3985e06dea64aaff42190907fb80735a7663815d
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 #define WQE_ONE_DATA_SEG_SIZE \
65         (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
66
67 /**
68  * Pointer-value pair structure used in tx_post_send for saving the first
69  * DWORD (32 byte) of a TXBB.
70  */
71 struct pv {
72         volatile struct mlx4_wqe_data_seg *dseg;
73         uint32_t val;
74 };
75
76 /** A table to translate Rx completion flags to packet type. */
77 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
78         /*
79          * The index to the array should have:
80          *  bit[7] - MLX4_CQE_L2_TUNNEL
81          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
82          *  bit[5] - MLX4_CQE_STATUS_UDP
83          *  bit[4] - MLX4_CQE_STATUS_TCP
84          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
85          *  bit[2] - MLX4_CQE_STATUS_IPV6
86          *  bit[1] - MLX4_CQE_STATUS_IPV4F
87          *  bit[0] - MLX4_CQE_STATUS_IPV4
88          * giving a total of up to 256 entries.
89          */
90         [0x00] = RTE_PTYPE_L2_ETHER,
91         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
92         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG,
94         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
95                      RTE_PTYPE_L4_FRAG,
96         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
97         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
98         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
99                      RTE_PTYPE_L4_FRAG,
100         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP,
102         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP,
104         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_TCP,
106         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107                      RTE_PTYPE_L4_TCP,
108         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109                      RTE_PTYPE_L4_TCP,
110         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
111                      RTE_PTYPE_L4_TCP,
112         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_UDP,
114         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_UDP,
116         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_UDP,
118         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
119                      RTE_PTYPE_L4_UDP,
120         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
121                      RTE_PTYPE_L4_UDP,
122         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
123                      RTE_PTYPE_L4_UDP,
124         /* Tunneled - L3 IPV6 */
125         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
126         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
128         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_FRAG,
134         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
136         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L3_IPV4_EXT,
138         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV4_EXT,
140         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
142         /* Tunneled - L3 IPV6, TCP */
143         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_TCP,
146         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_FRAG |
149                      RTE_PTYPE_INNER_L4_TCP,
150         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT |
162                      RTE_PTYPE_INNER_L4_TCP,
163         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
165                      RTE_PTYPE_INNER_L4_TCP,
166         /* Tunneled - L3 IPV6, UDP */
167         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_UDP,
170         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L4_FRAG |
173                      RTE_PTYPE_INNER_L4_UDP,
174         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_FRAG |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT |
186                      RTE_PTYPE_INNER_L4_UDP,
187         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
189                      RTE_PTYPE_INNER_L4_UDP,
190         /* Tunneled - L3 IPV4 */
191         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
192         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
194         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_FRAG,
200         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
202         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L3_IPV4_EXT,
204         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L3_IPV4_EXT,
206         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT |
208                      RTE_PTYPE_INNER_L4_FRAG,
209         /* Tunneled - L3 IPV4, TCP */
210         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_TCP,
216         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L4_FRAG |
219                      RTE_PTYPE_INNER_L4_TCP,
220         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
221                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L4_FRAG |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT |
232                      RTE_PTYPE_INNER_L4_TCP,
233         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
234                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
235                      RTE_PTYPE_INNER_L4_TCP,
236         /* Tunneled - L3 IPV4, UDP */
237         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_UDP,
243         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
244                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L4_FRAG |
246                      RTE_PTYPE_INNER_L4_UDP,
247         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
248                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L4_FRAG |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
253                      RTE_PTYPE_INNER_L4_UDP,
254         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
255                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
256         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
257                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
258         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
259                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
260                      RTE_PTYPE_INNER_L4_UDP,
261 };
262
263 /**
264  * Stamp a WQE so it won't be reused by the HW.
265  *
266  * Routine is used when freeing WQE used by the chip or when failing
267  * building an WQ entry has failed leaving partial information on the queue.
