ethdev: make default behavior CRC strip on Rx
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_VLAN_PKT |                \
62                 PKT_TX_IP_CKSUM |                \
63                 PKT_TX_L4_MASK |                 \
64                 PKT_TX_TCP_SEG |                 \
65                 PKT_TX_MACSEC |                  \
66                 PKT_TX_OUTER_IP_CKSUM |          \
67                 PKT_TX_SEC_OFFLOAD |     \
68                 IXGBE_TX_IEEE1588_TMST)
69
70 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
71                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
72
73 #if 1
74 #define RTE_PMD_USE_PREFETCH
75 #endif
76
77 #ifdef RTE_PMD_USE_PREFETCH
78 /*
79  * Prefetch a cache line into all cache levels.
80  */
81 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
82 #else
83 #define rte_ixgbe_prefetch(p)   do {} while (0)
84 #endif
85
86 #ifdef RTE_IXGBE_INC_VECTOR
87 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
88                                     uint16_t nb_pkts);
89 #endif
90
91 /*********************************************************************
92  *
93  *  TX functions
94  *
95  **********************************************************************/
96
97 /*
98  * Check for descriptors with their DD bit set and free mbufs.
99  * Return the total number of buffers freed.
100  */
101 static __rte_always_inline int
102 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
103 {
104         struct ixgbe_tx_entry *txep;
105         uint32_t status;
106         int i, nb_free = 0;
107         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
108
109         /* check DD bit on threshold descriptor */
110         status = txq->tx_ring[txq->tx_next_dd].wb.status;
111         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
112                 return 0;
113
114         /*
115          * first buffer to free from S/W ring is at index
116          * tx_next_dd - (tx_rs_thresh-1)
117          */
118         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
119
120         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
121                 /* free buffers one at a time */
122                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
123                 txep->mbuf = NULL;
124
125                 if (unlikely(m == NULL))
126                         continue;
127
128                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
129                     (nb_free > 0 && m->pool != free[0]->pool)) {
130                         rte_mempool_put_bulk(free[0]->pool,
131                                              (void **)free, nb_free);
132                         nb_free = 0;
133                 }
134
135                 free[nb_free++] = m;
136         }
137
138         if (nb_free > 0)
139                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
140
141         /* buffers were freed, update counters */
142         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
143         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
144         if (txq->tx_next_dd >= txq->nb_tx_desc)
145                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
146
147         return txq->tx_rs_thresh;
148 }
149
150 /* Populate 4 descriptors with data from 4 mbufs */
151 static inline void
152 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
153 {
154         uint64_t buf_dma_addr;
155         uint32_t pkt_len;
156         int i;
157
158         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
159                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
160                 pkt_len = (*pkts)->data_len;
161
162                 /* write data to descriptor */
163                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
164
165                 txdp->read.cmd_type_len =
166                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
167
168                 txdp->read.olinfo_status =
169                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
170
171                 rte_prefetch0(&(*pkts)->pool);
172         }
173 }
174
175 /* Populate 1 descriptor with data from 1 mbuf */
176 static inline void
177 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
178 {
179         uint64_t buf_dma_addr;
180         uint32_t pkt_len;
181
182         buf_dma_addr = rte_mbuf_data_iova(*pkts);
183         pkt_len = (*pkts)->data_len;
184
185         /* write data to descriptor */
186         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
187         txdp->read.cmd_type_len =
188                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
189         txdp->read.olinfo_status =
190                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
191         rte_prefetch0(&(*pkts)->pool);
192 }
193
194 /*
195  * Fill H/W descriptor ring with mbuf data.
196  * Copy mbuf pointers to the S/W ring.
197  */
198 static inline void
199 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
200                       uint16_t nb_pkts)
201 {
202         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
203         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
204         const int N_PER_LOOP = 4;
205         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
206         int mainpart, leftover;
207         int i, j;
208
209         /*
210          * Process most of the packets in chunks of N pkts.  Any
211          * leftover packets will get processed one at a time.
212          */
213         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
214         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
215         for (i = 0; i < mainpart; i += N_PER_LOOP) {
216                 /* Copy N mbuf pointers to the S/W ring */
217                 for (j = 0; j < N_PER_LOOP; ++j) {
218                         (txep + i + j)->mbuf = *(pkts + i + j);
219                 }
220                 tx4(txdp + i, pkts + i);
221         }
222
223         if (unlikely(leftover > 0)) {
224                 for (i = 0; i < leftover; ++i) {
225                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
226                         tx1(txdp + mainpart + i, pkts + mainpart + i);
227                 }
228         }
229 }
230
231 static inline uint16_t
232 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
233              uint16_t nb_pkts)
234 {
235         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
236         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
237         uint16_t n = 0;
238
239         /*
240          * Begin scanning the H/W ring for done descriptors when the
241          * number of available descriptors drops below tx_free_thresh.  For
242          * each done descriptor, free the associated buffer.
243          */
244         if (txq->nb_tx_free < txq->tx_free_thresh)
245                 ixgbe_tx_free_bufs(txq);
246
247         /* Only use descriptors that are available */
248         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
249         if (unlikely(nb_pkts == 0))
250                 return 0;
251
252         /* Use exactly nb_pkts descriptors */
253         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
254
255         /*
256          * At this point, we know there are enough descriptors in the
257          * ring to transmit all the packets.  This assumes that each
258          * mbuf contains a single segment, and that no new offloads
259          * are expected, which would require a new context descriptor.
260          */
261
262         /*
263          * See if we're going to wrap-around. If so, handle the top
264          * of the descriptor ring first, then do the bottom.  If not,
265          * the processing looks just like the "bottom" part anyway...
266          */
267         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
268                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
269                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
270
271                 /*
272                  * We know that the last descriptor in the ring will need to
273                  * have its RS bit set because tx_rs_thresh has to be
274                  * a divisor of the ring size
275                  */
276                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
277                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
278                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
279
280                 txq->tx_tail = 0;
281         }
282
283         /* Fill H/W descriptor ring with mbuf data */
284         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
285         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
286
287         /*
288          * Determine if RS bit should be set
289          * This is what we actually want:
290          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
291          * but instead of subtracting 1 and doing >=, we can just do
292          * greater than without subtracting.
293          */
294         if (txq->tx_tail > txq->tx_next_rs) {
295                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
296                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
297                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
298                                                 txq->tx_rs_thresh);
299                 if (txq->tx_next_rs >= txq->nb_tx_desc)
300                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
301         }
302
303         /*
304          * Check for wrap-around. This would only happen if we used
305          * up to the last descriptor in the ring, no more, no less.
306          */
307         if (txq->tx_tail >= txq->nb_tx_desc)
308                 txq->tx_tail = 0;
309
310         /* update tail pointer */
311         rte_wmb();
312         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
313
314         return nb_pkts;
315 }
316
317 uint16_t
318 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
319                        uint16_t nb_pkts)
320 {
321         uint16_t nb_tx;
322
323         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
324         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
325                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
326
327         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
328         nb_tx = 0;
329         while (nb_pkts) {
330                 uint16_t ret, n;
331
332                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
333                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
334                 nb_tx = (uint16_t)(nb_tx + ret);
335                 nb_pkts = (uint16_t)(nb_pkts - ret);
336                 if (ret < n)
337                         break;
338         }
339
340         return nb_tx;
341 }
342
343 #ifdef RTE_IXGBE_INC_VECTOR
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365 #endif
366
367 static inline void
368 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
369                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
370                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
371                 __rte_unused uint64_t *mdata)
372 {
373         uint32_t type_tucmd_mlhl;
374         uint32_t mss_l4len_idx = 0;
375         uint32_t ctx_idx;
376         uint32_t vlan_macip_lens;
377         union ixgbe_tx_offload tx_offload_mask;
378         uint32_t seqnum_seed = 0;
379
380         ctx_idx = txq->ctx_curr;
381         tx_offload_mask.data[0] = 0;
382         tx_offload_mask.data[1] = 0;
383         type_tucmd_mlhl = 0;
384
385         /* Specify which HW CTX to upload. */
386         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
387
388         if (ol_flags & PKT_TX_VLAN_PKT) {
389                 tx_offload_mask.vlan_tci |= ~0;
390         }
391
392         /* check if TCP segmentation required for this packet */
393         if (ol_flags & PKT_TX_TCP_SEG) {
394                 /* implies IP cksum in IPv4 */
395                 if (ol_flags & PKT_TX_IP_CKSUM)
396                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
397                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
398                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
399                 else
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403
404                 tx_offload_mask.l2_len |= ~0;
405                 tx_offload_mask.l3_len |= ~0;
406                 tx_offload_mask.l4_len |= ~0;
407                 tx_offload_mask.tso_segsz |= ~0;
408                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
409                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
410         } else { /* no TSO, check if hardware checksum is needed */
411                 if (ol_flags & PKT_TX_IP_CKSUM) {
412                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
413                         tx_offload_mask.l2_len |= ~0;
414                         tx_offload_mask.l3_len |= ~0;
415                 }
416
417                 switch (ol_flags & PKT_TX_L4_MASK) {
418                 case PKT_TX_UDP_CKSUM:
419                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
420                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
421                         mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
429                         tx_offload_mask.l2_len |= ~0;
430                         tx_offload_mask.l3_len |= ~0;
431                         break;
432                 case PKT_TX_SCTP_CKSUM:
433                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
434                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
435                         mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
436                         tx_offload_mask.l2_len |= ~0;
437                         tx_offload_mask.l3_len |= ~0;
438                         break;
439                 default:
440                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
441                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
442                         break;
443                 }
444         }
445
446         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
447                 tx_offload_mask.outer_l2_len |= ~0;
448                 tx_offload_mask.outer_l3_len |= ~0;
449                 tx_offload_mask.l2_len |= ~0;
450                 seqnum_seed |= tx_offload.outer_l3_len
451                                << IXGBE_ADVTXD_OUTER_IPLEN;
452                 seqnum_seed |= tx_offload.l2_len
453                                << IXGBE_ADVTXD_TUNNEL_LEN;
454         }
455 #ifdef RTE_LIBRTE_SECURITY
456         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
457                 union ixgbe_crypto_tx_desc_md *md =
458                                 (union ixgbe_crypto_tx_desc_md *)mdata;
459                 seqnum_seed |=
460                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
461                 type_tucmd_mlhl |= md->enc ?
462                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
463                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
464                 type_tucmd_mlhl |=
465                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
466                 tx_offload_mask.sa_idx |= ~0;
467                 tx_offload_mask.sec_pad_len |= ~0;
468         }
469 #endif
470
471         txq->ctx_cache[ctx_idx].flags = ol_flags;
472         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
473                 tx_offload_mask.data[0] & tx_offload.data[0];
474         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
475                 tx_offload_mask.data[1] & tx_offload.data[1];
476         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
477
478         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
479         vlan_macip_lens = tx_offload.l3_len;
480         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
481                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
482                                     IXGBE_ADVTXD_MACLEN_SHIFT);
483         else
484                 vlan_macip_lens |= (tx_offload.l2_len <<
485                                     IXGBE_ADVTXD_MACLEN_SHIFT);
486         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
487         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
488         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
489         ctx_txd->seqnum_seed     = seqnum_seed;
490 }
491
492 /*
493  * Check which hardware context can be used. Use the existing match
494  * or create a new context descriptor.
495  */
496 static inline uint32_t
497 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
498                    union ixgbe_tx_offload tx_offload)
499 {
500         /* If match with the current used context */
501         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
502                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
503                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
504                      & tx_offload.data[0])) &&
505                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
506                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
507                      & tx_offload.data[1]))))
508                 return txq->ctx_curr;
509
510         /* What if match with the next context  */
511         txq->ctx_curr ^= 1;
512         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
513                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
514                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
515                      & tx_offload.data[0])) &&
516                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
517                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
518                      & tx_offload.data[1]))))
519                 return txq->ctx_curr;
520
521         /* Mismatch, use the previous context */
522         return IXGBE_CTX_NUM;
523 }
524
525 static inline uint32_t
526 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
527 {
528         uint32_t tmp = 0;
529
530         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
531                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
532         if (ol_flags & PKT_TX_IP_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
534         if (ol_flags & PKT_TX_TCP_SEG)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         return tmp;
537 }
538
539 static inline uint32_t
540 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
541 {
542         uint32_t cmdtype = 0;
543
544         if (ol_flags & PKT_TX_VLAN_PKT)
545                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
546         if (ol_flags & PKT_TX_TCP_SEG)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
548         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
549                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
550         if (ol_flags & PKT_TX_MACSEC)
551                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
552         return cmdtype;
553 }
554
555 /* Default RS bit threshold values */
556 #ifndef DEFAULT_TX_RS_THRESH
557 #define DEFAULT_TX_RS_THRESH   32
558 #endif
559 #ifndef DEFAULT_TX_FREE_THRESH
560 #define DEFAULT_TX_FREE_THRESH 32
561 #endif
562
563 /* Reset transmit descriptors after they have been used */
564 static inline int
565 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
566 {
567         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
568         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
570         uint16_t nb_tx_desc = txq->nb_tx_desc;
571         uint16_t desc_to_clean_to;
572         uint16_t nb_tx_to_clean;
573         uint32_t status;
574
575         /* Determine the last descriptor needing to be cleaned */
576         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
577         if (desc_to_clean_to >= nb_tx_desc)
578                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
579
580         /* Check to make sure the last descriptor to clean is done */
581         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
582         status = txr[desc_to_clean_to].wb.status;
583         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
584                 PMD_TX_FREE_LOG(DEBUG,
585                                 "TX descriptor %4u is not done"
586                                 "(port=%d queue=%d)",
587                                 desc_to_clean_to,
588                                 txq->port_id, txq->queue_id);
589                 /* Failed to clean any descriptors, better luck next time */
590                 return -(1);
591         }
592
593         /* Figure out how many descriptors will be cleaned */
594         if (last_desc_cleaned > desc_to_clean_to)
595                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
596                                                         desc_to_clean_to);
597         else
598                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
599                                                 last_desc_cleaned);
600
601         PMD_TX_FREE_LOG(DEBUG,
602                         "Cleaning %4u TX descriptors: %4u to %4u "
603                         "(port=%d queue=%d)",
604                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
605                         txq->port_id, txq->queue_id);
606
607         /*
608          * The last descriptor to clean is done, so that means all the
609          * descriptors from the last descriptor that was cleaned
610          * up to the last descriptor with the RS bit set
611          * are done. Only reset the threshold descriptor.
612          */
613         txr[desc_to_clean_to].wb.status = 0;
614
615         /* Update the txq to reflect the last descriptor that was cleaned */
616         txq->last_desc_cleaned = desc_to_clean_to;
617         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
618
619         /* No Error */
620         return 0;
621 }
622
623 uint16_t
624 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
625                 uint16_t nb_pkts)
626 {
627         struct ixgbe_tx_queue *txq;
628         struct ixgbe_tx_entry *sw_ring;
629         struct ixgbe_tx_entry *txe, *txn;
630         volatile union ixgbe_adv_tx_desc *txr;
631         volatile union ixgbe_adv_tx_desc *txd, *txp;
632         struct rte_mbuf     *tx_pkt;
633         struct rte_mbuf     *m_seg;
634         uint64_t buf_dma_addr;
635         uint32_t olinfo_status;
636         uint32_t cmd_type_len;
637         uint32_t pkt_len;
638         uint16_t slen;
639         uint64_t ol_flags;
640         uint16_t tx_id;
641         uint16_t tx_last;
642         uint16_t nb_tx;
643         uint16_t nb_used;
644         uint64_t tx_ol_req;
645         uint32_t ctx = 0;
646         uint32_t new_ctx;
647         union ixgbe_tx_offload tx_offload;
648 #ifdef RTE_LIBRTE_SECURITY
649         uint8_t use_ipsec;
650 #endif
651
652         tx_offload.data[0] = 0;
653         tx_offload.data[1] = 0;
654         txq = tx_queue;
655         sw_ring = txq->sw_ring;
656         txr     = txq->tx_ring;
657         tx_id   = txq->tx_tail;
658         txe = &sw_ring[tx_id];
659         txp = NULL;
660
661         /* Determine if the descriptor ring needs to be cleaned. */
662         if (txq->nb_tx_free < txq->tx_free_thresh)
663                 ixgbe_xmit_cleanup(txq);
664
665         rte_prefetch0(&txe->mbuf->pool);
666
667         /* TX loop */
668         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
669                 new_ctx = 0;
670                 tx_pkt = *tx_pkts++;
671                 pkt_len = tx_pkt->pkt_len;
672
673                 /*
674                  * Determine how many (if any) context descriptors
675                  * are needed for offload functionality.
676                  */
677                 ol_flags = tx_pkt->ol_flags;
678 #ifdef RTE_LIBRTE_SECURITY
679                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
680 #endif
681
682                 /* If hardware offload required */
683                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
684                 if (tx_ol_req) {
685                         tx_offload.l2_len = tx_pkt->l2_len;
686                         tx_offload.l3_len = tx_pkt->l3_len;
687                         tx_offload.l4_len = tx_pkt->l4_len;
688                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
689                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
690                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
691                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
692 #ifdef RTE_LIBRTE_SECURITY
693                         if (use_ipsec) {
694                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
695                                         (union ixgbe_crypto_tx_desc_md *)
696                                                         &tx_pkt->udata64;
697                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
698                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
699                         }
700 #endif
701
702                         /* If new context need be built or reuse the exist ctx. */
703                         ctx = what_advctx_update(txq, tx_ol_req,
704                                 tx_offload);
705                         /* Only allocate context descriptor if required*/
706                         new_ctx = (ctx == IXGBE_CTX_NUM);
707                         ctx = txq->ctx_curr;
708                 }
709
710                 /*
711                  * Keep track of how many descriptors are used this loop
712                  * This will always be the number of segments + the number of
713                  * Context descriptors required to transmit the packet
714                  */
715                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
716
717                 if (txp != NULL &&
718                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
719                         /* set RS on the previous packet in the burst */
720                         txp->read.cmd_type_len |=
721                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
722
723                 /*
724                  * The number of descriptors that must be allocated for a
725                  * packet is the number of segments of that packet, plus 1
726                  * Context Descriptor for the hardware offload, if any.
727                  * Determine the last TX descriptor to allocate in the TX ring
728                  * for the packet, starting from the current position (tx_id)
729                  * in the ring.
730                  */
731                 tx_last = (uint16_t) (tx_id + nb_used - 1);
732
733                 /* Circular ring */
734                 if (tx_last >= txq->nb_tx_desc)
735                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
736
737                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
738                            " tx_first=%u tx_last=%u",
739                            (unsigned) txq->port_id,
740                            (unsigned) txq->queue_id,
741                            (unsigned) pkt_len,
742                            (unsigned) tx_id,
743                            (unsigned) tx_last);
744
745                 /*
746                  * Make sure there are enough TX descriptors available to
747                  * transmit the entire packet.
