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4707         }
4708
4709         /* Propagate information about RX function choice through all queues. */
4710
4711         rx_using_sse =
4712                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4713                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4714
4715         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4716                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4717
4718                 rxq->rx_using_sse = rx_using_sse;
4719 #ifdef RTE_LIBRTE_SECURITY
4720                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4721                                 DEV_RX_OFFLOAD_SECURITY);
4722 #endif
4723         }
4724 }
4725
4726 /**
4727  * ixgbe_set_rsc - configure RSC related port HW registers
4728  *
4729  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4730  * of 82599 Spec (x540 configuration is virtually the same).
4731  *
4732  * @dev port handle
4733  *
4734  * Returns 0 in case of success or a non-zero error code
4735  */
4736 static int
4737 ixgbe_set_rsc(struct rte_eth_dev *dev)
4738 {
4739         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4740         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4741         struct rte_eth_dev_info dev_info = { 0 };
4742         bool rsc_capable = false;
4743         uint16_t i;
4744         uint32_t rdrxctl;
4745         uint32_t rfctl;
4746
4747         /* Sanity check */
4748         dev->dev_ops->dev_infos_get(dev, &dev_info);
4749         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4750                 rsc_capable = true;
4751
4752         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4753                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4754                                    "support it");
4755                 return -EINVAL;
4756         }
4757
4758         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4759
4760         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP) &&
4761              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4762                 /*
4763                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4764                  * 3.0 RSC configuration requires HW CRC stripping being
4765                  * enabled. If user requested both HW CRC stripping off
4766                  * and RSC on - return an error.
4767                  */
4768                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4769                                     "is disabled");
4770                 return -EINVAL;
4771         }
4772
4773         /* RFCTL configuration  */
4774         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4775         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4776                 /*
4777                  * Since NFS packets coalescing is not supported - clear
4778                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4779                  * enabled.
4780                  */
4781                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4782                            IXGBE_RFCTL_NFSR_DIS);
4783         else
4784                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4785         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4786
4787         /* If LRO hasn't been requested - we are done here. */
4788         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4789                 return 0;
4790
4791         /* Set RDRXCTL.RSCACKC bit */
4792         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4793         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4794         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4795
4796         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4797         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4798                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4799                 uint32_t srrctl =
4800                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4801                 uint32_t rscctl =
4802                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4803                 uint32_t psrtype =
4804                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4805                 uint32_t eitr =
4806                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4807
4808                 /*
4809                  * ixgbe PMD doesn't support header-split at the moment.
4810                  *
4811                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4812                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4813                  * should be configured even if header split is not
4814                  * enabled. We will configure it 128 bytes following the
4815                  * recommendation in the spec.
4816                  */
4817                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4818                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4819                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4820
4821                 /*
4822                  * TODO: Consider setting the Receive Descriptor Minimum
4823                  * Threshold Size for an RSC case. This is not an obviously
4824                  * beneficiary option but the one worth considering...
4825                  */
4826
4827                 rscctl |= IXGBE_RSCCTL_RSCEN;
4828                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4829                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4830
4831                 /*
4832                  * RSC: Set ITR interval corresponding to 2K ints/s.
4833                  *
4834                  * Full-sized RSC aggregations for a 10Gb/s link will
4835                  * arrive at about 20K aggregation/s rate.
4836                  *
4837                  * 2K inst/s rate will make only 10% of the
4838                  * aggregations to be closed due to the interrupt timer
4839                  * expiration for a streaming at wire-speed case.
4840                  *
4841                  * For a sparse streaming case this setting will yield
4842                  * at most 500us latency for a single RSC aggregation.
4843                  */
4844                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4845                 eitr |= IXGBE_EITR_INTERVAL_US(500) | IXGBE_EITR_CNT_WDIS;
4846
4847                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4848                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4849                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4850                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4851
4852                 /*
4853                  * RSC requires the mapping of the queue to the
4854                  * interrupt vector.
4855                  */
4856                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4857         }
4858
4859         dev->data->lro = 1;
4860
4861         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4862
4863         return 0;
4864 }
4865
4866 /*
4867  * Initializes Receive Unit.