268  *
269  * @param sq
270  *   Pointer to the SQ structure.
271  * @param index
272  *   Index of the freed WQE.
273  * @param num_txbbs
274  *   Number of blocks to stamp.
275  *   If < 0 the routine will use the size written in the WQ entry.
276  * @param owner
277  *   The value of the WQE owner bit to use in the stamp.
278  *
279  * @return
280  *   The number of Tx basic blocs (TXBB) the WQE contained.
281  */
282 static int
283 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
284 {
285         uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
286                                           (!!owner << MLX4_SQ_STAMP_SHIFT));
287         volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
288                                                 (index & sq->txbb_cnt_mask));
289         volatile uint32_t *ptr = (volatile uint32_t *)wqe;
290         int i;
291         int txbbs_size;
292         int num_txbbs;
293
294         /* Extract the size from the control segment of the WQE. */
295         num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
296                                          wqe)->fence_size & 0x3f) << 4);
297         txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
298         /* Optimize the common case when there is no wrap-around. */
299         if (wqe + txbbs_size <= sq->eob) {
300                 /* Stamp the freed descriptor. */
301                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
302                         *ptr = stamp;
303                         ptr += MLX4_SQ_STAMP_DWORDS;
304                 }
305         } else {
306                 /* Stamp the freed descriptor. */
307                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
308                         *ptr = stamp;
309                         ptr += MLX4_SQ_STAMP_DWORDS;
310                         if ((volatile uint8_t *)ptr >= sq->eob) {
311                                 ptr = (volatile uint32_t *)sq->buf;
312                                 stamp ^= RTE_BE32(0x80000000);
313                         }
314                 }
315         }
316         return num_txbbs;
317 }
318
319 /**
320  * Manage Tx completions.
321  *
322  * When sending a burst, mlx4_tx_burst() posts several WRs.
323  * To improve performance, a completion event is only required once every
324  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
325  * for other WRs, but this information would not be used anyway.
326  *
327  * @param txq
328  *   Pointer to Tx queue structure.
329  *
330  * @return
331  *   0 on success, -1 on failure.
332  */
333 static int
334 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
335                                   struct mlx4_sq *sq)
336 {
337         unsigned int elts_comp = txq->elts_comp;
338         unsigned int elts_tail = txq->elts_tail;
339         struct mlx4_cq *cq = &txq->mcq;
340         volatile struct mlx4_cqe *cqe;
341         uint32_t cons_index = cq->cons_index;
342         uint16_t new_index;
343         uint16_t nr_txbbs = 0;
344         int pkts = 0;
345
346         /*
347          * Traverse over all CQ entries reported and handle each WQ entry
348          * reported by them.
349          */
350         do {
351                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
352                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
353                     !!(cons_index & cq->cqe_cnt)))
354                         break;
355                 /*
356                  * Make sure we read the CQE after we read the ownership bit.
357                  */
358                 rte_io_rmb();
359 #ifndef NDEBUG
360                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
361                              MLX4_CQE_OPCODE_ERROR)) {
362                         volatile struct mlx4_err_cqe *cqe_err =
363                                 (volatile struct mlx4_err_cqe *)cqe;
364                         ERROR("%p CQE error - vendor syndrome: 0x%x"
365                               " syndrome: 0x%x\n",
366                               (void *)txq, cqe_err->vendor_err,
367                               cqe_err->syndrome);
368                 }
369 #endif /* NDEBUG */
370                 /* Get WQE index reported in the CQE. */
371                 new_index =
372                         rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
373                 do {
374                         /* Free next descriptor. */
375                         nr_txbbs +=
376                                 mlx4_txq_stamp_freed_wqe(sq,
377                                      (sq->tail + nr_txbbs) & sq->txbb_cnt_mask,
378                                      !!((sq->tail + nr_txbbs) & sq->txbb_cnt));
379                         pkts++;
380                 } while (((sq->tail + nr_txbbs) & sq->txbb_cnt_mask) !=
381                          new_index);
382                 cons_index++;
383         } while (1);
384         if (unlikely(pkts == 0))
385                 return 0;
386         /* Update CQ. */
387         cq->cons_index = cons_index;
388         *cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
389         sq->tail = sq->tail + nr_txbbs;
390         /* Update the list of packets posted for transmission. */
391         elts_comp -= pkts;
392         assert(elts_comp <= txq->elts_comp);
393         /*
394          * Assume completion status is successful as nothing can be done about
395          * it anyway.
