net/ixgbe: convert to new Rx offloads API
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_VLAN_PKT |                \
62                 PKT_TX_IP_CKSUM |                \
63                 PKT_TX_L4_MASK |                 \
64                 PKT_TX_TCP_SEG |                 \
65                 PKT_TX_MACSEC |                  \
66                 PKT_TX_OUTER_IP_CKSUM |          \
67                 PKT_TX_SEC_OFFLOAD |     \
68                 IXGBE_TX_IEEE1588_TMST)
69
70 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
71                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
72
73 #if 1
74 #define RTE_PMD_USE_PREFETCH
75 #endif
76
77 #ifdef RTE_PMD_USE_PREFETCH
78 /*
79  * Prefetch a cache line into all cache levels.
80  */
81 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
82 #else
83 #define rte_ixgbe_prefetch(p)   do {} while (0)
84 #endif
85
86 #ifdef RTE_IXGBE_INC_VECTOR
87 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
88                                     uint16_t nb_pkts);
89 #endif
90
91 /*********************************************************************
92  *
93  *  TX functions
94  *
95  **********************************************************************/
96
97 /*
98  * Check for descriptors with their DD bit set and free mbufs.
99  * Return the total number of buffers freed.
100  */
101 static __rte_always_inline int
102 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
103 {
104         struct ixgbe_tx_entry *txep;
105         uint32_t status;
106         int i, nb_free = 0;
107         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
108
109         /* check DD bit on threshold descriptor */
110         status = txq->tx_ring[txq->tx_next_dd].wb.status;
111         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
112                 return 0;
113
114         /*
115          * first buffer to free from S/W ring is at index
116          * tx_next_dd - (tx_rs_thresh-1)
117          */
118         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
119
120         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
121                 /* free buffers one at a time */
122                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
123                 txep->mbuf = NULL;
124
125                 if (unlikely(m == NULL))
126                         continue;
127
128                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
129                     (nb_free > 0 && m->pool != free[0]->pool)) {
130                         rte_mempool_put_bulk(free[0]->pool,
131                                              (void **)free, nb_free);
132                         nb_free = 0;
133                 }
134
135                 free[nb_free++] = m;
136         }
137
138         if (nb_free > 0)
139                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
140
141         /* buffers were freed, update counters */
142         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
143         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
144         if (txq->tx_next_dd >= txq->nb_tx_desc)
145                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
146
147         return txq->tx_rs_thresh;
148 }
149
150 /* Populate 4 descriptors with data from 4 mbufs */
151 static inline void
152 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
153 {
154         uint64_t buf_dma_addr;
155         uint32_t pkt_len;
156         int i;
157
158         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
159                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
160                 pkt_len = (*pkts)->data_len;
161
162                 /* write data to descriptor */
163                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
164
165                 txdp->read.cmd_type_len =
166                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
167
168                 txdp->read.olinfo_status =
169                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
170
171                 rte_prefetch0(&(*pkts)->pool);
172         }
173 }
174
175 /* Populate 1 descriptor with data from 1 mbuf */
176 static inline void
177 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
178 {
179         uint64_t buf_dma_addr;
180         uint32_t pkt_len;
181
182         buf_dma_addr = rte_mbuf_data_iova(*pkts);
183         pkt_len = (*pkts)->data_len;
184
185         /* write data to descriptor */
186         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
187         txdp->read.cmd_type_len =
188                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
189         txdp->read.olinfo_status =
190                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
191         rte_prefetch0(&(*pkts)->pool);
192 }
193
194 /*
195  * Fill H/W descriptor ring with mbuf data.
196  * Copy mbuf pointers to the S/W ring.
197  */
198 static inline void
199 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
200                       uint16_t nb_pkts)
201 {
202         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
203         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
204         const int N_PER_LOOP = 4;
205         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
206         int mainpart, leftover;
207         int i, j;
208
209         /*
210          * Process most of the packets in chunks of N pkts.  Any
211          * leftover packets will get processed one at a time.
212          */
213         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
214         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
215         for (i = 0; i < mainpart; i += N_PER_LOOP) {
216                 /* Copy N mbuf pointers to the S/W ring */
217                 for (j = 0; j < N_PER_LOOP; ++j) {
218                         (txep + i + j)->mbuf = *(pkts + i + j);
219                 }
220                 tx4(txdp + i, pkts + i);
221         }
222
223         if (unlikely(leftover > 0)) {
224                 for (i = 0; i < leftover; ++i) {
225                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
226                         tx1(txdp + mainpart + i, pkts + mainpart + i);
227                 }
228         }
229 }
230
231 static inline uint16_t
232 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
233              uint16_t nb_pkts)
234 {
235         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
236         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
237         uint16_t n = 0;
238
239         /*
240          * Begin scanning the H/W ring for done descriptors when the
241          * number of available descriptors drops below tx_free_thresh.  For
242          * each done descriptor, free the associated buffer.
243          */
244         if (txq->nb_tx_free < txq->tx_free_thresh)
245                 ixgbe_tx_free_bufs(txq);
246
247         /* Only use descriptors that are available */
248         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
249         if (unlikely(nb_pkts == 0))
250                 return 0;
251
252         /* Use exactly nb_pkts descriptors */
253         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
254
255         /*
256          * At this point, we know there are enough descriptors in the
257          * ring to transmit all the packets.  This assumes that each
258          * mbuf contains a single segment, and that no new offloads
259          * are expected, which would require a new context descriptor.
260          */
261
262         /*
263          * See if we're going to wrap-around. If so, handle the top
264          * of the descriptor ring first, then do the bottom.  If not,
265          * the processing looks just like the "bottom" part anyway...
266          */
267         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
268                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
269                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
270
271                 /*
272                  * We know that the last descriptor in the ring will need to
273                  * have its RS bit set because tx_rs_thresh has to be
274                  * a divisor of the ring size
275                  */
276                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
277                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
278                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
279
280                 txq->tx_tail = 0;
281         }
282
283         /* Fill H/W descriptor ring with mbuf data */
284         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
285         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
286
287         /*
288          * Determine if RS bit should be set
289          * This is what we actually want:
290          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
291          * but instead of subtracting 1 and doing >=, we can just do
292          * greater than without subtracting.
293          */
294         if (txq->tx_tail > txq->tx_next_rs) {
295                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
296                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
297                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
298                                                 txq->tx_rs_thresh);
299                 if (txq->tx_next_rs >= txq->nb_tx_desc)
300                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
301         }
302
303         /*
304          * Check for wrap-around. This would only happen if we used
305          * up to the last descriptor in the ring, no more, no less.
306          */
307         if (txq->tx_tail >= txq->nb_tx_desc)
308                 txq->tx_tail = 0;
309
310         /* update tail pointer */
311         rte_wmb();
312         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
313
314         return nb_pkts;
315 }
316
317 uint16_t
318 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
319                        uint16_t nb_pkts)
320 {
321         uint16_t nb_tx;
322
323         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
324         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
325                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
326
327         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
328         nb_tx = 0;
329         while (nb_pkts) {
330                 uint16_t ret, n;
331
332                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
333                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
334                 nb_tx = (uint16_t)(nb_tx + ret);
335                 nb_pkts = (uint16_t)(nb_pkts - ret);
336                 if (ret < n)
337                         break;
338         }
339
340         return nb_tx;
341 }
342
343 #ifdef RTE_IXGBE_INC_VECTOR
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365 #endif
366
367 static inline void
368 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
369                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
370                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
371                 __rte_unused uint64_t *mdata)
372 {
373         uint32_t type_tucmd_mlhl;
374         uint32_t mss_l4len_idx = 0;
375         uint32_t ctx_idx;
376         uint32_t vlan_macip_lens;
377         union ixgbe_tx_offload tx_offload_mask;
378         uint32_t seqnum_seed = 0;
379
380         ctx_idx = txq->ctx_curr;
381         tx_offload_mask.data[0] = 0;
382         tx_offload_mask.data[1] = 0;
383         type_tucmd_mlhl = 0;
384
385         /* Specify which HW CTX to upload. */
386         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
387
388         if (ol_flags & PKT_TX_VLAN_PKT) {
389                 tx_offload_mask.vlan_tci |= ~0;
390         }
391
392         /* check if TCP segmentation required for this packet */
393         if (ol_flags & PKT_TX_TCP_SEG) {
394                 /* implies IP cksum in IPv4 */
395                 if (ol_flags & PKT_TX_IP_CKSUM)
396                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
397                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
398                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
399                 else
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403
404                 tx_offload_mask.l2_len |= ~0;
405                 tx_offload_mask.l3_len |= ~0;
406                 tx_offload_mask.l4_len |= ~0;
407                 tx_offload_mask.tso_segsz |= ~0;
408                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
409                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
410         } else { /* no TSO, check if hardware checksum is needed */
411                 if (ol_flags & PKT_TX_IP_CKSUM) {
412                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
413                         tx_offload_mask.l2_len |= ~0;
414                         tx_offload_mask.l3_len |= ~0;
415                 }
416
417                 switch (ol_flags & PKT_TX_L4_MASK) {
418                 case PKT_TX_UDP_CKSUM:
419                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
420                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
421                         mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
429                         tx_offload_mask.l2_len |= ~0;
430                         tx_offload_mask.l3_len |= ~0;
431                         break;
432                 case PKT_TX_SCTP_CKSUM:
433                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
434                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
435                         mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
436                         tx_offload_mask.l2_len |= ~0;
437                         tx_offload_mask.l3_len |= ~0;
438                         break;
439                 default:
440                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
441                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
442                         break;
443                 }
444         }
445
446         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
447                 tx_offload_mask.outer_l2_len |= ~0;
448                 tx_offload_mask.outer_l3_len |= ~0;
449                 tx_offload_mask.l2_len |= ~0;
450                 seqnum_seed |= tx_offload.outer_l3_len
451                                << IXGBE_ADVTXD_OUTER_IPLEN;
452                 seqnum_seed |= tx_offload.l2_len
453                                << IXGBE_ADVTXD_TUNNEL_LEN;
454         }
455 #ifdef RTE_LIBRTE_SECURITY
456         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
457                 union ixgbe_crypto_tx_desc_md *md =
458                                 (union ixgbe_crypto_tx_desc_md *)mdata;
459                 seqnum_seed |=
460                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
461                 type_tucmd_mlhl |= md->enc ?
462                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
463                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
464                 type_tucmd_mlhl |=
465                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
466                 tx_offload_mask.sa_idx |= ~0;
467                 tx_offload_mask.sec_pad_len |= ~0;
468         }
469 #endif
470
471         txq->ctx_cache[ctx_idx].flags = ol_flags;
472         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
473                 tx_offload_mask.data[0] & tx_offload.data[0];
474         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
475                 tx_offload_mask.data[1] & tx_offload.data[1];
476         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
477
478         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
479         vlan_macip_lens = tx_offload.l3_len;
480         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
481                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
482                                     IXGBE_ADVTXD_MACLEN_SHIFT);
483         else
484                 vlan_macip_lens |= (tx_offload.l2_len <<
485                                     IXGBE_ADVTXD_MACLEN_SHIFT);
486         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
487         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
488         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
489         ctx_txd->seqnum_seed     = seqnum_seed;
490 }
491
492 /*
493  * Check which hardware context can be used. Use the existing match
494  * or create a new context descriptor.
495  */
496 static inline uint32_t
497 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
498                    union ixgbe_tx_offload tx_offload)
499 {
500         /* If match with the current used context */
501         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
502                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
503                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
504                      & tx_offload.data[0])) &&
505                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
506                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
507                      & tx_offload.data[1]))))
508                 return txq->ctx_curr;
509
510         /* What if match with the next context  */
511         txq->ctx_curr ^= 1;
512         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
513                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
514                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
515                      & tx_offload.data[0])) &&
516                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
517                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
518                      & tx_offload.data[1]))))
519                 return txq->ctx_curr;
520
521         /* Mismatch, use the previous context */
522         return IXGBE_CTX_NUM;
523 }
524
525 static inline uint32_t
526 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
527 {
528         uint32_t tmp = 0;
529
530         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
531                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
532         if (ol_flags & PKT_TX_IP_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
534         if (ol_flags & PKT_TX_TCP_SEG)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         return tmp;
537 }
538
539 static inline uint32_t
540 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
541 {
542         uint32_t cmdtype = 0;
543
544         if (ol_flags & PKT_TX_VLAN_PKT)
545                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
546         if (ol_flags & PKT_TX_TCP_SEG)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
548         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
549                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
550         if (ol_flags & PKT_TX_MACSEC)
551                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
552         return cmdtype;
553 }
554
555 /* Default RS bit threshold values */
556 #ifndef DEFAULT_TX_RS_THRESH
557 #define DEFAULT_TX_RS_THRESH   32
558 #endif
559 #ifndef DEFAULT_TX_FREE_THRESH
560 #define DEFAULT_TX_FREE_THRESH 32
561 #endif
562
563 /* Reset transmit descriptors after they have been used */
564 static inline int
565 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
566 {
567         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
568         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
570         uint16_t nb_tx_desc = txq->nb_tx_desc;
571         uint16_t desc_to_clean_to;
572         uint16_t nb_tx_to_clean;
573         uint32_t status;
574
575         /* Determine the last descriptor needing to be cleaned */
576         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
577         if (desc_to_clean_to >= nb_tx_desc)
578                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
579
580         /* Check to make sure the last descriptor to clean is done */
581         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
582         status = txr[desc_to_clean_to].wb.status;
583         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
584                 PMD_TX_FREE_LOG(DEBUG,
585                                 "TX descriptor %4u is not done"
586                                 "(port=%d queue=%d)",
587                                 desc_to_clean_to,
588                                 txq->port_id, txq->queue_id);
589                 /* Failed to clean any descriptors, better luck next time */
590                 return -(1);
591         }
592
593         /* Figure out how many descriptors will be cleaned */
594         if (last_desc_cleaned > desc_to_clean_to)
595                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
596                                                         desc_to_clean_to);
597         else
598                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
599                                                 last_desc_cleaned);
600
601         PMD_TX_FREE_LOG(DEBUG,
602                         "Cleaning %4u TX descriptors: %4u to %4u "
603                         "(port=%d queue=%d)",
604                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
605                         txq->port_id, txq->queue_id);
606
607         /*
608          * The last descriptor to clean is done, so that means all the
609          * descriptors from the last descriptor that was cleaned
610          * up to the last descriptor with the RS bit set
611          * are done. Only reset the threshold descriptor.
612          */
613         txr[desc_to_clean_to].wb.status = 0;
614
615         /* Update the txq to reflect the last descriptor that was cleaned */
616         txq->last_desc_cleaned = desc_to_clean_to;
617         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
618
619         /* No Error */
620         return 0;
621 }
622
623 uint16_t
624 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
625                 uint16_t nb_pkts)
626 {
627         struct ixgbe_tx_queue *txq;
628         struct ixgbe_tx_entry *sw_ring;
629         struct ixgbe_tx_entry *txe, *txn;
630         volatile union ixgbe_adv_tx_desc *txr;
631         volatile union ixgbe_adv_tx_desc *txd, *txp;
632         struct rte_mbuf     *tx_pkt;
633         struct rte_mbuf     *m_seg;
634         uint64_t buf_dma_addr;
635         uint32_t olinfo_status;
636         uint32_t cmd_type_len;
637         uint32_t pkt_len;
638         uint16_t slen;
639         uint64_t ol_flags;
640         uint16_t tx_id;
641         uint16_t tx_last;
642         uint16_t nb_tx;
643         uint16_t nb_used;
644         uint64_t tx_ol_req;
645         uint32_t ctx = 0;
646         uint32_t new_ctx;
647         union ixgbe_tx_offload tx_offload;
648 #ifdef RTE_LIBRTE_SECURITY
649         uint8_t use_ipsec;
650 #endif
651
652         tx_offload.data[0] = 0;
653         tx_offload.data[1] = 0;
654         txq = tx_queue;
655         sw_ring = txq->sw_ring;
656         txr     = txq->tx_ring;
657         tx_id   = txq->tx_tail;
658         txe = &sw_ring[tx_id];
659         txp = NULL;
660
661         /* Determine if the descriptor ring needs to be cleaned. */
662         if (txq->nb_tx_free < txq->tx_free_thresh)
663                 ixgbe_xmit_cleanup(txq);
664
665         rte_prefetch0(&txe->mbuf->pool);
666
667         /* TX loop */
668         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
669                 new_ctx = 0;
670                 tx_pkt = *tx_pkts++;
671                 pkt_len = tx_pkt->pkt_len;
672
673                 /*
674                  * Determine how many (if any) context descriptors
675                  * are needed for offload functionality.
676                  */
677                 ol_flags = tx_pkt->ol_flags;
678 #ifdef RTE_LIBRTE_SECURITY
679                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
680 #endif
681
682                 /* If hardware offload required */
683                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
684                 if (tx_ol_req) {
685                         tx_offload.l2_len = tx_pkt->l2_len;
686                         tx_offload.l3_len = tx_pkt->l3_len;
687                         tx_offload.l4_len = tx_pkt->l4_len;
688                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
689                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
690                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
691                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
692 #ifdef RTE_LIBRTE_SECURITY
693                         if (use_ipsec) {
694                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
695                                         (union ixgbe_crypto_tx_desc_md *)
696                                                         &tx_pkt->udata64;
697                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
698                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
699                         }
700 #endif
701
702                         /* If new context need be built or reuse the exist ctx. */
703                         ctx = what_advctx_update(txq, tx_ol_req,
704                                 tx_offload);
705                         /* Only allocate context descriptor if required*/
706                         new_ctx = (ctx == IXGBE_CTX_NUM);
707                         ctx = txq->ctx_curr;
708                 }
709
710                 /*
711                  * Keep track of how many descriptors are used this loop
712                  * This will always be the number of segments + the number of
713                  * Context descriptors required to transmit the packet
714                  */
715                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
716
717                 if (txp != NULL &&
718                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
719                         /* set RS on the previous packet in the burst */
720                         txp->read.cmd_type_len |=
721                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
722
723                 /*
724                  * The number of descriptors that must be allocated for a
725                  * packet is the number of segments of that packet, plus 1
726                  * Context Descriptor for the hardware offload, if any.
727                  * Determine the last TX descriptor to allocate in the TX ring
728                  * for the packet, starting from the current position (tx_id)
729                  * in the ring.
730                  */
731                 tx_last = (uint16_t) (tx_id + nb_used - 1);
732
733                 /* Circular ring */
734                 if (tx_last >= txq->nb_tx_desc)
735                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
736
737                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
738                            " tx_first=%u tx_last=%u",
739                            (unsigned) txq->port_id,
740                            (unsigned) txq->queue_id,
741                            (unsigned) pkt_len,
742                            (unsigned) tx_id,
743                            (unsigned) tx_last);
744
745                 /*
746                  * Make sure there are enough TX descriptors available to
747                  * transmit the entire packet.