748                  * nb_used better be less than or equal to txq->tx_rs_thresh
749                  */
750                 if (nb_used > txq->nb_tx_free) {
751                         PMD_TX_FREE_LOG(DEBUG,
752                                         "Not enough free TX descriptors "
753                                         "nb_used=%4u nb_free=%4u "
754                                         "(port=%d queue=%d)",
755                                         nb_used, txq->nb_tx_free,
756                                         txq->port_id, txq->queue_id);
757
758                         if (ixgbe_xmit_cleanup(txq) != 0) {
759                                 /* Could not clean any descriptors */
760                                 if (nb_tx == 0)
761                                         return 0;
762                                 goto end_of_tx;
763                         }
764
765                         /* nb_used better be <= txq->tx_rs_thresh */
766                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
767                                 PMD_TX_FREE_LOG(DEBUG,
768                                         "The number of descriptors needed to "
769                                         "transmit the packet exceeds the "
770                                         "RS bit threshold. This will impact "
771                                         "performance."
772                                         "nb_used=%4u nb_free=%4u "
773                                         "tx_rs_thresh=%4u. "
774                                         "(port=%d queue=%d)",
775                                         nb_used, txq->nb_tx_free,
776                                         txq->tx_rs_thresh,
777                                         txq->port_id, txq->queue_id);
778                                 /*
779                                  * Loop here until there are enough TX
780                                  * descriptors or until the ring cannot be
781                                  * cleaned.
782                                  */
783                                 while (nb_used > txq->nb_tx_free) {
784                                         if (ixgbe_xmit_cleanup(txq) != 0) {
785                                                 /*
786                                                  * Could not clean any
787                                                  * descriptors
788                                                  */
789                                                 if (nb_tx == 0)
790                                                         return 0;
791                                                 goto end_of_tx;
792                                         }
793                                 }
794                         }
795                 }
796
797                 /*
798                  * By now there are enough free TX descriptors to transmit
799                  * the packet.
800                  */
801
802                 /*
803                  * Set common flags of all TX Data Descriptors.
804                  *
805                  * The following bits must be set in all Data Descriptors:
806                  *   - IXGBE_ADVTXD_DTYP_DATA
807                  *   - IXGBE_ADVTXD_DCMD_DEXT
808                  *
809                  * The following bits must be set in the first Data Descriptor
810                  * and are ignored in the other ones:
811                  *   - IXGBE_ADVTXD_DCMD_IFCS
812                  *   - IXGBE_ADVTXD_MAC_1588
813                  *   - IXGBE_ADVTXD_DCMD_VLE
814                  *
815                  * The following bits must only be set in the last Data
816                  * Descriptor:
817                  *   - IXGBE_TXD_CMD_EOP
818                  *
819                  * The following bits can be set in any Data Descriptor, but
820                  * are only set in the last Data Descriptor:
821                  *   - IXGBE_TXD_CMD_RS
822                  */
823                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
824                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
825
826 #ifdef RTE_LIBRTE_IEEE1588
827                 if (ol_flags & PKT_TX_IEEE1588_TMST)
828                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
829 #endif
830
831                 olinfo_status = 0;
832                 if (tx_ol_req) {
833
834                         if (ol_flags & PKT_TX_TCP_SEG) {
835                                 /* when TSO is on, paylen in descriptor is the
836                                  * not the packet len but the tcp payload len */
837                                 pkt_len -= (tx_offload.l2_len +
838                                         tx_offload.l3_len + tx_offload.l4_len);
839                         }
840
841                         /*
842                          * Setup the TX Advanced Context Descriptor if required
843                          */
844                         if (new_ctx) {
845                                 volatile struct ixgbe_adv_tx_context_desc *
846                                     ctx_txd;
847
848                                 ctx_txd = (volatile struct
849                                     ixgbe_adv_tx_context_desc *)
850                                     &txr[tx_id];
851
852                                 txn = &sw_ring[txe->next_id];
853                                 rte_prefetch0(&txn->mbuf->pool);
854
855                                 if (txe->mbuf != NULL) {
856                                         rte_pktmbuf_free_seg(txe->mbuf);
857                                         txe->mbuf = NULL;
858                                 }
859
860                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
861                                         tx_offload, &tx_pkt->udata64);
862
863                                 txe->last_id = tx_last;
864                                 tx_id = txe->next_id;
865                                 txe = txn;
866                         }
867
868                         /*
869                          * Setup the TX Advanced Data Descriptor,
870                          * This path will go through
871                          * whatever new/reuse the context descriptor
872                          */
873                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
874                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
875                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
876                 }
877
878                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
879 #ifdef RTE_LIBRTE_SECURITY
880                 if (use_ipsec)
881                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
882 #endif
883
884                 m_seg = tx_pkt;
885                 do {
886                         txd = &txr[tx_id];
887                         txn = &sw_ring[txe->next_id];
888                         rte_prefetch0(&txn->mbuf->pool);
889
890                         if (txe->mbuf != NULL)
891                                 rte_pktmbuf_free_seg(txe->mbuf);
892                         txe->mbuf = m_seg;
893
894                         /*
895                          * Set up Transmit Data Descriptor.
896                          */
897                         slen = m_seg->data_len;
898                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
899                         txd->read.buffer_addr =
900                                 rte_cpu_to_le_64(buf_dma_addr);
901                         txd->read.cmd_type_len =
902                                 rte_cpu_to_le_32(cmd_type_len | slen);
903                         txd->read.olinfo_status =
904                                 rte_cpu_to_le_32(olinfo_status);
905                         txe->last_id = tx_last;
906                         tx_id = txe->next_id;
907                         txe = txn;
908                         m_seg = m_seg->next;
909                 } while (m_seg != NULL);
910
911                 /*
912                  * The last packet data descriptor needs End Of Packet (EOP)
913                  */
914                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
915                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
916                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
917
918                 /* Set RS bit only on threshold packets' last descriptor */
919                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
920                         PMD_TX_FREE_LOG(DEBUG,
921                                         "Setting RS bit on TXD id="
922                                         "%4u (port=%d queue=%d)",
923                                         tx_last, txq->port_id, txq->queue_id);
924
925                         cmd_type_len |= IXGBE_TXD_CMD_RS;
926
927                         /* Update txq RS bit counters */
928                         txq->nb_tx_used = 0;
929                         txp = NULL;
930                 } else
931                         txp = txd;
932
933                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
934         }
935
936 end_of_tx:
937         /* set RS on last packet in the burst */
938         if (txp != NULL)
939                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
940
941         rte_wmb();
942
943         /*
944          * Set the Transmit Descriptor Tail (TDT)
945          */
946         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
947                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
948                    (unsigned) tx_id, (unsigned) nb_tx);
949         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
950         txq->tx_tail = tx_id;
951
952         return nb_tx;
953 }
954
955 /*********************************************************************
956  *
957  *  TX prep functions
958  *
959  **********************************************************************/
960 uint16_t
961 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
962 {
963         int i, ret;
964         uint64_t ol_flags;
965         struct rte_mbuf *m;
966         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
967
968         for (i = 0; i < nb_pkts; i++) {
969                 m = tx_pkts[i];
970                 ol_flags = m->ol_flags;
971
972                 /**
973                  * Check if packet meets requirements for number of segments
974                  *
975                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
976                  *       non-TSO
977                  */
978
979                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
980                         rte_errno = -EINVAL;
981                         return i;
982                 }
983
984                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
985                         rte_errno = -ENOTSUP;
986                         return i;
987                 }
988
989 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
990                 ret = rte_validate_tx_offload(m);
991                 if (ret != 0) {
992                         rte_errno = ret;
993                         return i;
994                 }
995 #endif
996                 ret = rte_net_intel_cksum_prepare(m);
997                 if (ret != 0) {
998                         rte_errno = ret;
999                         return i;
1000                 }
1001         }
1002
1003         return i;
1004 }
1005
1006 /*********************************************************************
1007  *
1008  *  RX functions
1009  *
1010  **********************************************************************/
1011
1012 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1013 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1014 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1015 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1016 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1017 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1018 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1019 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1020 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1021 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1022 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1023 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1024 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1025 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1026 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1027 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1028 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1029 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1030 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1031 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1032 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1033 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1034 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1035 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1036 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1045
1046 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1047 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1048 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1049 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1050 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1051 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1052 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1053 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1069
1070 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1071 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1072 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1073 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1074 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1075 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1076 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1077 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1093
1094 /**
1095  * Use 2 different table for normal packet and tunnel packet
1096  * to save the space.
1097  */
1098 const uint32_t
1099         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1100         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1101         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1102                 RTE_PTYPE_L3_IPV4,
1103         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1104                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1105         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1106                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1107         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1108                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1109         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1110                 RTE_PTYPE_L3_IPV4_EXT,
1111         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1112                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1113         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1114                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1115         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1116                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1117         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1118                 RTE_PTYPE_L3_IPV6,
1119         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1120                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1121         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1122                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1123         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1124                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1125         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1126                 RTE_PTYPE_L3_IPV6_EXT,
1127         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1128                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1129         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1130                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1131         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1132                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1133         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1134                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1135                 RTE_PTYPE_INNER_L3_IPV6,
1136         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1138                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1139         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1140                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1141         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1145         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6,
1148         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1150                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1151         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1157         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1160         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1163         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1169         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1172         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1175         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1179                 RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1182 };
1183
1184 const uint32_t
1185         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1186         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1188                 RTE_PTYPE_INNER_L2_ETHER,
1189         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1190                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1191                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1192         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1193                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1194                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1195         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1210                 RTE_PTYPE_INNER_L4_TCP,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1214                 RTE_PTYPE_INNER_L4_TCP,
1215         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1216                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1217                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1223                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1224                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1225                 RTE_PTYPE_INNER_L3_IPV4,
1226         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1227                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1228                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1229                 RTE_PTYPE_INNER_L4_UDP,
1230         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1231                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1232                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1233                 RTE_PTYPE_INNER_L4_UDP,
1234         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1235                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1236                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1237                 RTE_PTYPE_INNER_L4_SCTP,
1238         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1239                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1240                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1244                 RTE_PTYPE_INNER_L4_UDP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1248                 RTE_PTYPE_INNER_L4_SCTP,
1249         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1250                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1251                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1252                 RTE_PTYPE_INNER_L3_IPV4,
1253         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1254                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1255                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1256                 RTE_PTYPE_INNER_L4_SCTP,
1257         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1258                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1259                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1260                 RTE_PTYPE_INNER_L4_SCTP,
1261         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1262                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1263                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1264                 RTE_PTYPE_INNER_L4_TCP,
1265         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1266                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1267                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1268                 RTE_PTYPE_INNER_L4_UDP,
1269
1270         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1272                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1273         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1274                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1275                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1276                 RTE_PTYPE_INNER_L3_IPV4,
1277         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1280                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1281         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1282                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1283                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1284                 RTE_PTYPE_INNER_L3_IPV6,
1285         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1286                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1287                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1288                 RTE_PTYPE_INNER_L3_IPV4,
1289         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1290                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1291                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1292                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1293         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1294                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1295                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1296                 RTE_PTYPE_INNER_L3_IPV4,
1297         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1298                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1299                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1300                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1301         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1302                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1303                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1304                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1305         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1306                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1307                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1308                 RTE_PTYPE_INNER_L3_IPV4,
1309         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1310                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1311                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1312                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1313         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1314                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1315                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1316                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1317         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1318                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1319                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1320                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1321         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1322                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1323                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1324                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1325         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1326                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1327                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1328                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1329         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1330                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1331                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1332                 RTE_PTYPE_INNER_L3_IPV4,
1333         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1334                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1335                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1336                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1337         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1338                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1339                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1340                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1341         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1342                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1343                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1344                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1345         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1346                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1347                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1348                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1349         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1350                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1351                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1352                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1353         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1354                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1355                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1356                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1357         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1358                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1359                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1360                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1361 };
1362
1363 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1364 static inline uint32_t
1365 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1366 {
1367
1368         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1369                 return RTE_PTYPE_UNKNOWN;
1370
1371         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1372
1373         /* For tunnel packet */
1374         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1375                 /* Remove the tunnel bit to save the space. */
1376                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1377                 return ptype_table_tn[pkt_info];
1378         }
1379
1380         /**
1381          * For x550, if it's not tunnel,
1382          * tunnel type bit should be set to 0.
1383          * Reuse 82599's mask.
1384          */
1385         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1386
1387         return ptype_table[pkt_info];
1388 }
1389
1390 static inline uint64_t
1391 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1392 {
1393         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1394                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1395                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1396                 PKT_RX_RSS_HASH, 0, 0, 0,
1397                 0, 0, 0,  PKT_RX_FDIR,
1398         };
1399 #ifdef RTE_LIBRTE_IEEE1588
1400         static uint64_t ip_pkt_etqf_map[8] = {
1401                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1402                 0, 0, 0, 0,
1403         };
1404
1405         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1406                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1407                                 ip_rss_types_map[pkt_info & 0XF];
1408         else
1409                 return ip_rss_types_map[pkt_info & 0XF];
1410 #else
1411         return ip_rss_types_map[pkt_info & 0XF];
1412 #endif
1413 }
1414
1415 static inline uint64_t
1416 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1417 {
1418         uint64_t pkt_flags;
1419
1420         /*
1421          * Check if VLAN present only.
1422          * Do not check whether L3/L4 rx checksum done by NIC or not,
1423          * That can be found from rte_eth_rxmode.offloads flag
1424          */
1425         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1426
1427 #ifdef RTE_LIBRTE_IEEE1588
1428         if (rx_status & IXGBE_RXD_STAT_TMST)
1429                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1430 #endif
1431         return pkt_flags;
1432 }
1433
1434 static inline uint64_t
1435 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1436 {
1437         uint64_t pkt_flags;
1438
1439         /*
1440          * Bit 31: IPE, IPv4 checksum error
1441          * Bit 30: L4I, L4I integrity error
1442          */
1443         static uint64_t error_to_pkt_flags_map[4] = {
1444                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1445                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1446                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1447                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1448         };
1449         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1450                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1451
1452         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1453             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1454                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1455         }
1456
1457 #ifdef RTE_LIBRTE_SECURITY
1458         if (rx_status & IXGBE_RXD_STAT_SECP) {
1459                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1460                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1461                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1462         }
1463 #endif
1464
1465         return pkt_flags;
1466 }
1467
1468 /*
1469  * LOOK_AHEAD defines how many desc statuses to check beyond the
1470  * current descriptor.
1471  * It must be a pound define for optimal performance.
1472  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1473  * function only works with LOOK_AHEAD=8.
1474  */
1475 #define LOOK_AHEAD 8
1476 #if (LOOK_AHEAD != 8)
1477 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1478 #endif
1479 static inline int
1480 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1481 {
1482         volatile union ixgbe_adv_rx_desc *rxdp;
1483         struct ixgbe_rx_entry *rxep;
1484         struct rte_mbuf *mb;
1485         uint16_t pkt_len;
1486         uint64_t pkt_flags;
1487         int nb_dd;
1488         uint32_t s[LOOK_AHEAD];
1489         uint32_t pkt_info[LOOK_AHEAD];
1490         int i, j, nb_rx = 0;
1491         uint32_t status;
1492         uint64_t vlan_flags = rxq->vlan_flags;
1493
1494         /* get references to current descriptor and S/W ring entry */
1495         rxdp = &rxq->rx_ring[rxq->rx_tail];
1496         rxep = &rxq->sw_ring[rxq->rx_tail];
1497
1498         status = rxdp->wb.upper.status_error;
1499         /* check to make sure there is at least 1 packet to receive */
1500         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1501                 return 0;
1502
1503         /*
1504          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1505          * reference packets that are ready to be received.
1506          */
1507         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1508              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1509                 /* Read desc statuses backwards to avoid race condition */
1510                 for (j = 0; j < LOOK_AHEAD; j++)
1511                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1512
1513                 rte_smp_rmb();
1514
1515                 /* Compute how many status bits were set */
1516                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1517                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1518                         ;
1519
1520                 for (j = 0; j < nb_dd; j++)
1521                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1522                                                        lo_dword.data);
1523
1524                 nb_rx += nb_dd;
1525
1526                 /* Translate descriptor info to mbuf format */
1527                 for (j = 0; j < nb_dd; ++j) {
1528                         mb = rxep[j].mbuf;
1529                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1530                                   rxq->crc_len;
1531                         mb->data_len = pkt_len;
1532                         mb->pkt_len = pkt_len;
1533                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1534
1535                         /* convert descriptor fields to rte mbuf flags */
1536                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1537                                 vlan_flags);
1538                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1539                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1540                                         ((uint16_t)pkt_info[j]);
1541                         mb->ol_flags = pkt_flags;
1542                         mb->packet_type =
1543                                 ixgbe_rxd_pkt_info_to_pkt_type
1544                                         (pkt_info[j], rxq->pkt_type_mask);
1545
1546                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1547                                 mb->hash.rss = rte_le_to_cpu_32(
1548                                     rxdp[j].wb.lower.hi_dword.rss);
1549                         else if (pkt_flags & PKT_RX_FDIR) {
1550                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1551                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1552                                     IXGBE_ATR_HASH_MASK;
1553                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1554                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1555                         }
1556                 }
1557
1558                 /* Move mbuf pointers from the S/W ring to the stage */
1559                 for (j = 0; j < LOOK_AHEAD; ++j) {
1560                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1561                 }
1562
1563                 /* stop if all requested packets could not be received */
1564                 if (nb_dd != LOOK_AHEAD)
1565                         break;
1566         }
1567
1568         /* clear software ring entries so we can cleanup correctly */
1569         for (i = 0; i < nb_rx; ++i) {
1570                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1571         }
1572
1573
1574         return nb_rx;
1575 }
1576
1577 static inline int
1578 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1579 {
1580         volatile union ixgbe_adv_rx_desc *rxdp;
1581         struct ixgbe_rx_entry *rxep;
1582         struct rte_mbuf *mb;
1583         uint16_t alloc_idx;
1584         __le64 dma_addr;
1585         int diag, i;
1586
1587         /* allocate buffers in bulk directly into the S/W ring */
1588         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1589         rxep = &rxq->sw_ring[alloc_idx];
1590         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1591                                     rxq->rx_free_thresh);
1592         if (unlikely(diag != 0))
1593                 return -ENOMEM;
1594
1595         rxdp = &rxq->rx_ring[alloc_idx];
1596         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1597                 /* populate the static rte mbuf fields */
1598                 mb = rxep[i].mbuf;
1599                 if (reset_mbuf) {
1600                         mb->port = rxq->port_id;
1601                 }
1602
1603                 rte_mbuf_refcnt_set(mb, 1);
1604                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1605
1606                 /* populate the descriptors */
1607                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1608                 rxdp[i].read.hdr_addr = 0;
1609                 rxdp[i].read.pkt_addr = dma_addr;
1610         }
1611
1612         /* update state of internal queue structure */
1613         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1614         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1615                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1616
1617         /* no errors */
1618         return 0;
1619 }
1620
1621 static inline uint16_t
1622 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1623                          uint16_t nb_pkts)
1624 {
1625         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1626         int i;
1627
1628         /* how many packets are ready to return? */
1629         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1630
1631         /* copy mbuf pointers to the application's packet list */
1632         for (i = 0; i < nb_pkts; ++i)
1633                 rx_pkts[i] = stage[i];
1634
1635         /* update internal queue state */
1636         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1637         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1638
1639         return nb_pkts;
1640 }
1641
1642 static inline uint16_t
1643 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1644              uint16_t nb_pkts)
1645 {
1646         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1647         uint16_t nb_rx = 0;
1648
1649         /* Any previously recv'd pkts will be returned from the Rx stage */
1650         if (rxq->rx_nb_avail)
1651                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1652
1653         /* Scan the H/W ring for packets to receive */
1654         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1655
1656         /* update internal queue state */
1657         rxq->rx_next_avail = 0;
1658         rxq->rx_nb_avail = nb_rx;
1659         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1660
1661         /* if required, allocate new buffers to replenish descriptors */
1662         if (rxq->rx_tail > rxq->rx_free_trigger) {
1663                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1664
1665                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1666                         int i, j;
1667
1668                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1669                                    "queue_id=%u", (unsigned) rxq->port_id,
1670                                    (unsigned) rxq->queue_id);
1671
1672                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1673                                 rxq->rx_free_thresh;
1674
1675                         /*
1676                          * Need to rewind any previous receives if we cannot
1677                          * allocate new buffers to replenish the old ones.
