net/mlx4: align Tx descriptors number
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 /**
65  * Pointer-value pair structure used in tx_post_send for saving the first
66  * DWORD (32 byte) of a TXBB.
67  */
68 struct pv {
69         volatile struct mlx4_wqe_data_seg *dseg;
70         uint32_t val;
71 };
72
73 /** A table to translate Rx completion flags to packet type. */
74 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
75         /*
76          * The index to the array should have:
77          *  bit[7] - MLX4_CQE_L2_TUNNEL
78          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
79          *  bit[5] - MLX4_CQE_STATUS_UDP
80          *  bit[4] - MLX4_CQE_STATUS_TCP
81          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
82          *  bit[2] - MLX4_CQE_STATUS_IPV6
83          *  bit[1] - MLX4_CQE_STATUS_IPV4F
84          *  bit[0] - MLX4_CQE_STATUS_IPV4
85          * giving a total of up to 256 entries.
86          */
87         [0x00] = RTE_PTYPE_L2_ETHER,
88         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
89         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_FRAG,
91         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_FRAG,
93         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
94         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
95         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96                      RTE_PTYPE_L4_FRAG,
97         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP,
99         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP,
101         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP,
103         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
104                      RTE_PTYPE_L4_TCP,
105         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
106                      RTE_PTYPE_L4_TCP,
107         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108                      RTE_PTYPE_L4_TCP,
109         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_UDP,
111         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_UDP,
113         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
116                      RTE_PTYPE_L4_UDP,
117         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118                      RTE_PTYPE_L4_UDP,
119         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         /* Tunneled - L3 IPV6 */
122         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
125         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L4_FRAG,
128         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
133         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L3_IPV4_EXT,
135         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV4_EXT,
137         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
139         /* Tunneled - L3 IPV6, TCP */
140         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_TCP,
143         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_FRAG |
146                      RTE_PTYPE_INNER_L4_TCP,
147         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG |
150                      RTE_PTYPE_INNER_L4_TCP,
151         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
162                      RTE_PTYPE_INNER_L4_TCP,
163         /* Tunneled - L3 IPV6, UDP */
164         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_UDP,
167         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG |
174                      RTE_PTYPE_INNER_L4_UDP,
175         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV4_EXT |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
186                      RTE_PTYPE_INNER_L4_UDP,
187         /* Tunneled - L3 IPV4 */
188         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
189         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
191         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_FRAG,
194         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
199         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT,
201         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV4_EXT,
203         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT |
205                      RTE_PTYPE_INNER_L4_FRAG,
206         /* Tunneled - L3 IPV4, TCP */
207         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
209                      RTE_PTYPE_INNER_L4_TCP,
210         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_FRAG |
216                      RTE_PTYPE_INNER_L4_TCP,
217         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_FRAG |
220                      RTE_PTYPE_INNER_L4_TCP,
221         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV4_EXT |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
232                      RTE_PTYPE_INNER_L4_TCP,
233         /* Tunneled - L3 IPV4, UDP */
234         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
236                      RTE_PTYPE_INNER_L4_UDP,
237         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_FRAG |
243                      RTE_PTYPE_INNER_L4_UDP,
244         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246                      RTE_PTYPE_INNER_L4_FRAG |
247                      RTE_PTYPE_INNER_L4_UDP,
248         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
253         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
254                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
255         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
257                      RTE_PTYPE_INNER_L4_UDP,
258 };
259
260 /**
261  * Stamp TXBB burst so it won't be reused by the HW.
262  *
263  * Routine is used when freeing WQE used by the chip or when failing
264  * building an WQ entry has failed leaving partial information on the queue.
265  *
266  * @param sq
267  *   Pointer to the SQ structure.
268  * @param start
269  *   Pointer to the first TXBB to stamp.
270  * @param end
271  *   Pointer to the followed end TXBB to stamp.
272  *
273  * @return
274  *   Stamping burst size in byte units.