748                  * nb_used better be less than or equal to txq->tx_rs_thresh
749                  */
750                 if (nb_used > txq->nb_tx_free) {
751                         PMD_TX_FREE_LOG(DEBUG,
752                                         "Not enough free TX descriptors "
753                                         "nb_used=%4u nb_free=%4u "
754                                         "(port=%d queue=%d)",
755                                         nb_used, txq->nb_tx_free,
756                                         txq->port_id, txq->queue_id);
757
758                         if (ixgbe_xmit_cleanup(txq) != 0) {
759                                 /* Could not clean any descriptors */
760                                 if (nb_tx == 0)
761                                         return 0;
762                                 goto end_of_tx;
763                         }
764
765                         /* nb_used better be <= txq->tx_rs_thresh */
766                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
767                                 PMD_TX_FREE_LOG(DEBUG,
768                                         "The number of descriptors needed to "
769                                         "transmit the packet exceeds the "
770                                         "RS bit threshold. This will impact "
771                                         "performance."
772                                         "nb_used=%4u nb_free=%4u "
773                                         "tx_rs_thresh=%4u. "
774                                         "(port=%d queue=%d)",
775                                         nb_used, txq->nb_tx_free,
776                                         txq->tx_rs_thresh,
777                                         txq->port_id, txq->queue_id);
778                                 /*
779                                  * Loop here until there are enough TX
780                                  * descriptors or until the ring cannot be
781                                  * cleaned.
782                                  */
783                                 while (nb_used > txq->nb_tx_free) {
784                                         if (ixgbe_xmit_cleanup(txq) != 0) {
785                                                 /*
786                                                  * Could not clean any
787                                                  * descriptors
788                                                  */
789                                                 if (nb_tx == 0)
790                                                         return 0;
791                                                 goto end_of_tx;
792                                         }
793                                 }
794                         }
795                 }
796
797                 /*
798                  * By now there are enough free TX descriptors to transmit
799                  * the packet.
800                  */
801
802                 /*
803                  * Set common flags of all TX Data Descriptors.
804                  *
805                  * The following bits must be set in all Data Descriptors:
806                  *   - IXGBE_ADVTXD_DTYP_DATA
807                  *   - IXGBE_ADVTXD_DCMD_DEXT
808                  *
809                  * The following bits must be set in the first Data Descriptor
810                  * and are ignored in the other ones:
811                  *   - IXGBE_ADVTXD_DCMD_IFCS
812                  *   - IXGBE_ADVTXD_MAC_1588
813                  *   - IXGBE_ADVTXD_DCMD_VLE
814                  *
815                  * The following bits must only be set in the last Data
816                  * Descriptor:
817                  *   - IXGBE_TXD_CMD_EOP
818                  *
819                  * The following bits can be set in any Data Descriptor, but
820                  * are only set in the last Data Descriptor:
821                  *   - IXGBE_TXD_CMD_RS
822                  */
823                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
824                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
825
826 #ifdef RTE_LIBRTE_IEEE1588
827                 if (ol_flags & PKT_TX_IEEE1588_TMST)
828                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
829 #endif
830
831                 olinfo_status = 0;
832                 if (tx_ol_req) {
833
834                         if (ol_flags & PKT_TX_TCP_SEG) {
835                                 /* when TSO is on, paylen in descriptor is the
836                                  * not the packet len but the tcp payload len */
837                                 pkt_len -= (tx_offload.l2_len +
838                                         tx_offload.l3_len + tx_offload.l4_len);
839                         }
840
841                         /*
842                          * Setup the TX Advanced Context Descriptor if required
843                          */
844                         if (new_ctx) {
845                                 volatile struct ixgbe_adv_tx_context_desc *
846                                     ctx_txd;
847
848                                 ctx_txd = (volatile struct
849                                     ixgbe_adv_tx_context_desc *)
850                                     &txr[tx_id];
851
852                                 txn = &sw_ring[txe->next_id];
853                                 rte_prefetch0(&txn->mbuf->pool);
854
855                                 if (txe->mbuf != NULL) {
856                                         rte_pktmbuf_free_seg(txe->mbuf);
857                                         txe->mbuf = NULL;
858                                 }
859
860                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
861                                         tx_offload, &tx_pkt->udata64);
862
863                                 txe->last_id = tx_last;
864                                 tx_id = txe->next_id;
865                                 txe = txn;
866                         }
867
868                         /*
869                          * Setup the TX Advanced Data Descriptor,
870                          * This path will go through
871                          * whatever new/reuse the context descriptor
872                          */
873                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
874                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
875                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
876                 }
877
878                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
879 #ifdef RTE_LIBRTE_SECURITY
880                 if (use_ipsec)
881                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
882 #endif
883
884                 m_seg = tx_pkt;
885                 do {
886                         txd = &txr[tx_id];
887                         txn = &sw_ring[txe->next_id];
888                         rte_prefetch0(&txn->mbuf->pool);
889
890                         if (txe->mbuf != NULL)
891                                 rte_pktmbuf_free_seg(txe->mbuf);
892                         txe->mbuf = m_seg;
893
894                         /*
895                          * Set up Transmit Data Descriptor.
896                          */
897                         slen = m_seg->data_len;
898                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
899                         txd->read.buffer_addr =
900                                 rte_cpu_to_le_64(buf_dma_addr);
901                         txd->read.cmd_type_len =
902                                 rte_cpu_to_le_32(cmd_type_len | slen);
903                         txd->read.olinfo_status =
904                                 rte_cpu_to_le_32(olinfo_status);
905                         txe->last_id = tx_last;
906                         tx_id = txe->next_id;
907                         txe = txn;
908                         m_seg = m_seg->next;
909                 } while (m_seg != NULL);
910
911                 /*
912                  * The last packet data descriptor needs End Of Packet (EOP)
913                  */
914                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
915                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
916                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
917
918                 /* Set RS bit only on threshold packets' last descriptor */
919                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
920                         PMD_TX_FREE_LOG(DEBUG,
921                                         "Setting RS bit on TXD id="
922                                         "%4u (port=%d queue=%d)",
923                                         tx_last, txq->port_id, txq->queue_id);
924
925                         cmd_type_len |= IXGBE_TXD_CMD_RS;
926
927                         /* Update txq RS bit counters */
928                         txq->nb_tx_used = 0;
929                         txp = NULL;
930                 } else
931                         txp = txd;
932
933                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
934         }
935
936 end_of_tx:
937         /* set RS on last packet in the burst */
938         if (txp != NULL)
939                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
940
941         rte_wmb();
942
943         /*
944          * Set the Transmit Descriptor Tail (TDT)
945          */
946         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
947                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
948                    (unsigned) tx_id, (unsigned) nb_tx);
949         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
950         txq->tx_tail = tx_id;
951
952         return nb_tx;
953 }
954
955 /*********************************************************************
956  *
957  *  TX prep functions
958  *
959  **********************************************************************/
960 uint16_t
961 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
962 {
963         int i, ret;
964         uint64_t ol_flags;
965         struct rte_mbuf *m;
966         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
967
968         for (i = 0; i < nb_pkts; i++) {
969                 m = tx_pkts[i];
970                 ol_flags = m->ol_flags;
971
972                 /**
973                  * Check if packet meets requirements for number of segments
974                  *
975                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
976                  *       non-TSO
977                  */
978
979                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
980                         rte_errno = -EINVAL;
981                         return i;
982                 }
983
984                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
985                         rte_errno = -ENOTSUP;
986                         return i;
987                 }
988
989 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
990                 ret = rte_validate_tx_offload(m);
991                 if (ret != 0) {
992                         rte_errno = ret;
993                         return i;
994                 }
995 #endif
996                 ret = rte_net_intel_cksum_prepare(m);
997                 if (ret != 0) {
998                         rte_errno = ret;
999                         return i;
1000                 }
1001         }
1002
1003         return i;
1004 }
1005
1006 /*********************************************************************
1007  *
1008  *  RX functions
1009  *
1010  **********************************************************************/
1011
1012 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1013 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1014 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1015 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1016 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1017 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1018 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1019 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1020 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1021 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1022 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1023 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1024 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1025 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1026 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1027 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1028 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1029 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1030 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1031 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1032 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1033 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1034 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1035 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1036 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1045
1046 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1047 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1048 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1049 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1050 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1051 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1052 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1053 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1069
1070 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1071 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1072 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1073 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1074 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1075 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1076 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1077 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1093
1094 /**
1095  * Use 2 different table for normal packet and tunnel packet
1096  * to save the space.
1097  */
1098 const uint32_t
1099         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1100         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1101         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1102                 RTE_PTYPE_L3_IPV4,
1103         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1104                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1105         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1106                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1107         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1108                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1109         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1110                 RTE_PTYPE_L3_IPV4_EXT,
1111         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1112                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1113         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1114                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1115         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1116                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1117         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1118                 RTE_PTYPE_L3_IPV6,
1119         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1120                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1121         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1122                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1123         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1124                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1125         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1126                 RTE_PTYPE_L3_IPV6_EXT,
1127         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1128                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1129         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1130                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1131         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1132                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1133         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1134                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1135                 RTE_PTYPE_INNER_L3_IPV6,
1136         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1138                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1139         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1140                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1141         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1145         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6,
1148         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1150                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1151         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1157         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1160         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1163         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1169         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1172         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1175         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1179                 RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1182 };
1183
1184 const uint32_t
1185         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1186         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1188                 RTE_PTYPE_INNER_L2_ETHER,
1189         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1190                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1191                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1192         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1193                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1194                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1195         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1210                 RTE_PTYPE_INNER_L4_TCP,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1214                 RTE_PTYPE_INNER_L4_TCP,
1215         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1216                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1217                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1223                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1224                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1225                 RTE_PTYPE_INNER_L3_IPV4,
1226         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1227                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1228                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1229                 RTE_PTYPE_INNER_L4_UDP,
1230         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1231                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1232                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1233                 RTE_PTYPE_INNER_L4_UDP,
1234         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1235                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1236                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1237                 RTE_PTYPE_INNER_L4_SCTP,
1238         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1239                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1240                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1244                 RTE_PTYPE_INNER_L4_UDP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1248                 RTE_PTYPE_INNER_L4_SCTP,
1249         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1250                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1251                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1252                 RTE_PTYPE_INNER_L3_IPV4,
1253         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1254                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1255                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1256                 RTE_PTYPE_INNER_L4_SCTP,
1257         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1258                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1259                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1260                 RTE_PTYPE_INNER_L4_SCTP,
1261         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1262                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1263                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1264                 RTE_PTYPE_INNER_L4_TCP,
1265         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1266                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1267                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1268                 RTE_PTYPE_INNER_L4_UDP,
1269
1270         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1272                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1273         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1274                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1275                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1276                 RTE_PTYPE_INNER_L3_IPV4,
1277         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1280                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1281         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1282                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1283                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1284                 RTE_PTYPE_INNER_L3_IPV6,
1285         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1286                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1287                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1288                 RTE_PTYPE_INNER_L3_IPV4,
1289         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1290                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1291                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1292                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1293         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1294                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1295                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1296                 RTE_PTYPE_INNER_L3_IPV4,
1297         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1298                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1299                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1300                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1301         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1302                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1303                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1304                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1305         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1306                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1307                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1308                 RTE_PTYPE_INNER_L3_IPV4,
1309         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1310                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1311                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1312                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1313         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1314                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1315                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1316                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1317         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1318                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1319                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1320                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1321         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1322                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1323                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1324                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1325         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1326                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1327                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1328                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1329         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1330                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1331                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1332                 RTE_PTYPE_INNER_L3_IPV4,
1333         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1334                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1335                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1336                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1337         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1338                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1339                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1340                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1341         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1342                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1343                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1344                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1345         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1346                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1347                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1348                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1349         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1350                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1351                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1352                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1353         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1354                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1355                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1356                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1357         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1358                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1359                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1360                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1361 };
1362
1363 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1364 static inline uint32_t
1365 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1366 {
1367
1368         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1369                 return RTE_PTYPE_UNKNOWN;
1370
1371         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1372
1373         /* For tunnel packet */
1374         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1375                 /* Remove the tunnel bit to save the space. */
1376                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1377                 return ptype_table_tn[pkt_info];
1378         }
1379
1380         /**
1381          * For x550, if it's not tunnel,
1382          * tunnel type bit should be set to 0.
1383          * Reuse 82599's mask.
1384          */
1385         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1386
1387         return ptype_table[pkt_info];
1388 }
1389
1390 static inline uint64_t
1391 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1392 {
1393         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1394                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1395                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1396                 PKT_RX_RSS_HASH, 0, 0, 0,
1397                 0, 0, 0,  PKT_RX_FDIR,
1398         };
1399 #ifdef RTE_LIBRTE_IEEE1588
1400         static uint64_t ip_pkt_etqf_map[8] = {
1401                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1402                 0, 0, 0, 0,
1403         };
1404
1405         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1406                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1407                                 ip_rss_types_map[pkt_info & 0XF];
1408         else
1409                 return ip_rss_types_map[pkt_info & 0XF];
1410 #else
1411         return ip_rss_types_map[pkt_info & 0XF];
1412 #endif
1413 }
1414
1415 static inline uint64_t
1416 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1417 {
1418         uint64_t pkt_flags;
1419
1420         /*
1421          * Check if VLAN present only.
1422          * Do not check whether L3/L4 rx checksum done by NIC or not,
1423          * That can be found from rte_eth_rxmode.hw_ip_checksum flag
1424          */
1425         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1426
1427 #ifdef RTE_LIBRTE_IEEE1588
1428         if (rx_status & IXGBE_RXD_STAT_TMST)
1429                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1430 #endif
1431         return pkt_flags;
1432 }
1433
1434 static inline uint64_t
1435 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1436 {
1437         uint64_t pkt_flags;
1438
1439         /*
1440          * Bit 31: IPE, IPv4 checksum error
1441          * Bit 30: L4I, L4I integrity error
1442          */
1443         static uint64_t error_to_pkt_flags_map[4] = {
1444                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1445                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1446                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1447                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1448         };
1449         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1450                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1451
1452         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1453             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1454                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1455         }
1456
1457 #ifdef RTE_LIBRTE_SECURITY
1458         if (rx_status & IXGBE_RXD_STAT_SECP) {
1459                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1460                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1461                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1462         }
1463 #endif
1464
1465         return pkt_flags;
1466 }
1467
1468 /*
1469  * LOOK_AHEAD defines how many desc statuses to check beyond the
1470  * current descriptor.
1471  * It must be a pound define for optimal performance.
1472  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1473  * function only works with LOOK_AHEAD=8.
1474  */
1475 #define LOOK_AHEAD 8
1476 #if (LOOK_AHEAD != 8)
1477 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1478 #endif
1479 static inline int
1480 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1481 {
1482         volatile union ixgbe_adv_rx_desc *rxdp;
1483         struct ixgbe_rx_entry *rxep;
1484         struct rte_mbuf *mb;
1485         uint16_t pkt_len;
1486         uint64_t pkt_flags;
1487         int nb_dd;
1488         uint32_t s[LOOK_AHEAD];
1489         uint32_t pkt_info[LOOK_AHEAD];
1490         int i, j, nb_rx = 0;
1491         uint32_t status;
1492         uint64_t vlan_flags = rxq->vlan_flags;
1493
1494         /* get references to current descriptor and S/W ring entry */
1495         rxdp = &rxq->rx_ring[rxq->rx_tail];
1496         rxep = &rxq->sw_ring[rxq->rx_tail];
1497
1498         status = rxdp->wb.upper.status_error;
1499         /* check to make sure there is at least 1 packet to receive */
1500         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1501                 return 0;
1502
1503         /*
1504          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1505          * reference packets that are ready to be received.
1506          */
1507         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1508              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1509                 /* Read desc statuses backwards to avoid race condition */
1510                 for (j = 0; j < LOOK_AHEAD; j++)
1511                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1512
1513                 rte_smp_rmb();
1514
1515                 /* Compute how many status bits were set */
1516                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1517                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1518                         ;
1519
1520                 for (j = 0; j < nb_dd; j++)
1521                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1522                                                        lo_dword.data);
1523
1524                 nb_rx += nb_dd;
1525
1526                 /* Translate descriptor info to mbuf format */
1527                 for (j = 0; j < nb_dd; ++j) {
1528                         mb = rxep[j].mbuf;
1529                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1530                                   rxq->crc_len;
1531                         mb->data_len = pkt_len;
1532                         mb->pkt_len = pkt_len;
1533                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1534
1535                         /* convert descriptor fields to rte mbuf flags */
1536                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1537                                 vlan_flags);
1538                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1539                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1540                                         ((uint16_t)pkt_info[j]);
1541                         mb->ol_flags = pkt_flags;
1542                         mb->packet_type =
1543                                 ixgbe_rxd_pkt_info_to_pkt_type
1544                                         (pkt_info[j], rxq->pkt_type_mask);
1545
1546                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1547                                 mb->hash.rss = rte_le_to_cpu_32(
1548                                     rxdp[j].wb.lower.hi_dword.rss);
1549                         else if (pkt_flags & PKT_RX_FDIR) {
1550                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1551                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1552                                     IXGBE_ATR_HASH_MASK;
1553                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1554                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1555                         }
1556                 }
1557
1558                 /* Move mbuf pointers from the S/W ring to the stage */
1559                 for (j = 0; j < LOOK_AHEAD; ++j) {
1560                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1561                 }
1562
1563                 /* stop if all requested packets could not be received */
1564                 if (nb_dd != LOOK_AHEAD)
1565                         break;
1566         }
1567
1568         /* clear software ring entries so we can cleanup correctly */
1569         for (i = 0; i < nb_rx; ++i) {
1570                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1571         }
1572
1573
1574         return nb_rx;
1575 }
1576
1577 static inline int
1578 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1579 {
1580         volatile union ixgbe_adv_rx_desc *rxdp;
1581         struct ixgbe_rx_entry *rxep;
1582         struct rte_mbuf *mb;
1583         uint16_t alloc_idx;
1584         __le64 dma_addr;
1585         int diag, i;
1586
1587         /* allocate buffers in bulk directly into the S/W ring */
1588         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1589         rxep = &rxq->sw_ring[alloc_idx];
1590         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1591                                     rxq->rx_free_thresh);
1592         if (unlikely(diag != 0))
1593                 return -ENOMEM;
1594
1595         rxdp = &rxq->rx_ring[alloc_idx];
1596         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1597                 /* populate the static rte mbuf fields */
1598                 mb = rxep[i].mbuf;
1599                 if (reset_mbuf) {
1600                         mb->port = rxq->port_id;
1601                 }
1602
1603                 rte_mbuf_refcnt_set(mb, 1);
1604                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1605
1606                 /* populate the descriptors */
1607                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1608                 rxdp[i].read.hdr_addr = 0;
1609                 rxdp[i].read.pkt_addr = dma_addr;
1610         }
1611
1612         /* update state of internal queue structure */
1613         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1614         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1615                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1616
1617         /* no errors */
1618         return 0;
1619 }
1620
1621 static inline uint16_t
1622 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1623                          uint16_t nb_pkts)
1624 {
1625         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1626         int i;
1627
1628         /* how many packets are ready to return? */
1629         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1630
1631         /* copy mbuf pointers to the application's packet list */
1632         for (i = 0; i < nb_pkts; ++i)
1633                 rx_pkts[i] = stage[i];
1634
1635         /* update internal queue state */
1636         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1637         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1638
1639         return nb_pkts;
1640 }
1641
1642 static inline uint16_t
1643 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1644              uint16_t nb_pkts)
1645 {
1646         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1647         uint16_t nb_rx = 0;
1648
1649         /* Any previously recv'd pkts will be returned from the Rx stage */
1650         if (rxq->rx_nb_avail)
1651                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1652
1653         /* Scan the H/W ring for packets to receive */
1654         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1655
1656         /* update internal queue state */
1657         rxq->rx_next_avail = 0;
1658         rxq->rx_nb_avail = nb_rx;
1659         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1660
1661         /* if required, allocate new buffers to replenish descriptors */
1662         if (rxq->rx_tail > rxq->rx_free_trigger) {
1663                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1664
1665                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1666                         int i, j;
1667
1668                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1669                                    "queue_id=%u", (unsigned) rxq->port_id,
1670                                    (unsigned) rxq->queue_id);
1671
1672                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1673                                 rxq->rx_free_thresh;
1674
1675                         /*
1676                          * Need to rewind any previous receives if we cannot
1677                          * allocate new buffers to replenish the old ones.