1678                          */
1679                         rxq->rx_nb_avail = 0;
1680                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1681                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1682                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1683
1684                         return 0;
1685                 }
1686
1687                 /* update tail pointer */
1688                 rte_wmb();
1689                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1690                                             cur_free_trigger);
1691         }
1692
1693         if (rxq->rx_tail >= rxq->nb_rx_desc)
1694                 rxq->rx_tail = 0;
1695
1696         /* received any packets this loop? */
1697         if (rxq->rx_nb_avail)
1698                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1699
1700         return 0;
1701 }
1702
1703 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1704 uint16_t
1705 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1706                            uint16_t nb_pkts)
1707 {
1708         uint16_t nb_rx;
1709
1710         if (unlikely(nb_pkts == 0))
1711                 return 0;
1712
1713         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1714                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1715
1716         /* request is relatively large, chunk it up */
1717         nb_rx = 0;
1718         while (nb_pkts) {
1719                 uint16_t ret, n;
1720
1721                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1722                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1723                 nb_rx = (uint16_t)(nb_rx + ret);
1724                 nb_pkts = (uint16_t)(nb_pkts - ret);
1725                 if (ret < n)
1726                         break;
1727         }
1728
1729         return nb_rx;
1730 }
1731
1732 uint16_t
1733 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1734                 uint16_t nb_pkts)
1735 {
1736         struct ixgbe_rx_queue *rxq;
1737         volatile union ixgbe_adv_rx_desc *rx_ring;
1738         volatile union ixgbe_adv_rx_desc *rxdp;
1739         struct ixgbe_rx_entry *sw_ring;
1740         struct ixgbe_rx_entry *rxe;
1741         struct rte_mbuf *rxm;
1742         struct rte_mbuf *nmb;
1743         union ixgbe_adv_rx_desc rxd;
1744         uint64_t dma_addr;
1745         uint32_t staterr;
1746         uint32_t pkt_info;
1747         uint16_t pkt_len;
1748         uint16_t rx_id;
1749         uint16_t nb_rx;
1750         uint16_t nb_hold;
1751         uint64_t pkt_flags;
1752         uint64_t vlan_flags;
1753
1754         nb_rx = 0;
1755         nb_hold = 0;
1756         rxq = rx_queue;
1757         rx_id = rxq->rx_tail;
1758         rx_ring = rxq->rx_ring;
1759         sw_ring = rxq->sw_ring;
1760         vlan_flags = rxq->vlan_flags;
1761         while (nb_rx < nb_pkts) {
1762                 /*
1763                  * The order of operations here is important as the DD status
1764                  * bit must not be read after any other descriptor fields.
1765                  * rx_ring and rxdp are pointing to volatile data so the order
1766                  * of accesses cannot be reordered by the compiler. If they were
1767                  * not volatile, they could be reordered which could lead to
1768                  * using invalid descriptor fields when read from rxd.
1769                  */
1770                 rxdp = &rx_ring[rx_id];
1771                 staterr = rxdp->wb.upper.status_error;
1772                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1773                         break;
1774                 rxd = *rxdp;
1775
1776                 /*
1777                  * End of packet.
1778                  *
1779                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1780                  * is likely to be invalid and to be dropped by the various
1781                  * validation checks performed by the network stack.
1782                  *
1783                  * Allocate a new mbuf to replenish the RX ring descriptor.
1784                  * If the allocation fails:
1785                  *    - arrange for that RX descriptor to be the first one
1786                  *      being parsed the next time the receive function is
1787                  *      invoked [on the same queue].
1788                  *
1789                  *    - Stop parsing the RX ring and return immediately.
1790                  *
1791                  * This policy do not drop the packet received in the RX
1792                  * descriptor for which the allocation of a new mbuf failed.
1793                  * Thus, it allows that packet to be later retrieved if
1794                  * mbuf have been freed in the mean time.
1795                  * As a side effect, holding RX descriptors instead of
1796                  * systematically giving them back to the NIC may lead to
1797                  * RX ring exhaustion situations.
1798                  * However, the NIC can gracefully prevent such situations
1799                  * to happen by sending specific "back-pressure" flow control
1800                  * frames to its peer(s).
1801                  */
1802                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1803                            "ext_err_stat=0x%08x pkt_len=%u",
1804                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1805                            (unsigned) rx_id, (unsigned) staterr,
1806                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1807
1808                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1809                 if (nmb == NULL) {
1810                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1811                                    "queue_id=%u", (unsigned) rxq->port_id,
1812                                    (unsigned) rxq->queue_id);
1813                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1814                         break;
1815                 }
1816
1817                 nb_hold++;
1818                 rxe = &sw_ring[rx_id];
1819                 rx_id++;
1820                 if (rx_id == rxq->nb_rx_desc)
1821                         rx_id = 0;
1822
1823                 /* Prefetch next mbuf while processing current one. */
1824                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1825
1826                 /*
1827                  * When next RX descriptor is on a cache-line boundary,
1828                  * prefetch the next 4 RX descriptors and the next 8 pointers
1829                  * to mbufs.
1830                  */
1831                 if ((rx_id & 0x3) == 0) {
1832                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1833                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1834                 }
1835
1836                 rxm = rxe->mbuf;
1837                 rxe->mbuf = nmb;
1838                 dma_addr =
1839                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1840                 rxdp->read.hdr_addr = 0;
1841                 rxdp->read.pkt_addr = dma_addr;
1842
1843                 /*
1844                  * Initialize the returned mbuf.
1845                  * 1) setup generic mbuf fields:
1846                  *    - number of segments,
1847                  *    - next segment,
1848                  *    - packet length,
1849                  *    - RX port identifier.
1850                  * 2) integrate hardware offload data, if any:
1851                  *    - RSS flag & hash,
1852                  *    - IP checksum flag,
1853                  *    - VLAN TCI, if any,
1854                  *    - error flags.
1855                  */
1856                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1857                                       rxq->crc_len);
1858                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1859                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1860                 rxm->nb_segs = 1;
1861                 rxm->next = NULL;
1862                 rxm->pkt_len = pkt_len;
1863                 rxm->data_len = pkt_len;
1864                 rxm->port = rxq->port_id;
1865
1866                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1867                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1868                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1869
1870                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1871                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1872                 pkt_flags = pkt_flags |
1873                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1874                 rxm->ol_flags = pkt_flags;
1875                 rxm->packet_type =
1876                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1877                                                        rxq->pkt_type_mask);
1878
1879                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1880                         rxm->hash.rss = rte_le_to_cpu_32(
1881                                                 rxd.wb.lower.hi_dword.rss);
1882                 else if (pkt_flags & PKT_RX_FDIR) {
1883                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1884                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1885                                         IXGBE_ATR_HASH_MASK;
1886                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1887                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1888                 }
1889                 /*
1890                  * Store the mbuf address into the next entry of the array
1891                  * of returned packets.
1892                  */
1893                 rx_pkts[nb_rx++] = rxm;
1894         }
1895         rxq->rx_tail = rx_id;
1896
1897         /*
1898          * If the number of free RX descriptors is greater than the RX free
1899          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1900          * register.
1901          * Update the RDT with the value of the last processed RX descriptor
1902          * minus 1, to guarantee that the RDT register is never equal to the
1903          * RDH register, which creates a "full" ring situtation from the
1904          * hardware point of view...
1905          */
1906         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1907         if (nb_hold > rxq->rx_free_thresh) {
1908                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1909                            "nb_hold=%u nb_rx=%u",
1910                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1911                            (unsigned) rx_id, (unsigned) nb_hold,
1912                            (unsigned) nb_rx);
1913                 rx_id = (uint16_t) ((rx_id == 0) ?
1914                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1915                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1916                 nb_hold = 0;
1917         }
1918         rxq->nb_rx_hold = nb_hold;
1919         return nb_rx;
1920 }
1921
1922 /**
1923  * Detect an RSC descriptor.
1924  */
1925 static inline uint32_t
1926 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1927 {
1928         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1929                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1930 }
1931
1932 /**
1933  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1934  *
1935  * Fill the following info in the HEAD buffer of the Rx cluster:
1936  *    - RX port identifier
1937  *    - hardware offload data, if any:
1938  *      - RSS flag & hash
1939  *      - IP checksum flag
1940  *      - VLAN TCI, if any
1941  *      - error flags
1942  * @head HEAD of the packet cluster
1943  * @desc HW descriptor to get data from
1944  * @rxq Pointer to the Rx queue
1945  */
1946 static inline void
1947 ixgbe_fill_cluster_head_buf(
1948         struct rte_mbuf *head,
1949         union ixgbe_adv_rx_desc *desc,
1950         struct ixgbe_rx_queue *rxq,
1951         uint32_t staterr)
1952 {
1953         uint32_t pkt_info;
1954         uint64_t pkt_flags;
1955
1956         head->port = rxq->port_id;
1957
1958         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1959          * set in the pkt_flags field.
1960          */
1961         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1962         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1963         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1964         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1965         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1966         head->ol_flags = pkt_flags;
1967         head->packet_type =
1968                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1969
1970         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1971                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1972         else if (pkt_flags & PKT_RX_FDIR) {
1973                 head->hash.fdir.hash =
1974                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1975                                                           & IXGBE_ATR_HASH_MASK;
1976                 head->hash.fdir.id =
1977                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1978         }
1979 }
1980
1981 /**
1982  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1983  *
1984  * @rx_queue Rx queue handle
1985  * @rx_pkts table of received packets
1986  * @nb_pkts size of rx_pkts table
1987  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1988  *
1989  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1990  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1991  *
1992  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
1993  * 1) When non-EOP RSC completion arrives:
1994  *    a) Update the HEAD of the current RSC aggregation cluster with the new
1995  *       segment's data length.
1996  *    b) Set the "next" pointer of the current segment to point to the segment
1997  *       at the NEXTP index.
1998  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
1999  *       in the sw_rsc_ring.
2000  * 2) When EOP arrives we just update the cluster's total length and offload
2001  *    flags and deliver the cluster up to the upper layers. In our case - put it
2002  *    in the rx_pkts table.
2003  *
2004  * Returns the number of received packets/clusters (according to the "bulk
2005  * receive" interface).
2006  */
2007 static inline uint16_t
2008 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2009                     bool bulk_alloc)
2010 {
2011         struct ixgbe_rx_queue *rxq = rx_queue;
2012         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2013         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2014         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2015         uint16_t rx_id = rxq->rx_tail;
2016         uint16_t nb_rx = 0;
2017         uint16_t nb_hold = rxq->nb_rx_hold;
2018         uint16_t prev_id = rxq->rx_tail;
2019
2020         while (nb_rx < nb_pkts) {
2021                 bool eop;
2022                 struct ixgbe_rx_entry *rxe;
2023                 struct ixgbe_scattered_rx_entry *sc_entry;
2024                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2025                 struct ixgbe_rx_entry *next_rxe = NULL;
2026                 struct rte_mbuf *first_seg;
2027                 struct rte_mbuf *rxm;
2028                 struct rte_mbuf *nmb;
2029                 union ixgbe_adv_rx_desc rxd;
2030                 uint16_t data_len;
2031                 uint16_t next_id;
2032                 volatile union ixgbe_adv_rx_desc *rxdp;
2033                 uint32_t staterr;
2034
2035 next_desc:
2036                 /*
2037                  * The code in this whole file uses the volatile pointer to
2038                  * ensure the read ordering of the status and the rest of the
2039                  * descriptor fields (on the compiler level only!!!). This is so
2040                  * UGLY - why not to just use the compiler barrier instead? DPDK
2041                  * even has the rte_compiler_barrier() for that.
2042                  *
2043                  * But most importantly this is just wrong because this doesn't
2044                  * ensure memory ordering in a general case at all. For
2045                  * instance, DPDK is supposed to work on Power CPUs where
2046                  * compiler barrier may just not be enough!
2047                  *
2048                  * I tried to write only this function properly to have a
2049                  * starting point (as a part of an LRO/RSC series) but the
2050                  * compiler cursed at me when I tried to cast away the
2051                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2052                  * keeping it the way it is for now.
2053                  *
2054                  * The code in this file is broken in so many other places and
2055                  * will just not work on a big endian CPU anyway therefore the
2056                  * lines below will have to be revisited together with the rest
2057                  * of the ixgbe PMD.
2058                  *
2059                  * TODO:
2060                  *    - Get rid of "volatile" crap and let the compiler do its
2061                  *      job.
2062                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2063                  *      memory ordering below.
2064                  */
2065                 rxdp = &rx_ring[rx_id];
2066                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2067
2068                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2069                         break;
2070
2071                 rxd = *rxdp;
2072
2073                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2074                                   "staterr=0x%x data_len=%u",
2075                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2076                            rte_le_to_cpu_16(rxd.wb.upper.length));
2077
2078                 if (!bulk_alloc) {
2079                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2080                         if (nmb == NULL) {
2081                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2082                                                   "port_id=%u queue_id=%u",
2083                                            rxq->port_id, rxq->queue_id);
2084
2085                                 rte_eth_devices[rxq->port_id].data->
2086                                                         rx_mbuf_alloc_failed++;
2087                                 break;
2088                         }
2089                 } else if (nb_hold > rxq->rx_free_thresh) {
2090                         uint16_t next_rdt = rxq->rx_free_trigger;
2091
2092                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2093                                 rte_wmb();
2094                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2095                                                             next_rdt);
2096                                 nb_hold -= rxq->rx_free_thresh;
2097                         } else {
2098                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2099                                                   "port_id=%u queue_id=%u",
2100                                            rxq->port_id, rxq->queue_id);
2101
2102                                 rte_eth_devices[rxq->port_id].data->
2103                                                         rx_mbuf_alloc_failed++;
2104                                 break;
2105                         }
2106                 }
2107
2108                 nb_hold++;
2109                 rxe = &sw_ring[rx_id];
2110                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2111
2112                 next_id = rx_id + 1;
2113                 if (next_id == rxq->nb_rx_desc)
2114                         next_id = 0;
2115
2116                 /* Prefetch next mbuf while processing current one. */
2117                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2118
2119                 /*
2120                  * When next RX descriptor is on a cache-line boundary,
2121                  * prefetch the next 4 RX descriptors and the next 4 pointers
2122                  * to mbufs.
2123                  */
2124                 if ((next_id & 0x3) == 0) {
2125                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2126                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2127                 }
2128
2129                 rxm = rxe->mbuf;
2130
2131                 if (!bulk_alloc) {
2132                         __le64 dma =
2133                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2134                         /*
2135                          * Update RX descriptor with the physical address of the
2136                          * new data buffer of the new allocated mbuf.
2137                          */
2138                         rxe->mbuf = nmb;
2139
2140                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2141                         rxdp->read.hdr_addr = 0;
2142                         rxdp->read.pkt_addr = dma;
2143                 } else
2144                         rxe->mbuf = NULL;
2145
2146                 /*
2147                  * Set data length & data buffer address of mbuf.
2148                  */
2149                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2150                 rxm->data_len = data_len;
2151
2152                 if (!eop) {
2153                         uint16_t nextp_id;
2154                         /*
2155                          * Get next descriptor index:
2156                          *  - For RSC it's in the NEXTP field.
2157                          *  - For a scattered packet - it's just a following
2158                          *    descriptor.
2159                          */
2160                         if (ixgbe_rsc_count(&rxd))
2161                                 nextp_id =
2162                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2163                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2164                         else
2165                                 nextp_id = next_id;
2166
2167                         next_sc_entry = &sw_sc_ring[nextp_id];
2168                         next_rxe = &sw_ring[nextp_id];
2169                         rte_ixgbe_prefetch(next_rxe);
2170                 }
2171
2172                 sc_entry = &sw_sc_ring[rx_id];
2173                 first_seg = sc_entry->fbuf;
2174                 sc_entry->fbuf = NULL;
2175
2176                 /*
2177                  * If this is the first buffer of the received packet,
2178                  * set the pointer to the first mbuf of the packet and
2179                  * initialize its context.
2180                  * Otherwise, update the total length and the number of segments
2181                  * of the current scattered packet, and update the pointer to
2182                  * the last mbuf of the current packet.
2183                  */
2184                 if (first_seg == NULL) {
2185                         first_seg = rxm;
2186                         first_seg->pkt_len = data_len;
2187                         first_seg->nb_segs = 1;
2188                 } else {
2189                         first_seg->pkt_len += data_len;
2190                         first_seg->nb_segs++;
2191                 }
2192
2193                 prev_id = rx_id;
2194                 rx_id = next_id;
2195
2196                 /*
2197                  * If this is not the last buffer of the received packet, update
2198                  * the pointer to the first mbuf at the NEXTP entry in the
2199                  * sw_sc_ring and continue to parse the RX ring.
2200                  */
2201                 if (!eop && next_rxe) {
2202                         rxm->next = next_rxe->mbuf;
2203                         next_sc_entry->fbuf = first_seg;
2204                         goto next_desc;
2205                 }
2206
2207                 /* Initialize the first mbuf of the returned packet */
2208                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2209
2210                 /*
2211                  * Deal with the case, when HW CRC srip is disabled.
2212                  * That can't happen when LRO is enabled, but still could
2213                  * happen for scattered RX mode.
2214                  */
2215                 first_seg->pkt_len -= rxq->crc_len;
2216                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2217                         struct rte_mbuf *lp;
2218
2219                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2220                                 ;
2221
2222                         first_seg->nb_segs--;
2223                         lp->data_len -= rxq->crc_len - rxm->data_len;
2224                         lp->next = NULL;
2225                         rte_pktmbuf_free_seg(rxm);
2226                 } else
2227                         rxm->data_len -= rxq->crc_len;
2228
2229                 /* Prefetch data of first segment, if configured to do so. */
2230                 rte_packet_prefetch((char *)first_seg->buf_addr +
2231                         first_seg->data_off);
2232
2233                 /*
2234                  * Store the mbuf address into the next entry of the array
2235                  * of returned packets.
2236                  */
2237                 rx_pkts[nb_rx++] = first_seg;
2238         }
2239
2240         /*
2241          * Record index of the next RX descriptor to probe.