396          */
397         elts_tail += pkts;
398         if (elts_tail >= elts_n)
399                 elts_tail -= elts_n;
400         txq->elts_tail = elts_tail;
401         txq->elts_comp = elts_comp;
402         return 0;
403 }
404
405 /**
406  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
407  * the cloned mbuf is allocated is returned instead.
408  *
409  * @param buf
410  *   Pointer to mbuf.
411  *
412  * @return
413  *   Memory pool where data is located for given mbuf.
414  */
415 static struct rte_mempool *
416 mlx4_txq_mb2mp(struct rte_mbuf *buf)
417 {
418         if (unlikely(RTE_MBUF_INDIRECT(buf)))
419                 return rte_mbuf_from_indirect(buf)->pool;
420         return buf->pool;
421 }
422
423 static int
424 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
425                    volatile struct mlx4_wqe_ctrl_seg **pctrl)
426 {
427         int wqe_real_size;
428         int nr_txbbs;
429         struct pv *pv = (struct pv *)txq->bounce_buf;
430         struct mlx4_sq *sq = &txq->msq;
431         uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
432         volatile struct mlx4_wqe_ctrl_seg *ctrl;
433         volatile struct mlx4_wqe_data_seg *dseg;
434         struct rte_mbuf *sbuf;
435         uint32_t lkey;
436         uintptr_t addr;
437         uint32_t byte_count;
438         int pv_counter = 0;
439
440         /* Calculate the needed work queue entry size for this packet. */
441         wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
442                 buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
443         nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
444         /*
445          * Check that there is room for this WQE in the send queue and that
446          * the WQE size is legal.
447          */
448         if (((sq->head - sq->tail) + nr_txbbs +
449                                 sq->headroom_txbbs) >= sq->txbb_cnt ||
450                         nr_txbbs > MLX4_MAX_WQE_TXBBS) {
451                 return -1;
452         }
453         /* Get the control and data entries of the WQE. */
454         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
455                         mlx4_get_send_wqe(sq, head_idx);
456         dseg = (volatile struct mlx4_wqe_data_seg *)
457                         ((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
458         *pctrl = ctrl;
459         /* Fill the data segments with buffer information. */
460         for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
461                 addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
462                 rte_prefetch0((volatile void *)addr);
463                 /* Handle WQE wraparound. */
464                 if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob)
465                         dseg = (volatile struct mlx4_wqe_data_seg *)sq->buf;
466                 dseg->addr = rte_cpu_to_be_64(addr);
467                 /* Memory region key (big endian) for this memory pool. */
468                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
469                 dseg->lkey = rte_cpu_to_be_32(lkey);
470 #ifndef NDEBUG
471                 /* Calculate the needed work queue entry size for this packet */
472                 if (unlikely(dseg->lkey == rte_cpu_to_be_32((uint32_t)-1))) {
473                         /* MR does not exist. */
474                         DEBUG("%p: unable to get MP <-> MR association",
475                                         (void *)txq);
476                         /*
477                          * Restamp entry in case of failure.
478                          * Make sure that size is written correctly
479                          * Note that we give ownership to the SW, not the HW.