1678                          */
1679                         rxq->rx_nb_avail = 0;
1680                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1681                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1682                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1683
1684                         return 0;
1685                 }
1686
1687                 /* update tail pointer */
1688                 rte_wmb();
1689                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1690                                             cur_free_trigger);
1691         }
1692
1693         if (rxq->rx_tail >= rxq->nb_rx_desc)
1694                 rxq->rx_tail = 0;
1695
1696         /* received any packets this loop? */
1697         if (rxq->rx_nb_avail)
1698                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1699
1700         return 0;
1701 }
1702
1703 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1704 uint16_t
1705 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1706                            uint16_t nb_pkts)
1707 {
1708         uint16_t nb_rx;
1709
1710         if (unlikely(nb_pkts == 0))
1711                 return 0;
1712
1713         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1714                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1715
1716         /* request is relatively large, chunk it up */
1717         nb_rx = 0;
1718         while (nb_pkts) {
1719                 uint16_t ret, n;
1720
1721                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1722                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1723                 nb_rx = (uint16_t)(nb_rx + ret);
1724                 nb_pkts = (uint16_t)(nb_pkts - ret);
1725                 if (ret < n)
1726                         break;
1727         }
1728
1729         return nb_rx;
1730 }
1731
1732 uint16_t
1733 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1734                 uint16_t nb_pkts)
1735 {
1736         struct ixgbe_rx_queue *rxq;
1737         volatile union ixgbe_adv_rx_desc *rx_ring;
1738         volatile union ixgbe_adv_rx_desc *rxdp;
1739         struct ixgbe_rx_entry *sw_ring;
1740         struct ixgbe_rx_entry *rxe;
1741         struct rte_mbuf *rxm;
1742         struct rte_mbuf *nmb;
1743         union ixgbe_adv_rx_desc rxd;
1744         uint64_t dma_addr;
1745         uint32_t staterr;
1746         uint32_t pkt_info;
1747         uint16_t pkt_len;
1748         uint16_t rx_id;
1749         uint16_t nb_rx;
1750         uint16_t nb_hold;
1751         uint64_t pkt_flags;
1752         uint64_t vlan_flags;
1753
1754         nb_rx = 0;
1755         nb_hold = 0;
1756         rxq = rx_queue;
1757         rx_id = rxq->rx_tail;
1758         rx_ring = rxq->rx_ring;
1759         sw_ring = rxq->sw_ring;
1760         vlan_flags = rxq->vlan_flags;
1761         while (nb_rx < nb_pkts) {
1762                 /*
1763                  * The order of operations here is important as the DD status
1764                  * bit must not be read after any other descriptor fields.
1765                  * rx_ring and rxdp are pointing to volatile data so the order
1766                  * of accesses cannot be reordered by the compiler. If they were
1767                  * not volatile, they could be reordered which could lead to
1768                  * using invalid descriptor fields when read from rxd.
1769                  */
1770                 rxdp = &rx_ring[rx_id];
1771                 staterr = rxdp->wb.upper.status_error;
1772                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1773                         break;
1774                 rxd = *rxdp;
1775
1776                 /*
1777                  * End of packet.
1778                  *
1779                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1780                  * is likely to be invalid and to be dropped by the various
1781                  * validation checks performed by the network stack.
1782                  *
1783                  * Allocate a new mbuf to replenish the RX ring descriptor.
1784                  * If the allocation fails:
1785                  *    - arrange for that RX descriptor to be the first one
1786                  *      being parsed the next time the receive function is
1787                  *      invoked [on the same queue].
1788                  *
1789                  *    - Stop parsing the RX ring and return immediately.
1790                  *
1791                  * This policy do not drop the packet received in the RX
1792                  * descriptor for which the allocation of a new mbuf failed.
1793                  * Thus, it allows that packet to be later retrieved if
1794                  * mbuf have been freed in the mean time.
1795                  * As a side effect, holding RX descriptors instead of
1796                  * systematically giving them back to the NIC may lead to
1797                  * RX ring exhaustion situations.
1798                  * However, the NIC can gracefully prevent such situations
1799                  * to happen by sending specific "back-pressure" flow control
1800                  * frames to its peer(s).
1801                  */
1802                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1803                            "ext_err_stat=0x%08x pkt_len=%u",
1804                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1805                            (unsigned) rx_id, (unsigned) staterr,
1806                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1807
1808                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1809                 if (nmb == NULL) {
1810                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1811                                    "queue_id=%u", (unsigned) rxq->port_id,
1812                                    (unsigned) rxq->queue_id);
1813                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1814                         break;
1815                 }
1816
1817                 nb_hold++;
1818                 rxe = &sw_ring[rx_id];
1819                 rx_id++;
1820                 if (rx_id == rxq->nb_rx_desc)
1821                         rx_id = 0;
1822
1823                 /* Prefetch next mbuf while processing current one. */
1824                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1825
1826                 /*
1827                  * When next RX descriptor is on a cache-line boundary,
1828                  * prefetch the next 4 RX descriptors and the next 8 pointers
1829                  * to mbufs.
1830                  */
1831                 if ((rx_id & 0x3) == 0) {
1832                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1833                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1834                 }
1835
1836                 rxm = rxe->mbuf;
1837                 rxe->mbuf = nmb;
1838                 dma_addr =
1839                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1840                 rxdp->read.hdr_addr = 0;
1841                 rxdp->read.pkt_addr = dma_addr;
1842
1843                 /*
1844                  * Initialize the returned mbuf.
1845                  * 1) setup generic mbuf fields:
1846                  *    - number of segments,
1847                  *    - next segment,
1848                  *    - packet length,
1849                  *    - RX port identifier.
1850                  * 2) integrate hardware offload data, if any:
1851                  *    - RSS flag & hash,
1852                  *    - IP checksum flag,
1853                  *    - VLAN TCI, if any,
1854                  *    - error flags.
1855                  */
1856                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1857                                       rxq->crc_len);
1858                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1859                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1860                 rxm->nb_segs = 1;
1861                 rxm->next = NULL;
1862                 rxm->pkt_len = pkt_len;
1863                 rxm->data_len = pkt_len;
1864                 rxm->port = rxq->port_id;
1865
1866                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1867                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1868                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1869
1870                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1871                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1872                 pkt_flags = pkt_flags |
1873                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1874                 rxm->ol_flags = pkt_flags;
1875                 rxm->packet_type =
1876                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1877                                                        rxq->pkt_type_mask);
1878
1879                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1880                         rxm->hash.rss = rte_le_to_cpu_32(
1881                                                 rxd.wb.lower.hi_dword.rss);
1882                 else if (pkt_flags & PKT_RX_FDIR) {
1883                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1884                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1885                                         IXGBE_ATR_HASH_MASK;
1886                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1887                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1888                 }
1889                 /*
1890                  * Store the mbuf address into the next entry of the array
1891                  * of returned packets.
1892                  */
1893                 rx_pkts[nb_rx++] = rxm;
1894         }
1895         rxq->rx_tail = rx_id;
1896
1897         /*
1898          * If the number of free RX descriptors is greater than the RX free
1899          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1900          * register.
1901          * Update the RDT with the value of the last processed RX descriptor
1902          * minus 1, to guarantee that the RDT register is never equal to the
1903          * RDH register, which creates a "full" ring situtation from the
1904          * hardware point of view...
1905          */
1906         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1907         if (nb_hold > rxq->rx_free_thresh) {
1908                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1909                            "nb_hold=%u nb_rx=%u",
1910                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1911                            (unsigned) rx_id, (unsigned) nb_hold,
1912                            (unsigned) nb_rx);
1913                 rx_id = (uint16_t) ((rx_id == 0) ?
1914                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1915                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1916                 nb_hold = 0;
1917         }
1918         rxq->nb_rx_hold = nb_hold;
1919         return nb_rx;
1920 }
1921
1922 /**
1923  * Detect an RSC descriptor.
1924  */
1925 static inline uint32_t
1926 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1927 {
1928         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1929                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1930 }
1931
1932 /**
1933  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1934  *
1935  * Fill the following info in the HEAD buffer of the Rx cluster:
1936  *    - RX port identifier
1937  *    - hardware offload data, if any:
1938  *      - RSS flag & hash
1939  *      - IP checksum flag
1940  *      - VLAN TCI, if any
1941  *      - error flags
1942  * @head HEAD of the packet cluster
1943  * @desc HW descriptor to get data from
1944  * @rxq Pointer to the Rx queue
1945  */
1946 static inline void
1947 ixgbe_fill_cluster_head_buf(
1948         struct rte_mbuf *head,
1949         union ixgbe_adv_rx_desc *desc,
1950         struct ixgbe_rx_queue *rxq,
1951         uint32_t staterr)
1952 {
1953         uint32_t pkt_info;
1954         uint64_t pkt_flags;
1955
1956         head->port = rxq->port_id;
1957
1958         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1959          * set in the pkt_flags field.
1960          */
1961         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1962         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1963         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1964         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1965         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1966         head->ol_flags = pkt_flags;
1967         head->packet_type =
1968                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1969
1970         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1971                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1972         else if (pkt_flags & PKT_RX_FDIR) {
1973                 head->hash.fdir.hash =
1974                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1975                                                           & IXGBE_ATR_HASH_MASK;
1976                 head->hash.fdir.id =
1977                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1978         }
1979 }
1980
1981 /**
1982  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1983  *
1984  * @rx_queue Rx queue handle
1985  * @rx_pkts table of received packets
1986  * @nb_pkts size of rx_pkts table
1987  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1988  *
1989  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1990  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1991  *
1992  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
1993  * 1) When non-EOP RSC completion arrives:
1994  *    a) Update the HEAD of the current RSC aggregation cluster with the new
1995  *       segment's data length.
1996  *    b) Set the "next" pointer of the current segment to point to the segment
1997  *       at the NEXTP index.
1998  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
1999  *       in the sw_rsc_ring.
2000  * 2) When EOP arrives we just update the cluster's total length and offload
2001  *    flags and deliver the cluster up to the upper layers. In our case - put it
2002  *    in the rx_pkts table.
2003  *
2004  * Returns the number of received packets/clusters (according to the "bulk
2005  * receive" interface).
2006  */
2007 static inline uint16_t
2008 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2009                     bool bulk_alloc)
2010 {
2011         struct ixgbe_rx_queue *rxq = rx_queue;
2012         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2013         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2014         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2015         uint16_t rx_id = rxq->rx_tail;
2016         uint16_t nb_rx = 0;
2017         uint16_t nb_hold = rxq->nb_rx_hold;
2018         uint16_t prev_id = rxq->rx_tail;
2019
2020         while (nb_rx < nb_pkts) {
2021                 bool eop;
2022                 struct ixgbe_rx_entry *rxe;
2023                 struct ixgbe_scattered_rx_entry *sc_entry;
2024                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2025                 struct ixgbe_rx_entry *next_rxe = NULL;
2026                 struct rte_mbuf *first_seg;
2027                 struct rte_mbuf *rxm;
2028                 struct rte_mbuf *nmb;
2029                 union ixgbe_adv_rx_desc rxd;
2030                 uint16_t data_len;
2031                 uint16_t next_id;
2032                 volatile union ixgbe_adv_rx_desc *rxdp;
2033                 uint32_t staterr;
2034
2035 next_desc:
2036                 /*
2037                  * The code in this whole file uses the volatile pointer to
2038                  * ensure the read ordering of the status and the rest of the
2039                  * descriptor fields (on the compiler level only!!!). This is so
2040                  * UGLY - why not to just use the compiler barrier instead? DPDK
2041                  * even has the rte_compiler_barrier() for that.
2042                  *
2043                  * But most importantly this is just wrong because this doesn't
2044                  * ensure memory ordering in a general case at all. For
2045                  * instance, DPDK is supposed to work on Power CPUs where
2046                  * compiler barrier may just not be enough!
2047                  *
2048                  * I tried to write only this function properly to have a
2049                  * starting point (as a part of an LRO/RSC series) but the
2050                  * compiler cursed at me when I tried to cast away the
2051                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2052                  * keeping it the way it is for now.
2053                  *
2054                  * The code in this file is broken in so many other places and
2055                  * will just not work on a big endian CPU anyway therefore the
2056                  * lines below will have to be revisited together with the rest
2057                  * of the ixgbe PMD.
2058                  *
2059                  * TODO:
2060                  *    - Get rid of "volatile" crap and let the compiler do its
2061                  *      job.
2062                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2063                  *      memory ordering below.
2064                  */
2065                 rxdp = &rx_ring[rx_id];
2066                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2067
2068                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2069                         break;
2070
2071                 rxd = *rxdp;
2072
2073                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2074                                   "staterr=0x%x data_len=%u",
2075                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2076                            rte_le_to_cpu_16(rxd.wb.upper.length));
2077
2078                 if (!bulk_alloc) {
2079                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2080                         if (nmb == NULL) {
2081                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2082                                                   "port_id=%u queue_id=%u",
2083                                            rxq->port_id, rxq->queue_id);
2084
2085                                 rte_eth_devices[rxq->port_id].data->
2086                                                         rx_mbuf_alloc_failed++;
2087                                 break;
2088                         }
2089                 } else if (nb_hold > rxq->rx_free_thresh) {
2090                         uint16_t next_rdt = rxq->rx_free_trigger;
2091
2092                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2093                                 rte_wmb();
2094                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2095                                                             next_rdt);
2096                                 nb_hold -= rxq->rx_free_thresh;
2097                         } else {
2098                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2099                                                   "port_id=%u queue_id=%u",
2100                                            rxq->port_id, rxq->queue_id);
2101
2102                                 rte_eth_devices[rxq->port_id].data->
2103                                                         rx_mbuf_alloc_failed++;
2104                                 break;
2105                         }
2106                 }
2107
2108                 nb_hold++;
2109                 rxe = &sw_ring[rx_id];
2110                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2111
2112                 next_id = rx_id + 1;
2113                 if (next_id == rxq->nb_rx_desc)
2114                         next_id = 0;
2115
2116                 /* Prefetch next mbuf while processing current one. */
2117                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2118
2119                 /*
2120                  * When next RX descriptor is on a cache-line boundary,
2121                  * prefetch the next 4 RX descriptors and the next 4 pointers
2122                  * to mbufs.
2123                  */
2124                 if ((next_id & 0x3) == 0) {
2125                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2126                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2127                 }
2128
2129                 rxm = rxe->mbuf;
2130
2131                 if (!bulk_alloc) {
2132                         __le64 dma =
2133                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2134                         /*
2135                          * Update RX descriptor with the physical address of the
2136                          * new data buffer of the new allocated mbuf.
2137                          */
2138                         rxe->mbuf = nmb;
2139
2140                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2141                         rxdp->read.hdr_addr = 0;
2142                         rxdp->read.pkt_addr = dma;
2143                 } else
2144                         rxe->mbuf = NULL;
2145
2146                 /*
2147                  * Set data length & data buffer address of mbuf.
2148                  */
2149                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2150                 rxm->data_len = data_len;
2151
2152                 if (!eop) {
2153                         uint16_t nextp_id;
2154                         /*
2155                          * Get next descriptor index:
2156                          *  - For RSC it's in the NEXTP field.
2157                          *  - For a scattered packet - it's just a following
2158                          *    descriptor.
2159                          */
2160                         if (ixgbe_rsc_count(&rxd))
2161                                 nextp_id =
2162                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2163                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2164                         else
2165                                 nextp_id = next_id;
2166
2167                         next_sc_entry = &sw_sc_ring[nextp_id];
2168                         next_rxe = &sw_ring[nextp_id];
2169                         rte_ixgbe_prefetch(next_rxe);
2170                 }
2171
2172                 sc_entry = &sw_sc_ring[rx_id];
2173                 first_seg = sc_entry->fbuf;
2174                 sc_entry->fbuf = NULL;
2175
2176                 /*
2177                  * If this is the first buffer of the received packet,
2178                  * set the pointer to the first mbuf of the packet and
2179                  * initialize its context.
2180                  * Otherwise, update the total length and the number of segments
2181                  * of the current scattered packet, and update the pointer to
2182                  * the last mbuf of the current packet.
2183                  */
2184                 if (first_seg == NULL) {
2185                         first_seg = rxm;
2186                         first_seg->pkt_len = data_len;
2187                         first_seg->nb_segs = 1;
2188                 } else {
2189                         first_seg->pkt_len += data_len;
2190                         first_seg->nb_segs++;
2191                 }
2192
2193                 prev_id = rx_id;
2194                 rx_id = next_id;
2195
2196                 /*
2197                  * If this is not the last buffer of the received packet, update
2198                  * the pointer to the first mbuf at the NEXTP entry in the
2199                  * sw_sc_ring and continue to parse the RX ring.
2200                  */
2201                 if (!eop && next_rxe) {
2202                         rxm->next = next_rxe->mbuf;
2203                         next_sc_entry->fbuf = first_seg;
2204                         goto next_desc;
2205                 }
2206
2207                 /* Initialize the first mbuf of the returned packet */
2208                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2209
2210                 /*
2211                  * Deal with the case, when HW CRC srip is disabled.
2212                  * That can't happen when LRO is enabled, but still could
2213                  * happen for scattered RX mode.
2214                  */
2215                 first_seg->pkt_len -= rxq->crc_len;
2216                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2217                         struct rte_mbuf *lp;
2218
2219                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2220                                 ;
2221
2222                         first_seg->nb_segs--;
2223                         lp->data_len -= rxq->crc_len - rxm->data_len;
2224                         lp->next = NULL;
2225                         rte_pktmbuf_free_seg(rxm);
2226                 } else
2227                         rxm->data_len -= rxq->crc_len;
2228
2229                 /* Prefetch data of first segment, if configured to do so. */
2230                 rte_packet_prefetch((char *)first_seg->buf_addr +
2231                         first_seg->data_off);
2232
2233                 /*
2234                  * Store the mbuf address into the next entry of the array
2235                  * of returned packets.
2236                  */
2237                 rx_pkts[nb_rx++] = first_seg;
2238         }
2239
2240         /*
2241          * Record index of the next RX descriptor to probe.
2242          */
2243         rxq->rx_tail = rx_id;
2244
2245         /*
2246          * If the number of free RX descriptors is greater than the RX free
2247          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2248          * register.
