net: add rte prefix to ether defines
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 /**
7  * @file
8  * Data plane functions for mlx4 driver.
9  */
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <string.h>
14
15 /* Verbs headers do not support -pedantic. */
16 #ifdef PEDANTIC
17 #pragma GCC diagnostic ignored "-Wpedantic"
18 #endif
19 #include <infiniband/verbs.h>
20 #ifdef PEDANTIC
21 #pragma GCC diagnostic error "-Wpedantic"
22 #endif
23
24 #include <rte_branch_prediction.h>
25 #include <rte_common.h>
26 #include <rte_io.h>
27 #include <rte_mbuf.h>
28 #include <rte_mempool.h>
29 #include <rte_prefetch.h>
30
31 #include "mlx4.h"
32 #include "mlx4_prm.h"
33 #include "mlx4_rxtx.h"
34 #include "mlx4_utils.h"
35
36 /**
37  * Pointer-value pair structure used in tx_post_send for saving the first
38  * DWORD (32 byte) of a TXBB.
39  */
40 struct pv {
41         union {
42                 volatile struct mlx4_wqe_data_seg *dseg;
43                 volatile uint32_t *dst;
44         };
45         uint32_t val;
46 };
47
48 /** A helper structure for TSO packet handling. */
49 struct tso_info {
50         /** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
51         struct pv *pv;
52         /** Current entry in the pv array. */
53         int pv_counter;
54         /** Total size of the WQE including padding. */
55         uint32_t wqe_size;
56         /** Size of TSO header to prepend to each packet to send. */
57         uint16_t tso_header_size;
58         /** Total size of the TSO segment in the WQE. */
59         uint16_t wqe_tso_seg_size;
60         /** Raw WQE size in units of 16 Bytes and without padding. */
61         uint8_t fence_size;
62 };
63
64 /** A table to translate Rx completion flags to packet type. */
65 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
66         /*
67          * The index to the array should have:
68          *  bit[7] - MLX4_CQE_L2_TUNNEL
69          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
70          *  bit[5] - MLX4_CQE_STATUS_UDP
71          *  bit[4] - MLX4_CQE_STATUS_TCP
72          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
73          *  bit[2] - MLX4_CQE_STATUS_IPV6
74          *  bit[1] - MLX4_CQE_STATUS_IPF
75          *  bit[0] - MLX4_CQE_STATUS_IPV4
76          * giving a total of up to 256 entries.
77          */
78         /* L2 */
79         [0x00] = RTE_PTYPE_L2_ETHER,
80         /* L3 */
81         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
82                      RTE_PTYPE_L4_NONFRAG,
83         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
84                      RTE_PTYPE_L4_FRAG,
85         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_FRAG,
87         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG,
89         [0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_FRAG,
91         [0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
92                      RTE_PTYPE_L4_NONFRAG,
93         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
94                      RTE_PTYPE_L4_NONFRAG,
95         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96                      RTE_PTYPE_L4_FRAG,
97         [0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
98                      RTE_PTYPE_L4_FRAG,
99         /* TCP */
100         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP,
102         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP,
104         [0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_FRAG,
106         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107                      RTE_PTYPE_L4_TCP,
108         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109                      RTE_PTYPE_L4_TCP,
110         /* UDP */
111         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_UDP,
113         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_FRAG,
117         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118                      RTE_PTYPE_L4_UDP,
119         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         /* Tunneled - L3 IPV6 */
122         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
125                      RTE_PTYPE_INNER_L4_NONFRAG,
126         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_INNER_L4_FRAG,
129         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
131                      RTE_PTYPE_INNER_L4_FRAG,
132         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L4_NONFRAG,
135         [0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L4_FRAG,
138         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV4_EXT |
140                      RTE_PTYPE_INNER_L4_NONFRAG,
141         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L3_IPV4_EXT |
143                      RTE_PTYPE_INNER_L4_NONFRAG,
144         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV4_EXT |
146                      RTE_PTYPE_INNER_L4_FRAG,
147         [0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT |
149                      RTE_PTYPE_INNER_L4_FRAG,
150         /* Tunneled - L3 IPV6, TCP */
151         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L4_FRAG,
160         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
162         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
164         /* Tunneled - L3 IPV6, UDP */
165         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L4_UDP,
168         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG,
174         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT |
176                      RTE_PTYPE_INNER_L4_UDP,
177         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
178                      RTE_PTYPE_INNER_L3_IPV4_EXT |
179                      RTE_PTYPE_INNER_L4_UDP,
180         /* Tunneled - L3 IPV4 */
181         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
182         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_NONFRAG,
185         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_FRAG,
188         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_FRAG,
191         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_NONFRAG,
194         [0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV4_EXT |
199                      RTE_PTYPE_INNER_L4_NONFRAG,
200         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV4_EXT |
202                      RTE_PTYPE_INNER_L4_NONFRAG,
203         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT |
205                      RTE_PTYPE_INNER_L4_FRAG,
206         [0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT |
208                      RTE_PTYPE_INNER_L4_FRAG,
209         /* Tunneled - L3 IPV4, TCP */
210         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_TCP,
216         [0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L4_FRAG,
219         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220                      RTE_PTYPE_INNER_L3_IPV4_EXT |
221                      RTE_PTYPE_INNER_L4_TCP,
222         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L3_IPV4_EXT |
224                      RTE_PTYPE_INNER_L4_TCP,
225         /* Tunneled - L3 IPV4, UDP */
226         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
227                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L4_UDP,
229         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
230                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L4_UDP,
232         [0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
234                      RTE_PTYPE_INNER_L4_FRAG,
235         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
236                      RTE_PTYPE_INNER_L3_IPV4_EXT |
237                      RTE_PTYPE_INNER_L4_UDP,
238         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L3_IPV4_EXT |
240                      RTE_PTYPE_INNER_L4_UDP,
241 };
242
243 /**
244  * Stamp TXBB burst so it won't be reused by the HW.