2242          */
2243         rxq->rx_tail = rx_id;
2244
2245         /*
2246          * If the number of free RX descriptors is greater than the RX free
2247          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2248          * register.
2249          * Update the RDT with the value of the last processed RX descriptor
2250          * minus 1, to guarantee that the RDT register is never equal to the
2251          * RDH register, which creates a "full" ring situtation from the
2252          * hardware point of view...
2253          */
2254         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2255                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2256                            "nb_hold=%u nb_rx=%u",
2257                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2258
2259                 rte_wmb();
2260                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2261                 nb_hold = 0;
2262         }
2263
2264         rxq->nb_rx_hold = nb_hold;
2265         return nb_rx;
2266 }
2267
2268 uint16_t
2269 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2270                                  uint16_t nb_pkts)
2271 {
2272         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2273 }
2274
2275 uint16_t
2276 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2277                                uint16_t nb_pkts)
2278 {
2279         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2280 }
2281
2282 /*********************************************************************
2283  *
2284  *  Queue management functions
2285  *
2286  **********************************************************************/
2287
2288 static void __attribute__((cold))
2289 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2290 {
2291         unsigned i;
2292
2293         if (txq->sw_ring != NULL) {
2294                 for (i = 0; i < txq->nb_tx_desc; i++) {
2295                         if (txq->sw_ring[i].mbuf != NULL) {
2296                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2297                                 txq->sw_ring[i].mbuf = NULL;
2298                         }
2299                 }
2300         }
2301 }
2302
2303 static void __attribute__((cold))
2304 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2305 {
2306         if (txq != NULL &&
2307             txq->sw_ring != NULL)
2308                 rte_free(txq->sw_ring);
2309 }
2310
2311 static void __attribute__((cold))
2312 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2313 {
2314         if (txq != NULL && txq->ops != NULL) {
2315                 txq->ops->release_mbufs(txq);
2316                 txq->ops->free_swring(txq);
2317                 rte_free(txq);
2318         }
2319 }
2320
2321 void __attribute__((cold))
2322 ixgbe_dev_tx_queue_release(void *txq)
2323 {
2324         ixgbe_tx_queue_release(txq);
2325 }
2326
2327 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2328 static void __attribute__((cold))
2329 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2330 {
2331         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2332         struct ixgbe_tx_entry *txe = txq->sw_ring;
2333         uint16_t prev, i;
2334
2335         /* Zero out HW ring memory */
2336         for (i = 0; i < txq->nb_tx_desc; i++) {
2337                 txq->tx_ring[i] = zeroed_desc;
2338         }
2339
2340         /* Initialize SW ring entries */
2341         prev = (uint16_t) (txq->nb_tx_desc - 1);
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2344
2345                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2346                 txe[i].mbuf = NULL;
2347                 txe[i].last_id = i;
2348                 txe[prev].next_id = i;
2349                 prev = i;
2350         }
2351
2352         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2353         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2354
2355         txq->tx_tail = 0;
2356         txq->nb_tx_used = 0;
2357         /*
2358          * Always allow 1 descriptor to be un-allocated to avoid
2359          * a H/W race condition
2360          */
2361         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2362         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2363         txq->ctx_curr = 0;
2364         memset((void *)&txq->ctx_cache, 0,
2365                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2366 }
2367
2368 static const struct ixgbe_txq_ops def_txq_ops = {
2369         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2370         .free_swring = ixgbe_tx_free_swring,
2371         .reset = ixgbe_reset_tx_queue,
2372 };
2373
2374 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2375  * the queue parameters. Used in tx_queue_setup by primary process and then
2376  * in dev_init by secondary process when attaching to an existing ethdev.
2377  */
2378 void __attribute__((cold))
2379 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2380 {
2381         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2382         if ((txq->offloads == 0) &&
2383 #ifdef RTE_LIBRTE_SECURITY
2384                         !(txq->using_ipsec) &&
2385 #endif
2386                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2387                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2388                 dev->tx_pkt_prepare = NULL;
2389 #ifdef RTE_IXGBE_INC_VECTOR
2390                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2391                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2392                                         ixgbe_txq_vec_setup(txq) == 0)) {
2393                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2394                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2395                 } else
2396 #endif
2397                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2398         } else {
2399                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2400                 PMD_INIT_LOG(DEBUG,
2401                                 " - offloads = 0x%" PRIx64,
2402                                 txq->offloads);
2403                 PMD_INIT_LOG(DEBUG,
2404                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2405                                 (unsigned long)txq->tx_rs_thresh,
2406                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2407                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2408                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2409         }
2410 }
2411
2412 uint64_t
2413 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2414 {
2415         RTE_SET_USED(dev);
2416
2417         return 0;
2418 }
2419
2420 uint64_t
2421 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2422 {
2423         uint64_t tx_offload_capa;
2424         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2425
2426         tx_offload_capa =
2427                 DEV_TX_OFFLOAD_VLAN_INSERT |
2428                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2429                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2430                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2431                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2432                 DEV_TX_OFFLOAD_TCP_TSO     |
2433                 DEV_TX_OFFLOAD_MULTI_SEGS;
2434
2435         if (hw->mac.type == ixgbe_mac_82599EB ||
2436             hw->mac.type == ixgbe_mac_X540)
2437                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2438
2439         if (hw->mac.type == ixgbe_mac_X550 ||
2440             hw->mac.type == ixgbe_mac_X550EM_x ||
2441             hw->mac.type == ixgbe_mac_X550EM_a)
2442                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2443
2444 #ifdef RTE_LIBRTE_SECURITY
2445         if (dev->security_ctx)
2446                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2447 #endif
2448         return tx_offload_capa;
2449 }
2450
2451 int __attribute__((cold))
2452 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2453                          uint16_t queue_idx,
2454                          uint16_t nb_desc,
2455                          unsigned int socket_id,
2456                          const struct rte_eth_txconf *tx_conf)
2457 {
2458         const struct rte_memzone *tz;
2459         struct ixgbe_tx_queue *txq;
2460         struct ixgbe_hw     *hw;
2461         uint16_t tx_rs_thresh, tx_free_thresh;
2462         uint64_t offloads;
2463
2464         PMD_INIT_FUNC_TRACE();
2465         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2466
2467         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2468
2469         /*
2470          * Validate number of transmit descriptors.
2471          * It must not exceed hardware maximum, and must be multiple
2472          * of IXGBE_ALIGN.
2473          */
2474         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2475                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2476                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2477                 return -EINVAL;
2478         }
2479
2480         /*
2481          * The following two parameters control the setting of the RS bit on
2482          * transmit descriptors.
2483          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2484          * descriptors have been used.
2485          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2486          * descriptors are used or if the number of descriptors required
2487          * to transmit a packet is greater than the number of free TX
2488          * descriptors.
2489          * The following constraints must be satisfied:
2490          *  tx_rs_thresh must be greater than 0.
2491          *  tx_rs_thresh must be less than the size of the ring minus 2.
2492          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2493          *  tx_rs_thresh must be a divisor of the ring size.
2494          *  tx_free_thresh must be greater than 0.
2495          *  tx_free_thresh must be less than the size of the ring minus 3.
2496          * One descriptor in the TX ring is used as a sentinel to avoid a
2497          * H/W race condition, hence the maximum threshold constraints.
2498          * When set to zero use default values.
2499          */
2500         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2501                         tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2502         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2503                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2504         if (tx_rs_thresh >= (nb_desc - 2)) {
2505                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2506                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2507                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2508                         (int)dev->data->port_id, (int)queue_idx);
2509                 return -(EINVAL);
2510         }
2511         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2512                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2513                         "(tx_rs_thresh=%u port=%d queue=%d)",
2514                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2515                         (int)dev->data->port_id, (int)queue_idx);
2516                 return -(EINVAL);
2517         }
2518         if (tx_free_thresh >= (nb_desc - 3)) {
2519                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2520                              "tx_free_thresh must be less than the number of "
2521                              "TX descriptors minus 3. (tx_free_thresh=%u "
2522                              "port=%d queue=%d)",
2523                              (unsigned int)tx_free_thresh,
2524                              (int)dev->data->port_id, (int)queue_idx);
2525                 return -(EINVAL);
2526         }
2527         if (tx_rs_thresh > tx_free_thresh) {
2528                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2529                              "tx_free_thresh. (tx_free_thresh=%u "
2530                              "tx_rs_thresh=%u port=%d queue=%d)",
2531                              (unsigned int)tx_free_thresh,
2532                              (unsigned int)tx_rs_thresh,
2533                              (int)dev->data->port_id,
2534                              (int)queue_idx);
2535                 return -(EINVAL);
2536         }
2537         if ((nb_desc % tx_rs_thresh) != 0) {
2538                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2539                              "number of TX descriptors. (tx_rs_thresh=%u "
2540                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2541                              (int)dev->data->port_id, (int)queue_idx);
2542                 return -(EINVAL);
2543         }
2544
2545         /*
2546          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2547          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2548          * by the NIC and all descriptors are written back after the NIC
2549          * accumulates WTHRESH descriptors.
2550          */
2551         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2552                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2553                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2554                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2555                              (int)dev->data->port_id, (int)queue_idx);
2556                 return -(EINVAL);
2557         }
2558
2559         /* Free memory prior to re-allocation if needed... */
2560         if (dev->data->tx_queues[queue_idx] != NULL) {
2561                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2562                 dev->data->tx_queues[queue_idx] = NULL;
2563         }
2564
2565         /* First allocate the tx queue data structure */
2566         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2567                                  RTE_CACHE_LINE_SIZE, socket_id);
2568         if (txq == NULL)
2569                 return -ENOMEM;
2570
2571         /*
2572          * Allocate TX ring hardware descriptors. A memzone large enough to
2573          * handle the maximum ring size is allocated in order to allow for
2574          * resizing in later calls to the queue setup function.
2575          */
2576         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2577                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2578                         IXGBE_ALIGN, socket_id);
2579         if (tz == NULL) {
2580                 ixgbe_tx_queue_release(txq);
2581                 return -ENOMEM;
2582         }
2583
2584         txq->nb_tx_desc = nb_desc;
2585         txq->tx_rs_thresh = tx_rs_thresh;
2586         txq->tx_free_thresh = tx_free_thresh;
2587         txq->pthresh = tx_conf->tx_thresh.pthresh;
2588         txq->hthresh = tx_conf->tx_thresh.hthresh;
2589         txq->wthresh = tx_conf->tx_thresh.wthresh;
2590         txq->queue_id = queue_idx;
2591         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2592                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2593         txq->port_id = dev->data->port_id;
2594         txq->offloads = offloads;
2595         txq->ops = &def_txq_ops;
2596         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2597 #ifdef RTE_LIBRTE_SECURITY
2598         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2599                         DEV_TX_OFFLOAD_SECURITY);
2600 #endif
2601
2602         /*
2603          * Modification to set VFTDT for virtual function if vf is detected
2604          */
2605         if (hw->mac.type == ixgbe_mac_82599_vf ||
2606             hw->mac.type == ixgbe_mac_X540_vf ||
2607             hw->mac.type == ixgbe_mac_X550_vf ||
2608             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2609             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2610                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2611         else
2612                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2613
2614         txq->tx_ring_phys_addr = tz->iova;
2615         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2616
2617         /* Allocate software ring */
2618         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2619                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2620                                 RTE_CACHE_LINE_SIZE, socket_id);
2621         if (txq->sw_ring == NULL) {
2622                 ixgbe_tx_queue_release(txq);
2623                 return -ENOMEM;
2624         }
2625         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2626                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2627
2628         /* set up vector or scalar TX function as appropriate */
2629         ixgbe_set_tx_function(dev, txq);
2630
2631         txq->ops->reset(txq);
2632
2633         dev->data->tx_queues[queue_idx] = txq;
2634
2635
2636         return 0;
2637 }
2638
2639 /**
2640  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2641  *
2642  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2643  * in the sw_rsc_ring is not set to NULL but rather points to the next
2644  * mbuf of this RSC aggregation (that has not been completed yet and still
2645  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2646  * will just free first "nb_segs" segments of the cluster explicitly by calling
2647  * an rte_pktmbuf_free_seg().
2648  *
2649  * @m scattered cluster head
2650  */
2651 static void __attribute__((cold))
2652 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2653 {
2654         uint16_t i, nb_segs = m->nb_segs;
2655         struct rte_mbuf *next_seg;
2656
2657         for (i = 0; i < nb_segs; i++) {
2658                 next_seg = m->next;
2659                 rte_pktmbuf_free_seg(m);
2660                 m = next_seg;
2661         }
2662 }
2663
2664 static void __attribute__((cold))
2665 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2666 {
2667         unsigned i;
2668
2669 #ifdef RTE_IXGBE_INC_VECTOR
2670         /* SSE Vector driver has a different way of releasing mbufs. */
2671         if (rxq->rx_using_sse) {
2672                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2673                 return;
2674         }
2675 #endif
2676
2677         if (rxq->sw_ring != NULL) {
2678                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2679                         if (rxq->sw_ring[i].mbuf != NULL) {
2680                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2681                                 rxq->sw_ring[i].mbuf = NULL;
2682                         }
2683                 }
2684                 if (rxq->rx_nb_avail) {
2685                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2686                                 struct rte_mbuf *mb;
2687
2688                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2689                                 rte_pktmbuf_free_seg(mb);
2690                         }
2691                         rxq->rx_nb_avail = 0;
2692                 }
2693         }
2694
2695         if (rxq->sw_sc_ring)
2696                 for (i = 0; i < rxq->nb_rx_desc; i++)
2697                         if (rxq->sw_sc_ring[i].fbuf) {
2698                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2699                                 rxq->sw_sc_ring[i].fbuf = NULL;
2700                         }
2701 }
2702
2703 static void __attribute__((cold))
2704 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2705 {
2706         if (rxq != NULL) {
2707                 ixgbe_rx_queue_release_mbufs(rxq);
2708                 rte_free(rxq->sw_ring);
2709                 rte_free(rxq->sw_sc_ring);
2710                 rte_free(rxq);
2711         }
2712 }
2713
2714 void __attribute__((cold))
2715 ixgbe_dev_rx_queue_release(void *rxq)
2716 {
2717         ixgbe_rx_queue_release(rxq);
2718 }
2719
2720 /*
2721  * Check if Rx Burst Bulk Alloc function can be used.
2722  * Return
2723  *        0: the preconditions are satisfied and the bulk allocation function
2724  *           can be used.
2725  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2726  *           function must be used.
2727  */
2728 static inline int __attribute__((cold))
2729 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2730 {
2731         int ret = 0;
2732
2733         /*
2734          * Make sure the following pre-conditions are satisfied:
2735          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2736          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2737          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2738          * Scattered packets are not supported.  This should be checked
2739          * outside of this function.
2740          */
2741         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2742                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2743                              "rxq->rx_free_thresh=%d, "
2744                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2745                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2746                 ret = -EINVAL;
2747         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2748                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2749                              "rxq->rx_free_thresh=%d, "
2750                              "rxq->nb_rx_desc=%d",
2751                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2752                 ret = -EINVAL;
2753         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2754                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2755                              "rxq->nb_rx_desc=%d, "
2756                              "rxq->rx_free_thresh=%d",
2757                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2758                 ret = -EINVAL;
2759         }
2760
2761         return ret;
2762 }
2763
2764 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2765 static void __attribute__((cold))
2766 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2767 {
2768         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2769         unsigned i;
2770         uint16_t len = rxq->nb_rx_desc;
2771
2772         /*
2773          * By default, the Rx queue setup function allocates enough memory for
2774          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2775          * extra memory at the end of the descriptor ring to be zero'd out.
2776          */
2777         if (adapter->rx_bulk_alloc_allowed)
2778                 /* zero out extra memory */
2779                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2780
2781         /*
2782          * Zero out HW ring memory. Zero out extra memory at the end of
2783          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2784          * reads extra memory as zeros.
2785          */
2786         for (i = 0; i < len; i++) {
2787                 rxq->rx_ring[i] = zeroed_desc;
2788         }
2789
2790         /*
2791          * initialize extra software ring entries. Space for these extra
2792          * entries is always allocated
2793          */
2794         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2795         for (i = rxq->nb_rx_desc; i < len; ++i) {
2796                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2797         }
2798
2799         rxq->rx_nb_avail = 0;
2800         rxq->rx_next_avail = 0;
2801         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2802         rxq->rx_tail = 0;
2803         rxq->nb_rx_hold = 0;
2804         rxq->pkt_first_seg = NULL;
2805         rxq->pkt_last_seg = NULL;
2806
2807 #ifdef RTE_IXGBE_INC_VECTOR
2808         rxq->rxrearm_start = 0;
2809         rxq->rxrearm_nb = 0;
2810 #endif
2811 }
2812
2813 static int
2814 ixgbe_is_vf(struct rte_eth_dev *dev)
2815 {
2816         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2817
2818         switch (hw->mac.type) {
2819         case ixgbe_mac_82599_vf:
2820         case ixgbe_mac_X540_vf:
2821         case ixgbe_mac_X550_vf:
2822         case ixgbe_mac_X550EM_x_vf:
2823         case ixgbe_mac_X550EM_a_vf:
2824                 return 1;
2825         default:
2826                 return 0;
2827         }
2828 }
2829
2830 uint64_t
2831 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2832 {
2833         uint64_t offloads = 0;
2834         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2835
2836         if (hw->mac.type != ixgbe_mac_82598EB)
2837                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2838
2839         return offloads;
2840 }
2841
2842 uint64_t
2843 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2844 {
2845         uint64_t offloads;
2846         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2847
2848         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2849                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2850                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2851                    DEV_RX_OFFLOAD_KEEP_CRC    |
2852                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2853                    DEV_RX_OFFLOAD_SCATTER;
2854
2855         if (hw->mac.type == ixgbe_mac_82598EB)
2856                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2857
2858         if (ixgbe_is_vf(dev) == 0)
2859                 offloads |= (DEV_RX_OFFLOAD_VLAN_FILTER |
2860                              DEV_RX_OFFLOAD_VLAN_EXTEND);
2861
2862         /*
2863          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2864          * mode.
2865          */
2866         if ((hw->mac.type == ixgbe_mac_82599EB ||
2867              hw->mac.type == ixgbe_mac_X540) &&
2868             !RTE_ETH_DEV_SRIOV(dev).active)
2869                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2870
2871         if (hw->mac.type == ixgbe_mac_82599EB ||
2872             hw->mac.type == ixgbe_mac_X540)
2873                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2874
2875         if (hw->mac.type == ixgbe_mac_X550 ||
2876             hw->mac.type == ixgbe_mac_X550EM_x ||
2877             hw->mac.type == ixgbe_mac_X550EM_a)
2878                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2879
2880 #ifdef RTE_LIBRTE_SECURITY
2881         if (dev->security_ctx)
2882                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2883 #endif
2884
2885         return offloads;
2886 }
2887
2888 int __attribute__((cold))
2889 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2890                          uint16_t queue_idx,
2891                          uint16_t nb_desc,
2892                          unsigned int socket_id,
2893                          const struct rte_eth_rxconf *rx_conf,
2894                          struct rte_mempool *mp)
2895 {
2896         const struct rte_memzone *rz;
2897         struct ixgbe_rx_queue *rxq;
2898         struct ixgbe_hw     *hw;
2899         uint16_t len;
2900         struct ixgbe_adapter *adapter =
2901                 (struct ixgbe_adapter *)dev->data->dev_private;
2902         uint64_t offloads;
2903
2904         PMD_INIT_FUNC_TRACE();
2905         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2906
2907         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
2908
2909         /*
2910          * Validate number of receive descriptors.