4868  */
4869 int __attribute__((cold))
4870 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4871 {
4872         struct ixgbe_hw     *hw;
4873         struct ixgbe_rx_queue *rxq;
4874         uint64_t bus_addr;
4875         uint32_t rxctrl;
4876         uint32_t fctrl;
4877         uint32_t hlreg0;
4878         uint32_t maxfrs;
4879         uint32_t srrctl;
4880         uint32_t rdrxctl;
4881         uint32_t rxcsum;
4882         uint16_t buf_size;
4883         uint16_t i;
4884         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4885         int rc;
4886
4887         PMD_INIT_FUNC_TRACE();
4888         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4889
4890         /*
4891          * Make sure receives are disabled while setting
4892          * up the RX context (registers, descriptor rings, etc.).
4893          */
4894         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4895         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4896
4897         /* Enable receipt of broadcasted frames */
4898         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4899         fctrl |= IXGBE_FCTRL_BAM;
4900         fctrl |= IXGBE_FCTRL_DPF;
4901         fctrl |= IXGBE_FCTRL_PMCF;
4902         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4903
4904         /*
4905          * Configure CRC stripping, if any.
4906          */
4907         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4908         if (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP)
4909                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4910         else
4911                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4912
4913         /*
4914          * Configure jumbo frame support, if any.
4915          */
4916         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4917                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4918                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4919                 maxfrs &= 0x0000FFFF;
4920                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4921                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4922         } else
4923                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4924
4925         /*
4926          * If loopback mode is configured for 82599, set LPBK bit.
4927          */
4928         if (hw->mac.type == ixgbe_mac_82599EB &&
4929                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
4930                 hlreg0 |= IXGBE_HLREG0_LPBK;
4931         else
4932                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4933
4934         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4935
4936         /*
4937          * Assume no header split and no VLAN strip support
4938          * on any Rx queue first .
4939          */
4940         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4941         /* Setup RX queues */
4942         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4943                 rxq = dev->data->rx_queues[i];
4944
4945                 /*
4946                  * Reset crc_len in case it was changed after queue setup by a
4947                  * call to configure.
4948                  */
4949                 rxq->crc_len = (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP) ?
4950                                 0 : ETHER_CRC_LEN;
4951
4952                 /* Setup the Base and Length of the Rx Descriptor Rings */
4953                 bus_addr = rxq->rx_ring_phys_addr;
4954                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4955                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4956                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4957                                 (uint32_t)(bus_addr >> 32));
4958                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4959                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4960                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4961                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4962
4963                 /* Configure the SRRCTL register */
4964                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4965
4966                 /* Set if packets are dropped when no descriptors available */
4967                 if (rxq->drop_en)
4968                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4969
4970                 /*
4971                  * Configure the RX buffer size in the BSIZEPACKET field of
4972                  * the SRRCTL register of the queue.
4973                  * The value is in 1 KB resolution. Valid values can be from
4974                  * 1 KB to 16 KB.
4975                  */
4976                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4977                         RTE_PKTMBUF_HEADROOM);
4978                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4979                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4980
4981                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4982
4983                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
4984                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
4985
4986                 /* It adds dual VLAN length for supporting dual VLAN */
4987                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
4988                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
4989                         dev->data->scattered_rx = 1;
4990                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
4991                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4992         }
4993
4994         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
4995                 dev->data->scattered_rx = 1;
4996
4997         /*
4998          * Device configured with multiple RX queues.
4999          */
5000         ixgbe_dev_mq_rx_configure(dev);
5001
5002         /*
5003          * Setup the Checksum Register.
5004          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5005          * Enable IP/L4 checkum computation by hardware if requested to do so.
5006          */
5007         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5008         rxcsum |= IXGBE_RXCSUM_PCSD;
5009         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
5010                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5011         else
5012                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5013
5014         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5015
5016         if (hw->mac.type == ixgbe_mac_82599EB ||
5017             hw->mac.type == ixgbe_mac_X540) {
5018                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5019                 if (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP)
5020                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5021                 else
5022                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5023                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5024                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5025         }
5026
5027         rc = ixgbe_set_rsc(dev);
5028         if (rc)
5029                 return rc;
5030
5031         ixgbe_set_rx_function(dev);
5032
5033         return 0;
5034 }
5035
5036 /*
5037  * Initializes Transmit Unit.