480                          */
481                         wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
482                                 buf->nb_segs * sizeof(struct mlx4_wqe_data_seg);
483                         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
484                         mlx4_txq_stamp_freed_wqe(sq, head_idx,
485                                         (sq->head & sq->txbb_cnt) ? 0 : 1);
486                         return -1;
487                 }
488 #endif /* NDEBUG */
489                 if (likely(sbuf->data_len)) {
490                         byte_count = rte_cpu_to_be_32(sbuf->data_len);
491                 } else {
492                         /*
493                          * Zero length segment is treated as inline segment
494                          * with zero data.
495                          */
496                         byte_count = RTE_BE32(0x80000000);
497                 }
498                 /*
499                  * If the data segment is not at the beginning of a
500                  * Tx basic block (TXBB) then write the byte count,
501                  * else postpone the writing to just before updating the
502                  * control segment.
503                  */
504                 if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
505 #if RTE_CACHE_LINE_SIZE < 64
506                         /*
507                          * Need a barrier here before writing the byte_count
508                          * fields to make sure that all the data is visible
509                          * before the byte_count field is set.
510                          * Otherwise, if the segment begins a new cacheline,
511                          * the HCA prefetcher could grab the 64-byte chunk and
512                          * get a valid (!= 0xffffffff) byte count but stale
513                          * data, and end up sending the wrong data.
514                          */
515                         rte_io_wmb();
516 #endif /* RTE_CACHE_LINE_SIZE */
517                         dseg->byte_count = byte_count;
518                 } else {
519                         /*
520                          * This data segment starts at the beginning of a new
521                          * TXBB, so we need to postpone its byte_count writing
522                          * for later.
523                          */
524                         pv[pv_counter].dseg = dseg;
525                         pv[pv_counter++].val = byte_count;
526                 }
527         }
528         /* Write the first DWORD of each TXBB save earlier. */
529         if (pv_counter) {
530                 /* Need a barrier here before writing the byte_count. */
531                 rte_io_wmb();
532                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
533                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
534         }
535         /* Fill the control parameters for this packet. */
536         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
537         return nr_txbbs;
538 }
539
540 /**
541  * DPDK callback for Tx.
542  *
543  * @param dpdk_txq
544  *   Generic pointer to Tx queue structure.
545  * @param[in] pkts
546  *   Packets to transmit.
547  * @param pkts_n
548  *   Number of packets in array.
549  *
550  * @return
551  *   Number of packets successfully transmitted (<= pkts_n).
552  */
553 uint16_t
554 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
555 {
556         struct txq *txq = (struct txq *)dpdk_txq;
557         unsigned int elts_head = txq->elts_head;
558         const unsigned int elts_n = txq->elts_n;
559         unsigned int bytes_sent = 0;
560         unsigned int i;
561         unsigned int max;
562         struct mlx4_sq *sq = &txq->msq;
563         int nr_txbbs;
564
565         assert(txq->elts_comp_cd != 0);
566         if (likely(txq->elts_comp != 0))
567                 mlx4_txq_complete(txq, elts_n, sq);
568         max = (elts_n - (elts_head - txq->elts_tail));
569         if (max > elts_n)
570                 max -= elts_n;
571         assert(max >= 1);
572         assert(max <= elts_n);
573         /* Always leave one free entry in the ring. */
574         --max;
575         if (max > pkts_n)
576                 max = pkts_n;
577         for (i = 0; (i != max); ++i) {
578                 struct rte_mbuf *buf = pkts[i];
579                 unsigned int elts_head_next =
580                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
581                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
582                 struct txq_elt *elt = &(*txq->elts)[elts_head];
583                 uint32_t owner_opcode = MLX4_OPCODE_SEND;
584                 volatile struct mlx4_wqe_ctrl_seg *ctrl;
585                 volatile struct mlx4_wqe_data_seg *dseg;
586                 union {
587                         uint32_t flags;
588                         uint16_t flags16[2];
589                 } srcrb;
590                 uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
591                 uint32_t lkey;
592                 uintptr_t addr;
593
594                 /* Clean up old buffer. */
595                 if (likely(elt->buf != NULL)) {
596                         struct rte_mbuf *tmp = elt->buf;
597
598 #ifndef NDEBUG
599                         /* Poisoning. */
600                         memset(elt, 0x66, sizeof(*elt));
601 #endif
602                         /* Faster than rte_pktmbuf_free(). */
603                         do {
604                                 struct rte_mbuf *next = tmp->next;
605
606                                 rte_pktmbuf_free_seg(tmp);
607                                 tmp = next;
608                         } while (tmp != NULL);