2249          * Update the RDT with the value of the last processed RX descriptor
2250          * minus 1, to guarantee that the RDT register is never equal to the
2251          * RDH register, which creates a "full" ring situtation from the
2252          * hardware point of view...
2253          */
2254         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2255                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2256                            "nb_hold=%u nb_rx=%u",
2257                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2258
2259                 rte_wmb();
2260                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2261                 nb_hold = 0;
2262         }
2263
2264         rxq->nb_rx_hold = nb_hold;
2265         return nb_rx;
2266 }
2267
2268 uint16_t
2269 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2270                                  uint16_t nb_pkts)
2271 {
2272         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2273 }
2274
2275 uint16_t
2276 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2277                                uint16_t nb_pkts)
2278 {
2279         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2280 }
2281
2282 /*********************************************************************
2283  *
2284  *  Queue management functions
2285  *
2286  **********************************************************************/
2287
2288 static void __attribute__((cold))
2289 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2290 {
2291         unsigned i;
2292
2293         if (txq->sw_ring != NULL) {
2294                 for (i = 0; i < txq->nb_tx_desc; i++) {
2295                         if (txq->sw_ring[i].mbuf != NULL) {
2296                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2297                                 txq->sw_ring[i].mbuf = NULL;
2298                         }
2299                 }
2300         }
2301 }
2302
2303 static void __attribute__((cold))
2304 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2305 {
2306         if (txq != NULL &&
2307             txq->sw_ring != NULL)
2308                 rte_free(txq->sw_ring);
2309 }
2310
2311 static void __attribute__((cold))
2312 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2313 {
2314         if (txq != NULL && txq->ops != NULL) {
2315                 txq->ops->release_mbufs(txq);
2316                 txq->ops->free_swring(txq);
2317                 rte_free(txq);
2318         }
2319 }
2320
2321 void __attribute__((cold))
2322 ixgbe_dev_tx_queue_release(void *txq)
2323 {
2324         ixgbe_tx_queue_release(txq);
2325 }
2326
2327 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2328 static void __attribute__((cold))
2329 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2330 {
2331         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2332         struct ixgbe_tx_entry *txe = txq->sw_ring;
2333         uint16_t prev, i;
2334
2335         /* Zero out HW ring memory */
2336         for (i = 0; i < txq->nb_tx_desc; i++) {
2337                 txq->tx_ring[i] = zeroed_desc;
2338         }
2339
2340         /* Initialize SW ring entries */
2341         prev = (uint16_t) (txq->nb_tx_desc - 1);
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2344
2345                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2346                 txe[i].mbuf = NULL;
2347                 txe[i].last_id = i;
2348                 txe[prev].next_id = i;
2349                 prev = i;
2350         }
2351
2352         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2353         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2354
2355         txq->tx_tail = 0;
2356         txq->nb_tx_used = 0;
2357         /*
2358          * Always allow 1 descriptor to be un-allocated to avoid
2359          * a H/W race condition
2360          */
2361         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2362         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2363         txq->ctx_curr = 0;
2364         memset((void *)&txq->ctx_cache, 0,
2365                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2366 }
2367
2368 static const struct ixgbe_txq_ops def_txq_ops = {
2369         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2370         .free_swring = ixgbe_tx_free_swring,
2371         .reset = ixgbe_reset_tx_queue,
2372 };
2373
2374 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2375  * the queue parameters. Used in tx_queue_setup by primary process and then
2376  * in dev_init by secondary process when attaching to an existing ethdev.
2377  */
2378 void __attribute__((cold))
2379 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2380 {
2381         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2382         if (((txq->txq_flags & IXGBE_SIMPLE_FLAGS) == IXGBE_SIMPLE_FLAGS) &&
2383 #ifdef RTE_LIBRTE_SECURITY
2384                         !(txq->using_ipsec) &&
2385 #endif
2386                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2387                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2388                 dev->tx_pkt_prepare = NULL;
2389 #ifdef RTE_IXGBE_INC_VECTOR
2390                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2391                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2392                                         ixgbe_txq_vec_setup(txq) == 0)) {
2393                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2394                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2395                 } else
2396 #endif
2397                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2398         } else {
2399                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2400                 PMD_INIT_LOG(DEBUG,
2401                                 " - txq_flags = %lx " "[IXGBE_SIMPLE_FLAGS=%lx]",
2402                                 (unsigned long)txq->txq_flags,
2403                                 (unsigned long)IXGBE_SIMPLE_FLAGS);
2404                 PMD_INIT_LOG(DEBUG,
2405                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2406                                 (unsigned long)txq->tx_rs_thresh,
2407                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2408                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2409                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2410         }
2411 }
2412
2413 int __attribute__((cold))
2414 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2415                          uint16_t queue_idx,
2416                          uint16_t nb_desc,
2417                          unsigned int socket_id,
2418                          const struct rte_eth_txconf *tx_conf)
2419 {
2420         const struct rte_memzone *tz;
2421         struct ixgbe_tx_queue *txq;
2422         struct ixgbe_hw     *hw;
2423         uint16_t tx_rs_thresh, tx_free_thresh;
2424
2425         PMD_INIT_FUNC_TRACE();
2426         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2427
2428         /*
2429          * Validate number of transmit descriptors.
2430          * It must not exceed hardware maximum, and must be multiple
2431          * of IXGBE_ALIGN.
2432          */
2433         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2434                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2435                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2436                 return -EINVAL;
2437         }
2438
2439         /*
2440          * The following two parameters control the setting of the RS bit on
2441          * transmit descriptors.
2442          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2443          * descriptors have been used.
2444          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2445          * descriptors are used or if the number of descriptors required
2446          * to transmit a packet is greater than the number of free TX
2447          * descriptors.
2448          * The following constraints must be satisfied:
2449          *  tx_rs_thresh must be greater than 0.
2450          *  tx_rs_thresh must be less than the size of the ring minus 2.
2451          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2452          *  tx_rs_thresh must be a divisor of the ring size.
2453          *  tx_free_thresh must be greater than 0.
2454          *  tx_free_thresh must be less than the size of the ring minus 3.
2455          * One descriptor in the TX ring is used as a sentinel to avoid a
2456          * H/W race condition, hence the maximum threshold constraints.
2457          * When set to zero use default values.
2458          */
2459         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2460                         tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2461         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2462                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2463         if (tx_rs_thresh >= (nb_desc - 2)) {
2464                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2465                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2466                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2467                         (int)dev->data->port_id, (int)queue_idx);
2468                 return -(EINVAL);
2469         }
2470         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2471                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2472                         "(tx_rs_thresh=%u port=%d queue=%d)",
2473                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2474                         (int)dev->data->port_id, (int)queue_idx);
2475                 return -(EINVAL);
2476         }
2477         if (tx_free_thresh >= (nb_desc - 3)) {
2478                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2479                              "tx_free_thresh must be less than the number of "
2480                              "TX descriptors minus 3. (tx_free_thresh=%u "
2481                              "port=%d queue=%d)",
2482                              (unsigned int)tx_free_thresh,
2483                              (int)dev->data->port_id, (int)queue_idx);
2484                 return -(EINVAL);
2485         }
2486         if (tx_rs_thresh > tx_free_thresh) {
2487                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2488                              "tx_free_thresh. (tx_free_thresh=%u "
2489                              "tx_rs_thresh=%u port=%d queue=%d)",
2490                              (unsigned int)tx_free_thresh,
2491                              (unsigned int)tx_rs_thresh,
2492                              (int)dev->data->port_id,
2493                              (int)queue_idx);
2494                 return -(EINVAL);
2495         }
2496         if ((nb_desc % tx_rs_thresh) != 0) {
2497                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2498                              "number of TX descriptors. (tx_rs_thresh=%u "
2499                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2500                              (int)dev->data->port_id, (int)queue_idx);
2501                 return -(EINVAL);
2502         }
2503
2504         /*
2505          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2506          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2507          * by the NIC and all descriptors are written back after the NIC
2508          * accumulates WTHRESH descriptors.
2509          */
2510         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2511                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2512                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2513                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2514                              (int)dev->data->port_id, (int)queue_idx);
2515                 return -(EINVAL);
2516         }
2517
2518         /* Free memory prior to re-allocation if needed... */
2519         if (dev->data->tx_queues[queue_idx] != NULL) {
2520                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2521                 dev->data->tx_queues[queue_idx] = NULL;
2522         }
2523
2524         /* First allocate the tx queue data structure */
2525         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2526                                  RTE_CACHE_LINE_SIZE, socket_id);
2527         if (txq == NULL)
2528                 return -ENOMEM;
2529
2530         /*
2531          * Allocate TX ring hardware descriptors. A memzone large enough to
2532          * handle the maximum ring size is allocated in order to allow for
2533          * resizing in later calls to the queue setup function.
2534          */
2535         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2536                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2537                         IXGBE_ALIGN, socket_id);
2538         if (tz == NULL) {
2539                 ixgbe_tx_queue_release(txq);
2540                 return -ENOMEM;
2541         }
2542
2543         txq->nb_tx_desc = nb_desc;
2544         txq->tx_rs_thresh = tx_rs_thresh;
2545         txq->tx_free_thresh = tx_free_thresh;
2546         txq->pthresh = tx_conf->tx_thresh.pthresh;
2547         txq->hthresh = tx_conf->tx_thresh.hthresh;
2548         txq->wthresh = tx_conf->tx_thresh.wthresh;
2549         txq->queue_id = queue_idx;
2550         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2551                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2552         txq->port_id = dev->data->port_id;
2553         txq->txq_flags = tx_conf->txq_flags;
2554         txq->ops = &def_txq_ops;
2555         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2556 #ifdef RTE_LIBRTE_SECURITY
2557         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2558                         DEV_TX_OFFLOAD_SECURITY);
2559 #endif
2560
2561         /*
2562          * Modification to set VFTDT for virtual function if vf is detected
2563          */
2564         if (hw->mac.type == ixgbe_mac_82599_vf ||
2565             hw->mac.type == ixgbe_mac_X540_vf ||
2566             hw->mac.type == ixgbe_mac_X550_vf ||
2567             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2568             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2569                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2570         else
2571                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2572
2573         txq->tx_ring_phys_addr = tz->iova;
2574         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2575
2576         /* Allocate software ring */
2577         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2578                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2579                                 RTE_CACHE_LINE_SIZE, socket_id);
2580         if (txq->sw_ring == NULL) {
2581                 ixgbe_tx_queue_release(txq);
2582                 return -ENOMEM;
2583         }
2584         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2585                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2586
2587         /* set up vector or scalar TX function as appropriate */
2588         ixgbe_set_tx_function(dev, txq);
2589
2590         txq->ops->reset(txq);
2591
2592         dev->data->tx_queues[queue_idx] = txq;
2593
2594
2595         return 0;
2596 }
2597
2598 /**
2599  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2600  *
2601  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2602  * in the sw_rsc_ring is not set to NULL but rather points to the next
2603  * mbuf of this RSC aggregation (that has not been completed yet and still
2604  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2605  * will just free first "nb_segs" segments of the cluster explicitly by calling
2606  * an rte_pktmbuf_free_seg().
2607  *
2608  * @m scattered cluster head
2609  */
2610 static void __attribute__((cold))
2611 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2612 {
2613         uint16_t i, nb_segs = m->nb_segs;
2614         struct rte_mbuf *next_seg;
2615
2616         for (i = 0; i < nb_segs; i++) {
2617                 next_seg = m->next;
2618                 rte_pktmbuf_free_seg(m);
2619                 m = next_seg;
2620         }
2621 }
2622
2623 static void __attribute__((cold))
2624 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2625 {
2626         unsigned i;
2627
2628 #ifdef RTE_IXGBE_INC_VECTOR
2629         /* SSE Vector driver has a different way of releasing mbufs. */
2630         if (rxq->rx_using_sse) {
2631                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2632                 return;
2633         }
2634 #endif
2635
2636         if (rxq->sw_ring != NULL) {
2637                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2638                         if (rxq->sw_ring[i].mbuf != NULL) {
2639                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2640                                 rxq->sw_ring[i].mbuf = NULL;
2641                         }
2642                 }
2643                 if (rxq->rx_nb_avail) {
2644                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2645                                 struct rte_mbuf *mb;
2646
2647                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2648                                 rte_pktmbuf_free_seg(mb);
2649                         }
2650                         rxq->rx_nb_avail = 0;
2651                 }
2652         }
2653
2654         if (rxq->sw_sc_ring)
2655                 for (i = 0; i < rxq->nb_rx_desc; i++)
2656                         if (rxq->sw_sc_ring[i].fbuf) {
2657                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2658                                 rxq->sw_sc_ring[i].fbuf = NULL;
2659                         }
2660 }
2661
2662 static void __attribute__((cold))
2663 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2664 {
2665         if (rxq != NULL) {
2666                 ixgbe_rx_queue_release_mbufs(rxq);
2667                 rte_free(rxq->sw_ring);
2668                 rte_free(rxq->sw_sc_ring);
2669                 rte_free(rxq);
2670         }
2671 }
2672
2673 void __attribute__((cold))
2674 ixgbe_dev_rx_queue_release(void *rxq)
2675 {
2676         ixgbe_rx_queue_release(rxq);
2677 }
2678
2679 /*
2680  * Check if Rx Burst Bulk Alloc function can be used.
2681  * Return
2682  *        0: the preconditions are satisfied and the bulk allocation function
2683  *           can be used.
2684  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2685  *           function must be used.
2686  */
2687 static inline int __attribute__((cold))
2688 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2689 {
2690         int ret = 0;
2691
2692         /*
2693          * Make sure the following pre-conditions are satisfied:
2694          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2695          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2696          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2697          * Scattered packets are not supported.  This should be checked
2698          * outside of this function.
2699          */
2700         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2701                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2702                              "rxq->rx_free_thresh=%d, "
2703                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2704                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2705                 ret = -EINVAL;
2706         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2707                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2708                              "rxq->rx_free_thresh=%d, "
2709                              "rxq->nb_rx_desc=%d",
2710                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2711                 ret = -EINVAL;
2712         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2713                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2714                              "rxq->nb_rx_desc=%d, "
2715                              "rxq->rx_free_thresh=%d",
2716                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2717                 ret = -EINVAL;
2718         }
2719
2720         return ret;
2721 }
2722
2723 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2724 static void __attribute__((cold))
2725 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2726 {
2727         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2728         unsigned i;
2729         uint16_t len = rxq->nb_rx_desc;
2730
2731         /*
2732          * By default, the Rx queue setup function allocates enough memory for
2733          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2734          * extra memory at the end of the descriptor ring to be zero'd out.
2735          */
2736         if (adapter->rx_bulk_alloc_allowed)
2737                 /* zero out extra memory */
2738                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2739
2740         /*
2741          * Zero out HW ring memory. Zero out extra memory at the end of
2742          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2743          * reads extra memory as zeros.
2744          */
2745         for (i = 0; i < len; i++) {
2746                 rxq->rx_ring[i] = zeroed_desc;
2747         }
2748
2749         /*
2750          * initialize extra software ring entries. Space for these extra
2751          * entries is always allocated
2752          */
2753         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2754         for (i = rxq->nb_rx_desc; i < len; ++i) {
2755                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2756         }
2757
2758         rxq->rx_nb_avail = 0;
2759         rxq->rx_next_avail = 0;
2760         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2761         rxq->rx_tail = 0;
2762         rxq->nb_rx_hold = 0;
2763         rxq->pkt_first_seg = NULL;
2764         rxq->pkt_last_seg = NULL;
2765
2766 #ifdef RTE_IXGBE_INC_VECTOR
2767         rxq->rxrearm_start = 0;
2768         rxq->rxrearm_nb = 0;
2769 #endif
2770 }
2771
2772 static int
2773 ixgbe_is_vf(struct rte_eth_dev *dev)
2774 {
2775         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2776
2777         switch (hw->mac.type) {
2778         case ixgbe_mac_82599_vf:
2779         case ixgbe_mac_X540_vf:
2780         case ixgbe_mac_X550_vf:
2781         case ixgbe_mac_X550EM_x_vf:
2782         case ixgbe_mac_X550EM_a_vf:
2783                 return 1;
2784         default:
2785                 return 0;
2786         }
2787 }
2788
2789 uint64_t
2790 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2791 {
2792         uint64_t offloads = 0;
2793         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2794
2795         if (hw->mac.type != ixgbe_mac_82598EB)
2796                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2797
2798         return offloads;
2799 }
2800
2801 uint64_t
2802 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2803 {
2804         uint64_t offloads;
2805         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2806
2807         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2808                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2809                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2810                    DEV_RX_OFFLOAD_CRC_STRIP   |
2811                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2812                    DEV_RX_OFFLOAD_SCATTER;
2813
2814         if (hw->mac.type == ixgbe_mac_82598EB)
2815                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2816
2817         if (ixgbe_is_vf(dev) == 0)
2818                 offloads |= (DEV_RX_OFFLOAD_VLAN_FILTER |
2819                              DEV_RX_OFFLOAD_VLAN_EXTEND);
2820
2821         /*
2822          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2823          * mode.
2824          */
2825         if ((hw->mac.type == ixgbe_mac_82599EB ||
2826              hw->mac.type == ixgbe_mac_X540) &&
2827             !RTE_ETH_DEV_SRIOV(dev).active)
2828                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2829
2830         if (hw->mac.type == ixgbe_mac_82599EB ||
2831             hw->mac.type == ixgbe_mac_X540)
2832                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2833
2834         if (hw->mac.type == ixgbe_mac_X550 ||
2835             hw->mac.type == ixgbe_mac_X550EM_x ||
2836             hw->mac.type == ixgbe_mac_X550EM_a)
2837                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2838
2839 #ifdef RTE_LIBRTE_SECURITY
2840         if (dev->security_ctx)
2841                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2842 #endif
2843
2844         return offloads;
2845 }
2846
2847 static int
2848 ixgbe_check_rx_queue_offloads(struct rte_eth_dev *dev, uint64_t requested)
2849 {
2850         uint64_t port_offloads = dev->data->dev_conf.rxmode.offloads;
2851         uint64_t queue_supported = ixgbe_get_rx_queue_offloads(dev);
2852         uint64_t port_supported = ixgbe_get_rx_port_offloads(dev);
2853
2854         if ((requested & (queue_supported | port_supported)) != requested)
2855                 return 0;
2856
2857         if ((port_offloads ^ requested) & port_supported)
2858                 return 0;
2859
2860         return 1;
2861 }
2862
2863 int __attribute__((cold))
2864 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2865                          uint16_t queue_idx,
2866                          uint16_t nb_desc,
2867                          unsigned int socket_id,
2868                          const struct rte_eth_rxconf *rx_conf,
2869                          struct rte_mempool *mp)
2870 {
2871         const struct rte_memzone *rz;
2872         struct ixgbe_rx_queue *rxq;
2873         struct ixgbe_hw     *hw;
2874         uint16_t len;
2875         struct ixgbe_adapter *adapter =
2876                 (struct ixgbe_adapter *)dev->data->dev_private;
2877
2878         PMD_INIT_FUNC_TRACE();
2879         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2880
2881         if (!ixgbe_check_rx_queue_offloads(dev, rx_conf->offloads)) {
2882                 PMD_INIT_LOG(ERR, "%p: Rx queue offloads 0x%" PRIx64
2883                         " don't match port offloads 0x%" PRIx64
2884                         " or supported port offloads 0x%" PRIx64
2885                         " or supported queue offloads 0x%" PRIx64,
2886                         (void *)dev, rx_conf->offloads,
2887                         dev->data->dev_conf.rxmode.offloads,
2888                         ixgbe_get_rx_port_offloads(dev),
2889                         ixgbe_get_rx_queue_offloads(dev));
2890                 return -ENOTSUP;
2891         }
2892
2893         /*
2894          * Validate number of receive descriptors.