275  */
276 static uint32_t
277 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
278                          volatile uint32_t *end)
279 {
280         uint32_t stamp = sq->stamp;
281         int32_t size = (intptr_t)end - (intptr_t)start;
282
283         assert(start != end);
284         /* Hold SQ ring wrap around. */
285         if (size < 0) {
286                 size = (int32_t)sq->size + size;
287                 do {
288                         *start = stamp;
289                         start += MLX4_SQ_STAMP_DWORDS;
290                 } while (start != (volatile uint32_t *)sq->eob);
291                 start = (volatile uint32_t *)sq->buf;
292                 /* Flip invalid stamping ownership. */
293                 stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
294                 sq->stamp = stamp;
295                 if (start == end)
296                         return size;
297         }
298         do {
299                 *start = stamp;
300                 start += MLX4_SQ_STAMP_DWORDS;
301         } while (start != end);
302         return (uint32_t)size;
303 }
304
305 /**
306  * Manage Tx completions.
307  *
308  * When sending a burst, mlx4_tx_burst() posts several WRs.
309  * To improve performance, a completion event is only required once every
310  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
311  * for other WRs, but this information would not be used anyway.
312  *
313  * @param txq
314  *   Pointer to Tx queue structure.
315  * @param elts_m
316  *   Tx elements number mask.
317  * @param sq
318  *   Pointer to the SQ structure.
319  */
320 static void
321 mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
322                   struct mlx4_sq *sq)
323 {
324         unsigned int elts_tail = txq->elts_tail;
325         struct mlx4_cq *cq = &txq->mcq;
326         volatile struct mlx4_cqe *cqe;
327         uint32_t completed;
328         uint32_t cons_index = cq->cons_index;
329         volatile uint32_t *first_txbb;
330
331         /*
332          * Traverse over all CQ entries reported and handle each WQ entry
333          * reported by them.
334          */
335         do {
336                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
337                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
338                     !!(cons_index & cq->cqe_cnt)))
339                         break;
340 #ifndef NDEBUG
341                 /*
342                  * Make sure we read the CQE after we read the ownership bit.
343                  */
344                 rte_io_rmb();
345                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
346                              MLX4_CQE_OPCODE_ERROR)) {
347                         volatile struct mlx4_err_cqe *cqe_err =
348                                 (volatile struct mlx4_err_cqe *)cqe;
349                         ERROR("%p CQE error - vendor syndrome: 0x%x"
350                               " syndrome: 0x%x\n",
351                               (void *)txq, cqe_err->vendor_err,
352                               cqe_err->syndrome);
353                         break;
354                 }
355 #endif /* NDEBUG */
356                 cons_index++;
357         } while (1);
358         completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
359         if (unlikely(!completed))
360                 return;
361         /* First stamping address is the end of the last one. */
362         first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
363         elts_tail += completed;
364         /* The new tail element holds the end address. */
365         sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
366                 (&(*txq->elts)[elts_tail & elts_m])->eocb);
367         /* Update CQ consumer index. */
368         cq->cons_index = cons_index;
369         *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
370         txq->elts_comp -= completed;
371         txq->elts_tail = elts_tail;
372 }
373
374 /**
375  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
376  * the cloned mbuf is allocated is returned instead.
377  *
378  * @param buf
379  *   Pointer to mbuf.
380  *
381  * @return
382  *   Memory pool where data is located for given mbuf.
383  */
384 static struct rte_mempool *
385 mlx4_txq_mb2mp(struct rte_mbuf *buf)
386 {
387         if (unlikely(RTE_MBUF_INDIRECT(buf)))
388                 return rte_mbuf_from_indirect(buf)->pool;
389         return buf->pool;
390 }
391
392 /**
393  * Write Tx data segment to the SQ.
394  *
395  * @param dseg
396  *   Pointer to data segment in SQ.
397  * @param lkey
398  *   Memory region lkey.
399  * @param addr
400  *   Data address.
401  * @param byte_count
402  *   Big endian bytes count of the data to send.