609                 }
610                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
611                 if (buf->nb_segs == 1) {
612                         /*
613                          * Check that there is room for this WQE in the send
614                          * queue and that the WQE size is legal
615                          */
616                         if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
617                              sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
618                                 elt->buf = NULL;
619                                 break;
620                         }
621                         /* Get the control and data entries of the WQE. */
622                         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
623                                         mlx4_get_send_wqe(sq, head_idx);
624                         dseg = (volatile struct mlx4_wqe_data_seg *)
625                                         ((uintptr_t)ctrl +
626                                         sizeof(struct mlx4_wqe_ctrl_seg));
627                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
628                         rte_prefetch0((volatile void *)addr);
629                         /* Handle WQE wraparound. */
630                         if (dseg >=
631                                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
632                                 dseg = (volatile struct mlx4_wqe_data_seg *)
633                                                 sq->buf;
634                         dseg->addr = rte_cpu_to_be_64(addr);
635                         /* Memory region key (big endian). */
636                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
637                         dseg->lkey = rte_cpu_to_be_32(lkey);
638 #ifndef NDEBUG
639                         if (unlikely(dseg->lkey ==
640                                 rte_cpu_to_be_32((uint32_t)-1))) {
641                                 /* MR does not exist. */
642                                 DEBUG("%p: unable to get MP <-> MR association",
643                                       (void *)txq);
644                                 /*
645                                  * Restamp entry in case of failure.
646                                  * Make sure that size is written correctly
647                                  * Note that we give ownership to the SW,
648                                  * not the HW.
649                                  */
650                                 ctrl->fence_size =
651                                         (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
652                                 mlx4_txq_stamp_freed_wqe(sq, head_idx,
653                                              (sq->head & sq->txbb_cnt) ? 0 : 1);
654                                 elt->buf = NULL;
655                                 break;
656                         }
657 #endif /* NDEBUG */
658                         /* Never be TXBB aligned, no need compiler barrier. */
659                         dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
660                         /* Fill the control parameters for this packet. */
661                         ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
662                         nr_txbbs = 1;
663                 } else {
664                         nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
665                         if (nr_txbbs < 0) {
666                                 elt->buf = NULL;
667                                 break;
668                         }
669                 }
670                 /*
671                  * For raw Ethernet, the SOLICIT flag is used to indicate
672                  * that no ICRC should be calculated.
673                  */
674                 txq->elts_comp_cd -= nr_txbbs;
675                 if (unlikely(txq->elts_comp_cd <= 0)) {
676                         txq->elts_comp_cd = txq->elts_comp_cd_init;
677                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
678                                                MLX4_WQE_CTRL_CQ_UPDATE);
679                 } else {
680                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
681                 }
682                 /* Enable HW checksum offload if requested */
683                 if (txq->csum &&
684                     (buf->ol_flags &
685                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
686                         const uint64_t is_tunneled = (buf->ol_flags &
687                                                       (PKT_TX_TUNNEL_GRE |
688                                                        PKT_TX_TUNNEL_VXLAN));
689
690                         if (is_tunneled && txq->csum_l2tun) {
691                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
692                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
693                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
694                                         srcrb.flags |=
695                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
696                         } else {
697                                 srcrb.flags |=
698                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
699                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
700                         }
701                 }
702                 if (txq->lb) {
703                         /*
704                          * Copy destination MAC address to the WQE, this allows
705                          * loopback in eSwitch, so that VFs and PF can
706                          * communicate with each other.