5038  */
5039 void __attribute__((cold))
5040 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5041 {
5042         struct ixgbe_hw     *hw;
5043         struct ixgbe_tx_queue *txq;
5044         uint64_t bus_addr;
5045         uint32_t hlreg0;
5046         uint32_t txctrl;
5047         uint16_t i;
5048
5049         PMD_INIT_FUNC_TRACE();
5050         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5051
5052         /* Enable TX CRC (checksum offload requirement) and hw padding
5053          * (TSO requirement)
5054          */
5055         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5056         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5057         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5058
5059         /* Setup the Base and Length of the Tx Descriptor Rings */
5060         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5061                 txq = dev->data->tx_queues[i];
5062
5063                 bus_addr = txq->tx_ring_phys_addr;
5064                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5065                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5066                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5067                                 (uint32_t)(bus_addr >> 32));
5068                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5069                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5070                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5071                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5072                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5073
5074                 /*
5075                  * Disable Tx Head Writeback RO bit, since this hoses
5076                  * bookkeeping if things aren't delivered in order.
5077                  */
5078                 switch (hw->mac.type) {
5079                 case ixgbe_mac_82598EB:
5080                         txctrl = IXGBE_READ_REG(hw,
5081                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5082                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5083                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5084                                         txctrl);
5085                         break;
5086
5087                 case ixgbe_mac_82599EB:
5088                 case ixgbe_mac_X540:
5089                 case ixgbe_mac_X550:
5090                 case ixgbe_mac_X550EM_x:
5091                 case ixgbe_mac_X550EM_a:
5092                 default:
5093                         txctrl = IXGBE_READ_REG(hw,
5094                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5095                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5096                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5097                                         txctrl);
5098                         break;
5099                 }
5100         }
5101
5102         /* Device configured with multiple TX queues. */
5103         ixgbe_dev_mq_tx_configure(dev);
5104 }
5105
5106 /*
5107  * Set up link for 82599 loopback mode Tx->Rx.
5108  */
5109 static inline void __attribute__((cold))
5110 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5111 {
5112         PMD_INIT_FUNC_TRACE();
5113
5114         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5115                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5116                                 IXGBE_SUCCESS) {
5117                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5118                         /* ignore error */
5119                         return;
5120                 }
5121         }
5122
5123         /* Restart link */
5124         IXGBE_WRITE_REG(hw,
5125                         IXGBE_AUTOC,
5126                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5127         ixgbe_reset_pipeline_82599(hw);
5128
5129         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5130         msec_delay(50);
5131 }
5132
5133
5134 /*
5135  * Start Transmit and Receive Units.
5136  */
5137 int __attribute__((cold))
5138 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5139 {
5140         struct ixgbe_hw     *hw;
5141         struct ixgbe_tx_queue *txq;
5142         struct ixgbe_rx_queue *rxq;
5143         uint32_t txdctl;
5144         uint32_t dmatxctl;
5145         uint32_t rxctrl;
5146         uint16_t i;
5147         int ret = 0;
5148
5149         PMD_INIT_FUNC_TRACE();
5150         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5151
5152         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5153                 txq = dev->data->tx_queues[i];
5154                 /* Setup Transmit Threshold Registers */
5155                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5156                 txdctl |= txq->pthresh & 0x7F;
5157                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5158                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5159                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5160         }
5161
5162         if (hw->mac.type != ixgbe_mac_82598EB) {
5163                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5164                 dmatxctl |= IXGBE_DMATXCTL_TE;
5165                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5166         }
5167
5168         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5169                 txq = dev->data->tx_queues[i];
5170                 if (!txq->tx_deferred_start) {
5171                         ret = ixgbe_dev_tx_queue_start(dev, i);
5172                         if (ret < 0)
5173                                 return ret;
5174                 }
5175         }
5176
5177         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5178                 rxq = dev->data->rx_queues[i];
5179                 if (!rxq->rx_deferred_start) {
5180                         ret = ixgbe_dev_rx_queue_start(dev, i);
5181                         if (ret < 0)
5182                                 return ret;
5183                 }
5184         }
5185
5186         /* Enable Receive engine */
5187         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5188         if (hw->mac.type == ixgbe_mac_82598EB)
5189                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5190         rxctrl |= IXGBE_RXCTRL_RXEN;
5191         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5192
5193         /* If loopback mode is enabled for 82599, set up the link accordingly */
5194         if (hw->mac.type == ixgbe_mac_82599EB &&
5195                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
5196                 ixgbe_setup_loopback_link_82599(hw);
5197
5198 #ifdef RTE_LIBRTE_SECURITY
5199         if ((dev->data->dev_conf.rxmode.offloads &
5200                         DEV_RX_OFFLOAD_SECURITY) ||
5201                 (dev->data->dev_conf.txmode.offloads &
5202                         DEV_TX_OFFLOAD_SECURITY)) {
5203                 ret = ixgbe_crypto_enable_ipsec(dev);
5204                 if (ret != 0) {
5205                         PMD_DRV_LOG(ERR,
5206                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5207                                     ret);
5208                         return ret;
5209                 }
5210         }
5211 #endif
5212
5213         return 0;
5214 }
5215
5216 /*
5217  * Start Receive Units for specified queue.