245  *
246  * Routine is used when freeing WQE used by the chip or when failing
247  * building an WQ entry has failed leaving partial information on the queue.
248  *
249  * @param sq
250  *   Pointer to the SQ structure.
251  * @param start
252  *   Pointer to the first TXBB to stamp.
253  * @param end
254  *   Pointer to the followed end TXBB to stamp.
255  *
256  * @return
257  *   Stamping burst size in byte units.
258  */
259 static uint32_t
260 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
261                          volatile uint32_t *end)
262 {
263         uint32_t stamp = sq->stamp;
264         int32_t size = (intptr_t)end - (intptr_t)start;
265
266         assert(start != end);
267         /* Hold SQ ring wrap around. */
268         if (size < 0) {
269                 size = (int32_t)sq->size + size;
270                 do {
271                         *start = stamp;
272                         start += MLX4_SQ_STAMP_DWORDS;
273                 } while (start != (volatile uint32_t *)sq->eob);
274                 start = (volatile uint32_t *)sq->buf;
275                 /* Flip invalid stamping ownership. */
276                 stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
277                 sq->stamp = stamp;
278                 if (start == end)
279                         return size;
280         }
281         do {
282                 *start = stamp;
283                 start += MLX4_SQ_STAMP_DWORDS;
284         } while (start != end);
285         return (uint32_t)size;
286 }
287
288 /**
289  * Manage Tx completions.
290  *
291  * When sending a burst, mlx4_tx_burst() posts several WRs.
292  * To improve performance, a completion event is only required once every
293  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
294  * for other WRs, but this information would not be used anyway.
295  *
296  * @param txq
297  *   Pointer to Tx queue structure.
298  * @param elts_m
299  *   Tx elements number mask.
300  * @param sq
301  *   Pointer to the SQ structure.
302  */
303 static void
304 mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
305                   struct mlx4_sq *sq)
306 {
307         unsigned int elts_tail = txq->elts_tail;
308         struct mlx4_cq *cq = &txq->mcq;
309         volatile struct mlx4_cqe *cqe;
310         uint32_t completed;
311         uint32_t cons_index = cq->cons_index;
312         volatile uint32_t *first_txbb;
313
314         /*
315          * Traverse over all CQ entries reported and handle each WQ entry
316          * reported by them.
317          */
318         do {
319                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
320                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
321                     !!(cons_index & cq->cqe_cnt)))
322                         break;
323 #ifndef NDEBUG
324                 /*
325                  * Make sure we read the CQE after we read the ownership bit.
326                  */
327                 rte_io_rmb();
328                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
329                              MLX4_CQE_OPCODE_ERROR)) {
330                         volatile struct mlx4_err_cqe *cqe_err =
331                                 (volatile struct mlx4_err_cqe *)cqe;
332                         ERROR("%p CQE error - vendor syndrome: 0x%x"
333                               " syndrome: 0x%x\n",
334                               (void *)txq, cqe_err->vendor_err,
335                               cqe_err->syndrome);
336                         break;
337                 }
338 #endif /* NDEBUG */
339                 cons_index++;
340         } while (1);
341         completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
342         if (unlikely(!completed))
343                 return;
344         /* First stamping address is the end of the last one. */
345         first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
346         elts_tail += completed;
347         /* The new tail element holds the end address. */
348         sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
349                 (&(*txq->elts)[elts_tail & elts_m])->eocb);
350         /* Update CQ consumer index. */
351         cq->cons_index = cons_index;
352         *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
353         txq->elts_tail = elts_tail;
354 }
355
356 /**
357  * Write Tx data segment to the SQ.
358  *
359  * @param dseg
360  *   Pointer to data segment in SQ.
361  * @param lkey
362  *   Memory region lkey.
363  * @param addr
364  *   Data address.
365  * @param byte_count
366  *   Big endian bytes count of the data to send.
367  */
368 static inline void
369 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
370                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
371 {
372         dseg->addr = rte_cpu_to_be_64(addr);
373         dseg->lkey = lkey;
374 #if RTE_CACHE_LINE_SIZE < 64
375         /*
376          * Need a barrier here before writing the byte_count
377          * fields to make sure that all the data is visible
378          * before the byte_count field is set.
379          * Otherwise, if the segment begins a new cacheline,
380          * the HCA prefetcher could grab the 64-byte chunk and
381          * get a valid (!= 0xffffffff) byte count but stale
382          * data, and end up sending the wrong data.
383          */
384         rte_io_wmb();
385 #endif /* RTE_CACHE_LINE_SIZE */
386         dseg->byte_count = byte_count;
387 }
388
389 /**
390  * Obtain and calculate TSO information needed for assembling a TSO WQE.
391  *
392  * @param buf
393  *   Pointer to the first packet mbuf.
394  * @param txq
395  *   Pointer to Tx queue structure.
396  * @param tinfo
397  *   Pointer to a structure to fill the info with.
398  *
399  * @return
400  *   0 on success, negative value upon error.
401  */
402 static inline int
403 mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
404                              struct txq *txq,
405                              struct tso_info *tinfo)
406 {
407         struct mlx4_sq *sq = &txq->msq;
408         const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
409                                  (buf->ol_flags & PKT_TX_TUNNEL_MASK);
410
411         tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
412         if (tunneled)
413                 tinfo->tso_header_size +=
414                                 buf->outer_l2_len + buf->outer_l3_len;
415         if (unlikely(buf->tso_segsz == 0 ||
416                      tinfo->tso_header_size == 0 ||
417                      tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
418                      tinfo->tso_header_size > buf->data_len))
419                 return -EINVAL;
420         /*
421          * Calculate the WQE TSO segment size
422          * Note:
423          * 1. An LSO segment must be padded such that the subsequent data
424          *    segment is 16-byte aligned.