707                          */
708                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
709                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
710                                               sizeof(uint16_t)));
711                 } else {
712                         ctrl->imm = 0;
713                 }
714                 ctrl->srcrb_flags = srcrb.flags;
715                 /*
716                  * Make sure descriptor is fully written before
717                  * setting ownership bit (because HW can start
718                  * executing as soon as we do).
719                  */
720                 rte_io_wmb();
721                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
722                                               ((sq->head & sq->txbb_cnt) ?
723                                                        MLX4_BIT_WQE_OWN : 0));
724                 sq->head += nr_txbbs;
725                 elt->buf = buf;
726                 bytes_sent += buf->pkt_len;
727                 elts_head = elts_head_next;
728         }
729         /* Take a shortcut if nothing must be sent. */
730         if (unlikely(i == 0))
731                 return 0;
732         /* Increment send statistics counters. */
733         txq->stats.opackets += i;
734         txq->stats.obytes += bytes_sent;
735         /* Make sure that descriptors are written before doorbell record. */
736         rte_wmb();
737         /* Ring QP doorbell. */
738         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
739         txq->elts_head = elts_head;
740         txq->elts_comp += i;
741         return i;
742 }
743
744 /**
745  * Translate Rx completion flags to packet type.
746  *
747  * @param[in] cqe
748  *   Pointer to CQE.
749  *
750  * @return
751  *   Packet type for struct rte_mbuf.
752  */
753 static inline uint32_t
754 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe)
755 {
756         uint8_t idx = 0;
757         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
758         uint32_t status = rte_be_to_cpu_32(cqe->status);
759
760         /*
761          * The index to the array should have:
762          *  bit[7] - MLX4_CQE_L2_TUNNEL
763          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
764          */
765         if (!(pinfo & MLX4_CQE_L2_VLAN_MASK) && (pinfo & MLX4_CQE_L2_TUNNEL))
766                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
767                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
768         /*
769          * The index to the array should have:
770          *  bit[5] - MLX4_CQE_STATUS_UDP
771          *  bit[4] - MLX4_CQE_STATUS_TCP
772          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
773          *  bit[2] - MLX4_CQE_STATUS_IPV6
774          *  bit[1] - MLX4_CQE_STATUS_IPV4F
775          *  bit[0] - MLX4_CQE_STATUS_IPV4
776          * giving a total of up to 256 entries.
777          */
778         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
779         return mlx4_ptype_table[idx];
780 }
781
782 /**
783  * Translate Rx completion flags to offload flags.
784  *
785  * @param flags
786  *   Rx completion flags returned by mlx4_cqe_flags().
787  * @param csum
788  *   Whether Rx checksums are enabled.
789  * @param csum_l2tun
790  *   Whether Rx L2 tunnel checksums are enabled.
791  *
792  * @return
793  *   Offload flags (ol_flags) in mbuf format.
794  */
795 static inline uint32_t
796 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
797 {
798         uint32_t ol_flags = 0;
799
800         if (csum)
801                 ol_flags |=
802                         mlx4_transpose(flags,
803                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
804                                        PKT_RX_IP_CKSUM_GOOD) |
805                         mlx4_transpose(flags,
806                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
807                                        PKT_RX_L4_CKSUM_GOOD);
808         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
809                 ol_flags |=
810                         mlx4_transpose(flags,
811                                        MLX4_CQE_L2_TUNNEL_IPOK,
812                                        PKT_RX_IP_CKSUM_GOOD) |
813                         mlx4_transpose(flags,
814                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
815                                        PKT_RX_L4_CKSUM_GOOD);
816         return ol_flags;
817 }
818
819 /**
820  * Extract checksum information from CQE flags.
821  *
822  * @param cqe
823  *   Pointer to CQE structure.