5218  */
5219 int __attribute__((cold))
5220 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5221 {
5222         struct ixgbe_hw     *hw;
5223         struct ixgbe_rx_queue *rxq;
5224         uint32_t rxdctl;
5225         int poll_ms;
5226
5227         PMD_INIT_FUNC_TRACE();
5228         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5229
5230         if (rx_queue_id < dev->data->nb_rx_queues) {
5231                 rxq = dev->data->rx_queues[rx_queue_id];
5232
5233                 /* Allocate buffers for descriptor rings */
5234                 if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5235                         PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5236                                      rx_queue_id);
5237                         return -1;
5238                 }
5239                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5240                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5241                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5242
5243                 /* Wait until RX Enable ready */
5244                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5245                 do {
5246                         rte_delay_ms(1);
5247                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5248                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5249                 if (!poll_ms)
5250                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d",
5251                                      rx_queue_id);
5252                 rte_wmb();
5253                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5254                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5255                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5256         } else
5257                 return -1;
5258
5259         return 0;
5260 }
5261
5262 /*
5263  * Stop Receive Units for specified queue.
5264  */
5265 int __attribute__((cold))
5266 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5267 {
5268         struct ixgbe_hw     *hw;
5269         struct ixgbe_adapter *adapter =
5270                 (struct ixgbe_adapter *)dev->data->dev_private;
5271         struct ixgbe_rx_queue *rxq;
5272         uint32_t rxdctl;
5273         int poll_ms;
5274
5275         PMD_INIT_FUNC_TRACE();
5276         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5277
5278         if (rx_queue_id < dev->data->nb_rx_queues) {
5279                 rxq = dev->data->rx_queues[rx_queue_id];
5280
5281                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5282                 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5283                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5284
5285                 /* Wait until RX Enable bit clear */
5286                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5287                 do {
5288                         rte_delay_ms(1);
5289                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5290                 } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5291                 if (!poll_ms)
5292                         PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d",
5293                                      rx_queue_id);
5294
5295                 rte_delay_us(RTE_IXGBE_WAIT_100_US);
5296
5297                 ixgbe_rx_queue_release_mbufs(rxq);
5298                 ixgbe_reset_rx_queue(adapter, rxq);
5299                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5300         } else
5301                 return -1;
5302
5303         return 0;
5304 }
5305
5306
5307 /*
5308  * Start Transmit Units for specified queue.
5309  */
5310 int __attribute__((cold))
5311 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5312 {
5313         struct ixgbe_hw     *hw;
5314         struct ixgbe_tx_queue *txq;
5315         uint32_t txdctl;
5316         int poll_ms;
5317
5318         PMD_INIT_FUNC_TRACE();
5319         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5320
5321         if (tx_queue_id < dev->data->nb_tx_queues) {
5322                 txq = dev->data->tx_queues[tx_queue_id];
5323                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5324                 txdctl |= IXGBE_TXDCTL_ENABLE;
5325                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5326
5327                 /* Wait until TX Enable ready */
5328                 if (hw->mac.type == ixgbe_mac_82599EB) {
5329                         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5330                         do {
5331                                 rte_delay_ms(1);
5332                                 txdctl = IXGBE_READ_REG(hw,
5333                                         IXGBE_TXDCTL(txq->reg_idx));
5334                         } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5335                         if (!poll_ms)
5336                                 PMD_INIT_LOG(ERR, "Could not enable "
5337                                              "Tx Queue %d", tx_queue_id);
5338                 }
5339                 rte_wmb();
5340                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5341                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5342                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5343         } else
5344                 return -1;
5345
5346         return 0;
5347 }
5348
5349 /*
5350  * Stop Transmit Units for specified queue.