2895          * It must not exceed hardware maximum, and must be multiple
2896          * of IXGBE_ALIGN.
2897          */
2898         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2899                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2900                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2901                 return -EINVAL;
2902         }
2903
2904         /* Free memory prior to re-allocation if needed... */
2905         if (dev->data->rx_queues[queue_idx] != NULL) {
2906                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2907                 dev->data->rx_queues[queue_idx] = NULL;
2908         }
2909
2910         /* First allocate the rx queue data structure */
2911         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2912                                  RTE_CACHE_LINE_SIZE, socket_id);
2913         if (rxq == NULL)
2914                 return -ENOMEM;
2915         rxq->mb_pool = mp;
2916         rxq->nb_rx_desc = nb_desc;
2917         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2918         rxq->queue_id = queue_idx;
2919         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2920                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2921         rxq->port_id = dev->data->port_id;
2922         rxq->crc_len = (uint8_t)((dev->data->dev_conf.rxmode.offloads &
2923                 DEV_RX_OFFLOAD_CRC_STRIP) ? 0 : ETHER_CRC_LEN);
2924         rxq->drop_en = rx_conf->rx_drop_en;
2925         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2926         rxq->offloads = rx_conf->offloads;
2927
2928         /*
2929          * The packet type in RX descriptor is different for different NICs.
2930          * Some bits are used for x550 but reserved for other NICS.
2931          * So set different masks for different NICs.
2932          */
2933         if (hw->mac.type == ixgbe_mac_X550 ||
2934             hw->mac.type == ixgbe_mac_X550EM_x ||
2935             hw->mac.type == ixgbe_mac_X550EM_a ||
2936             hw->mac.type == ixgbe_mac_X550_vf ||
2937             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2938             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2939                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2940         else
2941                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2942
2943         /*
2944          * Allocate RX ring hardware descriptors. A memzone large enough to
2945          * handle the maximum ring size is allocated in order to allow for
2946          * resizing in later calls to the queue setup function.
2947          */
2948         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2949                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2950         if (rz == NULL) {
2951                 ixgbe_rx_queue_release(rxq);
2952                 return -ENOMEM;
2953         }
2954
2955         /*
2956          * Zero init all the descriptors in the ring.
2957          */
2958         memset(rz->addr, 0, RX_RING_SZ);
2959
2960         /*
2961          * Modified to setup VFRDT for Virtual Function
2962          */
2963         if (hw->mac.type == ixgbe_mac_82599_vf ||
2964             hw->mac.type == ixgbe_mac_X540_vf ||
2965             hw->mac.type == ixgbe_mac_X550_vf ||
2966             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2967             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
2968                 rxq->rdt_reg_addr =
2969                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
2970                 rxq->rdh_reg_addr =
2971                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
2972         } else {
2973                 rxq->rdt_reg_addr =
2974                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
2975                 rxq->rdh_reg_addr =
2976                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
2977         }
2978
2979         rxq->rx_ring_phys_addr = rz->iova;
2980         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
2981
2982         /*
2983          * Certain constraints must be met in order to use the bulk buffer
2984          * allocation Rx burst function. If any of Rx queues doesn't meet them
2985          * the feature should be disabled for the whole port.
2986          */
2987         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
2988                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
2989                                     "preconditions - canceling the feature for "
2990                                     "the whole port[%d]",
2991                              rxq->queue_id, rxq->port_id);
2992                 adapter->rx_bulk_alloc_allowed = false;
2993         }
2994
2995         /*
2996          * Allocate software ring. Allow for space at the end of the
2997          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
2998          * function does not access an invalid memory region.
2999          */
3000         len = nb_desc;
3001         if (adapter->rx_bulk_alloc_allowed)
3002                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3003
3004         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3005                                           sizeof(struct ixgbe_rx_entry) * len,
3006                                           RTE_CACHE_LINE_SIZE, socket_id);
3007         if (!rxq->sw_ring) {
3008                 ixgbe_rx_queue_release(rxq);
3009                 return -ENOMEM;
3010         }
3011
3012         /*
3013          * Always allocate even if it's not going to be needed in order to
3014          * simplify the code.
3015          *
3016          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3017          * be requested in ixgbe_dev_rx_init(), which is called later from
3018          * dev_start() flow.
3019          */
3020         rxq->sw_sc_ring =
3021                 rte_zmalloc_socket("rxq->sw_sc_ring",
3022                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3023                                    RTE_CACHE_LINE_SIZE, socket_id);
3024         if (!rxq->sw_sc_ring) {
3025                 ixgbe_rx_queue_release(rxq);
3026                 return -ENOMEM;
3027         }
3028
3029         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3030                             "dma_addr=0x%"PRIx64,
3031                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3032                      rxq->rx_ring_phys_addr);
3033
3034         if (!rte_is_power_of_2(nb_desc)) {
3035                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3036                                     "preconditions - canceling the feature for "
3037                                     "the whole port[%d]",
3038                              rxq->queue_id, rxq->port_id);
3039                 adapter->rx_vec_allowed = false;
3040         } else
3041                 ixgbe_rxq_vec_setup(rxq);
3042
3043         dev->data->rx_queues[queue_idx] = rxq;
3044
3045         ixgbe_reset_rx_queue(adapter, rxq);
3046
3047         return 0;
3048 }
3049
3050 uint32_t
3051 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3052 {
3053 #define IXGBE_RXQ_SCAN_INTERVAL 4
3054         volatile union ixgbe_adv_rx_desc *rxdp;
3055         struct ixgbe_rx_queue *rxq;
3056         uint32_t desc = 0;
3057
3058         rxq = dev->data->rx_queues[rx_queue_id];
3059         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3060
3061         while ((desc < rxq->nb_rx_desc) &&
3062                 (rxdp->wb.upper.status_error &
3063                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3064                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3065                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3066                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3067                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3068                                 desc - rxq->nb_rx_desc]);
3069         }
3070
3071         return desc;
3072 }
3073
3074 int
3075 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3076 {
3077         volatile union ixgbe_adv_rx_desc *rxdp;
3078         struct ixgbe_rx_queue *rxq = rx_queue;
3079         uint32_t desc;
3080
3081         if (unlikely(offset >= rxq->nb_rx_desc))
3082                 return 0;
3083         desc = rxq->rx_tail + offset;
3084         if (desc >= rxq->nb_rx_desc)
3085                 desc -= rxq->nb_rx_desc;
3086
3087         rxdp = &rxq->rx_ring[desc];
3088         return !!(rxdp->wb.upper.status_error &
3089                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3090 }
3091
3092 int
3093 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3094 {
3095         struct ixgbe_rx_queue *rxq = rx_queue;
3096         volatile uint32_t *status;
3097         uint32_t nb_hold, desc;
3098
3099         if (unlikely(offset >= rxq->nb_rx_desc))
3100                 return -EINVAL;
3101
3102 #ifdef RTE_IXGBE_INC_VECTOR
3103         if (rxq->rx_using_sse)
3104                 nb_hold = rxq->rxrearm_nb;
3105         else
3106 #endif
3107                 nb_hold = rxq->nb_rx_hold;
3108         if (offset >= rxq->nb_rx_desc - nb_hold)
3109                 return RTE_ETH_RX_DESC_UNAVAIL;
3110
3111         desc = rxq->rx_tail + offset;
3112         if (desc >= rxq->nb_rx_desc)
3113                 desc -= rxq->nb_rx_desc;
3114
3115         status = &rxq->rx_ring[desc].wb.upper.status_error;
3116         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3117                 return RTE_ETH_RX_DESC_DONE;
3118
3119         return RTE_ETH_RX_DESC_AVAIL;
3120 }
3121
3122 int
3123 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3124 {
3125         struct ixgbe_tx_queue *txq = tx_queue;
3126         volatile uint32_t *status;
3127         uint32_t desc;
3128
3129         if (unlikely(offset >= txq->nb_tx_desc))
3130                 return -EINVAL;
3131
3132         desc = txq->tx_tail + offset;
3133         /* go to next desc that has the RS bit */
3134         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3135                 txq->tx_rs_thresh;
3136         if (desc >= txq->nb_tx_desc) {
3137                 desc -= txq->nb_tx_desc;
3138                 if (desc >= txq->nb_tx_desc)
3139                         desc -= txq->nb_tx_desc;
3140         }
3141
3142         status = &txq->tx_ring[desc].wb.status;
3143         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3144                 return RTE_ETH_TX_DESC_DONE;
3145
3146         return RTE_ETH_TX_DESC_FULL;
3147 }
3148
3149 void __attribute__((cold))
3150 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3151 {
3152         unsigned i;
3153         struct ixgbe_adapter *adapter =
3154                 (struct ixgbe_adapter *)dev->data->dev_private;
3155
3156         PMD_INIT_FUNC_TRACE();
3157
3158         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3159                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3160
3161                 if (txq != NULL) {
3162                         txq->ops->release_mbufs(txq);
3163                         txq->ops->reset(txq);
3164                 }
3165         }
3166
3167         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3168                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3169
3170                 if (rxq != NULL) {
3171                         ixgbe_rx_queue_release_mbufs(rxq);
3172                         ixgbe_reset_rx_queue(adapter, rxq);
3173                 }
3174         }
3175 }
3176
3177 void
3178 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3179 {
3180         unsigned i;
3181
3182         PMD_INIT_FUNC_TRACE();
3183
3184         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3185                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3186                 dev->data->rx_queues[i] = NULL;
3187         }
3188         dev->data->nb_rx_queues = 0;
3189
3190         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3191                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3192                 dev->data->tx_queues[i] = NULL;
3193         }
3194         dev->data->nb_tx_queues = 0;
3195 }
3196
3197 /*********************************************************************
3198  *
3199  *  Device RX/TX init functions
3200  *
3201  **********************************************************************/
3202
3203 /**
3204  * Receive Side Scaling (RSS)
3205  * See section 7.1.2.8 in the following document:
3206  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3207  *
3208  * Principles:
3209  * The source and destination IP addresses of the IP header and the source
3210  * and destination ports of TCP/UDP headers, if any, of received packets are
3211  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3212  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3213  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3214  * RSS output index which is used as the RX queue index where to store the
3215  * received packets.
3216  * The following output is supplied in the RX write-back descriptor:
3217  *     - 32-bit result of the Microsoft RSS hash function,
3218  *     - 4-bit RSS type field.
3219  */
3220
3221 /*
3222  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3223  * Used as the default key.
3224  */
3225 static uint8_t rss_intel_key[40] = {
3226         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3227         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3228         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3229         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3230         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3231 };
3232
3233 static void
3234 ixgbe_rss_disable(struct rte_eth_dev *dev)
3235 {
3236         struct ixgbe_hw *hw;
3237         uint32_t mrqc;
3238         uint32_t mrqc_reg;
3239
3240         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3241         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3242         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3243         mrqc &= ~IXGBE_MRQC_RSSEN;
3244         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3245 }
3246
3247 static void
3248 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3249 {
3250         uint8_t  *hash_key;
3251         uint32_t mrqc;
3252         uint32_t rss_key;
3253         uint64_t rss_hf;
3254         uint16_t i;
3255         uint32_t mrqc_reg;
3256         uint32_t rssrk_reg;
3257
3258         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3259         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3260
3261         hash_key = rss_conf->rss_key;
3262         if (hash_key != NULL) {
3263                 /* Fill in RSS hash key */
3264                 for (i = 0; i < 10; i++) {
3265                         rss_key  = hash_key[(i * 4)];
3266                         rss_key |= hash_key[(i * 4) + 1] << 8;
3267                         rss_key |= hash_key[(i * 4) + 2] << 16;
3268                         rss_key |= hash_key[(i * 4) + 3] << 24;
3269                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3270                 }
3271         }
3272
3273         /* Set configured hashing protocols in MRQC register */
3274         rss_hf = rss_conf->rss_hf;
3275         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3276         if (rss_hf & ETH_RSS_IPV4)
3277                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3278         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3279                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3280         if (rss_hf & ETH_RSS_IPV6)
3281                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3282         if (rss_hf & ETH_RSS_IPV6_EX)
3283                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3284         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3285                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3286         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3287                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3288         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3289                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3290         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3291                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3292         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3293                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3294         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3295 }
3296
3297 int
3298 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3299                           struct rte_eth_rss_conf *rss_conf)
3300 {
3301         struct ixgbe_hw *hw;
3302         uint32_t mrqc;
3303         uint64_t rss_hf;
3304         uint32_t mrqc_reg;
3305
3306         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3307
3308         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3309                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3310                         "NIC.");
3311                 return -ENOTSUP;
3312         }
3313         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3314
3315         /*
3316          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3317          *     "RSS enabling cannot be done dynamically while it must be
3318          *      preceded by a software reset"
3319          * Before changing anything, first check that the update RSS operation
3320          * does not attempt to disable RSS, if RSS was enabled at
3321          * initialization time, or does not attempt to enable RSS, if RSS was
3322          * disabled at initialization time.
3323          */
3324         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3325         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3326         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3327                 if (rss_hf != 0) /* Enable RSS */
3328                         return -(EINVAL);
3329                 return 0; /* Nothing to do */
3330         }
3331         /* RSS enabled */
3332         if (rss_hf == 0) /* Disable RSS */
3333                 return -(EINVAL);
3334         ixgbe_hw_rss_hash_set(hw, rss_conf);
3335         return 0;
3336 }
3337
3338 int
3339 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3340                             struct rte_eth_rss_conf *rss_conf)
3341 {
3342         struct ixgbe_hw *hw;
3343         uint8_t *hash_key;
3344         uint32_t mrqc;
3345         uint32_t rss_key;
3346         uint64_t rss_hf;
3347         uint16_t i;
3348         uint32_t mrqc_reg;
3349         uint32_t rssrk_reg;
3350
3351         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3352         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3353         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3354         hash_key = rss_conf->rss_key;
3355         if (hash_key != NULL) {
3356                 /* Return RSS hash key */
3357                 for (i = 0; i < 10; i++) {
3358                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3359                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3360                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3361                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3362                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3363                 }
3364         }
3365
3366         /* Get RSS functions configured in MRQC register */
3367         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3368         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3369                 rss_conf->rss_hf = 0;
3370                 return 0;
3371         }
3372         rss_hf = 0;
3373         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3374                 rss_hf |= ETH_RSS_IPV4;
3375         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3376                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3377         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3378                 rss_hf |= ETH_RSS_IPV6;
3379         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3380                 rss_hf |= ETH_RSS_IPV6_EX;
3381         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3382                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3383         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3384                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3385         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3386                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3387         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3388                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3389         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3390                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3391         rss_conf->rss_hf = rss_hf;
3392         return 0;
3393 }
3394
3395 static void
3396 ixgbe_rss_configure(struct rte_eth_dev *dev)
3397 {
3398         struct rte_eth_rss_conf rss_conf;
3399         struct ixgbe_hw *hw;
3400         uint32_t reta;
3401         uint16_t i;
3402         uint16_t j;
3403         uint16_t sp_reta_size;
3404         uint32_t reta_reg;
3405
3406         PMD_INIT_FUNC_TRACE();
3407         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3408
3409         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3410
3411         /*
3412          * Fill in redirection table
3413          * The byte-swap is needed because NIC registers are in
3414          * little-endian order.
3415          */
3416         reta = 0;
3417         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3418                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3419
3420                 if (j == dev->data->nb_rx_queues)
3421                         j = 0;
3422                 reta = (reta << 8) | j;
3423                 if ((i & 3) == 3)
3424                         IXGBE_WRITE_REG(hw, reta_reg,
3425                                         rte_bswap32(reta));
3426         }
3427
3428         /*
3429          * Configure the RSS key and the RSS protocols used to compute
3430          * the RSS hash of input packets.
3431          */
3432         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3433         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3434                 ixgbe_rss_disable(dev);
3435                 return;
3436         }
3437         if (rss_conf.rss_key == NULL)
3438                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3439         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3440 }
3441
3442 #define NUM_VFTA_REGISTERS 128
3443 #define NIC_RX_BUFFER_SIZE 0x200
3444 #define X550_RX_BUFFER_SIZE 0x180
3445
3446 static void
3447 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3448 {
3449         struct rte_eth_vmdq_dcb_conf *cfg;
3450         struct ixgbe_hw *hw;
3451         enum rte_eth_nb_pools num_pools;
3452         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3453         uint16_t pbsize;
3454         uint8_t nb_tcs; /* number of traffic classes */
3455         int i;
3456
3457         PMD_INIT_FUNC_TRACE();
3458         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3459         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3460         num_pools = cfg->nb_queue_pools;
3461         /* Check we have a valid number of pools */
3462         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3463                 ixgbe_rss_disable(dev);
3464                 return;
3465         }
3466         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3467         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3468
3469         /*
3470          * RXPBSIZE
3471          * split rx buffer up into sections, each for 1 traffic class
3472          */
3473         switch (hw->mac.type) {
3474         case ixgbe_mac_X550:
3475         case ixgbe_mac_X550EM_x:
3476         case ixgbe_mac_X550EM_a:
3477                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3478                 break;
3479         default:
3480                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3481                 break;
3482         }
3483         for (i = 0; i < nb_tcs; i++) {
3484                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3485
3486                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3487                 /* clear 10 bits. */
3488                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3489                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3490         }
3491         /* zero alloc all unused TCs */
3492         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3493                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3494
3495                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3496                 /* clear 10 bits. */
3497                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3498         }
3499
3500         /* MRQC: enable vmdq and dcb */
3501         mrqc = (num_pools == ETH_16_POOLS) ?