403  */
404 static inline void
405 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
406                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
407 {
408         dseg->addr = rte_cpu_to_be_64(addr);
409         dseg->lkey = rte_cpu_to_be_32(lkey);
410 #if RTE_CACHE_LINE_SIZE < 64
411         /*
412          * Need a barrier here before writing the byte_count
413          * fields to make sure that all the data is visible
414          * before the byte_count field is set.
415          * Otherwise, if the segment begins a new cacheline,
416          * the HCA prefetcher could grab the 64-byte chunk and
417          * get a valid (!= 0xffffffff) byte count but stale
418          * data, and end up sending the wrong data.
419          */
420         rte_io_wmb();
421 #endif /* RTE_CACHE_LINE_SIZE */
422         dseg->byte_count = byte_count;
423 }
424
425 /**
426  * Write data segments of multi-segment packet.
427  *
428  * @param buf
429  *   Pointer to the first packet mbuf.
430  * @param txq
431  *   Pointer to Tx queue structure.
432  * @param ctrl
433  *   Pointer to the WQE control segment.
434  *
435  * @return
436  *   Pointer to the next WQE control segment on success, NULL otherwise.
437  */
438 static volatile struct mlx4_wqe_ctrl_seg *
439 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
440                    volatile struct mlx4_wqe_ctrl_seg *ctrl)
441 {
442         struct pv *pv = (struct pv *)txq->bounce_buf;
443         struct mlx4_sq *sq = &txq->msq;
444         struct rte_mbuf *sbuf = buf;
445         uint32_t lkey;
446         int pv_counter = 0;
447         int nb_segs = buf->nb_segs;
448         uint32_t wqe_size;
449         volatile struct mlx4_wqe_data_seg *dseg =
450                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
451
452         ctrl->fence_size = 1 + nb_segs;
453         wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
454                              MLX4_TXBB_SIZE);
455         /* Validate WQE size and WQE space in the send queue. */
456         if (sq->remain_size < wqe_size ||
457             wqe_size > MLX4_MAX_WQE_SIZE)
458                 return NULL;
459         /*
460          * Fill the data segments with buffer information.
461          * First WQE TXBB head segment is always control segment,
462          * so jump to tail TXBB data segments code for the first
463          * WQE data segments filling.
464          */
465         goto txbb_tail_segs;
466 txbb_head_seg:
467         /* Memory region key (big endian) for this memory pool. */
468         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
469         if (unlikely(lkey == (uint32_t)-1)) {
470                 DEBUG("%p: unable to get MP <-> MR association",
471                       (void *)txq);
472                 return NULL;
473         }
474         /* Handle WQE wraparound. */
475         if (dseg >=
476                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
477                 dseg = (volatile struct mlx4_wqe_data_seg *)
478                         sq->buf;
479         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
480         dseg->lkey = rte_cpu_to_be_32(lkey);
481         /*
482          * This data segment starts at the beginning of a new
483          * TXBB, so we need to postpone its byte_count writing
484          * for later.
485          */
486         pv[pv_counter].dseg = dseg;
487         /*
488          * Zero length segment is treated as inline segment
489          * with zero data.
490          */
491         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
492                                                 sbuf->data_len : 0x80000000);
493         sbuf = sbuf->next;
494         dseg++;
495         nb_segs--;
496 txbb_tail_segs:
497         /* Jump to default if there are more than two segments remaining. */
498         switch (nb_segs) {
499         default:
500                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
501                 if (unlikely(lkey == (uint32_t)-1)) {
502                         DEBUG("%p: unable to get MP <-> MR association",
503                               (void *)txq);
504                         return NULL;
505                 }
506                 mlx4_fill_tx_data_seg(dseg, lkey,
507                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
508                                       rte_cpu_to_be_32(sbuf->data_len ?