2911          * It must not exceed hardware maximum, and must be multiple
2912          * of IXGBE_ALIGN.
2913          */
2914         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2915                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2916                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2917                 return -EINVAL;
2918         }
2919
2920         /* Free memory prior to re-allocation if needed... */
2921         if (dev->data->rx_queues[queue_idx] != NULL) {
2922                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2923                 dev->data->rx_queues[queue_idx] = NULL;
2924         }
2925
2926         /* First allocate the rx queue data structure */
2927         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2928                                  RTE_CACHE_LINE_SIZE, socket_id);
2929         if (rxq == NULL)
2930                 return -ENOMEM;
2931         rxq->mb_pool = mp;
2932         rxq->nb_rx_desc = nb_desc;
2933         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2934         rxq->queue_id = queue_idx;
2935         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2936                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2937         rxq->port_id = dev->data->port_id;
2938         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2939                 rxq->crc_len = ETHER_CRC_LEN;
2940         else
2941                 rxq->crc_len = 0;
2942         rxq->drop_en = rx_conf->rx_drop_en;
2943         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2944         rxq->offloads = offloads;
2945
2946         /*
2947          * The packet type in RX descriptor is different for different NICs.
2948          * Some bits are used for x550 but reserved for other NICS.
2949          * So set different masks for different NICs.
2950          */
2951         if (hw->mac.type == ixgbe_mac_X550 ||
2952             hw->mac.type == ixgbe_mac_X550EM_x ||
2953             hw->mac.type == ixgbe_mac_X550EM_a ||
2954             hw->mac.type == ixgbe_mac_X550_vf ||
2955             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2956             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2957                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2958         else
2959                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2960
2961         /*
2962          * Allocate RX ring hardware descriptors. A memzone large enough to
2963          * handle the maximum ring size is allocated in order to allow for
2964          * resizing in later calls to the queue setup function.
2965          */
2966         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2967                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2968         if (rz == NULL) {
2969                 ixgbe_rx_queue_release(rxq);
2970                 return -ENOMEM;
2971         }
2972
2973         /*
2974          * Zero init all the descriptors in the ring.
2975          */
2976         memset(rz->addr, 0, RX_RING_SZ);
2977
2978         /*
2979          * Modified to setup VFRDT for Virtual Function
2980          */
2981         if (hw->mac.type == ixgbe_mac_82599_vf ||
2982             hw->mac.type == ixgbe_mac_X540_vf ||
2983             hw->mac.type == ixgbe_mac_X550_vf ||
2984             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2985             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
2986                 rxq->rdt_reg_addr =
2987                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
2988                 rxq->rdh_reg_addr =
2989                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
2990         } else {
2991                 rxq->rdt_reg_addr =
2992                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
2993                 rxq->rdh_reg_addr =
2994                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
2995         }
2996
2997         rxq->rx_ring_phys_addr = rz->iova;
2998         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
2999
3000         /*
3001          * Certain constraints must be met in order to use the bulk buffer
3002          * allocation Rx burst function. If any of Rx queues doesn't meet them
3003          * the feature should be disabled for the whole port.
3004          */
3005         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3006                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3007                                     "preconditions - canceling the feature for "
3008                                     "the whole port[%d]",
3009                              rxq->queue_id, rxq->port_id);
3010                 adapter->rx_bulk_alloc_allowed = false;
3011         }
3012
3013         /*
3014          * Allocate software ring. Allow for space at the end of the
3015          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3016          * function does not access an invalid memory region.
3017          */
3018         len = nb_desc;
3019         if (adapter->rx_bulk_alloc_allowed)
3020                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3021
3022         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3023                                           sizeof(struct ixgbe_rx_entry) * len,
3024                                           RTE_CACHE_LINE_SIZE, socket_id);
3025         if (!rxq->sw_ring) {
3026                 ixgbe_rx_queue_release(rxq);
3027                 return -ENOMEM;
3028         }
3029
3030         /*
3031          * Always allocate even if it's not going to be needed in order to
3032          * simplify the code.
3033          *
3034          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3035          * be requested in ixgbe_dev_rx_init(), which is called later from
3036          * dev_start() flow.
3037          */
3038         rxq->sw_sc_ring =
3039                 rte_zmalloc_socket("rxq->sw_sc_ring",
3040                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3041                                    RTE_CACHE_LINE_SIZE, socket_id);
3042         if (!rxq->sw_sc_ring) {
3043                 ixgbe_rx_queue_release(rxq);
3044                 return -ENOMEM;
3045         }
3046
3047         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3048                             "dma_addr=0x%"PRIx64,
3049                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3050                      rxq->rx_ring_phys_addr);
3051
3052         if (!rte_is_power_of_2(nb_desc)) {
3053                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3054                                     "preconditions - canceling the feature for "
3055                                     "the whole port[%d]",
3056                              rxq->queue_id, rxq->port_id);
3057                 adapter->rx_vec_allowed = false;
3058         } else
3059                 ixgbe_rxq_vec_setup(rxq);
3060
3061         dev->data->rx_queues[queue_idx] = rxq;
3062
3063         ixgbe_reset_rx_queue(adapter, rxq);
3064
3065         return 0;
3066 }
3067
3068 uint32_t
3069 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3070 {
3071 #define IXGBE_RXQ_SCAN_INTERVAL 4
3072         volatile union ixgbe_adv_rx_desc *rxdp;
3073         struct ixgbe_rx_queue *rxq;
3074         uint32_t desc = 0;
3075
3076         rxq = dev->data->rx_queues[rx_queue_id];
3077         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3078
3079         while ((desc < rxq->nb_rx_desc) &&
3080                 (rxdp->wb.upper.status_error &
3081                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3082                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3083                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3084                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3085                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3086                                 desc - rxq->nb_rx_desc]);
3087         }
3088
3089         return desc;
3090 }
3091
3092 int
3093 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3094 {
3095         volatile union ixgbe_adv_rx_desc *rxdp;
3096         struct ixgbe_rx_queue *rxq = rx_queue;
3097         uint32_t desc;
3098
3099         if (unlikely(offset >= rxq->nb_rx_desc))
3100                 return 0;
3101         desc = rxq->rx_tail + offset;
3102         if (desc >= rxq->nb_rx_desc)
3103                 desc -= rxq->nb_rx_desc;
3104
3105         rxdp = &rxq->rx_ring[desc];
3106         return !!(rxdp->wb.upper.status_error &
3107                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3108 }
3109
3110 int
3111 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3112 {
3113         struct ixgbe_rx_queue *rxq = rx_queue;
3114         volatile uint32_t *status;
3115         uint32_t nb_hold, desc;
3116
3117         if (unlikely(offset >= rxq->nb_rx_desc))
3118                 return -EINVAL;
3119
3120 #ifdef RTE_IXGBE_INC_VECTOR
3121         if (rxq->rx_using_sse)
3122                 nb_hold = rxq->rxrearm_nb;
3123         else
3124 #endif
3125                 nb_hold = rxq->nb_rx_hold;
3126         if (offset >= rxq->nb_rx_desc - nb_hold)
3127                 return RTE_ETH_RX_DESC_UNAVAIL;
3128
3129         desc = rxq->rx_tail + offset;
3130         if (desc >= rxq->nb_rx_desc)
3131                 desc -= rxq->nb_rx_desc;
3132
3133         status = &rxq->rx_ring[desc].wb.upper.status_error;
3134         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3135                 return RTE_ETH_RX_DESC_DONE;
3136
3137         return RTE_ETH_RX_DESC_AVAIL;
3138 }
3139
3140 int
3141 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3142 {
3143         struct ixgbe_tx_queue *txq = tx_queue;
3144         volatile uint32_t *status;
3145         uint32_t desc;
3146
3147         if (unlikely(offset >= txq->nb_tx_desc))
3148                 return -EINVAL;
3149
3150         desc = txq->tx_tail + offset;
3151         /* go to next desc that has the RS bit */
3152         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3153                 txq->tx_rs_thresh;
3154         if (desc >= txq->nb_tx_desc) {
3155                 desc -= txq->nb_tx_desc;
3156                 if (desc >= txq->nb_tx_desc)
3157                         desc -= txq->nb_tx_desc;
3158         }
3159
3160         status = &txq->tx_ring[desc].wb.status;
3161         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3162                 return RTE_ETH_TX_DESC_DONE;
3163
3164         return RTE_ETH_TX_DESC_FULL;
3165 }
3166
3167 void __attribute__((cold))
3168 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3169 {
3170         unsigned i;
3171         struct ixgbe_adapter *adapter =
3172                 (struct ixgbe_adapter *)dev->data->dev_private;
3173
3174         PMD_INIT_FUNC_TRACE();
3175
3176         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3177                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3178
3179                 if (txq != NULL) {
3180                         txq->ops->release_mbufs(txq);
3181                         txq->ops->reset(txq);
3182                 }
3183         }
3184
3185         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3186                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3187
3188                 if (rxq != NULL) {
3189                         ixgbe_rx_queue_release_mbufs(rxq);
3190                         ixgbe_reset_rx_queue(adapter, rxq);
3191                 }
3192         }
3193 }
3194
3195 void
3196 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3197 {
3198         unsigned i;
3199
3200         PMD_INIT_FUNC_TRACE();
3201
3202         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3203                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3204                 dev->data->rx_queues[i] = NULL;
3205         }
3206         dev->data->nb_rx_queues = 0;
3207
3208         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3209                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3210                 dev->data->tx_queues[i] = NULL;
3211         }
3212         dev->data->nb_tx_queues = 0;
3213 }
3214
3215 /*********************************************************************
3216  *
3217  *  Device RX/TX init functions
3218  *
3219  **********************************************************************/
3220
3221 /**
3222  * Receive Side Scaling (RSS)
3223  * See section 7.1.2.8 in the following document:
3224  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3225  *
3226  * Principles:
3227  * The source and destination IP addresses of the IP header and the source
3228  * and destination ports of TCP/UDP headers, if any, of received packets are
3229  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3230  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3231  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3232  * RSS output index which is used as the RX queue index where to store the
3233  * received packets.
3234  * The following output is supplied in the RX write-back descriptor:
3235  *     - 32-bit result of the Microsoft RSS hash function,
3236  *     - 4-bit RSS type field.
3237  */
3238
3239 /*
3240  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3241  * Used as the default key.
3242  */
3243 static uint8_t rss_intel_key[40] = {
3244         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3245         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3246         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3247         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3248         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3249 };
3250
3251 static void
3252 ixgbe_rss_disable(struct rte_eth_dev *dev)
3253 {
3254         struct ixgbe_hw *hw;
3255         uint32_t mrqc;
3256         uint32_t mrqc_reg;
3257
3258         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3259         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3260         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3261         mrqc &= ~IXGBE_MRQC_RSSEN;
3262         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3263 }
3264
3265 static void
3266 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3267 {
3268         uint8_t  *hash_key;
3269         uint32_t mrqc;
3270         uint32_t rss_key;
3271         uint64_t rss_hf;
3272         uint16_t i;
3273         uint32_t mrqc_reg;
3274         uint32_t rssrk_reg;
3275
3276         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3277         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3278
3279         hash_key = rss_conf->rss_key;
3280         if (hash_key != NULL) {
3281                 /* Fill in RSS hash key */
3282                 for (i = 0; i < 10; i++) {
3283                         rss_key  = hash_key[(i * 4)];
3284                         rss_key |= hash_key[(i * 4) + 1] << 8;
3285                         rss_key |= hash_key[(i * 4) + 2] << 16;
3286                         rss_key |= hash_key[(i * 4) + 3] << 24;
3287                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3288                 }
3289         }
3290
3291         /* Set configured hashing protocols in MRQC register */
3292         rss_hf = rss_conf->rss_hf;
3293         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3294         if (rss_hf & ETH_RSS_IPV4)
3295                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3296         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3297                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3298         if (rss_hf & ETH_RSS_IPV6)
3299                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3300         if (rss_hf & ETH_RSS_IPV6_EX)
3301                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3302         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3303                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3304         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3305                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3306         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3307                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3308         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3309                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3310         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3311                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3312         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3313 }
3314
3315 int
3316 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3317                           struct rte_eth_rss_conf *rss_conf)
3318 {
3319         struct ixgbe_hw *hw;
3320         uint32_t mrqc;
3321         uint64_t rss_hf;
3322         uint32_t mrqc_reg;
3323
3324         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3325
3326         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3327                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3328                         "NIC.");
3329                 return -ENOTSUP;
3330         }
3331         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3332
3333         /*
3334          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3335          *     "RSS enabling cannot be done dynamically while it must be
3336          *      preceded by a software reset"
3337          * Before changing anything, first check that the update RSS operation
3338          * does not attempt to disable RSS, if RSS was enabled at
3339          * initialization time, or does not attempt to enable RSS, if RSS was
3340          * disabled at initialization time.
3341          */
3342         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3343         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3344         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3345                 if (rss_hf != 0) /* Enable RSS */
3346                         return -(EINVAL);
3347                 return 0; /* Nothing to do */
3348         }
3349         /* RSS enabled */
3350         if (rss_hf == 0) /* Disable RSS */
3351                 return -(EINVAL);
3352         ixgbe_hw_rss_hash_set(hw, rss_conf);
3353         return 0;
3354 }
3355
3356 int
3357 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3358                             struct rte_eth_rss_conf *rss_conf)
3359 {
3360         struct ixgbe_hw *hw;
3361         uint8_t *hash_key;
3362         uint32_t mrqc;
3363         uint32_t rss_key;
3364         uint64_t rss_hf;
3365         uint16_t i;
3366         uint32_t mrqc_reg;
3367         uint32_t rssrk_reg;
3368
3369         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3370         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3371         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3372         hash_key = rss_conf->rss_key;
3373         if (hash_key != NULL) {
3374                 /* Return RSS hash key */
3375                 for (i = 0; i < 10; i++) {
3376                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3377                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3378                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3379                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3380                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3381                 }
3382         }
3383
3384         /* Get RSS functions configured in MRQC register */
3385         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3386         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3387                 rss_conf->rss_hf = 0;
3388                 return 0;
3389         }
3390         rss_hf = 0;
3391         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3392                 rss_hf |= ETH_RSS_IPV4;
3393         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3394                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3395         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3396                 rss_hf |= ETH_RSS_IPV6;
3397         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3398                 rss_hf |= ETH_RSS_IPV6_EX;
3399         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3400                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3401         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3402                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3403         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3404                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3405         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3406                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3407         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3408                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3409         rss_conf->rss_hf = rss_hf;
3410         return 0;
3411 }
3412
3413 static void
3414 ixgbe_rss_configure(struct rte_eth_dev *dev)
3415 {
3416         struct rte_eth_rss_conf rss_conf;
3417         struct ixgbe_hw *hw;
3418         uint32_t reta;
3419         uint16_t i;
3420         uint16_t j;
3421         uint16_t sp_reta_size;
3422         uint32_t reta_reg;
3423
3424         PMD_INIT_FUNC_TRACE();
3425         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3426
3427         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3428
3429         /*
3430          * Fill in redirection table
3431          * The byte-swap is needed because NIC registers are in
3432          * little-endian order.
3433          */
3434         reta = 0;
3435         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3436                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3437
3438                 if (j == dev->data->nb_rx_queues)
3439                         j = 0;
3440                 reta = (reta << 8) | j;
3441                 if ((i & 3) == 3)
3442                         IXGBE_WRITE_REG(hw, reta_reg,
3443                                         rte_bswap32(reta));
3444         }
3445
3446         /*
3447          * Configure the RSS key and the RSS protocols used to compute
3448          * the RSS hash of input packets.
3449          */
3450         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3451         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3452                 ixgbe_rss_disable(dev);
3453                 return;
3454         }
3455         if (rss_conf.rss_key == NULL)
3456                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3457         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3458 }
3459
3460 #define NUM_VFTA_REGISTERS 128
3461 #define NIC_RX_BUFFER_SIZE 0x200
3462 #define X550_RX_BUFFER_SIZE 0x180
3463
3464 static void
3465 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3466 {
3467         struct rte_eth_vmdq_dcb_conf *cfg;
3468         struct ixgbe_hw *hw;
3469         enum rte_eth_nb_pools num_pools;
3470         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3471         uint16_t pbsize;
3472         uint8_t nb_tcs; /* number of traffic classes */
3473         int i;
3474
3475         PMD_INIT_FUNC_TRACE();
3476         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3477         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3478         num_pools = cfg->nb_queue_pools;
3479         /* Check we have a valid number of pools */
3480         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3481                 ixgbe_rss_disable(dev);
3482                 return;
3483         }
3484         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3485         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3486
3487         /*
3488          * RXPBSIZE
3489          * split rx buffer up into sections, each for 1 traffic class
3490          */
3491         switch (hw->mac.type) {
3492         case ixgbe_mac_X550:
3493         case ixgbe_mac_X550EM_x:
3494         case ixgbe_mac_X550EM_a:
3495                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3496                 break;
3497         default:
3498                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3499                 break;
3500         }
3501         for (i = 0; i < nb_tcs; i++) {
3502                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3503
3504                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3505                 /* clear 10 bits. */
3506                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3507                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3508         }
3509         /* zero alloc all unused TCs */
3510         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3511                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3512
3513                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3514                 /* clear 10 bits. */
3515                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3516         }
3517
3518         /* MRQC: enable vmdq and dcb */
3519         mrqc = (num_pools == ETH_16_POOLS) ?