3502                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3503         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3504
3505         /* PFVTCTL: turn on virtualisation and set the default pool */
3506         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3507         if (cfg->enable_default_pool) {
3508                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3509         } else {
3510                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3511         }
3512
3513         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3514
3515         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3516         queue_mapping = 0;
3517         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3518                 /*
3519                  * mapping is done with 3 bits per priority,
3520                  * so shift by i*3 each time
3521                  */
3522                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3523
3524         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3525
3526         /* RTRPCS: DCB related */
3527         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3528
3529         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3530         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3531         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3532         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3533
3534         /* VFTA - enable all vlan filters */
3535         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3536                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3537         }
3538
3539         /* VFRE: pool enabling for receive - 16 or 32 */
3540         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3541                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3542
3543         /*
3544          * MPSAR - allow pools to read specific mac addresses
3545          * In this case, all pools should be able to read from mac addr 0
3546          */
3547         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3548         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3549
3550         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3551         for (i = 0; i < cfg->nb_pool_maps; i++) {
3552                 /* set vlan id in VF register and set the valid bit */
3553                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3554                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3555                 /*
3556                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3557                  * pools, we only need to use the first half of the register
3558                  * i.e. bits 0-31
3559                  */
3560                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3561         }
3562 }
3563
3564 /**
3565  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3566  * @dev: pointer to eth_dev structure
3567  * @dcb_config: pointer to ixgbe_dcb_config structure
3568  */
3569 static void
3570 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3571                        struct ixgbe_dcb_config *dcb_config)
3572 {
3573         uint32_t reg;
3574         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3575
3576         PMD_INIT_FUNC_TRACE();
3577         if (hw->mac.type != ixgbe_mac_82598EB) {
3578                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3579                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3580                 reg |= IXGBE_RTTDCS_ARBDIS;
3581                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3582
3583                 /* Enable DCB for Tx with 8 TCs */
3584                 if (dcb_config->num_tcs.pg_tcs == 8) {
3585                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3586                 } else {
3587                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3588                 }
3589                 if (dcb_config->vt_mode)
3590                         reg |= IXGBE_MTQC_VT_ENA;
3591                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3592
3593                 /* Enable the Tx desc arbiter */
3594                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3595                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3596                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3597
3598                 /* Enable Security TX Buffer IFG for DCB */
3599                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3600                 reg |= IXGBE_SECTX_DCB;
3601                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3602         }
3603 }
3604
3605 /**
3606  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3607  * @dev: pointer to rte_eth_dev structure
3608  * @dcb_config: pointer to ixgbe_dcb_config structure
3609  */
3610 static void
3611 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3612                         struct ixgbe_dcb_config *dcb_config)
3613 {
3614         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3615                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3616         struct ixgbe_hw *hw =
3617                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3618
3619         PMD_INIT_FUNC_TRACE();
3620         if (hw->mac.type != ixgbe_mac_82598EB)
3621                 /*PF VF Transmit Enable*/
3622                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3623                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3624
3625         /*Configure general DCB TX parameters*/
3626         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3627 }
3628
3629 static void
3630 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3631                         struct ixgbe_dcb_config *dcb_config)
3632 {
3633         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3634                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3635         struct ixgbe_dcb_tc_config *tc;
3636         uint8_t i, j;
3637
3638         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3639         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3640                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3641                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3642         } else {
3643                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3644                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3645         }
3646
3647         /* Initialize User Priority to Traffic Class mapping */
3648         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3649                 tc = &dcb_config->tc_config[j];
3650                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3651         }
3652
3653         /* User Priority to Traffic Class mapping */
3654         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3655                 j = vmdq_rx_conf->dcb_tc[i];
3656                 tc = &dcb_config->tc_config[j];
3657                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3658                                                 (uint8_t)(1 << i);
3659         }
3660 }
3661
3662 static void
3663 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3664                         struct ixgbe_dcb_config *dcb_config)
3665 {
3666         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3667                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3668         struct ixgbe_dcb_tc_config *tc;
3669         uint8_t i, j;
3670
3671         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3672         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3673                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3674                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3675         } else {
3676                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3677                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3678         }
3679
3680         /* Initialize User Priority to Traffic Class mapping */
3681         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3682                 tc = &dcb_config->tc_config[j];
3683                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3684         }
3685
3686         /* User Priority to Traffic Class mapping */
3687         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3688                 j = vmdq_tx_conf->dcb_tc[i];
3689                 tc = &dcb_config->tc_config[j];
3690                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3691                                                 (uint8_t)(1 << i);
3692         }
3693 }
3694
3695 static void
3696 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3697                 struct ixgbe_dcb_config *dcb_config)
3698 {
3699         struct rte_eth_dcb_rx_conf *rx_conf =
3700                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3701         struct ixgbe_dcb_tc_config *tc;
3702         uint8_t i, j;
3703
3704         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3705         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3706
3707         /* Initialize User Priority to Traffic Class mapping */
3708         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3709                 tc = &dcb_config->tc_config[j];
3710                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3711         }
3712
3713         /* User Priority to Traffic Class mapping */
3714         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3715                 j = rx_conf->dcb_tc[i];
3716                 tc = &dcb_config->tc_config[j];
3717                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3718                                                 (uint8_t)(1 << i);
3719         }
3720 }
3721
3722 static void
3723 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3724                 struct ixgbe_dcb_config *dcb_config)
3725 {
3726         struct rte_eth_dcb_tx_conf *tx_conf =
3727                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3728         struct ixgbe_dcb_tc_config *tc;
3729         uint8_t i, j;
3730
3731         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3732         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3733
3734         /* Initialize User Priority to Traffic Class mapping */
3735         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3736                 tc = &dcb_config->tc_config[j];
3737                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3738         }
3739
3740         /* User Priority to Traffic Class mapping */
3741         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3742                 j = tx_conf->dcb_tc[i];
3743                 tc = &dcb_config->tc_config[j];
3744                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3745                                                 (uint8_t)(1 << i);
3746         }
3747 }
3748
3749 /**
3750  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3751  * @dev: pointer to eth_dev structure
3752  * @dcb_config: pointer to ixgbe_dcb_config structure
3753  */
3754 static void
3755 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3756                        struct ixgbe_dcb_config *dcb_config)
3757 {
3758         uint32_t reg;
3759         uint32_t vlanctrl;
3760         uint8_t i;
3761         uint32_t q;
3762         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3763
3764         PMD_INIT_FUNC_TRACE();
3765         /*
3766          * Disable the arbiter before changing parameters
3767          * (always enable recycle mode; WSP)
3768          */
3769         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3770         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3771
3772         if (hw->mac.type != ixgbe_mac_82598EB) {
3773                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3774                 if (dcb_config->num_tcs.pg_tcs == 4) {
3775                         if (dcb_config->vt_mode)
3776                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3777                                         IXGBE_MRQC_VMDQRT4TCEN;
3778                         else {
3779                                 /* no matter the mode is DCB or DCB_RSS, just
3780                                  * set the MRQE to RSSXTCEN. RSS is controlled
3781                                  * by RSS_FIELD
3782                                  */
3783                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3784                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3785                                         IXGBE_MRQC_RTRSS4TCEN;
3786                         }
3787                 }
3788                 if (dcb_config->num_tcs.pg_tcs == 8) {
3789                         if (dcb_config->vt_mode)
3790                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3791                                         IXGBE_MRQC_VMDQRT8TCEN;
3792                         else {
3793                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3794                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3795                                         IXGBE_MRQC_RTRSS8TCEN;
3796                         }
3797                 }
3798
3799                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3800
3801                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3802                         /* Disable drop for all queues in VMDQ mode*/
3803                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3804                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3805                                                 (IXGBE_QDE_WRITE |
3806                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3807                 } else {
3808                         /* Enable drop for all queues in SRIOV mode */
3809                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3810                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3811                                                 (IXGBE_QDE_WRITE |
3812                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3813                                                  IXGBE_QDE_ENABLE));
3814                 }
3815         }
3816
3817         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3818         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3819         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3820         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3821
3822         /* VFTA - enable all vlan filters */
3823         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3824                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3825         }
3826
3827         /*
3828          * Configure Rx packet plane (recycle mode; WSP) and
3829          * enable arbiter
3830          */
3831         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3832         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3833 }
3834
3835 static void
3836 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3837                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3838 {
3839         switch (hw->mac.type) {
3840         case ixgbe_mac_82598EB:
3841                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3842                 break;
3843         case ixgbe_mac_82599EB:
3844         case ixgbe_mac_X540:
3845         case ixgbe_mac_X550:
3846         case ixgbe_mac_X550EM_x:
3847         case ixgbe_mac_X550EM_a:
3848                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3849                                                   tsa, map);
3850                 break;
3851         default:
3852                 break;
3853         }
3854 }
3855
3856 static void
3857 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3858                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3859 {
3860         switch (hw->mac.type) {
3861         case ixgbe_mac_82598EB:
3862                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3863                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3864                 break;
3865         case ixgbe_mac_82599EB:
3866         case ixgbe_mac_X540:
3867         case ixgbe_mac_X550:
3868         case ixgbe_mac_X550EM_x:
3869         case ixgbe_mac_X550EM_a:
3870                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3871                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3872                 break;
3873         default:
3874                 break;
3875         }
3876 }
3877
3878 #define DCB_RX_CONFIG  1
3879 #define DCB_TX_CONFIG  1
3880 #define DCB_TX_PB      1024
3881 /**
3882  * ixgbe_dcb_hw_configure - Enable DCB and configure
3883  * general DCB in VT mode and non-VT mode parameters
3884  * @dev: pointer to rte_eth_dev structure
3885  * @dcb_config: pointer to ixgbe_dcb_config structure
3886  */
3887 static int
3888 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3889                         struct ixgbe_dcb_config *dcb_config)
3890 {
3891         int     ret = 0;
3892         uint8_t i, pfc_en, nb_tcs;
3893         uint16_t pbsize, rx_buffer_size;
3894         uint8_t config_dcb_rx = 0;
3895         uint8_t config_dcb_tx = 0;
3896         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3897         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3898         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3899         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3900         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3901         struct ixgbe_dcb_tc_config *tc;
3902         uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
3903         struct ixgbe_hw *hw =
3904                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3905         struct ixgbe_bw_conf *bw_conf =
3906                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3907
3908         switch (dev->data->dev_conf.rxmode.mq_mode) {
3909         case ETH_MQ_RX_VMDQ_DCB:
3910                 dcb_config->vt_mode = true;
3911                 if (hw->mac.type != ixgbe_mac_82598EB) {
3912                         config_dcb_rx = DCB_RX_CONFIG;
3913                         /*
3914                          *get dcb and VT rx configuration parameters
3915                          *from rte_eth_conf
3916                          */
3917                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
3918                         /*Configure general VMDQ and DCB RX parameters*/
3919                         ixgbe_vmdq_dcb_configure(dev);
3920                 }
3921                 break;
3922         case ETH_MQ_RX_DCB:
3923         case ETH_MQ_RX_DCB_RSS:
3924                 dcb_config->vt_mode = false;
3925                 config_dcb_rx = DCB_RX_CONFIG;
3926                 /* Get dcb TX configuration parameters from rte_eth_conf */
3927                 ixgbe_dcb_rx_config(dev, dcb_config);
3928                 /*Configure general DCB RX parameters*/
3929                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
3930                 break;
3931         default:
3932                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
3933                 break;
3934         }
3935         switch (dev->data->dev_conf.txmode.mq_mode) {
3936         case ETH_MQ_TX_VMDQ_DCB:
3937                 dcb_config->vt_mode = true;
3938                 config_dcb_tx = DCB_TX_CONFIG;
3939                 /* get DCB and VT TX configuration parameters
3940                  * from rte_eth_conf
3941                  */
3942                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
3943                 /*Configure general VMDQ and DCB TX parameters*/
3944                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
3945                 break;
3946
3947         case ETH_MQ_TX_DCB:
3948                 dcb_config->vt_mode = false;
3949                 config_dcb_tx = DCB_TX_CONFIG;
3950                 /*get DCB TX configuration parameters from rte_eth_conf*/
3951                 ixgbe_dcb_tx_config(dev, dcb_config);
3952                 /*Configure general DCB TX parameters*/
3953                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
3954                 break;
3955         default:
3956                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
3957                 break;
3958         }
3959
3960         nb_tcs = dcb_config->num_tcs.pfc_tcs;
3961         /* Unpack map */
3962         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
3963         if (nb_tcs == ETH_4_TCS) {
3964                 /* Avoid un-configured priority mapping to TC0 */
3965                 uint8_t j = 4;
3966                 uint8_t mask = 0xFF;
3967
3968                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
3969                         mask = (uint8_t)(mask & (~(1 << map[i])));
3970                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
3971                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
3972                                 map[j++] = i;
3973                         mask >>= 1;
3974                 }
3975                 /* Re-configure 4 TCs BW */
3976                 for (i = 0; i < nb_tcs; i++) {
3977                         tc = &dcb_config->tc_config[i];
3978                         if (bw_conf->tc_num != nb_tcs)
3979                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
3980                                         (uint8_t)(100 / nb_tcs);
3981                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
3982                                                 (uint8_t)(100 / nb_tcs);
3983                 }
3984                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
3985                         tc = &dcb_config->tc_config[i];
3986                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
3987                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
3988                 }
3989         } else {
3990                 /* Re-configure 8 TCs BW */
3991                 for (i = 0; i < nb_tcs; i++) {
3992                         tc = &dcb_config->tc_config[i];
3993                         if (bw_conf->tc_num != nb_tcs)
3994                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
3995                                         (uint8_t)(100 / nb_tcs + (i & 1));
3996                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
3997                                 (uint8_t)(100 / nb_tcs + (i & 1));
3998                 }
3999         }
4000
4001         switch (hw->mac.type) {
4002         case ixgbe_mac_X550:
4003         case ixgbe_mac_X550EM_x:
4004         case ixgbe_mac_X550EM_a:
4005                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4006                 break;
4007         default:
4008                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4009                 break;
4010         }
4011
4012         if (config_dcb_rx) {
4013                 /* Set RX buffer size */
4014                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4015                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4016
4017                 for (i = 0; i < nb_tcs; i++) {
4018                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4019                 }
4020                 /* zero alloc all unused TCs */
4021                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4022                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4023                 }
4024         }
4025         if (config_dcb_tx) {
4026                 /* Only support an equally distributed
4027                  *  Tx packet buffer strategy.
4028                  */
4029                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4030                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4031
4032                 for (i = 0; i < nb_tcs; i++) {
4033                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4034                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4035                 }
4036                 /* Clear unused TCs, if any, to zero buffer size*/
4037                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4038                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4039                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4040                 }
4041         }
4042
4043         /*Calculates traffic class credits*/
4044         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4045                                 IXGBE_DCB_TX_CONFIG);
4046         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4047                                 IXGBE_DCB_RX_CONFIG);
4048
4049         if (config_dcb_rx) {
4050                 /* Unpack CEE standard containers */
4051                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4052                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4053                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4054                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4055                 /* Configure PG(ETS) RX */
4056                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4057         }
4058
4059         if (config_dcb_tx) {
4060                 /* Unpack CEE standard containers */
4061                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4062                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4063                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4064                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4065                 /* Configure PG(ETS) TX */
4066                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4067         }
4068
4069         /*Configure queue statistics registers*/
4070         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4071
4072         /* Check if the PFC is supported */
4073         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4074                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4075                 for (i = 0; i < nb_tcs; i++) {
4076                         /*
4077                         * If the TC count is 8,and the default high_water is 48,
4078                         * the low_water is 16 as default.
4079                         */
4080                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4081                         hw->fc.low_water[i] = pbsize / 4;
4082                         /* Enable pfc for this TC */
4083                         tc = &dcb_config->tc_config[i];
4084                         tc->pfc = ixgbe_dcb_pfc_enabled;
4085                 }
4086                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4087                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4088                         pfc_en &= 0x0F;
4089                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4090         }
4091
4092         return ret;
4093 }
4094
4095 /**
4096  * ixgbe_configure_dcb - Configure DCB  Hardware
4097  * @dev: pointer to rte_eth_dev
4098  */
4099 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4100 {
4101         struct ixgbe_dcb_config *dcb_cfg =
4102                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4103         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4104
4105         PMD_INIT_FUNC_TRACE();
4106
4107         /* check support mq_mode for DCB */
4108         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4109             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4110             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4111                 return;
4112
4113         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4114                 return;
4115
4116         /** Configure DCB hardware **/
4117         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4118 }
4119
4120 /*
4121  * VMDq only support for 10 GbE NIC.
4122  */
4123 static void
4124 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4125 {
4126         struct rte_eth_vmdq_rx_conf *cfg;
4127         struct ixgbe_hw *hw;
4128         enum rte_eth_nb_pools num_pools;
4129         uint32_t mrqc, vt_ctl, vlanctrl;
4130         uint32_t vmolr = 0;
4131         int i;
4132
4133         PMD_INIT_FUNC_TRACE();
4134         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4135         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4136         num_pools = cfg->nb_queue_pools;
4137
4138         ixgbe_rss_disable(dev);
4139
4140         /* MRQC: enable vmdq */
4141         mrqc = IXGBE_MRQC_VMDQEN;
4142         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4143
4144         /* PFVTCTL: turn on virtualisation and set the default pool */
4145         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4146         if (cfg->enable_default_pool)
4147                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4148         else
4149                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4150
4151         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4152
4153         for (i = 0; i < (int)num_pools; i++) {
4154                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4155                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4156         }
4157
4158         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4159         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4160         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4161         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4162
4163         /* VFTA - enable all vlan filters */
4164         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4165                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4166
4167         /* VFRE: pool enabling for receive - 64 */
4168         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4169         if (num_pools == ETH_64_POOLS)
4170                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4171
4172         /*
4173          * MPSAR - allow pools to read specific mac addresses
4174          * In this case, all pools should be able to read from mac addr 0
4175          */
4176         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4177         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4178
4179         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4180         for (i = 0; i < cfg->nb_pool_maps; i++) {
4181                 /* set vlan id in VF register and set the valid bit */
4182                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4183                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4184                 /*
4185                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4186                  * pools, we only need to use the first half of the register
4187                  * i.e. bits 0-31
4188                  */
4189                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4190                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4191                                         (cfg->pool_map[i].pools & UINT32_MAX));
4192                 else
4193                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4194                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4195
4196         }
4197
4198         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4199         if (cfg->enable_loop_back) {
4200                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4201                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4202                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4203         }
4204
4205         IXGBE_WRITE_FLUSH(hw);
4206 }
4207
4208 /*
4209  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4210  * @hw: pointer to hardware structure
4211  */
4212 static void
4213 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4214 {
4215         uint32_t reg;
4216         uint32_t q;
4217
4218         PMD_INIT_FUNC_TRACE();
4219         /*PF VF Transmit Enable*/
4220         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4221         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4222
4223         /* Disable the Tx desc arbiter so that MTQC can be changed */
4224         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4225         reg |= IXGBE_RTTDCS_ARBDIS;
4226         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4227
4228         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4229         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4230
4231         /* Disable drop for all queues */
4232         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4233                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4234                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4235
4236         /* Enable the Tx desc arbiter */
4237         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4238         reg &= ~IXGBE_RTTDCS_ARBDIS;
4239         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4240
4241         IXGBE_WRITE_FLUSH(hw);
4242 }
4243
4244 static int __attribute__((cold))
4245 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4246 {
4247         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4248         uint64_t dma_addr;
4249         unsigned int i;
4250
4251         /* Initialize software ring entries */
4252         for (i = 0; i < rxq->nb_rx_desc; i++) {
4253                 volatile union ixgbe_adv_rx_desc *rxd;
4254                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4255
4256                 if (mbuf == NULL) {
4257                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4258                                      (unsigned) rxq->queue_id);
4259                         return -ENOMEM;
4260                 }
4261
4262                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4263                 mbuf->port = rxq->port_id;
4264
4265                 dma_addr =
4266                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4267                 rxd = &rxq->rx_ring[i];
4268                 rxd->read.hdr_addr = 0;
4269                 rxd->read.pkt_addr = dma_addr;
4270                 rxe[i].mbuf = mbuf;
4271         }
4272
4273         return 0;
4274 }
4275
4276 static int
4277 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4278 {
4279         struct ixgbe_hw *hw;
4280         uint32_t mrqc;
4281
4282         ixgbe_rss_configure(dev);
4283
4284         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4285
4286         /* MRQC: enable VF RSS */
4287         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4288         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4289         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4290         case ETH_64_POOLS:
4291                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4292                 break;
4293
4294         case ETH_32_POOLS:
4295                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4296                 break;
4297
4298         default:
4299                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4300                 return -EINVAL;
4301         }
4302
4303         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4304
4305         return 0;
4306 }
4307
4308 static int
4309 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4310 {
4311         struct ixgbe_hw *hw =
4312                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4313
4314         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4315         case ETH_64_POOLS:
4316                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4317                         IXGBE_MRQC_VMDQEN);
4318                 break;
4319
4320         case ETH_32_POOLS:
4321                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4322                         IXGBE_MRQC_VMDQRT4TCEN);
4323                 break;
4324
4325         case ETH_16_POOLS:
4326                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4327                         IXGBE_MRQC_VMDQRT8TCEN);
4328                 break;
4329         default:
4330                 PMD_INIT_LOG(ERR,
4331                         "invalid pool number in IOV mode");
4332                 break;
4333         }
4334         return 0;
4335 }
4336
4337 static int
4338 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4339 {
4340         struct ixgbe_hw *hw =
4341                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4342
4343         if (hw->mac.type == ixgbe_mac_82598EB)
4344                 return 0;
4345
4346         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4347                 /*
4348                  * SRIOV inactive scheme
4349                  * any DCB/RSS w/o VMDq multi-queue setting
4350                  */
4351                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4352                 case ETH_MQ_RX_RSS:
4353                 case ETH_MQ_RX_DCB_RSS:
4354                 case ETH_MQ_RX_VMDQ_RSS:
4355                         ixgbe_rss_configure(dev);
4356                         break;
4357
4358                 case ETH_MQ_RX_VMDQ_DCB:
4359                         ixgbe_vmdq_dcb_configure(dev);
4360                         break;
4361
4362                 case ETH_MQ_RX_VMDQ_ONLY:
4363                         ixgbe_vmdq_rx_hw_configure(dev);
4364                         break;
4365
4366                 case ETH_MQ_RX_NONE:
4367                 default:
4368                         /* if mq_mode is none, disable rss mode.*/
4369                         ixgbe_rss_disable(dev);
4370                         break;
4371                 }
4372         } else {
4373                 /* SRIOV active scheme
4374                  * Support RSS together with SRIOV.