509                                                        sbuf->data_len :
510                                                        0x80000000));
511                 sbuf = sbuf->next;
512                 dseg++;
513                 nb_segs--;
514                 /* fallthrough */
515         case 2:
516                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
517                 if (unlikely(lkey == (uint32_t)-1)) {
518                         DEBUG("%p: unable to get MP <-> MR association",
519                               (void *)txq);
520                         return NULL;
521                 }
522                 mlx4_fill_tx_data_seg(dseg, lkey,
523                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
524                                       rte_cpu_to_be_32(sbuf->data_len ?
525                                                        sbuf->data_len :
526                                                        0x80000000));
527                 sbuf = sbuf->next;
528                 dseg++;
529                 nb_segs--;
530                 /* fallthrough */
531         case 1:
532                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
533                 if (unlikely(lkey == (uint32_t)-1)) {
534                         DEBUG("%p: unable to get MP <-> MR association",
535                               (void *)txq);
536                         return NULL;
537                 }
538                 mlx4_fill_tx_data_seg(dseg, lkey,
539                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
540                                       rte_cpu_to_be_32(sbuf->data_len ?
541                                                        sbuf->data_len :
542                                                        0x80000000));
543                 nb_segs--;
544                 if (nb_segs) {
545                         sbuf = sbuf->next;
546                         dseg++;
547                         goto txbb_head_seg;
548                 }
549                 /* fallthrough */
550         case 0:
551                 break;
552         }
553         /* Write the first DWORD of each TXBB save earlier. */
554         if (pv_counter) {
555                 /* Need a barrier here before writing the byte_count. */
556                 rte_io_wmb();
557                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
558                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
559         }
560         sq->remain_size -= wqe_size;
561         /* Align next WQE address to the next TXBB. */
562         return (volatile struct mlx4_wqe_ctrl_seg *)
563                 ((volatile uint8_t *)ctrl + wqe_size);
564 }
565
566 /**
567  * DPDK callback for Tx.
568  *
569  * @param dpdk_txq
570  *   Generic pointer to Tx queue structure.
571  * @param[in] pkts
572  *   Packets to transmit.
573  * @param pkts_n
574  *   Number of packets in array.
575  *
576  * @return
577  *   Number of packets successfully transmitted (<= pkts_n).
578  */
579 uint16_t
580 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
581 {
582         struct txq *txq = (struct txq *)dpdk_txq;
583         unsigned int elts_head = txq->elts_head;
584         const unsigned int elts_n = txq->elts_n;
585         const unsigned int elts_m = elts_n - 1;
586         unsigned int bytes_sent = 0;
587         unsigned int i;
588         unsigned int max;
589         struct mlx4_sq *sq = &txq->msq;
590         volatile struct mlx4_wqe_ctrl_seg *ctrl;
591         struct txq_elt *elt;
592
593         assert(txq->elts_comp_cd != 0);
594         if (likely(txq->elts_comp != 0))
595                 mlx4_txq_complete(txq, elts_m, sq);
596         max = (elts_n - (elts_head - txq->elts_tail));
597         assert(max >= 1);
598         assert(max <= elts_n);
599         /* Always leave one free entry in the ring. */
600         --max;
601         if (max > pkts_n)
602                 max = pkts_n;
603         elt = &(*txq->elts)[elts_head & elts_m];
604         /* First Tx burst element saves the next WQE control segment. */
605         ctrl = elt->wqe;
606         for (i = 0; (i != max); ++i) {
607                 struct rte_mbuf *buf = pkts[i];
608                 struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
609                 uint32_t owner_opcode = sq->owner_opcode;
610                 volatile struct mlx4_wqe_data_seg *dseg =
611                                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
612                 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
613                 union {
614                         uint32_t flags;
615                         uint16_t flags16[2];
616                 } srcrb;
617                 uint32_t lkey;
618
619                 /* Clean up old buffer. */
620                 if (likely(elt->buf != NULL)) {
621                         struct rte_mbuf *tmp = elt->buf;
622
623 #ifndef NDEBUG
624                         /* Poisoning. */
625                         memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
626 #endif
627                         /* Faster than rte_pktmbuf_free(). */
628                         do {
629                                 struct rte_mbuf *next = tmp->next;
630
631                                 rte_pktmbuf_free_seg(tmp);
632                                 tmp = next;
633                         } while (tmp != NULL);
634                 }
635                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
636                 if (buf->nb_segs == 1) {
637                         /* Validate WQE space in the send queue. */
638                         if (sq->remain_size < MLX4_TXBB_SIZE) {