5351  */
5352 int __attribute__((cold))
5353 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5354 {
5355         struct ixgbe_hw     *hw;
5356         struct ixgbe_tx_queue *txq;
5357         uint32_t txdctl;
5358         uint32_t txtdh, txtdt;
5359         int poll_ms;
5360
5361         PMD_INIT_FUNC_TRACE();
5362         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5363
5364         if (tx_queue_id >= dev->data->nb_tx_queues)
5365                 return -1;
5366
5367         txq = dev->data->tx_queues[tx_queue_id];
5368
5369         /* Wait until TX queue is empty */
5370         if (hw->mac.type == ixgbe_mac_82599EB) {
5371                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5372                 do {
5373                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5374                         txtdh = IXGBE_READ_REG(hw,
5375                                                IXGBE_TDH(txq->reg_idx));
5376                         txtdt = IXGBE_READ_REG(hw,
5377                                                IXGBE_TDT(txq->reg_idx));
5378                 } while (--poll_ms && (txtdh != txtdt));
5379                 if (!poll_ms)
5380                         PMD_INIT_LOG(ERR, "Tx Queue %d is not empty "
5381                                      "when stopping.", tx_queue_id);
5382         }
5383
5384         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5385         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5386         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5387
5388         /* Wait until TX Enable bit clear */
5389         if (hw->mac.type == ixgbe_mac_82599EB) {
5390                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5391                 do {
5392                         rte_delay_ms(1);
5393                         txdctl = IXGBE_READ_REG(hw,
5394                                                 IXGBE_TXDCTL(txq->reg_idx));
5395                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5396                 if (!poll_ms)
5397                         PMD_INIT_LOG(ERR, "Could not disable "
5398                                      "Tx Queue %d", tx_queue_id);
5399         }
5400
5401         if (txq->ops != NULL) {
5402                 txq->ops->release_mbufs(txq);
5403                 txq->ops->reset(txq);
5404         }
5405         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5406
5407         return 0;
5408 }
5409
5410 void
5411 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5412         struct rte_eth_rxq_info *qinfo)
5413 {
5414         struct ixgbe_rx_queue *rxq;
5415
5416         rxq = dev->data->rx_queues[queue_id];
5417
5418         qinfo->mp = rxq->mb_pool;
5419         qinfo->scattered_rx = dev->data->scattered_rx;
5420         qinfo->nb_desc = rxq->nb_rx_desc;
5421
5422         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5423         qinfo->conf.rx_drop_en = rxq->drop_en;
5424         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5425         qinfo->conf.offloads = rxq->offloads;
5426 }
5427
5428 void
5429 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5430         struct rte_eth_txq_info *qinfo)
5431 {
5432         struct ixgbe_tx_queue *txq;
5433
5434         txq = dev->data->tx_queues[queue_id];
5435
5436         qinfo->nb_desc = txq->nb_tx_desc;
5437
5438         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5439         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5440         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5441
5442         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5443         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5444         qinfo->conf.txq_flags = txq->txq_flags;
5445         qinfo->conf.offloads = txq->offloads;
5446         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5447 }
5448
5449 /*
5450  * [VF] Initializes Receive Unit.