824  * @param csum
825  *   Whether Rx checksums are enabled.
826  * @param csum_l2tun
827  *   Whether Rx L2 tunnel checksums are enabled.
828  *
829  * @return
830  *   CQE checksum information.
831  */
832 static inline uint32_t
833 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
834 {
835         uint32_t flags = 0;
836
837         /*
838          * The relevant bits are in different locations on their
839          * CQE fields therefore we can join them in one 32bit
840          * variable.
841          */
842         if (csum)
843                 flags = (rte_be_to_cpu_32(cqe->status) &
844                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
845         if (csum_l2tun)
846                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
847                           (MLX4_CQE_L2_TUNNEL |
848                            MLX4_CQE_L2_TUNNEL_IPOK |
849                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
850                            MLX4_CQE_L2_TUNNEL_IPV4));
851         return flags;
852 }
853
854 /**
855  * Poll one CQE from CQ.
856  *
857  * @param rxq
858  *   Pointer to the receive queue structure.
859  * @param[out] out
860  *   Just polled CQE.
861  *
862  * @return
863  *   Number of bytes of the CQE, 0 in case there is no completion.
864  */
865 static unsigned int
866 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
867 {
868         int ret = 0;
869         volatile struct mlx4_cqe *cqe = NULL;
870         struct mlx4_cq *cq = &rxq->mcq;
871
872         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
873         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
874             !!(cq->cons_index & cq->cqe_cnt))
875                 goto out;
876         /*
877          * Make sure we read CQ entry contents after we've checked the
878          * ownership bit.
879          */
880         rte_rmb();
881         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
882         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
883                MLX4_CQE_OPCODE_ERROR);
884         ret = rte_be_to_cpu_32(cqe->byte_cnt);
885         ++cq->cons_index;
886 out:
887         *out = cqe;
888         return ret;
889 }
890
891 /**
892  * DPDK callback for Rx with scattered packets support.
893  *
894  * @param dpdk_rxq
895  *   Generic pointer to Rx queue structure.
896  * @param[out] pkts
897  *   Array to store received packets.
898  * @param pkts_n
899  *   Maximum number of packets in array.
900  *
901  * @return
902  *   Number of packets successfully received (<= pkts_n).
903  */
904 uint16_t
905 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
906 {
907         struct rxq *rxq = dpdk_rxq;
908         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
909         const uint16_t sges_n = rxq->sges_n;
910         struct rte_mbuf *pkt = NULL;
911         struct rte_mbuf *seg = NULL;
912         unsigned int i = 0;
913         uint32_t rq_ci = rxq->rq_ci << sges_n;
914         int len = 0;
915
916         while (pkts_n) {
917                 volatile struct mlx4_cqe *cqe;
918                 uint32_t idx = rq_ci & wr_cnt;
919                 struct rte_mbuf *rep = (*rxq->elts)[idx];
920                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
921
922                 /* Update the 'next' pointer of the previous segment. */
923                 if (pkt)
924                         seg->next = rep;
925                 seg = rep;
926                 rte_prefetch0(seg);
927                 rte_prefetch0(scat);
928                 rep = rte_mbuf_raw_alloc(rxq->mp);
929                 if (unlikely(rep == NULL)) {
930                         ++rxq->stats.rx_nombuf;
931                         if (!pkt) {
932                                 /*
933                                  * No buffers before we even started,
934                                  * bail out silently.