639                                 elt->buf = NULL;
640                                 break;
641                         }
642                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
643                         if (unlikely(lkey == (uint32_t)-1)) {
644                                 /* MR does not exist. */
645                                 DEBUG("%p: unable to get MP <-> MR association",
646                                       (void *)txq);
647                                 elt->buf = NULL;
648                                 break;
649                         }
650                         mlx4_fill_tx_data_seg(dseg++, lkey,
651                                               rte_pktmbuf_mtod(buf, uintptr_t),
652                                               rte_cpu_to_be_32(buf->data_len));
653                         /* Set WQE size in 16-byte units. */
654                         ctrl->fence_size = 0x2;
655                         sq->remain_size -= MLX4_TXBB_SIZE;
656                         /* Align next WQE address to the next TXBB. */
657                         ctrl_next = ctrl + 0x4;
658                 } else {
659                         ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
660                         if (!ctrl_next) {
661                                 elt->buf = NULL;
662                                 break;
663                         }
664                 }
665                 /* Hold SQ ring wrap around. */
666                 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
667                         ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
668                                 ((volatile uint8_t *)ctrl_next - sq->size);
669                         /* Flip HW valid ownership. */
670                         sq->owner_opcode ^= 0x1 << MLX4_SQ_OWNER_BIT;
671                 }
672                 /*
673                  * For raw Ethernet, the SOLICIT flag is used to indicate
674                  * that no ICRC should be calculated.
675                  */
676                 if (--txq->elts_comp_cd == 0) {
677                         /* Save the completion burst end address. */
678                         elt_next->eocb = (volatile uint32_t *)ctrl_next;
679                         txq->elts_comp_cd = txq->elts_comp_cd_init;
680                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
681                                                MLX4_WQE_CTRL_CQ_UPDATE);
682                 } else {
683                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
684                 }
685                 /* Enable HW checksum offload if requested */
686                 if (txq->csum &&
687                     (buf->ol_flags &
688                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
689                         const uint64_t is_tunneled = (buf->ol_flags &
690                                                       (PKT_TX_TUNNEL_GRE |
691                                                        PKT_TX_TUNNEL_VXLAN));
692
693                         if (is_tunneled && txq->csum_l2tun) {
694                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
695                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
696                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
697                                         srcrb.flags |=
698                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
699                         } else {
700                                 srcrb.flags |=
701                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
702                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
703                         }
704                 }
705                 if (txq->lb) {
706                         /*
707                          * Copy destination MAC address to the WQE, this allows
708                          * loopback in eSwitch, so that VFs and PF can
709                          * communicate with each other.
710                          */
711                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
712                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
713                                               sizeof(uint16_t)));
714                 } else {
715                         ctrl->imm = 0;
716                 }
717                 ctrl->srcrb_flags = srcrb.flags;
718                 /*
719                  * Make sure descriptor is fully written before
720                  * setting ownership bit (because HW can start
721                  * executing as soon as we do).
722                  */
723                 rte_io_wmb();
724                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
725                 elt->buf = buf;
726                 bytes_sent += buf->pkt_len;
727                 ctrl = ctrl_next;
728                 elt = elt_next;
729         }
730         /* Take a shortcut if nothing must be sent. */
731         if (unlikely(i == 0))
732                 return 0;
733         /* Save WQE address of the next Tx burst element. */
734         elt->wqe = ctrl;
735         /* Increment send statistics counters. */
736         txq->stats.opackets += i;
737         txq->stats.obytes += bytes_sent;
738         /* Make sure that descriptors are written before doorbell record. */
739         rte_wmb();
740         /* Ring QP doorbell. */
741         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
742         txq->elts_head += i;
743         txq->elts_comp += i;
744         return i;
745 }
746
747 /**
748  * Translate Rx completion flags to packet type.