4375                  */
4376                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4377                 case ETH_MQ_RX_RSS:
4378                 case ETH_MQ_RX_VMDQ_RSS:
4379                         ixgbe_config_vf_rss(dev);
4380                         break;
4381                 case ETH_MQ_RX_VMDQ_DCB:
4382                 case ETH_MQ_RX_DCB:
4383                 /* In SRIOV, the configuration is the same as VMDq case */
4384                         ixgbe_vmdq_dcb_configure(dev);
4385                         break;
4386                 /* DCB/RSS together with SRIOV is not supported */
4387                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4388                 case ETH_MQ_RX_DCB_RSS:
4389                         PMD_INIT_LOG(ERR,
4390                                 "Could not support DCB/RSS with VMDq & SRIOV");
4391                         return -1;
4392                 default:
4393                         ixgbe_config_vf_default(dev);
4394                         break;
4395                 }
4396         }
4397
4398         return 0;
4399 }
4400
4401 static int
4402 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4403 {
4404         struct ixgbe_hw *hw =
4405                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4406         uint32_t mtqc;
4407         uint32_t rttdcs;
4408
4409         if (hw->mac.type == ixgbe_mac_82598EB)
4410                 return 0;
4411
4412         /* disable arbiter before setting MTQC */
4413         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4414         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4415         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4416
4417         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4418                 /*
4419                  * SRIOV inactive scheme
4420                  * any DCB w/o VMDq multi-queue setting
4421                  */
4422                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4423                         ixgbe_vmdq_tx_hw_configure(hw);
4424                 else {
4425                         mtqc = IXGBE_MTQC_64Q_1PB;
4426                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4427                 }
4428         } else {
4429                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4430
4431                 /*
4432                  * SRIOV active scheme
4433                  * FIXME if support DCB together with VMDq & SRIOV
4434                  */
4435                 case ETH_64_POOLS:
4436                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4437                         break;
4438                 case ETH_32_POOLS:
4439                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4440                         break;
4441                 case ETH_16_POOLS:
4442                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4443                                 IXGBE_MTQC_8TC_8TQ;
4444                         break;
4445                 default:
4446                         mtqc = IXGBE_MTQC_64Q_1PB;
4447                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4448                 }
4449                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4450         }
4451
4452         /* re-enable arbiter */
4453         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4454         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4455
4456         return 0;
4457 }
4458
4459 /**
4460  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4461  *
4462  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4463  * spec rev. 3.0 chapter 8.2.3.8.13.
4464  *
4465  * @pool Memory pool of the Rx queue
4466  */
4467 static inline uint32_t
4468 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4469 {
4470         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4471
4472         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4473         uint16_t maxdesc =
4474                 IPV4_MAX_PKT_LEN /
4475                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4476
4477         if (maxdesc >= 16)
4478                 return IXGBE_RSCCTL_MAXDESC_16;
4479         else if (maxdesc >= 8)
4480                 return IXGBE_RSCCTL_MAXDESC_8;
4481         else if (maxdesc >= 4)
4482                 return IXGBE_RSCCTL_MAXDESC_4;
4483         else
4484                 return IXGBE_RSCCTL_MAXDESC_1;
4485 }
4486
4487 /**
4488  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4489  * interrupt
4490  *
4491  * (Taken from FreeBSD tree)
4492  * (yes this is all very magic and confusing :)
4493  *
4494  * @dev port handle
4495  * @entry the register array entry
4496  * @vector the MSIX vector for this queue
4497  * @type RX/TX/MISC
4498  */
4499 static void
4500 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4501 {
4502         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4503         u32 ivar, index;
4504
4505         vector |= IXGBE_IVAR_ALLOC_VAL;
4506
4507         switch (hw->mac.type) {
4508
4509         case ixgbe_mac_82598EB:
4510                 if (type == -1)
4511                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4512                 else
4513                         entry += (type * 64);
4514                 index = (entry >> 2) & 0x1F;
4515                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4516                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4517                 ivar |= (vector << (8 * (entry & 0x3)));
4518                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4519                 break;
4520
4521         case ixgbe_mac_82599EB:
4522         case ixgbe_mac_X540:
4523                 if (type == -1) { /* MISC IVAR */
4524                         index = (entry & 1) * 8;
4525                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4526                         ivar &= ~(0xFF << index);
4527                         ivar |= (vector << index);
4528                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4529                 } else {        /* RX/TX IVARS */
4530                         index = (16 * (entry & 1)) + (8 * type);
4531                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4532                         ivar &= ~(0xFF << index);
4533                         ivar |= (vector << index);
4534                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4535                 }
4536
4537                 break;
4538
4539         default:
4540                 break;
4541         }
4542 }
4543
4544 void __attribute__((cold))
4545 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4546 {
4547         uint16_t i, rx_using_sse;
4548         struct ixgbe_adapter *adapter =
4549                 (struct ixgbe_adapter *)dev->data->dev_private;
4550
4551         /*
4552          * In order to allow Vector Rx there are a few configuration
4553          * conditions to be met and Rx Bulk Allocation should be allowed.
4554          */
4555         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4556             !adapter->rx_bulk_alloc_allowed) {
4557                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4558                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4559                                     "not enabled",
4560                              dev->data->port_id);
4561
4562                 adapter->rx_vec_allowed = false;
4563         }
4564
4565         /*
4566          * Initialize the appropriate LRO callback.
4567          *
4568          * If all queues satisfy the bulk allocation preconditions
4569          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4570          * Otherwise use a single allocation version.
4571          */
4572         if (dev->data->lro) {
4573                 if (adapter->rx_bulk_alloc_allowed) {
4574                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4575                                            "allocation version");
4576                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4577                 } else {
4578                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4579                                            "allocation version");
4580                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4581                 }
4582         } else if (dev->data->scattered_rx) {
4583                 /*
4584                  * Set the non-LRO scattered callback: there are Vector and
4585                  * single allocation versions.
4586                  */
4587                 if (adapter->rx_vec_allowed) {
4588                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4589                                             "callback (port=%d).",
4590                                      dev->data->port_id);
4591
4592                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4593                 } else if (adapter->rx_bulk_alloc_allowed) {
4594                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4595                                            "allocation callback (port=%d).",
4596                                      dev->data->port_id);
4597                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4598                 } else {
4599                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4600                                             "single allocation) "
4601                                             "Scattered Rx callback "
4602                                             "(port=%d).",
4603                                      dev->data->port_id);
4604
4605                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4606                 }
4607         /*
4608          * Below we set "simple" callbacks according to port/queues parameters.
4609          * If parameters allow we are going to choose between the following
4610          * callbacks:
4611          *    - Vector
4612          *    - Bulk Allocation
4613          *    - Single buffer allocation (the simplest one)
4614          */
4615         } else if (adapter->rx_vec_allowed) {
4616                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4617                                     "burst size no less than %d (port=%d).",
4618                              RTE_IXGBE_DESCS_PER_LOOP,
4619                              dev->data->port_id);
4620
4621                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4622         } else if (adapter->rx_bulk_alloc_allowed) {
4623                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4624                                     "satisfied. Rx Burst Bulk Alloc function "
4625                                     "will be used on port=%d.",
4626                              dev->data->port_id);
4627
4628                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4629         } else {
4630                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4631                                     "satisfied, or Scattered Rx is requested "
4632                                     "(port=%d).",
4633                              dev->data->port_id);
4634
4635                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4636         }
4637
4638         /* Propagate information about RX function choice through all queues. */
4639
4640         rx_using_sse =
4641                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4642                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4643
4644         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4645                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4646
4647                 rxq->rx_using_sse = rx_using_sse;
4648 #ifdef RTE_LIBRTE_SECURITY
4649                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4650                                 DEV_RX_OFFLOAD_SECURITY);
4651 #endif
4652         }
4653 }
4654
4655 /**
4656  * ixgbe_set_rsc - configure RSC related port HW registers
4657  *
4658  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4659  * of 82599 Spec (x540 configuration is virtually the same).
4660  *
4661  * @dev port handle
4662  *
4663  * Returns 0 in case of success or a non-zero error code
4664  */
4665 static int
4666 ixgbe_set_rsc(struct rte_eth_dev *dev)
4667 {
4668         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4669         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4670         struct rte_eth_dev_info dev_info = { 0 };
4671         bool rsc_capable = false;
4672         uint16_t i;
4673         uint32_t rdrxctl;
4674         uint32_t rfctl;
4675
4676         /* Sanity check */
4677         dev->dev_ops->dev_infos_get(dev, &dev_info);
4678         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4679                 rsc_capable = true;
4680
4681         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4682                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4683                                    "support it");
4684                 return -EINVAL;
4685         }
4686
4687         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4688
4689         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP) &&
4690              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4691                 /*
4692                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4693                  * 3.0 RSC configuration requires HW CRC stripping being
4694                  * enabled. If user requested both HW CRC stripping off
4695                  * and RSC on - return an error.
4696                  */
4697                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4698                                     "is disabled");
4699                 return -EINVAL;
4700         }
4701
4702         /* RFCTL configuration  */
4703         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4704         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4705                 /*
4706                  * Since NFS packets coalescing is not supported - clear
4707                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4708                  * enabled.
4709                  */
4710                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4711                            IXGBE_RFCTL_NFSR_DIS);
4712         else
4713                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4714         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4715
4716         /* If LRO hasn't been requested - we are done here. */
4717         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4718                 return 0;
4719
4720         /* Set RDRXCTL.RSCACKC bit */
4721         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4722         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4723         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4724
4725         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4726         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4727                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4728                 uint32_t srrctl =
4729                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4730                 uint32_t rscctl =
4731                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4732                 uint32_t psrtype =
4733                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4734                 uint32_t eitr =
4735                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4736
4737                 /*
4738                  * ixgbe PMD doesn't support header-split at the moment.
4739                  *
4740                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4741                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4742                  * should be configured even if header split is not
4743                  * enabled. We will configure it 128 bytes following the
4744                  * recommendation in the spec.
4745                  */
4746                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4747                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4748                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4749
4750                 /*
4751                  * TODO: Consider setting the Receive Descriptor Minimum
4752                  * Threshold Size for an RSC case. This is not an obviously
4753                  * beneficiary option but the one worth considering...
4754                  */
4755
4756                 rscctl |= IXGBE_RSCCTL_RSCEN;
4757                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4758                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4759
4760                 /*
4761                  * RSC: Set ITR interval corresponding to 2K ints/s.
4762                  *
4763                  * Full-sized RSC aggregations for a 10Gb/s link will
4764                  * arrive at about 20K aggregation/s rate.
4765                  *
4766                  * 2K inst/s rate will make only 10% of the
4767                  * aggregations to be closed due to the interrupt timer
4768                  * expiration for a streaming at wire-speed case.
4769                  *
4770                  * For a sparse streaming case this setting will yield
4771                  * at most 500us latency for a single RSC aggregation.
4772                  */
4773                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4774                 eitr |= IXGBE_EITR_INTERVAL_US(500) | IXGBE_EITR_CNT_WDIS;
4775
4776                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4777                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4778                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4779                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4780
4781                 /*
4782                  * RSC requires the mapping of the queue to the
4783                  * interrupt vector.
4784                  */
4785                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4786         }
4787
4788         dev->data->lro = 1;
4789
4790         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4791
4792         return 0;
4793 }
4794
4795 /*
4796  * Initializes Receive Unit.
4797  */
4798 int __attribute__((cold))
4799 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4800 {
4801         struct ixgbe_hw     *hw;
4802         struct ixgbe_rx_queue *rxq;
4803         uint64_t bus_addr;
4804         uint32_t rxctrl;
4805         uint32_t fctrl;
4806         uint32_t hlreg0;
4807         uint32_t maxfrs;
4808         uint32_t srrctl;
4809         uint32_t rdrxctl;
4810         uint32_t rxcsum;
4811         uint16_t buf_size;
4812         uint16_t i;
4813         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4814         int rc;
4815
4816         PMD_INIT_FUNC_TRACE();
4817         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4818
4819         /*
4820          * Make sure receives are disabled while setting
4821          * up the RX context (registers, descriptor rings, etc.).
4822          */
4823         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4824         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4825
4826         /* Enable receipt of broadcasted frames */
4827         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4828         fctrl |= IXGBE_FCTRL_BAM;
4829         fctrl |= IXGBE_FCTRL_DPF;
4830         fctrl |= IXGBE_FCTRL_PMCF;
4831         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4832
4833         /*
4834          * Configure CRC stripping, if any.
4835          */
4836         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4837         if (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP)
4838                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4839         else
4840                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4841
4842         /*
4843          * Configure jumbo frame support, if any.
4844          */
4845         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4846                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4847                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4848                 maxfrs &= 0x0000FFFF;
4849                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4850                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4851         } else
4852                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4853
4854         /*
4855          * If loopback mode is configured for 82599, set LPBK bit.
4856          */
4857         if (hw->mac.type == ixgbe_mac_82599EB &&
4858                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
4859                 hlreg0 |= IXGBE_HLREG0_LPBK;
4860         else
4861                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4862
4863         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4864
4865         /*
4866          * Assume no header split and no VLAN strip support
4867          * on any Rx queue first .
4868          */
4869         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4870         /* Setup RX queues */
4871         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4872                 rxq = dev->data->rx_queues[i];
4873
4874                 /*
4875                  * Reset crc_len in case it was changed after queue setup by a
4876                  * call to configure.
4877                  */
4878                 rxq->crc_len = (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP) ?
4879                                 0 : ETHER_CRC_LEN;
4880
4881                 /* Setup the Base and Length of the Rx Descriptor Rings */
4882                 bus_addr = rxq->rx_ring_phys_addr;
4883                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4884                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4885                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4886                                 (uint32_t)(bus_addr >> 32));
4887                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4888                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4889                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4890                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4891
4892                 /* Configure the SRRCTL register */
4893                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4894
4895                 /* Set if packets are dropped when no descriptors available */
4896                 if (rxq->drop_en)
4897                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4898
4899                 /*
4900                  * Configure the RX buffer size in the BSIZEPACKET field of
4901                  * the SRRCTL register of the queue.
4902                  * The value is in 1 KB resolution. Valid values can be from
4903                  * 1 KB to 16 KB.
4904                  */
4905                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4906                         RTE_PKTMBUF_HEADROOM);
4907                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4908                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4909
4910                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4911
4912                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
4913                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
4914
4915                 /* It adds dual VLAN length for supporting dual VLAN */
4916                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
4917                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
4918                         dev->data->scattered_rx = 1;
4919                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
4920                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4921         }
4922
4923         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
4924                 dev->data->scattered_rx = 1;
4925
4926         /*
4927          * Device configured with multiple RX queues.
4928          */
4929         ixgbe_dev_mq_rx_configure(dev);
4930
4931         /*
4932          * Setup the Checksum Register.
4933          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
4934          * Enable IP/L4 checkum computation by hardware if requested to do so.
4935          */
4936         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
4937         rxcsum |= IXGBE_RXCSUM_PCSD;
4938         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
4939                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
4940         else
4941                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
4942
4943         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
4944
4945         if (hw->mac.type == ixgbe_mac_82599EB ||
4946             hw->mac.type == ixgbe_mac_X540) {
4947                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4948                 if (rx_conf->offloads & DEV_RX_OFFLOAD_CRC_STRIP)
4949                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
4950                 else
4951                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
4952                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
4953                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4954         }
4955
4956         rc = ixgbe_set_rsc(dev);
4957         if (rc)
4958                 return rc;
4959
4960         ixgbe_set_rx_function(dev);
4961
4962         return 0;
4963 }
4964
4965 /*
4966  * Initializes Transmit Unit.
4967  */
4968 void __attribute__((cold))
4969 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
4970 {
4971         struct ixgbe_hw     *hw;
4972         struct ixgbe_tx_queue *txq;
4973         uint64_t bus_addr;
4974         uint32_t hlreg0;
4975         uint32_t txctrl;
4976         uint16_t i;
4977
4978         PMD_INIT_FUNC_TRACE();
4979         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4980
4981         /* Enable TX CRC (checksum offload requirement) and hw padding
4982          * (TSO requirement)
4983          */
4984         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4985         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
4986         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4987
4988         /* Setup the Base and Length of the Tx Descriptor Rings */
4989         for (i = 0; i < dev->data->nb_tx_queues; i++) {
4990                 txq = dev->data->tx_queues[i];
4991
4992                 bus_addr = txq->tx_ring_phys_addr;
4993                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
4994                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4995                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
4996                                 (uint32_t)(bus_addr >> 32));
4997                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
4998                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
4999                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5000                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5001                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5002
5003                 /*
5004                  * Disable Tx Head Writeback RO bit, since this hoses
5005                  * bookkeeping if things aren't delivered in order.