425          * 2. The start address of the TSO segment is always 16 Bytes aligned.
426          */
427         tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
428                                             tinfo->tso_header_size,
429                                             sizeof(struct mlx4_wqe_data_seg));
430         tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
431                              tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
432                              buf->nb_segs;
433         tinfo->wqe_size =
434                 RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
435                           MLX4_TXBB_SIZE);
436         /* Validate WQE size and WQE space in the send queue. */
437         if (sq->remain_size < tinfo->wqe_size ||
438             tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
439                 return -ENOMEM;
440         /* Init pv. */
441         tinfo->pv = (struct pv *)txq->bounce_buf;
442         tinfo->pv_counter = 0;
443         return 0;
444 }
445
446 /**
447  * Fill the TSO WQE data segments with info on buffers to transmit .
448  *
449  * @param buf
450  *   Pointer to the first packet mbuf.
451  * @param txq
452  *   Pointer to Tx queue structure.
453  * @param tinfo
454  *   Pointer to TSO info to use.
455  * @param dseg
456  *   Pointer to the first data segment in the TSO WQE.
457  * @param ctrl
458  *   Pointer to the control segment in the TSO WQE.
459  *
460  * @return
461  *   0 on success, negative value upon error.
462  */
463 static inline volatile struct mlx4_wqe_ctrl_seg *
464 mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
465                              struct txq *txq,
466                              struct tso_info *tinfo,
467                              volatile struct mlx4_wqe_data_seg *dseg,
468                              volatile struct mlx4_wqe_ctrl_seg *ctrl)
469 {
470         uint32_t lkey;
471         int nb_segs = buf->nb_segs;
472         int nb_segs_txbb;
473         struct mlx4_sq *sq = &txq->msq;
474         struct rte_mbuf *sbuf = buf;
475         struct pv *pv = tinfo->pv;
476         int *pv_counter = &tinfo->pv_counter;
477         volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
478                         (volatile struct mlx4_wqe_ctrl_seg *)
479                                 ((volatile uint8_t *)ctrl + tinfo->wqe_size);
480         uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
481         uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
482                                                       tinfo->tso_header_size);
483
484         do {
485                 /* how many dseg entries do we have in the current TXBB ? */
486                 nb_segs_txbb = (MLX4_TXBB_SIZE -
487                                 ((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
488                                MLX4_SEG_SHIFT;
489                 switch (nb_segs_txbb) {
490 #ifndef NDEBUG
491                 default:
492                         /* Should never happen. */
493                         rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
494                         (void *)txq, nb_segs_txbb);
495                         /* rte_panic never returns. */
496                         break;
497 #endif /* NDEBUG */
498                 case 4:
499                         /* Memory region key for this memory pool. */
500                         lkey = mlx4_tx_mb2mr(txq, sbuf);
501                         if (unlikely(lkey == (uint32_t)-1))
502                                 goto err;
503                         dseg->addr = rte_cpu_to_be_64(data_addr);
504                         dseg->lkey = lkey;
505                         /*
506                          * This data segment starts at the beginning of a new
507                          * TXBB, so we need to postpone its byte_count writing
508                          * for later.
509                          */
510                         pv[*pv_counter].dseg = dseg;
511                         /*
512                          * Zero length segment is treated as inline segment
513                          * with zero data.
514                          */
515                         pv[(*pv_counter)++].val =
516                                 rte_cpu_to_be_32(data_len ?
517                                                  data_len :
518                                                  0x80000000);
519                         if (--nb_segs == 0)
520                                 return ctrl_next;
521                         /* Prepare next buf info */
522                         sbuf = sbuf->next;
523                         dseg++;
524                         data_len = sbuf->data_len;
525                         data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
526                         /* fallthrough */
527                 case 3:
528                         lkey = mlx4_tx_mb2mr(txq, sbuf);
529                         if (unlikely(lkey == (uint32_t)-1))
530                                 goto err;
531                         mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
532                                         rte_cpu_to_be_32(data_len ?
533                                                          data_len :
534                                                          0x80000000));
535                         if (--nb_segs == 0)
536                                 return ctrl_next;
537                         /* Prepare next buf info */
538                         sbuf = sbuf->next;
539                         dseg++;
540                         data_len = sbuf->data_len;
541                         data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
542                         /* fallthrough */
543                 case 2:
544                         lkey = mlx4_tx_mb2mr(txq, sbuf);
545                         if (unlikely(lkey == (uint32_t)-1))
546                                 goto err;
547                         mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
548                                         rte_cpu_to_be_32(data_len ?
549                                                          data_len :
550                                                          0x80000000));
551                         if (--nb_segs == 0)
552                                 return ctrl_next;
553                         /* Prepare next buf info */
554                         sbuf = sbuf->next;
555                         dseg++;
556                         data_len = sbuf->data_len;
557                         data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
558                         /* fallthrough */
559                 case 1:
560                         lkey = mlx4_tx_mb2mr(txq, sbuf);
561                         if (unlikely(lkey == (uint32_t)-1))
562                                 goto err;
563                         mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
564                                         rte_cpu_to_be_32(data_len ?
565                                                          data_len :
566                                                          0x80000000));
567                         if (--nb_segs == 0)
568                                 return ctrl_next;
569                         /* Prepare next buf info */
570                         sbuf = sbuf->next;
571                         dseg++;
572                         data_len = sbuf->data_len;
573                         data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
574                         /* fallthrough */
575                 }
576                 /* Wrap dseg if it points at the end of the queue. */
577                 if ((volatile uint8_t *)dseg >= sq->eob)
578                         dseg = (volatile struct mlx4_wqe_data_seg *)
579                                         ((volatile uint8_t *)dseg - sq->size);
580         } while (true);
581 err:
582         return NULL;
583 }
584
585 /**
586  * Fill the packet's l2, l3 and l4 headers to the WQE.