935                                  */
936                                 break;
937                         }
938                         while (pkt != seg) {
939                                 assert(pkt != (*rxq->elts)[idx]);
940                                 rep = pkt->next;
941                                 pkt->next = NULL;
942                                 pkt->nb_segs = 1;
943                                 rte_mbuf_raw_free(pkt);
944                                 pkt = rep;
945                         }
946                         break;
947                 }
948                 if (!pkt) {
949                         /* Looking for the new packet. */
950                         len = mlx4_cq_poll_one(rxq, &cqe);
951                         if (!len) {
952                                 rte_mbuf_raw_free(rep);
953                                 break;
954                         }
955                         if (unlikely(len < 0)) {
956                                 /* Rx error, packet is likely too large. */
957                                 rte_mbuf_raw_free(rep);
958                                 ++rxq->stats.idropped;
959                                 goto skip;
960                         }
961                         pkt = seg;
962                         /* Update packet information. */
963                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
964                         pkt->ol_flags = 0;
965                         pkt->pkt_len = len;
966                         if (rxq->csum | rxq->csum_l2tun) {
967                                 uint32_t flags =
968                                         mlx4_cqe_flags(cqe,
969                                                        rxq->csum,
970                                                        rxq->csum_l2tun);
971
972                                 pkt->ol_flags =
973                                         rxq_cq_to_ol_flags(flags,
974                                                            rxq->csum,
975                                                            rxq->csum_l2tun);
976                         }
977                 }
978                 rep->nb_segs = 1;
979                 rep->port = rxq->port_id;
980                 rep->data_len = seg->data_len;
981                 rep->data_off = seg->data_off;
982                 (*rxq->elts)[idx] = rep;
983                 /*
984                  * Fill NIC descriptor with the new buffer. The lkey and size
985                  * of the buffers are already known, only the buffer address
986                  * changes.
987                  */
988                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
989                 if (len > seg->data_len) {
990                         len -= seg->data_len;
991                         ++pkt->nb_segs;
992                         ++rq_ci;
993                         continue;
994                 }
995                 /* The last segment. */
996                 seg->data_len = len;
997                 /* Increment bytes counter. */
998                 rxq->stats.ibytes += pkt->pkt_len;
999                 /* Return packet. */
1000                 *(pkts++) = pkt;
1001                 pkt = NULL;
1002                 --pkts_n;
1003                 ++i;
1004 skip:
1005                 /* Align consumer index to the next stride. */
1006                 rq_ci >>= sges_n;
1007                 ++rq_ci;
1008                 rq_ci <<= sges_n;
1009         }
1010         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1011                 return 0;
1012         /* Update the consumer index. */
1013         rxq->rq_ci = rq_ci >> sges_n;
1014         rte_wmb();
1015         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1016         *rxq->mcq.set_ci_db =
1017                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1018         /* Increment packets counter. */
1019         rxq->stats.ipackets += i;
1020         return i;
1021 }
1022
1023 /**
1024  * Dummy DPDK callback for Tx.
1025  *
1026  * This function is used to temporarily replace the real callback during
1027  * unsafe control operations on the queue, or in case of error.
1028  *
1029  * @param dpdk_txq
1030  *   Generic pointer to Tx queue structure.
1031  * @param[in] pkts
1032  *   Packets to transmit.
1033  * @param pkts_n
1034  *   Number of packets in array.
1035  *
1036  * @return
1037  *   Number of packets successfully transmitted (<= pkts_n).
1038  */
1039 uint16_t
1040 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1041 {
1042         (void)dpdk_txq;
1043         (void)pkts;
1044         (void)pkts_n;
1045         return 0;
1046 }
1047
1048 /**
1049  * Dummy DPDK callback for Rx.
1050  *
1051  * This function is used to temporarily replace the real callback during
1052  * unsafe control operations on the queue, or in case of error.
1053  *
1054  * @param dpdk_rxq
1055  *   Generic pointer to Rx queue structure.
1056  * @param[out] pkts
1057  *   Array to store received packets.
1058  * @param pkts_n
1059  *   Maximum number of packets in array.
1060  *
1061  * @return
1062  *   Number of packets successfully received (<= pkts_n).
1063  */
1064 uint16_t
1065 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1066 {
1067         (void)dpdk_rxq;
1068         (void)pkts;
1069         (void)pkts_n;
1070         return 0;
1071 }