5451  */
5452 int __attribute__((cold))
5453 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5454 {
5455         struct ixgbe_hw     *hw;
5456         struct ixgbe_rx_queue *rxq;
5457         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5458         uint64_t bus_addr;
5459         uint32_t srrctl, psrtype = 0;
5460         uint16_t buf_size;
5461         uint16_t i;
5462         int ret;
5463
5464         PMD_INIT_FUNC_TRACE();
5465         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5466
5467         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5468                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5469                         "it should be power of 2");
5470                 return -1;
5471         }
5472
5473         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5474                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5475                         "it should be equal to or less than %d",
5476                         hw->mac.max_rx_queues);
5477                 return -1;
5478         }
5479
5480         /*
5481          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5482          * disables the VF receipt of packets if the PF MTU is > 1500.
5483          * This is done to deal with 82599 limitations that imposes
5484          * the PF and all VFs to share the same MTU.
5485          * Then, the PF driver enables again the VF receipt of packet when
5486          * the VF driver issues a IXGBE_VF_SET_LPE request.
5487          * In the meantime, the VF device cannot be used, even if the VF driver
5488          * and the Guest VM network stack are ready to accept packets with a
5489          * size up to the PF MTU.
5490          * As a work-around to this PF behaviour, force the call to
5491          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5492          * VF packets received can work in all cases.
5493          */
5494         ixgbevf_rlpml_set_vf(hw,
5495                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5496
5497         /*
5498          * Assume no header split and no VLAN strip support
5499          * on any Rx queue first .
5500          */
5501         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5502         /* Setup RX queues */
5503         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5504                 rxq = dev->data->rx_queues[i];
5505
5506                 /* Allocate buffers for descriptor rings */
5507                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5508                 if (ret)
5509                         return ret;
5510
5511                 /* Setup the Base and Length of the Rx Descriptor Rings */
5512                 bus_addr = rxq->rx_ring_phys_addr;
5513
5514                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5515                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5516                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5517                                 (uint32_t)(bus_addr >> 32));
5518                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5519                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5520                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5521                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5522
5523
5524                 /* Configure the SRRCTL register */
5525                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5526
5527                 /* Set if packets are dropped when no descriptors available */
5528                 if (rxq->drop_en)
5529                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5530
5531                 /*
5532                  * Configure the RX buffer size in the BSIZEPACKET field of
5533                  * the SRRCTL register of the queue.
5534                  * The value is in 1 KB resolution. Valid values can be from
5535                  * 1 KB to 16 KB.
5536                  */
5537                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5538                         RTE_PKTMBUF_HEADROOM);
5539                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5540                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5541
5542                 /*
5543                  * VF modification to write virtual function SRRCTL register
5544                  */
5545                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5546
5547                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5548                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5549
5550                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5551                     /* It adds dual VLAN length for supporting dual VLAN */
5552                     (rxmode->max_rx_pkt_len +
5553                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5554                         if (!dev->data->scattered_rx)
5555                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5556                         dev->data->scattered_rx = 1;
5557                 }
5558
5559                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5560                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5561         }
5562
5563         /* Set RQPL for VF RSS according to max Rx queue */
5564         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5565                 IXGBE_PSRTYPE_RQPL_SHIFT;
5566         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5567
5568         ixgbe_set_rx_function(dev);
5569
5570         return 0;
5571 }
5572
5573 /*
5574  * [VF] Initializes Transmit Unit.
5575  */
5576 void __attribute__((cold))
5577 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5578 {
5579         struct ixgbe_hw     *hw;
5580         struct ixgbe_tx_queue *txq;
5581         uint64_t bus_addr;
5582         uint32_t txctrl;
5583         uint16_t i;
5584
5585         PMD_INIT_FUNC_TRACE();
5586         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5587
5588         /* Setup the Base and Length of the Tx Descriptor Rings */
5589         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5590                 txq = dev->data->tx_queues[i];
5591                 bus_addr = txq->tx_ring_phys_addr;
5592                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5593                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5594                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5595                                 (uint32_t)(bus_addr >> 32));
5596                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5597                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5598                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5599                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5600                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5601
5602                 /*
5603                  * Disable Tx Head Writeback RO bit, since this hoses
5604                  * bookkeeping if things aren't delivered in order.
5605                  */
5606                 txctrl = IXGBE_READ_REG(hw,
5607                                 IXGBE_VFDCA_TXCTRL(i));
5608                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5609                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5610                                 txctrl);
5611         }
5612 }
5613
5614 /*
5615  * [VF] Start Transmit and Receive Units.