587  *
588  * This will be used as the header for each TSO segment that is transmitted.
589  *
590  * @param buf
591  *   Pointer to the first packet mbuf.
592  * @param txq
593  *   Pointer to Tx queue structure.
594  * @param tinfo
595  *   Pointer to TSO info to use.
596  * @param ctrl
597  *   Pointer to the control segment in the TSO WQE.
598  *
599  * @return
600  *   0 on success, negative value upon error.
601  */
602 static inline volatile struct mlx4_wqe_data_seg *
603 mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
604                            struct txq *txq,
605                            struct tso_info *tinfo,
606                            volatile struct mlx4_wqe_ctrl_seg *ctrl)
607 {
608         volatile struct mlx4_wqe_lso_seg *tseg =
609                 (volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
610         struct mlx4_sq *sq = &txq->msq;
611         struct pv *pv = tinfo->pv;
612         int *pv_counter = &tinfo->pv_counter;
613         int remain_size = tinfo->tso_header_size;
614         char *from = rte_pktmbuf_mtod(buf, char *);
615         uint16_t txbb_avail_space;
616         /* Union to overcome volatile constraints when copying TSO header. */
617         union {
618                 volatile uint8_t *vto;
619                 uint8_t *to;
620         } thdr = { .vto = (volatile uint8_t *)tseg->header, };
621
622         /*
623          * TSO data always starts at offset 20 from the beginning of the TXBB
624          * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
625          * we can write the first 44 TSO header bytes without worry for TxQ
626          * wrapping or overwriting the first TXBB 32bit word.
627          */
628         txbb_avail_space = MLX4_TXBB_SIZE -
629                            (sizeof(struct mlx4_wqe_ctrl_seg) +
630                             sizeof(struct mlx4_wqe_lso_seg));
631         while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
632                 /* Copy to end of txbb. */
633                 rte_memcpy(thdr.to, from, txbb_avail_space);
634                 from += txbb_avail_space;
635                 thdr.to += txbb_avail_space;
636                 /* New TXBB, Check for TxQ wrap. */
637                 if (thdr.to >= sq->eob)
638                         thdr.vto = sq->buf;
639                 /* New TXBB, stash the first 32bits for later use. */
640                 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
641                 pv[(*pv_counter)++].val = *(uint32_t *)from,
642                 from += sizeof(uint32_t);
643                 thdr.to += sizeof(uint32_t);
644                 remain_size -= txbb_avail_space + sizeof(uint32_t);
645                 /* Avail space in new TXBB is TXBB size - 4 */
646                 txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
647         }
648         if (remain_size > txbb_avail_space) {
649                 rte_memcpy(thdr.to, from, txbb_avail_space);
650                 from += txbb_avail_space;
651                 thdr.to += txbb_avail_space;
652                 remain_size -= txbb_avail_space;
653                 /* New TXBB, Check for TxQ wrap. */
654                 if (thdr.to >= sq->eob)
655                         thdr.vto = sq->buf;
656                 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
657                 rte_memcpy(&pv[*pv_counter].val, from, remain_size);
658                 (*pv_counter)++;
659         } else if (remain_size) {
660                 rte_memcpy(thdr.to, from, remain_size);
661         }
662         tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
663                                               tinfo->tso_header_size);
664         /* Calculate data segment location */
665         return (volatile struct mlx4_wqe_data_seg *)
666                                 ((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
667 }
668
669 /**
670  * Write data segments and header for TSO uni/multi segment packet.
671  *
672  * @param buf
673  *   Pointer to the first packet mbuf.
674  * @param txq
675  *   Pointer to Tx queue structure.
676  * @param ctrl
677  *   Pointer to the WQE control segment.
678  *
679  * @return
680  *   Pointer to the next WQE control segment on success, NULL otherwise.
681  */
682 static volatile struct mlx4_wqe_ctrl_seg *
683 mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
684                   volatile struct mlx4_wqe_ctrl_seg *ctrl)
685 {
686         volatile struct mlx4_wqe_data_seg *dseg;
687         volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
688         struct mlx4_sq *sq = &txq->msq;
689         struct tso_info tinfo;
690         struct pv *pv;
691         int pv_counter;
692         int ret;
693
694         ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
695         if (unlikely(ret))
696                 goto error;
697         dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
698         if (unlikely(dseg == NULL))
699                 goto error;
700         if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
701                 dseg = (volatile struct mlx4_wqe_data_seg *)
702                                         ((uintptr_t)dseg - sq->size);
703         ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
704         if (unlikely(ctrl_next == NULL))
705                 goto error;
706         /* Write the first DWORD of each TXBB save earlier. */
707         if (likely(tinfo.pv_counter)) {
708                 pv = tinfo.pv;
709                 pv_counter = tinfo.pv_counter;
710                 /* Need a barrier here before writing the first TXBB word. */
711                 rte_io_wmb();
712                 do {
713                         --pv_counter;
714                         *pv[pv_counter].dst = pv[pv_counter].val;
715                 } while (pv_counter > 0);
716         }
717         ctrl->fence_size = tinfo.fence_size;
718         sq->remain_size -= tinfo.wqe_size;
719         return ctrl_next;
720 error:
721         txq->stats.odropped++;
722         return NULL;
723 }
724
725 /**
726  * Write data segments of multi-segment packet.
727  *
728  * @param buf
729  *   Pointer to the first packet mbuf.
730  * @param txq
731  *   Pointer to Tx queue structure.