749  *
750  * @param[in] cqe
751  *   Pointer to CQE.
752  *
753  * @return
754  *   Packet type for struct rte_mbuf.
755  */
756 static inline uint32_t
757 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
758                    uint32_t l2tun_offload)
759 {
760         uint8_t idx = 0;
761         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
762         uint32_t status = rte_be_to_cpu_32(cqe->status);
763
764         /*
765          * The index to the array should have:
766          *  bit[7] - MLX4_CQE_L2_TUNNEL
767          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
768          */
769         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
770                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
771                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
772         /*
773          * The index to the array should have:
774          *  bit[5] - MLX4_CQE_STATUS_UDP
775          *  bit[4] - MLX4_CQE_STATUS_TCP
776          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
777          *  bit[2] - MLX4_CQE_STATUS_IPV6
778          *  bit[1] - MLX4_CQE_STATUS_IPV4F
779          *  bit[0] - MLX4_CQE_STATUS_IPV4
780          * giving a total of up to 256 entries.
781          */
782         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
783         return mlx4_ptype_table[idx];
784 }
785
786 /**
787  * Translate Rx completion flags to offload flags.
788  *
789  * @param flags
790  *   Rx completion flags returned by mlx4_cqe_flags().
791  * @param csum
792  *   Whether Rx checksums are enabled.
793  * @param csum_l2tun
794  *   Whether Rx L2 tunnel checksums are enabled.
795  *
796  * @return
797  *   Offload flags (ol_flags) in mbuf format.
798  */
799 static inline uint32_t
800 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
801 {
802         uint32_t ol_flags = 0;
803
804         if (csum)
805                 ol_flags |=
806                         mlx4_transpose(flags,
807                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
808                                        PKT_RX_IP_CKSUM_GOOD) |
809                         mlx4_transpose(flags,
810                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
811                                        PKT_RX_L4_CKSUM_GOOD);
812         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
813                 ol_flags |=
814                         mlx4_transpose(flags,
815                                        MLX4_CQE_L2_TUNNEL_IPOK,
816                                        PKT_RX_IP_CKSUM_GOOD) |
817                         mlx4_transpose(flags,
818                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
819                                        PKT_RX_L4_CKSUM_GOOD);
820         return ol_flags;
821 }
822
823 /**
824  * Extract checksum information from CQE flags.
825  *
826  * @param cqe
827  *   Pointer to CQE structure.
828  * @param csum
829  *   Whether Rx checksums are enabled.
830  * @param csum_l2tun
831  *   Whether Rx L2 tunnel checksums are enabled.
832  *
833  * @return
834  *   CQE checksum information.
835  */
836 static inline uint32_t
837 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
838 {
839         uint32_t flags = 0;
840
841         /*
842          * The relevant bits are in different locations on their
843          * CQE fields therefore we can join them in one 32bit
844          * variable.
845          */
846         if (csum)
847                 flags = (rte_be_to_cpu_32(cqe->status) &
848                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
849         if (csum_l2tun)
850                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
851                           (MLX4_CQE_L2_TUNNEL |
852                            MLX4_CQE_L2_TUNNEL_IPOK |
853                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
854                            MLX4_CQE_L2_TUNNEL_IPV4));
855         return flags;
856 }
857
858 /**
859  * Poll one CQE from CQ.
860  *
861  * @param rxq
862  *   Pointer to the receive queue structure.
863  * @param[out] out
864  *   Just polled CQE.
865  *
866  * @return
867  *   Number of bytes of the CQE, 0 in case there is no completion.
868  */
869 static unsigned int
870 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
871 {
872         int ret = 0;
873         volatile struct mlx4_cqe *cqe = NULL;
874         struct mlx4_cq *cq = &rxq->mcq;
875
876         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
877         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
878             !!(cq->cons_index & cq->cqe_cnt))
879                 goto out;
880         /*
881          * Make sure we read CQ entry contents after we've checked the
882          * ownership bit.