5006                  */
5007                 switch (hw->mac.type) {
5008                 case ixgbe_mac_82598EB:
5009                         txctrl = IXGBE_READ_REG(hw,
5010                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5011                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5012                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5013                                         txctrl);
5014                         break;
5015
5016                 case ixgbe_mac_82599EB:
5017                 case ixgbe_mac_X540:
5018                 case ixgbe_mac_X550:
5019                 case ixgbe_mac_X550EM_x:
5020                 case ixgbe_mac_X550EM_a:
5021                 default:
5022                         txctrl = IXGBE_READ_REG(hw,
5023                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5024                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5025                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5026                                         txctrl);
5027                         break;
5028                 }
5029         }
5030
5031         /* Device configured with multiple TX queues. */
5032         ixgbe_dev_mq_tx_configure(dev);
5033 }
5034
5035 /*
5036  * Set up link for 82599 loopback mode Tx->Rx.
5037  */
5038 static inline void __attribute__((cold))
5039 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5040 {
5041         PMD_INIT_FUNC_TRACE();
5042
5043         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5044                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5045                                 IXGBE_SUCCESS) {
5046                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5047                         /* ignore error */
5048                         return;
5049                 }
5050         }
5051
5052         /* Restart link */
5053         IXGBE_WRITE_REG(hw,
5054                         IXGBE_AUTOC,
5055                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5056         ixgbe_reset_pipeline_82599(hw);
5057
5058         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5059         msec_delay(50);
5060 }
5061
5062
5063 /*
5064  * Start Transmit and Receive Units.
5065  */
5066 int __attribute__((cold))
5067 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5068 {
5069         struct ixgbe_hw     *hw;
5070         struct ixgbe_tx_queue *txq;
5071         struct ixgbe_rx_queue *rxq;
5072         uint32_t txdctl;
5073         uint32_t dmatxctl;
5074         uint32_t rxctrl;
5075         uint16_t i;
5076         int ret = 0;
5077
5078         PMD_INIT_FUNC_TRACE();
5079         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5080
5081         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5082                 txq = dev->data->tx_queues[i];
5083                 /* Setup Transmit Threshold Registers */
5084                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5085                 txdctl |= txq->pthresh & 0x7F;
5086                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5087                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5088                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5089         }
5090
5091         if (hw->mac.type != ixgbe_mac_82598EB) {
5092                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5093                 dmatxctl |= IXGBE_DMATXCTL_TE;
5094                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5095         }
5096
5097         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5098                 txq = dev->data->tx_queues[i];
5099                 if (!txq->tx_deferred_start) {
5100                         ret = ixgbe_dev_tx_queue_start(dev, i);
5101                         if (ret < 0)
5102                                 return ret;
5103                 }
5104         }
5105
5106         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5107                 rxq = dev->data->rx_queues[i];
5108                 if (!rxq->rx_deferred_start) {
5109                         ret = ixgbe_dev_rx_queue_start(dev, i);
5110                         if (ret < 0)
5111                                 return ret;
5112                 }
5113         }
5114
5115         /* Enable Receive engine */
5116         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5117         if (hw->mac.type == ixgbe_mac_82598EB)
5118                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5119         rxctrl |= IXGBE_RXCTRL_RXEN;
5120         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5121
5122         /* If loopback mode is enabled for 82599, set up the link accordingly */
5123         if (hw->mac.type == ixgbe_mac_82599EB &&
5124                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
5125                 ixgbe_setup_loopback_link_82599(hw);
5126
5127 #ifdef RTE_LIBRTE_SECURITY
5128         if ((dev->data->dev_conf.rxmode.offloads &
5129                         DEV_RX_OFFLOAD_SECURITY) ||
5130                 (dev->data->dev_conf.txmode.offloads &
5131                         DEV_TX_OFFLOAD_SECURITY)) {
5132                 ret = ixgbe_crypto_enable_ipsec(dev);
5133                 if (ret != 0) {
5134                         PMD_DRV_LOG(ERR,
5135                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5136                                     ret);
5137                         return ret;
5138                 }
5139         }
5140 #endif
5141
5142         return 0;
5143 }
5144
5145 /*
5146  * Start Receive Units for specified queue.
5147  */
5148 int __attribute__((cold))
5149 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5150 {
5151         struct ixgbe_hw     *hw;
5152         struct ixgbe_rx_queue *rxq;
5153         uint32_t rxdctl;
5154         int poll_ms;
5155
5156         PMD_INIT_FUNC_TRACE();
5157         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5158
5159         if (rx_queue_id < dev->data->nb_rx_queues) {
5160                 rxq = dev->data->rx_queues[rx_queue_id];
5161
5162                 /* Allocate buffers for descriptor rings */
5163                 if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5164                         PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5165                                      rx_queue_id);
5166                         return -1;
5167                 }
5168                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5169                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5170                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5171
5172                 /* Wait until RX Enable ready */
5173                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5174                 do {
5175                         rte_delay_ms(1);
5176                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5177                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5178                 if (!poll_ms)
5179                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d",
5180                                      rx_queue_id);
5181                 rte_wmb();
5182                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5183                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5184                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5185         } else
5186                 return -1;
5187
5188         return 0;
5189 }
5190
5191 /*
5192  * Stop Receive Units for specified queue.
5193  */
5194 int __attribute__((cold))
5195 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5196 {
5197         struct ixgbe_hw     *hw;
5198         struct ixgbe_adapter *adapter =
5199                 (struct ixgbe_adapter *)dev->data->dev_private;
5200         struct ixgbe_rx_queue *rxq;
5201         uint32_t rxdctl;
5202         int poll_ms;
5203
5204         PMD_INIT_FUNC_TRACE();
5205         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5206
5207         if (rx_queue_id < dev->data->nb_rx_queues) {
5208                 rxq = dev->data->rx_queues[rx_queue_id];
5209
5210                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5211                 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5212                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5213
5214                 /* Wait until RX Enable bit clear */
5215                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5216                 do {
5217                         rte_delay_ms(1);
5218                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5219                 } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5220                 if (!poll_ms)
5221                         PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d",
5222                                      rx_queue_id);
5223
5224                 rte_delay_us(RTE_IXGBE_WAIT_100_US);
5225
5226                 ixgbe_rx_queue_release_mbufs(rxq);
5227                 ixgbe_reset_rx_queue(adapter, rxq);
5228                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5229         } else
5230                 return -1;
5231
5232         return 0;
5233 }
5234
5235
5236 /*
5237  * Start Transmit Units for specified queue.
5238  */
5239 int __attribute__((cold))
5240 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5241 {
5242         struct ixgbe_hw     *hw;
5243         struct ixgbe_tx_queue *txq;
5244         uint32_t txdctl;
5245         int poll_ms;
5246
5247         PMD_INIT_FUNC_TRACE();
5248         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5249
5250         if (tx_queue_id < dev->data->nb_tx_queues) {
5251                 txq = dev->data->tx_queues[tx_queue_id];
5252                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5253                 txdctl |= IXGBE_TXDCTL_ENABLE;
5254                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5255
5256                 /* Wait until TX Enable ready */
5257                 if (hw->mac.type == ixgbe_mac_82599EB) {
5258                         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5259                         do {
5260                                 rte_delay_ms(1);
5261                                 txdctl = IXGBE_READ_REG(hw,
5262                                         IXGBE_TXDCTL(txq->reg_idx));
5263                         } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5264                         if (!poll_ms)
5265                                 PMD_INIT_LOG(ERR, "Could not enable "
5266                                              "Tx Queue %d", tx_queue_id);
5267                 }
5268                 rte_wmb();
5269                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5270                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5271                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5272         } else
5273                 return -1;
5274
5275         return 0;
5276 }
5277
5278 /*
5279  * Stop Transmit Units for specified queue.
5280  */
5281 int __attribute__((cold))
5282 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5283 {
5284         struct ixgbe_hw     *hw;
5285         struct ixgbe_tx_queue *txq;
5286         uint32_t txdctl;
5287         uint32_t txtdh, txtdt;
5288         int poll_ms;
5289
5290         PMD_INIT_FUNC_TRACE();
5291         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5292
5293         if (tx_queue_id >= dev->data->nb_tx_queues)
5294                 return -1;
5295
5296         txq = dev->data->tx_queues[tx_queue_id];
5297
5298         /* Wait until TX queue is empty */
5299         if (hw->mac.type == ixgbe_mac_82599EB) {
5300                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5301                 do {
5302                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5303                         txtdh = IXGBE_READ_REG(hw,
5304                                                IXGBE_TDH(txq->reg_idx));
5305                         txtdt = IXGBE_READ_REG(hw,
5306                                                IXGBE_TDT(txq->reg_idx));
5307                 } while (--poll_ms && (txtdh != txtdt));
5308                 if (!poll_ms)
5309                         PMD_INIT_LOG(ERR, "Tx Queue %d is not empty "
5310                                      "when stopping.", tx_queue_id);
5311         }
5312
5313         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5314         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5315         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5316
5317         /* Wait until TX Enable bit clear */
5318         if (hw->mac.type == ixgbe_mac_82599EB) {
5319                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5320                 do {
5321                         rte_delay_ms(1);
5322                         txdctl = IXGBE_READ_REG(hw,
5323                                                 IXGBE_TXDCTL(txq->reg_idx));
5324                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5325                 if (!poll_ms)
5326                         PMD_INIT_LOG(ERR, "Could not disable "
5327                                      "Tx Queue %d", tx_queue_id);
5328         }
5329
5330         if (txq->ops != NULL) {
5331                 txq->ops->release_mbufs(txq);
5332                 txq->ops->reset(txq);
5333         }
5334         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5335
5336         return 0;
5337 }
5338
5339 void
5340 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5341         struct rte_eth_rxq_info *qinfo)
5342 {
5343         struct ixgbe_rx_queue *rxq;
5344
5345         rxq = dev->data->rx_queues[queue_id];
5346
5347         qinfo->mp = rxq->mb_pool;
5348         qinfo->scattered_rx = dev->data->scattered_rx;
5349         qinfo->nb_desc = rxq->nb_rx_desc;
5350
5351         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5352         qinfo->conf.rx_drop_en = rxq->drop_en;
5353         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5354         qinfo->conf.offloads = rxq->offloads;
5355 }
5356
5357 void
5358 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5359         struct rte_eth_txq_info *qinfo)
5360 {
5361         struct ixgbe_tx_queue *txq;
5362
5363         txq = dev->data->tx_queues[queue_id];
5364
5365         qinfo->nb_desc = txq->nb_tx_desc;
5366
5367         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5368         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5369         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5370
5371         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5372         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5373         qinfo->conf.txq_flags = txq->txq_flags;
5374         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5375 }
5376
5377 /*
5378  * [VF] Initializes Receive Unit.
5379  */
5380 int __attribute__((cold))
5381 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5382 {
5383         struct ixgbe_hw     *hw;
5384         struct ixgbe_rx_queue *rxq;
5385         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5386         uint64_t bus_addr;
5387         uint32_t srrctl, psrtype = 0;
5388         uint16_t buf_size;
5389         uint16_t i;
5390         int ret;
5391
5392         PMD_INIT_FUNC_TRACE();
5393         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5394
5395         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5396                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5397                         "it should be power of 2");
5398                 return -1;
5399         }
5400
5401         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5402                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5403                         "it should be equal to or less than %d",
5404                         hw->mac.max_rx_queues);
5405                 return -1;
5406         }
5407
5408         /*
5409          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5410          * disables the VF receipt of packets if the PF MTU is > 1500.
5411          * This is done to deal with 82599 limitations that imposes
5412          * the PF and all VFs to share the same MTU.
5413          * Then, the PF driver enables again the VF receipt of packet when
5414          * the VF driver issues a IXGBE_VF_SET_LPE request.
5415          * In the meantime, the VF device cannot be used, even if the VF driver
5416          * and the Guest VM network stack are ready to accept packets with a
5417          * size up to the PF MTU.
5418          * As a work-around to this PF behaviour, force the call to
5419          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5420          * VF packets received can work in all cases.
5421          */
5422         ixgbevf_rlpml_set_vf(hw,
5423                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5424
5425         /*
5426          * Assume no header split and no VLAN strip support
5427          * on any Rx queue first .
5428          */
5429         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5430         /* Setup RX queues */
5431         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5432                 rxq = dev->data->rx_queues[i];
5433
5434                 /* Allocate buffers for descriptor rings */
5435                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5436                 if (ret)
5437                         return ret;
5438
5439                 /* Setup the Base and Length of the Rx Descriptor Rings */
5440                 bus_addr = rxq->rx_ring_phys_addr;
5441
5442                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5443                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5444                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5445                                 (uint32_t)(bus_addr >> 32));
5446                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5447                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5448                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5449                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5450
5451
5452                 /* Configure the SRRCTL register */
5453                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5454
5455                 /* Set if packets are dropped when no descriptors available */
5456                 if (rxq->drop_en)
5457                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5458
5459                 /*
5460                  * Configure the RX buffer size in the BSIZEPACKET field of
5461                  * the SRRCTL register of the queue.
5462                  * The value is in 1 KB resolution. Valid values can be from
5463                  * 1 KB to 16 KB.
5464                  */
5465                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5466                         RTE_PKTMBUF_HEADROOM);
5467                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5468                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5469
5470                 /*
5471                  * VF modification to write virtual function SRRCTL register
5472                  */
5473                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5474
5475                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5476                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5477
5478                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5479                     /* It adds dual VLAN length for supporting dual VLAN */
5480                     (rxmode->max_rx_pkt_len +
5481                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5482                         if (!dev->data->scattered_rx)
5483                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5484                         dev->data->scattered_rx = 1;
5485                 }
5486
5487                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5488                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5489         }
5490
5491         /* Set RQPL for VF RSS according to max Rx queue */
5492         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5493                 IXGBE_PSRTYPE_RQPL_SHIFT;
5494         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5495
5496         ixgbe_set_rx_function(dev);
5497
5498         return 0;
5499 }
5500
5501 /*
5502  * [VF] Initializes Transmit Unit.
5503  */
5504 void __attribute__((cold))
5505 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5506 {
5507         struct ixgbe_hw     *hw;
5508         struct ixgbe_tx_queue *txq;
5509         uint64_t bus_addr;
5510         uint32_t txctrl;
5511         uint16_t i;
5512
5513         PMD_INIT_FUNC_TRACE();
5514         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5515
5516         /* Setup the Base and Length of the Tx Descriptor Rings */
5517         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5518                 txq = dev->data->tx_queues[i];
5519                 bus_addr = txq->tx_ring_phys_addr;
5520                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5521                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5522                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5523                                 (uint32_t)(bus_addr >> 32));
5524                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5525                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5526                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5527                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5528                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5529
5530                 /*
5531                  * Disable Tx Head Writeback RO bit, since this hoses
5532                  * bookkeeping if things aren't delivered in order.
5533                  */
5534                 txctrl = IXGBE_READ_REG(hw,
5535                                 IXGBE_VFDCA_TXCTRL(i));
5536                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5537                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5538                                 txctrl);
5539         }
5540 }
5541
5542 /*
5543  * [VF] Start Transmit and Receive Units.
5544  */
5545 void __attribute__((cold))
5546 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5547 {
5548         struct ixgbe_hw     *hw;
5549         struct ixgbe_tx_queue *txq;
5550         struct ixgbe_rx_queue *rxq;
5551         uint32_t txdctl;
5552         uint32_t rxdctl;
5553         uint16_t i;
5554         int poll_ms;
5555
5556         PMD_INIT_FUNC_TRACE();
5557         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5558
5559         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5560                 txq = dev->data->tx_queues[i];
5561                 /* Setup Transmit Threshold Registers */
5562                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5563                 txdctl |= txq->pthresh & 0x7F;
5564                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5565                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5566                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5567         }
5568
5569         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5570
5571                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5572                 txdctl |= IXGBE_TXDCTL_ENABLE;
5573                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5574
5575                 poll_ms = 10;
5576                 /* Wait until TX Enable ready */
5577                 do {
5578                         rte_delay_ms(1);
5579                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5580                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5581                 if (!poll_ms)
5582                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5583         }
5584         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5585
5586                 rxq = dev->data->rx_queues[i];
5587
5588                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5589                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5590                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5591
5592                 /* Wait until RX Enable ready */
5593                 poll_ms = 10;
5594                 do {
5595                         rte_delay_ms(1);
5596                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5597                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5598                 if (!poll_ms)
5599                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5600                 rte_wmb();
5601                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5602
5603         }
5604 }
5605
5606 int
5607 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5608                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5609 {
5610         struct ixgbe_hw *hw;
5611         uint32_t reta;
5612         uint16_t i;
5613         uint16_t j;
5614         uint16_t sp_reta_size;
5615         uint32_t reta_reg;
5616         struct rte_eth_rss_conf rss_conf = conf->rss_conf;
5617         struct ixgbe_filter_info *filter_info =
5618                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5619
5620         PMD_INIT_FUNC_TRACE();
5621         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5622
5623         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5624
5625         if (!add) {
5626                 if (memcmp(conf, &filter_info->rss_info,
5627                         sizeof(struct ixgbe_rte_flow_rss_conf)) == 0) {
5628                         ixgbe_rss_disable(dev);
5629                         memset(&filter_info->rss_info, 0,
5630                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5631                         return 0;
5632                 }
5633                 return -EINVAL;
5634         }
5635
5636         if (filter_info->rss_info.num)
5637                 return -EINVAL;
5638         /* Fill in redirection table
5639          * The byte-swap is needed because NIC registers are in
5640          * little-endian order.
5641          */
5642         reta = 0;
5643         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5644                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5645
5646                 if (j == conf->num)
5647                         j = 0;
5648                 reta = (reta << 8) | conf->queue[j];
5649                 if ((i & 3) == 3)
5650                         IXGBE_WRITE_REG(hw, reta_reg,
5651                                         rte_bswap32(reta));
5652         }
5653
5654         /* Configure the RSS key and the RSS protocols used to compute
5655          * the RSS hash of input packets.
5656          */
5657         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5658                 ixgbe_rss_disable(dev);
5659                 return -EINVAL;
5660         }
5661         if (rss_conf.rss_key == NULL)
5662                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5663         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5664
5665         rte_memcpy(&filter_info->rss_info,
5666                 conf, sizeof(struct ixgbe_rte_flow_rss_conf));
5667
5668         return 0;
5669 }
5670
5671 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5672 int __attribute__((weak))
5673 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5674 {
5675         return -1;
5676 }
5677
5678 uint16_t __attribute__((weak))
5679 ixgbe_recv_pkts_vec(
5680         void __rte_unused *rx_queue,
5681         struct rte_mbuf __rte_unused **rx_pkts,
5682         uint16_t __rte_unused nb_pkts)
5683 {
5684         return 0;
5685 }
5686
5687 uint16_t __attribute__((weak))
5688 ixgbe_recv_scattered_pkts_vec(
5689         void __rte_unused *rx_queue,
5690         struct rte_mbuf __rte_unused **rx_pkts,
5691         uint16_t __rte_unused nb_pkts)
5692 {
5693         return 0;
5694 }
5695
5696 int __attribute__((weak))
5697 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5698 {
5699         return -1;
5700 }