732  * @param ctrl
733  *   Pointer to the WQE control segment.
734  *
735  * @return
736  *   Pointer to the next WQE control segment on success, NULL otherwise.
737  */
738 static volatile struct mlx4_wqe_ctrl_seg *
739 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
740                    volatile struct mlx4_wqe_ctrl_seg *ctrl)
741 {
742         struct pv *pv = (struct pv *)txq->bounce_buf;
743         struct mlx4_sq *sq = &txq->msq;
744         struct rte_mbuf *sbuf = buf;
745         uint32_t lkey;
746         int pv_counter = 0;
747         int nb_segs = buf->nb_segs;
748         uint32_t wqe_size;
749         volatile struct mlx4_wqe_data_seg *dseg =
750                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
751
752         ctrl->fence_size = 1 + nb_segs;
753         wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
754                              MLX4_TXBB_SIZE);
755         /* Validate WQE size and WQE space in the send queue. */
756         if (sq->remain_size < wqe_size ||
757             wqe_size > MLX4_MAX_WQE_SIZE)
758                 return NULL;
759         /*
760          * Fill the data segments with buffer information.
761          * First WQE TXBB head segment is always control segment,
762          * so jump to tail TXBB data segments code for the first
763          * WQE data segments filling.
764          */
765         goto txbb_tail_segs;
766 txbb_head_seg:
767         /* Memory region key (big endian) for this memory pool. */
768         lkey = mlx4_tx_mb2mr(txq, sbuf);
769         if (unlikely(lkey == (uint32_t)-1)) {
770                 DEBUG("%p: unable to get MP <-> MR association",
771                       (void *)txq);
772                 return NULL;
773         }
774         /* Handle WQE wraparound. */
775         if (dseg >=
776                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
777                 dseg = (volatile struct mlx4_wqe_data_seg *)
778                         sq->buf;
779         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
780         dseg->lkey = lkey;
781         /*
782          * This data segment starts at the beginning of a new
783          * TXBB, so we need to postpone its byte_count writing
784          * for later.
785          */
786         pv[pv_counter].dseg = dseg;
787         /*
788          * Zero length segment is treated as inline segment
789          * with zero data.
790          */
791         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
792                                                 sbuf->data_len : 0x80000000);
793         sbuf = sbuf->next;
794         dseg++;
795         nb_segs--;
796 txbb_tail_segs:
797         /* Jump to default if there are more than two segments remaining. */
798         switch (nb_segs) {
799         default:
800                 lkey = mlx4_tx_mb2mr(txq, sbuf);
801                 if (unlikely(lkey == (uint32_t)-1)) {
802                         DEBUG("%p: unable to get MP <-> MR association",
803                               (void *)txq);
804                         return NULL;
805                 }
806                 mlx4_fill_tx_data_seg(dseg, lkey,
807                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
808                                       rte_cpu_to_be_32(sbuf->data_len ?
809                                                        sbuf->data_len :
810                                                        0x80000000));
811                 sbuf = sbuf->next;
812                 dseg++;
813                 nb_segs--;
814                 /* fallthrough */
815         case 2:
816                 lkey = mlx4_tx_mb2mr(txq, sbuf);
817                 if (unlikely(lkey == (uint32_t)-1)) {
818                         DEBUG("%p: unable to get MP <-> MR association",
819                               (void *)txq);
820                         return NULL;
821                 }
822                 mlx4_fill_tx_data_seg(dseg, lkey,
823                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
824                                       rte_cpu_to_be_32(sbuf->data_len ?
825                                                        sbuf->data_len :
826                                                        0x80000000));
827                 sbuf = sbuf->next;
828                 dseg++;
829                 nb_segs--;
830                 /* fallthrough */
831         case 1:
832                 lkey = mlx4_tx_mb2mr(txq, sbuf);
833                 if (unlikely(lkey == (uint32_t)-1)) {
834                         DEBUG("%p: unable to get MP <-> MR association",
835                               (void *)txq);
836                         return NULL;
837                 }
838                 mlx4_fill_tx_data_seg(dseg, lkey,
839                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
840                                       rte_cpu_to_be_32(sbuf->data_len ?
841                                                        sbuf->data_len :
842                                                        0x80000000));
843                 nb_segs--;
844                 if (nb_segs) {
845                         sbuf = sbuf->next;
846                         dseg++;
847                         goto txbb_head_seg;
848                 }
849                 /* fallthrough */
850         case 0:
851                 break;
852         }
853         /* Write the first DWORD of each TXBB save earlier. */
854         if (pv_counter) {
855                 /* Need a barrier here before writing the byte_count. */
856                 rte_io_wmb();
857                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
858                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
859         }
860         sq->remain_size -= wqe_size;
861         /* Align next WQE address to the next TXBB. */
862         return (volatile struct mlx4_wqe_ctrl_seg *)
863                 ((volatile uint8_t *)ctrl + wqe_size);
864 }
865
866 /**
867  * DPDK callback for Tx.
868  *
869  * @param dpdk_txq
870  *   Generic pointer to Tx queue structure.
871  * @param[in] pkts
872  *   Packets to transmit.
873  * @param pkts_n
874  *   Number of packets in array.
875  *
876  * @return
877  *   Number of packets successfully transmitted (<= pkts_n).