3520                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3521         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3522
3523         /* PFVTCTL: turn on virtualisation and set the default pool */
3524         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3525         if (cfg->enable_default_pool) {
3526                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3527         } else {
3528                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3529         }
3530
3531         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3532
3533         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3534         queue_mapping = 0;
3535         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3536                 /*
3537                  * mapping is done with 3 bits per priority,
3538                  * so shift by i*3 each time
3539                  */
3540                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3541
3542         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3543
3544         /* RTRPCS: DCB related */
3545         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3546
3547         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3548         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3549         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3550         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3551
3552         /* VFTA - enable all vlan filters */
3553         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3554                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3555         }
3556
3557         /* VFRE: pool enabling for receive - 16 or 32 */
3558         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3559                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3560
3561         /*
3562          * MPSAR - allow pools to read specific mac addresses
3563          * In this case, all pools should be able to read from mac addr 0
3564          */
3565         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3566         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3567
3568         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3569         for (i = 0; i < cfg->nb_pool_maps; i++) {
3570                 /* set vlan id in VF register and set the valid bit */
3571                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3572                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3573                 /*
3574                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3575                  * pools, we only need to use the first half of the register
3576                  * i.e. bits 0-31
3577                  */
3578                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3579         }
3580 }
3581
3582 /**
3583  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3584  * @dev: pointer to eth_dev structure
3585  * @dcb_config: pointer to ixgbe_dcb_config structure
3586  */
3587 static void
3588 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3589                        struct ixgbe_dcb_config *dcb_config)
3590 {
3591         uint32_t reg;
3592         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3593
3594         PMD_INIT_FUNC_TRACE();
3595         if (hw->mac.type != ixgbe_mac_82598EB) {
3596                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3597                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3598                 reg |= IXGBE_RTTDCS_ARBDIS;
3599                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3600
3601                 /* Enable DCB for Tx with 8 TCs */
3602                 if (dcb_config->num_tcs.pg_tcs == 8) {
3603                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3604                 } else {
3605                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3606                 }
3607                 if (dcb_config->vt_mode)
3608                         reg |= IXGBE_MTQC_VT_ENA;
3609                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3610
3611                 /* Enable the Tx desc arbiter */
3612                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3613                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3614                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3615
3616                 /* Enable Security TX Buffer IFG for DCB */
3617                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3618                 reg |= IXGBE_SECTX_DCB;
3619                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3620         }
3621 }
3622
3623 /**
3624  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3625  * @dev: pointer to rte_eth_dev structure
3626  * @dcb_config: pointer to ixgbe_dcb_config structure
3627  */
3628 static void
3629 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3630                         struct ixgbe_dcb_config *dcb_config)
3631 {
3632         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3633                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3634         struct ixgbe_hw *hw =
3635                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3636
3637         PMD_INIT_FUNC_TRACE();
3638         if (hw->mac.type != ixgbe_mac_82598EB)
3639                 /*PF VF Transmit Enable*/
3640                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3641                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3642
3643         /*Configure general DCB TX parameters*/
3644         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3645 }
3646
3647 static void
3648 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3649                         struct ixgbe_dcb_config *dcb_config)
3650 {
3651         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3652                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3653         struct ixgbe_dcb_tc_config *tc;
3654         uint8_t i, j;
3655
3656         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3657         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3658                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3659                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3660         } else {
3661                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3662                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3663         }
3664
3665         /* Initialize User Priority to Traffic Class mapping */
3666         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3667                 tc = &dcb_config->tc_config[j];
3668                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3669         }
3670
3671         /* User Priority to Traffic Class mapping */
3672         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3673                 j = vmdq_rx_conf->dcb_tc[i];
3674                 tc = &dcb_config->tc_config[j];
3675                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3676                                                 (uint8_t)(1 << i);
3677         }
3678 }
3679
3680 static void
3681 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3682                         struct ixgbe_dcb_config *dcb_config)
3683 {
3684         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3685                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3686         struct ixgbe_dcb_tc_config *tc;
3687         uint8_t i, j;
3688
3689         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3690         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3691                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3692                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3693         } else {
3694                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3695                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3696         }
3697
3698         /* Initialize User Priority to Traffic Class mapping */
3699         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3700                 tc = &dcb_config->tc_config[j];
3701                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3702         }
3703
3704         /* User Priority to Traffic Class mapping */
3705         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3706                 j = vmdq_tx_conf->dcb_tc[i];
3707                 tc = &dcb_config->tc_config[j];
3708                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3709                                                 (uint8_t)(1 << i);
3710         }
3711 }
3712
3713 static void
3714 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3715                 struct ixgbe_dcb_config *dcb_config)
3716 {
3717         struct rte_eth_dcb_rx_conf *rx_conf =
3718                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3719         struct ixgbe_dcb_tc_config *tc;
3720         uint8_t i, j;
3721
3722         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3723         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3724
3725         /* Initialize User Priority to Traffic Class mapping */
3726         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3727                 tc = &dcb_config->tc_config[j];
3728                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3729         }
3730
3731         /* User Priority to Traffic Class mapping */
3732         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3733                 j = rx_conf->dcb_tc[i];
3734                 tc = &dcb_config->tc_config[j];
3735                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3736                                                 (uint8_t)(1 << i);
3737         }
3738 }
3739
3740 static void
3741 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3742                 struct ixgbe_dcb_config *dcb_config)
3743 {
3744         struct rte_eth_dcb_tx_conf *tx_conf =
3745                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3746         struct ixgbe_dcb_tc_config *tc;
3747         uint8_t i, j;
3748
3749         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3750         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3751
3752         /* Initialize User Priority to Traffic Class mapping */
3753         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3754                 tc = &dcb_config->tc_config[j];
3755                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3756         }
3757
3758         /* User Priority to Traffic Class mapping */
3759         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3760                 j = tx_conf->dcb_tc[i];
3761                 tc = &dcb_config->tc_config[j];
3762                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3763                                                 (uint8_t)(1 << i);
3764         }
3765 }
3766
3767 /**
3768  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3769  * @dev: pointer to eth_dev structure
3770  * @dcb_config: pointer to ixgbe_dcb_config structure
3771  */
3772 static void
3773 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3774                        struct ixgbe_dcb_config *dcb_config)
3775 {
3776         uint32_t reg;
3777         uint32_t vlanctrl;
3778         uint8_t i;
3779         uint32_t q;
3780         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3781
3782         PMD_INIT_FUNC_TRACE();
3783         /*
3784          * Disable the arbiter before changing parameters
3785          * (always enable recycle mode; WSP)
3786          */
3787         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3788         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3789
3790         if (hw->mac.type != ixgbe_mac_82598EB) {
3791                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3792                 if (dcb_config->num_tcs.pg_tcs == 4) {
3793                         if (dcb_config->vt_mode)
3794                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3795                                         IXGBE_MRQC_VMDQRT4TCEN;
3796                         else {
3797                                 /* no matter the mode is DCB or DCB_RSS, just
3798                                  * set the MRQE to RSSXTCEN. RSS is controlled
3799                                  * by RSS_FIELD
3800                                  */
3801                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3802                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3803                                         IXGBE_MRQC_RTRSS4TCEN;
3804                         }
3805                 }
3806                 if (dcb_config->num_tcs.pg_tcs == 8) {
3807                         if (dcb_config->vt_mode)
3808                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3809                                         IXGBE_MRQC_VMDQRT8TCEN;
3810                         else {
3811                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3812                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3813                                         IXGBE_MRQC_RTRSS8TCEN;
3814                         }
3815                 }
3816
3817                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3818
3819                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3820                         /* Disable drop for all queues in VMDQ mode*/
3821                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3822                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3823                                                 (IXGBE_QDE_WRITE |
3824                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3825                 } else {
3826                         /* Enable drop for all queues in SRIOV mode */
3827                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3828                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3829                                                 (IXGBE_QDE_WRITE |
3830                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3831                                                  IXGBE_QDE_ENABLE));
3832                 }
3833         }
3834
3835         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3836         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3837         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3838         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3839
3840         /* VFTA - enable all vlan filters */
3841         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3842                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3843         }
3844
3845         /*
3846          * Configure Rx packet plane (recycle mode; WSP) and
3847          * enable arbiter
3848          */
3849         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3850         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3851 }
3852
3853 static void
3854 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3855                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3856 {
3857         switch (hw->mac.type) {
3858         case ixgbe_mac_82598EB:
3859                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3860                 break;
3861         case ixgbe_mac_82599EB:
3862         case ixgbe_mac_X540:
3863         case ixgbe_mac_X550:
3864         case ixgbe_mac_X550EM_x:
3865         case ixgbe_mac_X550EM_a:
3866                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3867                                                   tsa, map);
3868                 break;
3869         default:
3870                 break;
3871         }
3872 }
3873
3874 static void
3875 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3876                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3877 {
3878         switch (hw->mac.type) {
3879         case ixgbe_mac_82598EB:
3880                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3881                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3882                 break;
3883         case ixgbe_mac_82599EB:
3884         case ixgbe_mac_X540:
3885         case ixgbe_mac_X550:
3886         case ixgbe_mac_X550EM_x:
3887         case ixgbe_mac_X550EM_a:
3888                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3889                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3890                 break;
3891         default:
3892                 break;
3893         }
3894 }
3895
3896 #define DCB_RX_CONFIG  1
3897 #define DCB_TX_CONFIG  1
3898 #define DCB_TX_PB      1024
3899 /**
3900  * ixgbe_dcb_hw_configure - Enable DCB and configure
3901  * general DCB in VT mode and non-VT mode parameters
3902  * @dev: pointer to rte_eth_dev structure
3903  * @dcb_config: pointer to ixgbe_dcb_config structure
3904  */
3905 static int
3906 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3907                         struct ixgbe_dcb_config *dcb_config)
3908 {
3909         int     ret = 0;
3910         uint8_t i, pfc_en, nb_tcs;
3911         uint16_t pbsize, rx_buffer_size;
3912         uint8_t config_dcb_rx = 0;
3913         uint8_t config_dcb_tx = 0;
3914         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3915         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3916         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3917         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3918         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3919         struct ixgbe_dcb_tc_config *tc;
3920         uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
3921         struct ixgbe_hw *hw =
3922                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3923         struct ixgbe_bw_conf *bw_conf =
3924                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3925
3926         switch (dev->data->dev_conf.rxmode.mq_mode) {
3927         case ETH_MQ_RX_VMDQ_DCB:
3928                 dcb_config->vt_mode = true;
3929                 if (hw->mac.type != ixgbe_mac_82598EB) {
3930                         config_dcb_rx = DCB_RX_CONFIG;
3931                         /*
3932                          *get dcb and VT rx configuration parameters
3933                          *from rte_eth_conf
3934                          */
3935                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
3936                         /*Configure general VMDQ and DCB RX parameters*/
3937                         ixgbe_vmdq_dcb_configure(dev);
3938                 }
3939                 break;
3940         case ETH_MQ_RX_DCB:
3941         case ETH_MQ_RX_DCB_RSS:
3942                 dcb_config->vt_mode = false;
3943                 config_dcb_rx = DCB_RX_CONFIG;
3944                 /* Get dcb TX configuration parameters from rte_eth_conf */
3945                 ixgbe_dcb_rx_config(dev, dcb_config);
3946                 /*Configure general DCB RX parameters*/
3947                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
3948                 break;
3949         default:
3950                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
3951                 break;
3952         }
3953         switch (dev->data->dev_conf.txmode.mq_mode) {
3954         case ETH_MQ_TX_VMDQ_DCB:
3955                 dcb_config->vt_mode = true;
3956                 config_dcb_tx = DCB_TX_CONFIG;
3957                 /* get DCB and VT TX configuration parameters
3958                  * from rte_eth_conf
3959                  */
3960                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
3961                 /*Configure general VMDQ and DCB TX parameters*/
3962                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
3963                 break;
3964
3965         case ETH_MQ_TX_DCB:
3966                 dcb_config->vt_mode = false;
3967                 config_dcb_tx = DCB_TX_CONFIG;
3968                 /*get DCB TX configuration parameters from rte_eth_conf*/
3969                 ixgbe_dcb_tx_config(dev, dcb_config);
3970                 /*Configure general DCB TX parameters*/
3971                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
3972                 break;
3973         default:
3974                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
3975                 break;
3976         }
3977
3978         nb_tcs = dcb_config->num_tcs.pfc_tcs;
3979         /* Unpack map */
3980         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
3981         if (nb_tcs == ETH_4_TCS) {
3982                 /* Avoid un-configured priority mapping to TC0 */
3983                 uint8_t j = 4;
3984                 uint8_t mask = 0xFF;
3985
3986                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
3987                         mask = (uint8_t)(mask & (~(1 << map[i])));
3988                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
3989                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
3990                                 map[j++] = i;
3991                         mask >>= 1;
3992                 }
3993                 /* Re-configure 4 TCs BW */
3994                 for (i = 0; i < nb_tcs; i++) {
3995                         tc = &dcb_config->tc_config[i];
3996                         if (bw_conf->tc_num != nb_tcs)
3997                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
3998                                         (uint8_t)(100 / nb_tcs);
3999                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4000                                                 (uint8_t)(100 / nb_tcs);
4001                 }
4002                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4003                         tc = &dcb_config->tc_config[i];
4004                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4005                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4006                 }
4007         } else {
4008                 /* Re-configure 8 TCs BW */
4009                 for (i = 0; i < nb_tcs; i++) {
4010                         tc = &dcb_config->tc_config[i];
4011                         if (bw_conf->tc_num != nb_tcs)
4012                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4013                                         (uint8_t)(100 / nb_tcs + (i & 1));
4014                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4015                                 (uint8_t)(100 / nb_tcs + (i & 1));
4016                 }
4017         }
4018
4019         switch (hw->mac.type) {
4020         case ixgbe_mac_X550:
4021         case ixgbe_mac_X550EM_x:
4022         case ixgbe_mac_X550EM_a:
4023                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4024                 break;
4025         default:
4026                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4027                 break;
4028         }
4029
4030         if (config_dcb_rx) {
4031                 /* Set RX buffer size */
4032                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4033                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4034
4035                 for (i = 0; i < nb_tcs; i++) {
4036                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4037                 }
4038                 /* zero alloc all unused TCs */
4039                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4040                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4041                 }
4042         }
4043         if (config_dcb_tx) {
4044                 /* Only support an equally distributed
4045                  *  Tx packet buffer strategy.
4046                  */
4047                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4048                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4049
4050                 for (i = 0; i < nb_tcs; i++) {
4051                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4052                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4053                 }
4054                 /* Clear unused TCs, if any, to zero buffer size*/
4055                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4056                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4057                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4058                 }
4059         }
4060
4061         /*Calculates traffic class credits*/
4062         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4063                                 IXGBE_DCB_TX_CONFIG);
4064         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4065                                 IXGBE_DCB_RX_CONFIG);
4066
4067         if (config_dcb_rx) {
4068                 /* Unpack CEE standard containers */
4069                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4070                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4071                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4072                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4073                 /* Configure PG(ETS) RX */
4074                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4075         }
4076
4077         if (config_dcb_tx) {
4078                 /* Unpack CEE standard containers */
4079                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4080                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4081                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4082                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4083                 /* Configure PG(ETS) TX */
4084                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4085         }
4086
4087         /*Configure queue statistics registers*/
4088         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4089
4090         /* Check if the PFC is supported */
4091         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4092                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4093                 for (i = 0; i < nb_tcs; i++) {
4094                         /*
4095                         * If the TC count is 8,and the default high_water is 48,
4096                         * the low_water is 16 as default.
4097                         */
4098                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4099                         hw->fc.low_water[i] = pbsize / 4;
4100                         /* Enable pfc for this TC */
4101                         tc = &dcb_config->tc_config[i];
4102                         tc->pfc = ixgbe_dcb_pfc_enabled;
4103                 }
4104                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4105                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4106                         pfc_en &= 0x0F;
4107                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4108         }
4109
4110         return ret;
4111 }
4112
4113 /**
4114  * ixgbe_configure_dcb - Configure DCB  Hardware
4115  * @dev: pointer to rte_eth_dev
4116  */
4117 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4118 {
4119         struct ixgbe_dcb_config *dcb_cfg =
4120                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4121         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4122
4123         PMD_INIT_FUNC_TRACE();
4124
4125         /* check support mq_mode for DCB */
4126         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4127             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4128             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4129                 return;
4130
4131         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4132                 return;
4133
4134         /** Configure DCB hardware **/
4135         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4136 }
4137
4138 /*
4139  * VMDq only support for 10 GbE NIC.
4140  */
4141 static void
4142 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4143 {
4144         struct rte_eth_vmdq_rx_conf *cfg;
4145         struct ixgbe_hw *hw;
4146         enum rte_eth_nb_pools num_pools;
4147         uint32_t mrqc, vt_ctl, vlanctrl;
4148         uint32_t vmolr = 0;
4149         int i;
4150
4151         PMD_INIT_FUNC_TRACE();
4152         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4153         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4154         num_pools = cfg->nb_queue_pools;
4155
4156         ixgbe_rss_disable(dev);
4157
4158         /* MRQC: enable vmdq */
4159         mrqc = IXGBE_MRQC_VMDQEN;
4160         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4161
4162         /* PFVTCTL: turn on virtualisation and set the default pool */
4163         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4164         if (cfg->enable_default_pool)
4165                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4166         else
4167                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4168
4169         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4170
4171         for (i = 0; i < (int)num_pools; i++) {
4172                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4173                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4174         }
4175
4176         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4177         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4178         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4179         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4180
4181         /* VFTA - enable all vlan filters */
4182         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4183                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4184
4185         /* VFRE: pool enabling for receive - 64 */
4186         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4187         if (num_pools == ETH_64_POOLS)
4188                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4189
4190         /*
4191          * MPSAR - allow pools to read specific mac addresses
4192          * In this case, all pools should be able to read from mac addr 0
4193          */
4194         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4195         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4196
4197         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4198         for (i = 0; i < cfg->nb_pool_maps; i++) {
4199                 /* set vlan id in VF register and set the valid bit */
4200                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4201                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4202                 /*
4203                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4204                  * pools, we only need to use the first half of the register
4205                  * i.e. bits 0-31
4206                  */
4207                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4208                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4209                                         (cfg->pool_map[i].pools & UINT32_MAX));
4210                 else
4211                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4212                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4213
4214         }
4215
4216         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4217         if (cfg->enable_loop_back) {
4218                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4219                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4220                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4221         }
4222
4223         IXGBE_WRITE_FLUSH(hw);
4224 }
4225
4226 /*
4227  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4228  * @hw: pointer to hardware structure
4229  */
4230 static void
4231 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4232 {
4233         uint32_t reg;
4234         uint32_t q;
4235
4236         PMD_INIT_FUNC_TRACE();
4237         /*PF VF Transmit Enable*/
4238         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4239         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4240
4241         /* Disable the Tx desc arbiter so that MTQC can be changed */
4242         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4243         reg |= IXGBE_RTTDCS_ARBDIS;
4244         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4245
4246         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4247         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4248
4249         /* Disable drop for all queues */
4250         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4251                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4252                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4253
4254         /* Enable the Tx desc arbiter */
4255         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4256         reg &= ~IXGBE_RTTDCS_ARBDIS;
4257         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4258
4259         IXGBE_WRITE_FLUSH(hw);
4260 }
4261
4262 static int __attribute__((cold))
4263 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4264 {
4265         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4266         uint64_t dma_addr;
4267         unsigned int i;
4268
4269         /* Initialize software ring entries */
4270         for (i = 0; i < rxq->nb_rx_desc; i++) {
4271                 volatile union ixgbe_adv_rx_desc *rxd;
4272                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4273
4274                 if (mbuf == NULL) {
4275                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4276                                      (unsigned) rxq->queue_id);
4277                         return -ENOMEM;
4278                 }
4279
4280                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4281                 mbuf->port = rxq->port_id;
4282
4283                 dma_addr =
4284                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4285                 rxd = &rxq->rx_ring[i];
4286                 rxd->read.hdr_addr = 0;
4287                 rxd->read.pkt_addr = dma_addr;
4288                 rxe[i].mbuf = mbuf;
4289         }
4290
4291         return 0;
4292 }
4293
4294 static int
4295 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4296 {
4297         struct ixgbe_hw *hw;
4298         uint32_t mrqc;
4299
4300         ixgbe_rss_configure(dev);
4301
4302         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4303
4304         /* MRQC: enable VF RSS */
4305         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4306         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4307         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4308         case ETH_64_POOLS:
4309                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4310                 break;
4311
4312         case ETH_32_POOLS:
4313                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4314                 break;
4315
4316         default:
4317                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4318                 return -EINVAL;
4319         }
4320
4321         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4322
4323         return 0;
4324 }
4325
4326 static int
4327 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4328 {
4329         struct ixgbe_hw *hw =
4330                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4331
4332         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4333         case ETH_64_POOLS:
4334                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4335                         IXGBE_MRQC_VMDQEN);
4336                 break;
4337
4338         case ETH_32_POOLS:
4339                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4340                         IXGBE_MRQC_VMDQRT4TCEN);
4341                 break;
4342
4343         case ETH_16_POOLS:
4344                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4345                         IXGBE_MRQC_VMDQRT8TCEN);
4346                 break;
4347         default:
4348                 PMD_INIT_LOG(ERR,
4349                         "invalid pool number in IOV mode");
4350                 break;
4351         }
4352         return 0;
4353 }
4354
4355 static int
4356 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4357 {
4358         struct ixgbe_hw *hw =
4359                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4360
4361         if (hw->mac.type == ixgbe_mac_82598EB)
4362                 return 0;
4363
4364         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4365                 /*
4366                  * SRIOV inactive scheme
4367                  * any DCB/RSS w/o VMDq multi-queue setting
4368                  */
4369                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4370                 case ETH_MQ_RX_RSS:
4371                 case ETH_MQ_RX_DCB_RSS:
4372                 case ETH_MQ_RX_VMDQ_RSS:
4373                         ixgbe_rss_configure(dev);
4374                         break;
4375
4376                 case ETH_MQ_RX_VMDQ_DCB:
4377                         ixgbe_vmdq_dcb_configure(dev);
4378                         break;
4379
4380                 case ETH_MQ_RX_VMDQ_ONLY:
4381                         ixgbe_vmdq_rx_hw_configure(dev);
4382                         break;
4383
4384                 case ETH_MQ_RX_NONE:
4385                 default:
4386                         /* if mq_mode is none, disable rss mode.*/
4387                         ixgbe_rss_disable(dev);
4388                         break;
4389                 }
4390         } else {
4391                 /* SRIOV active scheme
4392                  * Support RSS together with SRIOV.