5616  */
5617 void __attribute__((cold))
5618 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5619 {
5620         struct ixgbe_hw     *hw;
5621         struct ixgbe_tx_queue *txq;
5622         struct ixgbe_rx_queue *rxq;
5623         uint32_t txdctl;
5624         uint32_t rxdctl;
5625         uint16_t i;
5626         int poll_ms;
5627
5628         PMD_INIT_FUNC_TRACE();
5629         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5630
5631         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5632                 txq = dev->data->tx_queues[i];
5633                 /* Setup Transmit Threshold Registers */
5634                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5635                 txdctl |= txq->pthresh & 0x7F;
5636                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5637                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5638                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5639         }
5640
5641         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5642
5643                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5644                 txdctl |= IXGBE_TXDCTL_ENABLE;
5645                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5646
5647                 poll_ms = 10;
5648                 /* Wait until TX Enable ready */
5649                 do {
5650                         rte_delay_ms(1);
5651                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5652                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5653                 if (!poll_ms)
5654                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5655         }
5656         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5657
5658                 rxq = dev->data->rx_queues[i];
5659
5660                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5661                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5662                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5663
5664                 /* Wait until RX Enable ready */
5665                 poll_ms = 10;
5666                 do {
5667                         rte_delay_ms(1);
5668                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5669                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5670                 if (!poll_ms)
5671                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5672                 rte_wmb();
5673                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5674
5675         }
5676 }
5677
5678 int
5679 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5680                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5681 {
5682         struct ixgbe_hw *hw;
5683         uint32_t reta;
5684         uint16_t i;
5685         uint16_t j;
5686         uint16_t sp_reta_size;
5687         uint32_t reta_reg;
5688         struct rte_eth_rss_conf rss_conf = conf->rss_conf;
5689         struct ixgbe_filter_info *filter_info =
5690                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5691
5692         PMD_INIT_FUNC_TRACE();
5693         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5694
5695         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5696
5697         if (!add) {
5698                 if (memcmp(conf, &filter_info->rss_info,
5699                         sizeof(struct ixgbe_rte_flow_rss_conf)) == 0) {
5700                         ixgbe_rss_disable(dev);
5701                         memset(&filter_info->rss_info, 0,
5702                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5703                         return 0;
5704                 }
5705                 return -EINVAL;
5706         }
5707
5708         if (filter_info->rss_info.num)
5709                 return -EINVAL;
5710         /* Fill in redirection table
5711          * The byte-swap is needed because NIC registers are in
5712          * little-endian order.
5713          */
5714         reta = 0;
5715         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5716                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5717
5718                 if (j == conf->num)
5719                         j = 0;
5720                 reta = (reta << 8) | conf->queue[j];
5721                 if ((i & 3) == 3)
5722                         IXGBE_WRITE_REG(hw, reta_reg,
5723                                         rte_bswap32(reta));
5724         }
5725
5726         /* Configure the RSS key and the RSS protocols used to compute
5727          * the RSS hash of input packets.
5728          */
5729         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5730                 ixgbe_rss_disable(dev);
5731                 return -EINVAL;
5732         }
5733         if (rss_conf.rss_key == NULL)
5734                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5735         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5736
5737         rte_memcpy(&filter_info->rss_info,
5738                 conf, sizeof(struct ixgbe_rte_flow_rss_conf));
5739
5740         return 0;
5741 }
5742
5743 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5744 int __attribute__((weak))
5745 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5746 {
5747         return -1;
5748 }
5749
5750 uint16_t __attribute__((weak))
5751 ixgbe_recv_pkts_vec(
5752         void __rte_unused *rx_queue,
5753         struct rte_mbuf __rte_unused **rx_pkts,
5754         uint16_t __rte_unused nb_pkts)
5755 {
5756         return 0;
5757 }
5758
5759 uint16_t __attribute__((weak))
5760 ixgbe_recv_scattered_pkts_vec(
5761         void __rte_unused *rx_queue,
5762         struct rte_mbuf __rte_unused **rx_pkts,
5763         uint16_t __rte_unused nb_pkts)
5764 {
5765         return 0;
5766 }
5767
5768 int __attribute__((weak))
5769 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5770 {
5771         return -1;
5772 }