878  */
879 uint16_t
880 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
881 {
882         struct txq *txq = (struct txq *)dpdk_txq;
883         unsigned int elts_head = txq->elts_head;
884         const unsigned int elts_n = txq->elts_n;
885         const unsigned int elts_m = elts_n - 1;
886         unsigned int bytes_sent = 0;
887         unsigned int i;
888         unsigned int max = elts_head - txq->elts_tail;
889         struct mlx4_sq *sq = &txq->msq;
890         volatile struct mlx4_wqe_ctrl_seg *ctrl;
891         struct txq_elt *elt;
892
893         assert(txq->elts_comp_cd != 0);
894         if (likely(max >= txq->elts_comp_cd_init))
895                 mlx4_txq_complete(txq, elts_m, sq);
896         max = elts_n - max;
897         assert(max >= 1);
898         assert(max <= elts_n);
899         /* Always leave one free entry in the ring. */
900         --max;
901         if (max > pkts_n)
902                 max = pkts_n;
903         elt = &(*txq->elts)[elts_head & elts_m];
904         /* First Tx burst element saves the next WQE control segment. */
905         ctrl = elt->wqe;
906         for (i = 0; (i != max); ++i) {
907                 struct rte_mbuf *buf = pkts[i];
908                 struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
909                 uint32_t owner_opcode = sq->owner_opcode;
910                 volatile struct mlx4_wqe_data_seg *dseg =
911                                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
912                 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
913                 union {
914                         uint32_t flags;
915                         uint16_t flags16[2];
916                 } srcrb;
917                 uint32_t lkey;
918                 bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
919
920                 /* Clean up old buffer. */
921                 if (likely(elt->buf != NULL)) {
922                         struct rte_mbuf *tmp = elt->buf;
923
924 #ifndef NDEBUG
925                         /* Poisoning. */
926                         memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
927 #endif
928                         /* Faster than rte_pktmbuf_free(). */
929                         do {
930                                 struct rte_mbuf *next = tmp->next;
931
932                                 rte_pktmbuf_free_seg(tmp);
933                                 tmp = next;
934                         } while (tmp != NULL);
935                 }
936                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
937                 if (tso) {
938                         /* Change opcode to TSO */
939                         owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
940                         owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
941                         ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
942                         if (!ctrl_next) {
943                                 elt->buf = NULL;
944                                 break;
945                         }
946                 } else if (buf->nb_segs == 1) {
947                         /* Validate WQE space in the send queue. */
948                         if (sq->remain_size < MLX4_TXBB_SIZE) {
949                                 elt->buf = NULL;
950                                 break;
951                         }
952                         lkey = mlx4_tx_mb2mr(txq, buf);
953                         if (unlikely(lkey == (uint32_t)-1)) {
954                                 /* MR does not exist. */
955                                 DEBUG("%p: unable to get MP <-> MR association",
956                                       (void *)txq);
957                                 elt->buf = NULL;
958                                 break;
959                         }
960                         mlx4_fill_tx_data_seg(dseg++, lkey,
961                                               rte_pktmbuf_mtod(buf, uintptr_t),
962                                               rte_cpu_to_be_32(buf->data_len));
963                         /* Set WQE size in 16-byte units. */
964                         ctrl->fence_size = 0x2;
965                         sq->remain_size -= MLX4_TXBB_SIZE;
966                         /* Align next WQE address to the next TXBB. */
967                         ctrl_next = ctrl + 0x4;
968                 } else {
969                         ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
970                         if (!ctrl_next) {
971                                 elt->buf = NULL;
972                                 break;
973                         }
974                 }
975                 /* Hold SQ ring wrap around. */
976                 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
977                         ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
978                                 ((volatile uint8_t *)ctrl_next - sq->size);
979                         /* Flip HW valid ownership. */
980                         sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
981                 }
982                 /*
983                  * For raw Ethernet, the SOLICIT flag is used to indicate
984                  * that no ICRC should be calculated.
985                  */
986                 if (--txq->elts_comp_cd == 0) {
987                         /* Save the completion burst end address. */
988                         elt_next->eocb = (volatile uint32_t *)ctrl_next;
989                         txq->elts_comp_cd = txq->elts_comp_cd_init;
990                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
991                                                MLX4_WQE_CTRL_CQ_UPDATE);
992                 } else {
993                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
994                 }
995                 /* Enable HW checksum offload if requested */
996                 if (txq->csum &&
997                     (buf->ol_flags &
998                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
999                         const uint64_t is_tunneled = (buf->ol_flags &
1000                                                       (PKT_TX_TUNNEL_GRE |
1001                                                        PKT_TX_TUNNEL_VXLAN));
1002
1003                         if (is_tunneled && txq->csum_l2tun) {
1004                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
1005                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
1006                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
1007                                         srcrb.flags |=
1008                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
1009                         } else {
1010                                 srcrb.flags |=
1011                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
1012                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
1013                         }
1014                 }
1015                 if (txq->lb) {
1016                         /*
1017                          * Copy destination MAC address to the WQE, this allows
1018                          * loopback in eSwitch, so that VFs and PF can
1019                          * communicate with each other.
1020                          */
1021                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
1022                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
1023                                               sizeof(uint16_t)));
1024                 } else {
1025                         ctrl->imm = 0;
1026                 }
1027                 ctrl->srcrb_flags = srcrb.flags;
1028                 /*
1029                  * Make sure descriptor is fully written before
1030                  * setting ownership bit (because HW can start
1031                  * executing as soon as we do).
1032                  */
1033                 rte_io_wmb();
1034                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
1035                 elt->buf = buf;
1036                 bytes_sent += buf->pkt_len;
1037                 ctrl = ctrl_next;
1038                 elt = elt_next;
1039         }
1040         /* Take a shortcut if nothing must be sent. */
1041         if (unlikely(i == 0))
1042                 return 0;
1043         /* Save WQE address of the next Tx burst element. */
1044         elt->wqe = ctrl;
1045         /* Increment send statistics counters. */
1046         txq->stats.opackets += i;
1047         txq->stats.obytes += bytes_sent;
1048         /* Make sure that descriptors are written before doorbell record. */
1049         rte_wmb();
1050         /* Ring QP doorbell. */
1051         rte_write32(txq->msq.doorbell_qpn, MLX4_TX_BFREG(txq));
1052         txq->elts_head += i;
1053         return i;
1054 }
1055
1056 /**
1057  * Translate Rx completion flags to packet type.