4393                  */
4394                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4395                 case ETH_MQ_RX_RSS:
4396                 case ETH_MQ_RX_VMDQ_RSS:
4397                         ixgbe_config_vf_rss(dev);
4398                         break;
4399                 case ETH_MQ_RX_VMDQ_DCB:
4400                 case ETH_MQ_RX_DCB:
4401                 /* In SRIOV, the configuration is the same as VMDq case */
4402                         ixgbe_vmdq_dcb_configure(dev);
4403                         break;
4404                 /* DCB/RSS together with SRIOV is not supported */
4405                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4406                 case ETH_MQ_RX_DCB_RSS:
4407                         PMD_INIT_LOG(ERR,
4408                                 "Could not support DCB/RSS with VMDq & SRIOV");
4409                         return -1;
4410                 default:
4411                         ixgbe_config_vf_default(dev);
4412                         break;
4413                 }
4414         }
4415
4416         return 0;
4417 }
4418
4419 static int
4420 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4421 {
4422         struct ixgbe_hw *hw =
4423                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4424         uint32_t mtqc;
4425         uint32_t rttdcs;
4426
4427         if (hw->mac.type == ixgbe_mac_82598EB)
4428                 return 0;
4429
4430         /* disable arbiter before setting MTQC */
4431         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4432         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4433         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4434
4435         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4436                 /*
4437                  * SRIOV inactive scheme
4438                  * any DCB w/o VMDq multi-queue setting
4439                  */
4440                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4441                         ixgbe_vmdq_tx_hw_configure(hw);
4442                 else {
4443                         mtqc = IXGBE_MTQC_64Q_1PB;
4444                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4445                 }
4446         } else {
4447                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4448
4449                 /*
4450                  * SRIOV active scheme
4451                  * FIXME if support DCB together with VMDq & SRIOV
4452                  */
4453                 case ETH_64_POOLS:
4454                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4455                         break;
4456                 case ETH_32_POOLS:
4457                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4458                         break;
4459                 case ETH_16_POOLS:
4460                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4461                                 IXGBE_MTQC_8TC_8TQ;
4462                         break;
4463                 default:
4464                         mtqc = IXGBE_MTQC_64Q_1PB;
4465                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4466                 }
4467                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4468         }
4469
4470         /* re-enable arbiter */
4471         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4472         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4473
4474         return 0;
4475 }
4476
4477 /**
4478  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4479  *
4480  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4481  * spec rev. 3.0 chapter 8.2.3.8.13.
4482  *
4483  * @pool Memory pool of the Rx queue
4484  */
4485 static inline uint32_t
4486 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4487 {
4488         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4489
4490         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4491         uint16_t maxdesc =
4492                 IPV4_MAX_PKT_LEN /
4493                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4494
4495         if (maxdesc >= 16)
4496                 return IXGBE_RSCCTL_MAXDESC_16;
4497         else if (maxdesc >= 8)
4498                 return IXGBE_RSCCTL_MAXDESC_8;
4499         else if (maxdesc >= 4)
4500                 return IXGBE_RSCCTL_MAXDESC_4;
4501         else
4502                 return IXGBE_RSCCTL_MAXDESC_1;
4503 }
4504
4505 /**
4506  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4507  * interrupt
4508  *
4509  * (Taken from FreeBSD tree)
4510  * (yes this is all very magic and confusing :)
4511  *
4512  * @dev port handle
4513  * @entry the register array entry
4514  * @vector the MSIX vector for this queue
4515  * @type RX/TX/MISC
4516  */
4517 static void
4518 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4519 {
4520         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4521         u32 ivar, index;
4522
4523         vector |= IXGBE_IVAR_ALLOC_VAL;
4524
4525         switch (hw->mac.type) {
4526
4527         case ixgbe_mac_82598EB:
4528                 if (type == -1)
4529                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4530                 else
4531                         entry += (type * 64);
4532                 index = (entry >> 2) & 0x1F;
4533                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4534                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4535                 ivar |= (vector << (8 * (entry & 0x3)));
4536                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4537                 break;
4538
4539         case ixgbe_mac_82599EB:
4540         case ixgbe_mac_X540:
4541                 if (type == -1) { /* MISC IVAR */
4542                         index = (entry & 1) * 8;
4543                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4544                         ivar &= ~(0xFF << index);
4545                         ivar |= (vector << index);
4546                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4547                 } else {        /* RX/TX IVARS */
4548                         index = (16 * (entry & 1)) + (8 * type);
4549                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4550                         ivar &= ~(0xFF << index);
4551                         ivar |= (vector << index);
4552                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4553                 }
4554
4555                 break;
4556
4557         default:
4558                 break;
4559         }
4560 }
4561
4562 void __attribute__((cold))
4563 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4564 {
4565         uint16_t i, rx_using_sse;
4566         struct ixgbe_adapter *adapter =
4567                 (struct ixgbe_adapter *)dev->data->dev_private;
4568
4569         /*
4570          * In order to allow Vector Rx there are a few configuration
4571          * conditions to be met and Rx Bulk Allocation should be allowed.
4572          */
4573         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4574             !adapter->rx_bulk_alloc_allowed) {
4575                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4576                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4577                                     "not enabled",
4578                              dev->data->port_id);
4579
4580                 adapter->rx_vec_allowed = false;
4581         }
4582
4583         /*
4584          * Initialize the appropriate LRO callback.
4585          *
4586          * If all queues satisfy the bulk allocation preconditions
4587          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4588          * Otherwise use a single allocation version.
4589          */
4590         if (dev->data->lro) {
4591                 if (adapter->rx_bulk_alloc_allowed) {
4592                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4593                                            "allocation version");
4594                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4595                 } else {
4596                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4597                                            "allocation version");
4598                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4599                 }
4600         } else if (dev->data->scattered_rx) {
4601                 /*
4602                  * Set the non-LRO scattered callback: there are Vector and
4603                  * single allocation versions.
4604                  */
4605                 if (adapter->rx_vec_allowed) {
4606                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4607                                             "callback (port=%d).",
4608                                      dev->data->port_id);
4609
4610                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4611                 } else if (adapter->rx_bulk_alloc_allowed) {
4612                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4613                                            "allocation callback (port=%d).",
4614                                      dev->data->port_id);
4615                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4616                 } else {
4617                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4618                                             "single allocation) "
4619                                             "Scattered Rx callback "
4620                                             "(port=%d).",
4621                                      dev->data->port_id);
4622
4623                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4624                 }
4625         /*
4626          * Below we set "simple" callbacks according to port/queues parameters.
4627          * If parameters allow we are going to choose between the following
4628          * callbacks:
4629          *    - Vector
4630          *    - Bulk Allocation
4631          *    - Single buffer allocation (the simplest one)
4632          */
4633         } else if (adapter->rx_vec_allowed) {
4634                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4635                                     "burst size no less than %d (port=%d).",
4636                              RTE_IXGBE_DESCS_PER_LOOP,
4637                              dev->data->port_id);
4638
4639                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4640         } else if (adapter->rx_bulk_alloc_allowed) {
4641                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4642                                     "satisfied. Rx Burst Bulk Alloc function "
4643                                     "will be used on port=%d.",
4644                              dev->data->port_id);
4645
4646                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4647         } else {
4648                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4649                                     "satisfied, or Scattered Rx is requested "
4650                                     "(port=%d).",
4651                              dev->data->port_id);
4652
4653                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4654         }
4655
4656         /* Propagate information about RX function choice through all queues. */
4657
4658         rx_using_sse =
4659                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4660                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4661
4662         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4663                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4664
4665                 rxq->rx_using_sse = rx_using_sse;
4666 #ifdef RTE_LIBRTE_SECURITY
4667                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4668                                 DEV_RX_OFFLOAD_SECURITY);
4669 #endif
4670         }
4671 }
4672
4673 /**
4674  * ixgbe_set_rsc - configure RSC related port HW registers
4675  *
4676  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4677  * of 82599 Spec (x540 configuration is virtually the same).
4678  *
4679  * @dev port handle
4680  *
4681  * Returns 0 in case of success or a non-zero error code
4682  */
4683 static int
4684 ixgbe_set_rsc(struct rte_eth_dev *dev)
4685 {
4686         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4687         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4688         struct rte_eth_dev_info dev_info = { 0 };
4689         bool rsc_capable = false;
4690         uint16_t i;
4691         uint32_t rdrxctl;
4692         uint32_t rfctl;
4693
4694         /* Sanity check */
4695         dev->dev_ops->dev_infos_get(dev, &dev_info);
4696         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4697                 rsc_capable = true;
4698
4699         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4700                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4701                                    "support it");
4702                 return -EINVAL;
4703         }
4704
4705         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4706
4707         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4708              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4709                 /*
4710                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4711                  * 3.0 RSC configuration requires HW CRC stripping being
4712                  * enabled. If user requested both HW CRC stripping off
4713                  * and RSC on - return an error.
4714                  */
4715                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4716                                     "is disabled");
4717                 return -EINVAL;
4718         }
4719
4720         /* RFCTL configuration  */
4721         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4722         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4723                 /*
4724                  * Since NFS packets coalescing is not supported - clear
4725                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4726                  * enabled.
4727                  */
4728                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4729                            IXGBE_RFCTL_NFSR_DIS);
4730         else
4731                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4732         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4733
4734         /* If LRO hasn't been requested - we are done here. */
4735         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4736                 return 0;
4737
4738         /* Set RDRXCTL.RSCACKC bit */
4739         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4740         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4741         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4742
4743         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4744         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4745                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4746                 uint32_t srrctl =
4747                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4748                 uint32_t rscctl =
4749                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4750                 uint32_t psrtype =
4751                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4752                 uint32_t eitr =
4753                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4754
4755                 /*
4756                  * ixgbe PMD doesn't support header-split at the moment.
4757                  *
4758                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4759                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4760                  * should be configured even if header split is not
4761                  * enabled. We will configure it 128 bytes following the
4762                  * recommendation in the spec.
4763                  */
4764                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4765                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4766                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4767
4768                 /*
4769                  * TODO: Consider setting the Receive Descriptor Minimum
4770                  * Threshold Size for an RSC case. This is not an obviously
4771                  * beneficiary option but the one worth considering...
4772                  */
4773
4774                 rscctl |= IXGBE_RSCCTL_RSCEN;
4775                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4776                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4777
4778                 /*
4779                  * RSC: Set ITR interval corresponding to 2K ints/s.
4780                  *
4781                  * Full-sized RSC aggregations for a 10Gb/s link will
4782                  * arrive at about 20K aggregation/s rate.
4783                  *
4784                  * 2K inst/s rate will make only 10% of the
4785                  * aggregations to be closed due to the interrupt timer
4786                  * expiration for a streaming at wire-speed case.
4787                  *
4788                  * For a sparse streaming case this setting will yield
4789                  * at most 500us latency for a single RSC aggregation.
4790                  */
4791                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4792                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
4793                 eitr |= IXGBE_EITR_CNT_WDIS;
4794
4795                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4796                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4797                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4798                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4799
4800                 /*
4801                  * RSC requires the mapping of the queue to the
4802                  * interrupt vector.
4803                  */
4804                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4805         }
4806
4807         dev->data->lro = 1;
4808
4809         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4810
4811         return 0;
4812 }
4813
4814 /*
4815  * Initializes Receive Unit.
4816  */
4817 int __attribute__((cold))
4818 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4819 {
4820         struct ixgbe_hw     *hw;
4821         struct ixgbe_rx_queue *rxq;
4822         uint64_t bus_addr;
4823         uint32_t rxctrl;
4824         uint32_t fctrl;
4825         uint32_t hlreg0;
4826         uint32_t maxfrs;
4827         uint32_t srrctl;
4828         uint32_t rdrxctl;
4829         uint32_t rxcsum;
4830         uint16_t buf_size;
4831         uint16_t i;
4832         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4833         int rc;
4834
4835         PMD_INIT_FUNC_TRACE();
4836         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4837
4838         /*
4839          * Make sure receives are disabled while setting
4840          * up the RX context (registers, descriptor rings, etc.).
4841          */
4842         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4843         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4844
4845         /* Enable receipt of broadcasted frames */
4846         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4847         fctrl |= IXGBE_FCTRL_BAM;
4848         fctrl |= IXGBE_FCTRL_DPF;
4849         fctrl |= IXGBE_FCTRL_PMCF;
4850         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4851
4852         /*
4853          * Configure CRC stripping, if any.
4854          */
4855         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4856         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4857                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4858         else
4859                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4860
4861         /*
4862          * Configure jumbo frame support, if any.
4863          */
4864         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4865                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4866                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4867                 maxfrs &= 0x0000FFFF;
4868                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4869                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4870         } else
4871                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4872
4873         /*
4874          * If loopback mode is configured for 82599, set LPBK bit.
4875          */
4876         if (hw->mac.type == ixgbe_mac_82599EB &&
4877                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
4878                 hlreg0 |= IXGBE_HLREG0_LPBK;
4879         else
4880                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4881
4882         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4883
4884         /*
4885          * Assume no header split and no VLAN strip support
4886          * on any Rx queue first .
4887          */
4888         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4889         /* Setup RX queues */
4890         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4891                 rxq = dev->data->rx_queues[i];
4892
4893                 /*
4894                  * Reset crc_len in case it was changed after queue setup by a
4895                  * call to configure.
4896                  */
4897                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4898                         rxq->crc_len = ETHER_CRC_LEN;
4899                 else
4900                         rxq->crc_len = 0;
4901
4902                 /* Setup the Base and Length of the Rx Descriptor Rings */
4903                 bus_addr = rxq->rx_ring_phys_addr;
4904                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4905                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4906                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4907                                 (uint32_t)(bus_addr >> 32));
4908                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4909                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4910                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4911                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4912
4913                 /* Configure the SRRCTL register */
4914                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4915
4916                 /* Set if packets are dropped when no descriptors available */
4917                 if (rxq->drop_en)
4918                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4919
4920                 /*
4921                  * Configure the RX buffer size in the BSIZEPACKET field of
4922                  * the SRRCTL register of the queue.
4923                  * The value is in 1 KB resolution. Valid values can be from
4924                  * 1 KB to 16 KB.
4925                  */
4926                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4927                         RTE_PKTMBUF_HEADROOM);
4928                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4929                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4930
4931                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4932
4933                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
4934                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
4935
4936                 /* It adds dual VLAN length for supporting dual VLAN */
4937                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
4938                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
4939                         dev->data->scattered_rx = 1;
4940                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
4941                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4942         }
4943
4944         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
4945                 dev->data->scattered_rx = 1;
4946
4947         /*
4948          * Device configured with multiple RX queues.
4949          */
4950         ixgbe_dev_mq_rx_configure(dev);
4951
4952         /*
4953          * Setup the Checksum Register.
4954          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
4955          * Enable IP/L4 checkum computation by hardware if requested to do so.
4956          */
4957         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
4958         rxcsum |= IXGBE_RXCSUM_PCSD;
4959         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
4960                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
4961         else
4962                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
4963
4964         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
4965
4966         if (hw->mac.type == ixgbe_mac_82599EB ||
4967             hw->mac.type == ixgbe_mac_X540) {
4968                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4969                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4970                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
4971                 else
4972                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
4973                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
4974                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4975         }
4976
4977         rc = ixgbe_set_rsc(dev);
4978         if (rc)
4979                 return rc;
4980
4981         ixgbe_set_rx_function(dev);
4982
4983         return 0;
4984 }
4985
4986 /*
4987  * Initializes Transmit Unit.
4988  */
4989 void __attribute__((cold))
4990 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
4991 {
4992         struct ixgbe_hw     *hw;
4993         struct ixgbe_tx_queue *txq;
4994         uint64_t bus_addr;
4995         uint32_t hlreg0;
4996         uint32_t txctrl;
4997         uint16_t i;
4998
4999         PMD_INIT_FUNC_TRACE();
5000         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5001
5002         /* Enable TX CRC (checksum offload requirement) and hw padding
5003          * (TSO requirement)
5004          */
5005         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5006         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5007         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5008
5009         /* Setup the Base and Length of the Tx Descriptor Rings */
5010         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5011                 txq = dev->data->tx_queues[i];
5012
5013                 bus_addr = txq->tx_ring_phys_addr;
5014                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5015                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5016                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5017                                 (uint32_t)(bus_addr >> 32));
5018                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5019                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5020                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5021                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5022                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5023
5024                 /*
5025                  * Disable Tx Head Writeback RO bit, since this hoses
5026                  * bookkeeping if things aren't delivered in order.
5027                  */
5028                 switch (hw->mac.type) {
5029                 case ixgbe_mac_82598EB:
5030                         txctrl = IXGBE_READ_REG(hw,
5031                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5032                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5033                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5034                                         txctrl);
5035                         break;
5036
5037                 case ixgbe_mac_82599EB:
5038                 case ixgbe_mac_X540:
5039                 case ixgbe_mac_X550:
5040                 case ixgbe_mac_X550EM_x:
5041                 case ixgbe_mac_X550EM_a:
5042                 default:
5043                         txctrl = IXGBE_READ_REG(hw,
5044                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5045                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5046                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5047                                         txctrl);
5048                         break;
5049                 }
5050         }
5051
5052         /* Device configured with multiple TX queues. */
5053         ixgbe_dev_mq_tx_configure(dev);
5054 }
5055
5056 /*
5057  * Set up link for 82599 loopback mode Tx->Rx.