1058  *
1059  * @param[in] cqe
1060  *   Pointer to CQE.
1061  *
1062  * @return
1063  *   Packet type for struct rte_mbuf.
1064  */
1065 static inline uint32_t
1066 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
1067                    uint32_t l2tun_offload)
1068 {
1069         uint8_t idx = 0;
1070         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
1071         uint32_t status = rte_be_to_cpu_32(cqe->status);
1072
1073         /*
1074          * The index to the array should have:
1075          *  bit[7] - MLX4_CQE_L2_TUNNEL
1076          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
1077          */
1078         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
1079                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
1080                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
1081         /*
1082          * The index to the array should have:
1083          *  bit[5] - MLX4_CQE_STATUS_UDP
1084          *  bit[4] - MLX4_CQE_STATUS_TCP
1085          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
1086          *  bit[2] - MLX4_CQE_STATUS_IPV6
1087          *  bit[1] - MLX4_CQE_STATUS_IPF
1088          *  bit[0] - MLX4_CQE_STATUS_IPV4
1089          * giving a total of up to 256 entries.
1090          */
1091         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
1092         if (status & MLX4_CQE_STATUS_IPV6)
1093                 idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
1094         return mlx4_ptype_table[idx];
1095 }
1096
1097 /**
1098  * Translate Rx completion flags to offload flags.
1099  *
1100  * @param flags
1101  *   Rx completion flags returned by mlx4_cqe_flags().
1102  * @param csum
1103  *   Whether Rx checksums are enabled.
1104  * @param csum_l2tun
1105  *   Whether Rx L2 tunnel checksums are enabled.
1106  *
1107  * @return
1108  *   Offload flags (ol_flags) in mbuf format.
1109  */
1110 static inline uint32_t
1111 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
1112 {
1113         uint32_t ol_flags = 0;
1114
1115         if (csum)
1116                 ol_flags |=
1117                         mlx4_transpose(flags,
1118                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
1119                                        PKT_RX_IP_CKSUM_GOOD) |
1120                         mlx4_transpose(flags,
1121                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
1122                                        PKT_RX_L4_CKSUM_GOOD);
1123         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
1124                 ol_flags |=
1125                         mlx4_transpose(flags,
1126                                        MLX4_CQE_L2_TUNNEL_IPOK,
1127                                        PKT_RX_IP_CKSUM_GOOD) |
1128                         mlx4_transpose(flags,
1129                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
1130                                        PKT_RX_L4_CKSUM_GOOD);
1131         return ol_flags;
1132 }
1133
1134 /**
1135  * Extract checksum information from CQE flags.
1136  *
1137  * @param cqe
1138  *   Pointer to CQE structure.
1139  * @param csum
1140  *   Whether Rx checksums are enabled.
1141  * @param csum_l2tun
1142  *   Whether Rx L2 tunnel checksums are enabled.
1143  *
1144  * @return
1145  *   CQE checksum information.
1146  */
1147 static inline uint32_t
1148 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
1149 {
1150         uint32_t flags = 0;
1151
1152         /*
1153          * The relevant bits are in different locations on their
1154          * CQE fields therefore we can join them in one 32bit
1155          * variable.
1156          */
1157         if (csum)
1158                 flags = (rte_be_to_cpu_32(cqe->status) &
1159                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
1160         if (csum_l2tun)
1161                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
1162                           (MLX4_CQE_L2_TUNNEL |
1163                            MLX4_CQE_L2_TUNNEL_IPOK |
1164                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
1165                            MLX4_CQE_L2_TUNNEL_IPV4));
1166         return flags;
1167 }
1168
1169 /**
1170  * Poll one CQE from CQ.
1171  *
1172  * @param rxq
1173  *   Pointer to the receive queue structure.
1174  * @param[out] out
1175  *   Just polled CQE.
1176  *
1177  * @return
1178  *   Number of bytes of the CQE, 0 in case there is no completion.
1179  */
1180 static unsigned int
1181 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
1182 {
1183         int ret = 0;
1184         volatile struct mlx4_cqe *cqe = NULL;
1185         struct mlx4_cq *cq = &rxq->mcq;
1186
1187         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
1188         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
1189             !!(cq->cons_index & cq->cqe_cnt))
1190                 goto out;
1191         /*
1192          * Make sure we read CQ entry contents after we've checked the
1193          * ownership bit.
1194          */
1195         rte_rmb();
1196         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
1197         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
1198                MLX4_CQE_OPCODE_ERROR);
1199         ret = rte_be_to_cpu_32(cqe->byte_cnt);
1200         ++cq->cons_index;
1201 out:
1202         *out = cqe;
1203         return ret;
1204 }
1205
1206 /**
1207  * DPDK callback for Rx with scattered packets support.
1208  *
1209  * @param dpdk_rxq
1210  *   Generic pointer to Rx queue structure.
1211  * @param[out] pkts
1212  *   Array to store received packets.
1213  * @param pkts_n
1214  *   Maximum number of packets in array.
1215  *
1216  * @return
1217  *   Number of packets successfully received (<= pkts_n).