5058  */
5059 static inline void __attribute__((cold))
5060 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5061 {
5062         PMD_INIT_FUNC_TRACE();
5063
5064         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5065                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5066                                 IXGBE_SUCCESS) {
5067                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5068                         /* ignore error */
5069                         return;
5070                 }
5071         }
5072
5073         /* Restart link */
5074         IXGBE_WRITE_REG(hw,
5075                         IXGBE_AUTOC,
5076                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5077         ixgbe_reset_pipeline_82599(hw);
5078
5079         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5080         msec_delay(50);
5081 }
5082
5083
5084 /*
5085  * Start Transmit and Receive Units.
5086  */
5087 int __attribute__((cold))
5088 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5089 {
5090         struct ixgbe_hw     *hw;
5091         struct ixgbe_tx_queue *txq;
5092         struct ixgbe_rx_queue *rxq;
5093         uint32_t txdctl;
5094         uint32_t dmatxctl;
5095         uint32_t rxctrl;
5096         uint16_t i;
5097         int ret = 0;
5098
5099         PMD_INIT_FUNC_TRACE();
5100         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5101
5102         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5103                 txq = dev->data->tx_queues[i];
5104                 /* Setup Transmit Threshold Registers */
5105                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5106                 txdctl |= txq->pthresh & 0x7F;
5107                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5108                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5109                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5110         }
5111
5112         if (hw->mac.type != ixgbe_mac_82598EB) {
5113                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5114                 dmatxctl |= IXGBE_DMATXCTL_TE;
5115                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5116         }
5117
5118         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5119                 txq = dev->data->tx_queues[i];
5120                 if (!txq->tx_deferred_start) {
5121                         ret = ixgbe_dev_tx_queue_start(dev, i);
5122                         if (ret < 0)
5123                                 return ret;
5124                 }
5125         }
5126
5127         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5128                 rxq = dev->data->rx_queues[i];
5129                 if (!rxq->rx_deferred_start) {
5130                         ret = ixgbe_dev_rx_queue_start(dev, i);
5131                         if (ret < 0)
5132                                 return ret;
5133                 }
5134         }
5135
5136         /* Enable Receive engine */
5137         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5138         if (hw->mac.type == ixgbe_mac_82598EB)
5139                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5140         rxctrl |= IXGBE_RXCTRL_RXEN;
5141         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5142
5143         /* If loopback mode is enabled for 82599, set up the link accordingly */
5144         if (hw->mac.type == ixgbe_mac_82599EB &&
5145                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
5146                 ixgbe_setup_loopback_link_82599(hw);
5147
5148 #ifdef RTE_LIBRTE_SECURITY
5149         if ((dev->data->dev_conf.rxmode.offloads &
5150                         DEV_RX_OFFLOAD_SECURITY) ||
5151                 (dev->data->dev_conf.txmode.offloads &
5152                         DEV_TX_OFFLOAD_SECURITY)) {
5153                 ret = ixgbe_crypto_enable_ipsec(dev);
5154                 if (ret != 0) {
5155                         PMD_DRV_LOG(ERR,
5156                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5157                                     ret);
5158                         return ret;
5159                 }
5160         }
5161 #endif
5162
5163         return 0;
5164 }
5165
5166 /*
5167  * Start Receive Units for specified queue.
5168  */
5169 int __attribute__((cold))
5170 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5171 {
5172         struct ixgbe_hw     *hw;
5173         struct ixgbe_rx_queue *rxq;
5174         uint32_t rxdctl;
5175         int poll_ms;
5176
5177         PMD_INIT_FUNC_TRACE();
5178         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5179
5180         rxq = dev->data->rx_queues[rx_queue_id];
5181
5182         /* Allocate buffers for descriptor rings */
5183         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5184                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5185                              rx_queue_id);
5186                 return -1;
5187         }
5188         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5189         rxdctl |= IXGBE_RXDCTL_ENABLE;
5190         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5191
5192         /* Wait until RX Enable ready */
5193         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5194         do {
5195                 rte_delay_ms(1);
5196                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5197         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5198         if (!poll_ms)
5199                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5200         rte_wmb();
5201         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5202         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5203         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5204
5205         return 0;
5206 }
5207
5208 /*
5209  * Stop Receive Units for specified queue.
5210  */
5211 int __attribute__((cold))
5212 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5213 {
5214         struct ixgbe_hw     *hw;
5215         struct ixgbe_adapter *adapter =
5216                 (struct ixgbe_adapter *)dev->data->dev_private;
5217         struct ixgbe_rx_queue *rxq;
5218         uint32_t rxdctl;
5219         int poll_ms;
5220
5221         PMD_INIT_FUNC_TRACE();
5222         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5223
5224         rxq = dev->data->rx_queues[rx_queue_id];
5225
5226         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5227         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5228         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5229
5230         /* Wait until RX Enable bit clear */
5231         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5232         do {
5233                 rte_delay_ms(1);
5234                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5235         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5236         if (!poll_ms)
5237                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5238
5239         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5240
5241         ixgbe_rx_queue_release_mbufs(rxq);
5242         ixgbe_reset_rx_queue(adapter, rxq);
5243         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5244
5245         return 0;
5246 }
5247
5248
5249 /*
5250  * Start Transmit Units for specified queue.
5251  */
5252 int __attribute__((cold))
5253 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5254 {
5255         struct ixgbe_hw     *hw;
5256         struct ixgbe_tx_queue *txq;
5257         uint32_t txdctl;
5258         int poll_ms;
5259
5260         PMD_INIT_FUNC_TRACE();
5261         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5262
5263         txq = dev->data->tx_queues[tx_queue_id];
5264         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5265         txdctl |= IXGBE_TXDCTL_ENABLE;
5266         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5267
5268         /* Wait until TX Enable ready */
5269         if (hw->mac.type == ixgbe_mac_82599EB) {
5270                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5271                 do {
5272                         rte_delay_ms(1);
5273                         txdctl = IXGBE_READ_REG(hw,
5274                                 IXGBE_TXDCTL(txq->reg_idx));
5275                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5276                 if (!poll_ms)
5277                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5278                                 tx_queue_id);
5279         }
5280         rte_wmb();
5281         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5282         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5283         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5284
5285         return 0;
5286 }
5287
5288 /*
5289  * Stop Transmit Units for specified queue.
5290  */
5291 int __attribute__((cold))
5292 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5293 {
5294         struct ixgbe_hw     *hw;
5295         struct ixgbe_tx_queue *txq;
5296         uint32_t txdctl;
5297         uint32_t txtdh, txtdt;
5298         int poll_ms;
5299
5300         PMD_INIT_FUNC_TRACE();
5301         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5302
5303         txq = dev->data->tx_queues[tx_queue_id];
5304
5305         /* Wait until TX queue is empty */
5306         if (hw->mac.type == ixgbe_mac_82599EB) {
5307                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5308                 do {
5309                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5310                         txtdh = IXGBE_READ_REG(hw,
5311                                                IXGBE_TDH(txq->reg_idx));
5312                         txtdt = IXGBE_READ_REG(hw,
5313                                                IXGBE_TDT(txq->reg_idx));
5314                 } while (--poll_ms && (txtdh != txtdt));
5315                 if (!poll_ms)
5316                         PMD_INIT_LOG(ERR,
5317                                 "Tx Queue %d is not empty when stopping.",
5318                                 tx_queue_id);
5319         }
5320
5321         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5322         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5323         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5324
5325         /* Wait until TX Enable bit clear */
5326         if (hw->mac.type == ixgbe_mac_82599EB) {
5327                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5328                 do {
5329                         rte_delay_ms(1);
5330                         txdctl = IXGBE_READ_REG(hw,
5331                                                 IXGBE_TXDCTL(txq->reg_idx));
5332                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5333                 if (!poll_ms)
5334                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5335                                 tx_queue_id);
5336         }
5337
5338         if (txq->ops != NULL) {
5339                 txq->ops->release_mbufs(txq);
5340                 txq->ops->reset(txq);
5341         }
5342         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5343
5344         return 0;
5345 }
5346
5347 void
5348 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5349         struct rte_eth_rxq_info *qinfo)
5350 {
5351         struct ixgbe_rx_queue *rxq;
5352
5353         rxq = dev->data->rx_queues[queue_id];
5354
5355         qinfo->mp = rxq->mb_pool;
5356         qinfo->scattered_rx = dev->data->scattered_rx;
5357         qinfo->nb_desc = rxq->nb_rx_desc;
5358
5359         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5360         qinfo->conf.rx_drop_en = rxq->drop_en;
5361         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5362         qinfo->conf.offloads = rxq->offloads;
5363 }
5364
5365 void
5366 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5367         struct rte_eth_txq_info *qinfo)
5368 {
5369         struct ixgbe_tx_queue *txq;
5370
5371         txq = dev->data->tx_queues[queue_id];
5372
5373         qinfo->nb_desc = txq->nb_tx_desc;
5374
5375         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5376         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5377         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5378
5379         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5380         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5381         qinfo->conf.offloads = txq->offloads;
5382         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5383 }
5384
5385 /*
5386  * [VF] Initializes Receive Unit.
5387  */
5388 int __attribute__((cold))
5389 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5390 {
5391         struct ixgbe_hw     *hw;
5392         struct ixgbe_rx_queue *rxq;
5393         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5394         uint64_t bus_addr;
5395         uint32_t srrctl, psrtype = 0;
5396         uint16_t buf_size;
5397         uint16_t i;
5398         int ret;
5399
5400         PMD_INIT_FUNC_TRACE();
5401         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5402
5403         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5404                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5405                         "it should be power of 2");
5406                 return -1;
5407         }
5408
5409         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5410                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5411                         "it should be equal to or less than %d",
5412                         hw->mac.max_rx_queues);
5413                 return -1;
5414         }
5415
5416         /*
5417          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5418          * disables the VF receipt of packets if the PF MTU is > 1500.
5419          * This is done to deal with 82599 limitations that imposes
5420          * the PF and all VFs to share the same MTU.
5421          * Then, the PF driver enables again the VF receipt of packet when
5422          * the VF driver issues a IXGBE_VF_SET_LPE request.
5423          * In the meantime, the VF device cannot be used, even if the VF driver
5424          * and the Guest VM network stack are ready to accept packets with a
5425          * size up to the PF MTU.
5426          * As a work-around to this PF behaviour, force the call to
5427          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5428          * VF packets received can work in all cases.
5429          */
5430         ixgbevf_rlpml_set_vf(hw,
5431                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5432
5433         /*
5434          * Assume no header split and no VLAN strip support
5435          * on any Rx queue first .
5436          */
5437         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5438         /* Setup RX queues */
5439         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5440                 rxq = dev->data->rx_queues[i];
5441
5442                 /* Allocate buffers for descriptor rings */
5443                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5444                 if (ret)
5445                         return ret;
5446
5447                 /* Setup the Base and Length of the Rx Descriptor Rings */
5448                 bus_addr = rxq->rx_ring_phys_addr;
5449
5450                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5451                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5452                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5453                                 (uint32_t)(bus_addr >> 32));
5454                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5455                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5456                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5457                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5458
5459
5460                 /* Configure the SRRCTL register */
5461                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5462
5463                 /* Set if packets are dropped when no descriptors available */
5464                 if (rxq->drop_en)
5465                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5466
5467                 /*
5468                  * Configure the RX buffer size in the BSIZEPACKET field of
5469                  * the SRRCTL register of the queue.
5470                  * The value is in 1 KB resolution. Valid values can be from
5471                  * 1 KB to 16 KB.
5472                  */
5473                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5474                         RTE_PKTMBUF_HEADROOM);
5475                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5476                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5477
5478                 /*
5479                  * VF modification to write virtual function SRRCTL register
5480                  */
5481                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5482
5483                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5484                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5485
5486                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5487                     /* It adds dual VLAN length for supporting dual VLAN */
5488                     (rxmode->max_rx_pkt_len +
5489                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5490                         if (!dev->data->scattered_rx)
5491                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5492                         dev->data->scattered_rx = 1;
5493                 }
5494
5495                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5496                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5497         }
5498
5499         /* Set RQPL for VF RSS according to max Rx queue */
5500         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5501                 IXGBE_PSRTYPE_RQPL_SHIFT;
5502         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5503
5504         ixgbe_set_rx_function(dev);
5505
5506         return 0;
5507 }
5508
5509 /*
5510  * [VF] Initializes Transmit Unit.
5511  */
5512 void __attribute__((cold))
5513 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5514 {
5515         struct ixgbe_hw     *hw;
5516         struct ixgbe_tx_queue *txq;
5517         uint64_t bus_addr;
5518         uint32_t txctrl;
5519         uint16_t i;
5520
5521         PMD_INIT_FUNC_TRACE();
5522         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5523
5524         /* Setup the Base and Length of the Tx Descriptor Rings */
5525         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5526                 txq = dev->data->tx_queues[i];
5527                 bus_addr = txq->tx_ring_phys_addr;
5528                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5529                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5530                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5531                                 (uint32_t)(bus_addr >> 32));
5532                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5533                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5534                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5535                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5536                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5537
5538                 /*
5539                  * Disable Tx Head Writeback RO bit, since this hoses
5540                  * bookkeeping if things aren't delivered in order.
5541                  */
5542                 txctrl = IXGBE_READ_REG(hw,
5543                                 IXGBE_VFDCA_TXCTRL(i));
5544                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5545                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5546                                 txctrl);
5547         }
5548 }
5549
5550 /*
5551  * [VF] Start Transmit and Receive Units.
5552  */
5553 void __attribute__((cold))
5554 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5555 {
5556         struct ixgbe_hw     *hw;
5557         struct ixgbe_tx_queue *txq;
5558         struct ixgbe_rx_queue *rxq;
5559         uint32_t txdctl;
5560         uint32_t rxdctl;
5561         uint16_t i;
5562         int poll_ms;
5563
5564         PMD_INIT_FUNC_TRACE();
5565         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5566
5567         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5568                 txq = dev->data->tx_queues[i];
5569                 /* Setup Transmit Threshold Registers */
5570                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5571                 txdctl |= txq->pthresh & 0x7F;
5572                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5573                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5574                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5575         }
5576
5577         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5578
5579                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5580                 txdctl |= IXGBE_TXDCTL_ENABLE;
5581                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5582
5583                 poll_ms = 10;
5584                 /* Wait until TX Enable ready */
5585                 do {
5586                         rte_delay_ms(1);
5587                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5588                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5589                 if (!poll_ms)
5590                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5591         }
5592         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5593
5594                 rxq = dev->data->rx_queues[i];
5595
5596                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5597                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5598                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5599
5600                 /* Wait until RX Enable ready */
5601                 poll_ms = 10;
5602                 do {
5603                         rte_delay_ms(1);
5604                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5605                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5606                 if (!poll_ms)
5607                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5608                 rte_wmb();
5609                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5610
5611         }
5612 }
5613
5614 int
5615 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5616                     const struct rte_flow_action_rss *in)
5617 {
5618         if (in->key_len > RTE_DIM(out->key) ||
5619             in->queue_num > RTE_DIM(out->queue))
5620                 return -EINVAL;
5621         out->conf = (struct rte_flow_action_rss){
5622                 .func = in->func,
5623                 .level = in->level,
5624                 .types = in->types,
5625                 .key_len = in->key_len,
5626                 .queue_num = in->queue_num,
5627                 .key = memcpy(out->key, in->key, in->key_len),
5628                 .queue = memcpy(out->queue, in->queue,
5629                                 sizeof(*in->queue) * in->queue_num),
5630         };
5631         return 0;
5632 }
5633
5634 int
5635 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5636                       const struct rte_flow_action_rss *with)
5637 {
5638         return (comp->func == with->func &&
5639                 comp->level == with->level &&
5640                 comp->types == with->types &&
5641                 comp->key_len == with->key_len &&
5642                 comp->queue_num == with->queue_num &&
5643                 !memcmp(comp->key, with->key, with->key_len) &&
5644                 !memcmp(comp->queue, with->queue,
5645                         sizeof(*with->queue) * with->queue_num));
5646 }
5647
5648 int
5649 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5650                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5651 {
5652         struct ixgbe_hw *hw;
5653         uint32_t reta;
5654         uint16_t i;
5655         uint16_t j;
5656         uint16_t sp_reta_size;
5657         uint32_t reta_reg;
5658         struct rte_eth_rss_conf rss_conf = {
5659                 .rss_key = conf->conf.key_len ?
5660                         (void *)(uintptr_t)conf->conf.key : NULL,
5661                 .rss_key_len = conf->conf.key_len,
5662                 .rss_hf = conf->conf.types,
5663         };
5664         struct ixgbe_filter_info *filter_info =
5665                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5666
5667         PMD_INIT_FUNC_TRACE();
5668         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5669
5670         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5671
5672         if (!add) {
5673                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5674                                           &conf->conf)) {
5675                         ixgbe_rss_disable(dev);
5676                         memset(&filter_info->rss_info, 0,
5677                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5678                         return 0;
5679                 }
5680                 return -EINVAL;
5681         }
5682
5683         if (filter_info->rss_info.conf.queue_num)
5684                 return -EINVAL;
5685         /* Fill in redirection table
5686          * The byte-swap is needed because NIC registers are in
5687          * little-endian order.
5688          */
5689         reta = 0;
5690         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5691                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5692
5693                 if (j == conf->conf.queue_num)
5694                         j = 0;
5695                 reta = (reta << 8) | conf->conf.queue[j];
5696                 if ((i & 3) == 3)
5697                         IXGBE_WRITE_REG(hw, reta_reg,
5698                                         rte_bswap32(reta));
5699         }
5700
5701         /* Configure the RSS key and the RSS protocols used to compute
5702          * the RSS hash of input packets.
5703          */
5704         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5705                 ixgbe_rss_disable(dev);
5706                 return -EINVAL;
5707         }
5708         if (rss_conf.rss_key == NULL)
5709                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5710         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5711
5712         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5713                 return -EINVAL;
5714
5715         return 0;
5716 }
5717
5718 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5719 int __attribute__((weak))
5720 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5721 {
5722         return -1;
5723 }
5724
5725 uint16_t __attribute__((weak))
5726 ixgbe_recv_pkts_vec(
5727         void __rte_unused *rx_queue,
5728         struct rte_mbuf __rte_unused **rx_pkts,
5729         uint16_t __rte_unused nb_pkts)
5730 {
5731         return 0;
5732 }
5733
5734 uint16_t __attribute__((weak))
5735 ixgbe_recv_scattered_pkts_vec(
5736         void __rte_unused *rx_queue,
5737         struct rte_mbuf __rte_unused **rx_pkts,
5738         uint16_t __rte_unused nb_pkts)
5739 {
5740         return 0;
5741 }
5742
5743 int __attribute__((weak))
5744 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5745 {
5746         return -1;
5747 }