1218  */
1219 uint16_t
1220 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1221 {
1222         struct rxq *rxq = dpdk_rxq;
1223         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
1224         const uint16_t sges_n = rxq->sges_n;
1225         struct rte_mbuf *pkt = NULL;
1226         struct rte_mbuf *seg = NULL;
1227         unsigned int i = 0;
1228         uint32_t rq_ci = rxq->rq_ci << sges_n;
1229         int len = 0;
1230
1231         while (pkts_n) {
1232                 volatile struct mlx4_cqe *cqe;
1233                 uint32_t idx = rq_ci & wr_cnt;
1234                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1235                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
1236
1237                 /* Update the 'next' pointer of the previous segment. */
1238                 if (pkt)
1239                         seg->next = rep;
1240                 seg = rep;
1241                 rte_prefetch0(seg);
1242                 rte_prefetch0(scat);
1243                 rep = rte_mbuf_raw_alloc(rxq->mp);
1244                 if (unlikely(rep == NULL)) {
1245                         ++rxq->stats.rx_nombuf;
1246                         if (!pkt) {
1247                                 /*
1248                                  * No buffers before we even started,
1249                                  * bail out silently.
1250                                  */
1251                                 break;
1252                         }
1253                         while (pkt != seg) {
1254                                 assert(pkt != (*rxq->elts)[idx]);
1255                                 rep = pkt->next;
1256                                 pkt->next = NULL;
1257                                 pkt->nb_segs = 1;
1258                                 rte_mbuf_raw_free(pkt);
1259                                 pkt = rep;
1260                         }
1261                         break;
1262                 }
1263                 if (!pkt) {
1264                         /* Looking for the new packet. */
1265                         len = mlx4_cq_poll_one(rxq, &cqe);
1266                         if (!len) {
1267                                 rte_mbuf_raw_free(rep);
1268                                 break;
1269                         }
1270                         if (unlikely(len < 0)) {
1271                                 /* Rx error, packet is likely too large. */
1272                                 rte_mbuf_raw_free(rep);
1273                                 ++rxq->stats.idropped;
1274                                 goto skip;
1275                         }
1276                         pkt = seg;
1277                         assert(len >= (rxq->crc_present << 2));
1278                         /* Update packet information. */
1279                         pkt->packet_type =
1280                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
1281                         pkt->ol_flags = PKT_RX_RSS_HASH;
1282                         pkt->hash.rss = cqe->immed_rss_invalid;
1283                         if (rxq->crc_present)
1284                                 len -= RTE_ETHER_CRC_LEN;
1285                         pkt->pkt_len = len;
1286                         if (rxq->csum | rxq->csum_l2tun) {
1287                                 uint32_t flags =
1288                                         mlx4_cqe_flags(cqe,
1289                                                        rxq->csum,
1290                                                        rxq->csum_l2tun);
1291
1292                                 pkt->ol_flags =
1293                                         rxq_cq_to_ol_flags(flags,
1294                                                            rxq->csum,
1295                                                            rxq->csum_l2tun);
1296                         }
1297                 }
1298                 rep->nb_segs = 1;
1299                 rep->port = rxq->port_id;
1300                 rep->data_len = seg->data_len;
1301                 rep->data_off = seg->data_off;
1302                 (*rxq->elts)[idx] = rep;
1303                 /*
1304                  * Fill NIC descriptor with the new buffer. The lkey and size
1305                  * of the buffers are already known, only the buffer address
1306                  * changes.
1307                  */
1308                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1309                 /* If there's only one MR, no need to replace LKey in WQE. */
1310                 if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1311                         scat->lkey = mlx4_rx_mb2mr(rxq, rep);
1312                 if (len > seg->data_len) {
1313                         len -= seg->data_len;
1314                         ++pkt->nb_segs;
1315                         ++rq_ci;
1316                         continue;
1317                 }
1318                 /* The last segment. */
1319                 seg->data_len = len;
1320                 /* Increment bytes counter. */
1321                 rxq->stats.ibytes += pkt->pkt_len;
1322                 /* Return packet. */
1323                 *(pkts++) = pkt;
1324                 pkt = NULL;
1325                 --pkts_n;
1326                 ++i;
1327 skip:
1328                 /* Align consumer index to the next stride. */
1329                 rq_ci >>= sges_n;
1330                 ++rq_ci;
1331                 rq_ci <<= sges_n;
1332         }
1333         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1334                 return 0;
1335         /* Update the consumer index. */
1336         rxq->rq_ci = rq_ci >> sges_n;
1337         rte_wmb();
1338         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1339         *rxq->mcq.set_ci_db =
1340                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1341         /* Increment packets counter. */
1342         rxq->stats.ipackets += i;
1343         return i;
1344 }
1345
1346 /**
1347  * Dummy DPDK callback for Tx.
1348  *
1349  * This function is used to temporarily replace the real callback during
1350  * unsafe control operations on the queue, or in case of error.
1351  *
1352  * @param dpdk_txq
1353  *   Generic pointer to Tx queue structure.
1354  * @param[in] pkts
1355  *   Packets to transmit.
1356  * @param pkts_n
1357  *   Number of packets in array.
1358  *
1359  * @return
1360  *   Number of packets successfully transmitted (<= pkts_n).
1361  */
1362 uint16_t
1363 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1364 {
1365         (void)dpdk_txq;
1366         (void)pkts;
1367         (void)pkts_n;
1368         rte_mb();
1369         return 0;
1370 }
1371
1372 /**
1373  * Dummy DPDK callback for Rx.
1374  *
1375  * This function is used to temporarily replace the real callback during
1376  * unsafe control operations on the queue, or in case of error.
1377  *
1378  * @param dpdk_rxq
1379  *   Generic pointer to Rx queue structure.
1380  * @param[out] pkts
1381  *   Array to store received packets.
1382  * @param pkts_n
1383  *   Maximum number of packets in array.
1384  *
1385  * @return
1386  *   Number of packets successfully received (<= pkts_n).
1387  */
1388 uint16_t
1389 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1390 {
1391         (void)dpdk_rxq;
1392         (void)pkts;
1393         (void)pkts_n;
1394         rte_mb();
1395         return 0;
1396 }