883          */
884         rte_rmb();
885         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
886         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
887                MLX4_CQE_OPCODE_ERROR);
888         ret = rte_be_to_cpu_32(cqe->byte_cnt);
889         ++cq->cons_index;
890 out:
891         *out = cqe;
892         return ret;
893 }
894
895 /**
896  * DPDK callback for Rx with scattered packets support.
897  *
898  * @param dpdk_rxq
899  *   Generic pointer to Rx queue structure.
900  * @param[out] pkts
901  *   Array to store received packets.
902  * @param pkts_n
903  *   Maximum number of packets in array.
904  *
905  * @return
906  *   Number of packets successfully received (<= pkts_n).
907  */
908 uint16_t
909 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
910 {
911         struct rxq *rxq = dpdk_rxq;
912         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
913         const uint16_t sges_n = rxq->sges_n;
914         struct rte_mbuf *pkt = NULL;
915         struct rte_mbuf *seg = NULL;
916         unsigned int i = 0;
917         uint32_t rq_ci = rxq->rq_ci << sges_n;
918         int len = 0;
919
920         while (pkts_n) {
921                 volatile struct mlx4_cqe *cqe;
922                 uint32_t idx = rq_ci & wr_cnt;
923                 struct rte_mbuf *rep = (*rxq->elts)[idx];
924                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
925
926                 /* Update the 'next' pointer of the previous segment. */
927                 if (pkt)
928                         seg->next = rep;
929                 seg = rep;
930                 rte_prefetch0(seg);
931                 rte_prefetch0(scat);
932                 rep = rte_mbuf_raw_alloc(rxq->mp);
933                 if (unlikely(rep == NULL)) {
934                         ++rxq->stats.rx_nombuf;
935                         if (!pkt) {
936                                 /*
937                                  * No buffers before we even started,
938                                  * bail out silently.
939                                  */
940                                 break;
941                         }
942                         while (pkt != seg) {
943                                 assert(pkt != (*rxq->elts)[idx]);
944                                 rep = pkt->next;
945                                 pkt->next = NULL;
946                                 pkt->nb_segs = 1;
947                                 rte_mbuf_raw_free(pkt);
948                                 pkt = rep;
949                         }
950                         break;
951                 }
952                 if (!pkt) {
953                         /* Looking for the new packet. */
954                         len = mlx4_cq_poll_one(rxq, &cqe);
955                         if (!len) {
956                                 rte_mbuf_raw_free(rep);
957                                 break;
958                         }
959                         if (unlikely(len < 0)) {
960                                 /* Rx error, packet is likely too large. */
961                                 rte_mbuf_raw_free(rep);
962                                 ++rxq->stats.idropped;
963                                 goto skip;
964                         }
965                         pkt = seg;
966                         /* Update packet information. */
967                         pkt->packet_type =
968                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
969                         pkt->ol_flags = PKT_RX_RSS_HASH;
970                         pkt->hash.rss = cqe->immed_rss_invalid;
971                         pkt->pkt_len = len;
972                         if (rxq->csum | rxq->csum_l2tun) {
973                                 uint32_t flags =
974                                         mlx4_cqe_flags(cqe,
975                                                        rxq->csum,
976                                                        rxq->csum_l2tun);
977
978                                 pkt->ol_flags =
979                                         rxq_cq_to_ol_flags(flags,
980                                                            rxq->csum,
981                                                            rxq->csum_l2tun);
982                         }
983                 }
984                 rep->nb_segs = 1;
985                 rep->port = rxq->port_id;
986                 rep->data_len = seg->data_len;
987                 rep->data_off = seg->data_off;
988                 (*rxq->elts)[idx] = rep;
989                 /*
990                  * Fill NIC descriptor with the new buffer. The lkey and size
991                  * of the buffers are already known, only the buffer address
992                  * changes.
993                  */
994                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
995                 if (len > seg->data_len) {
996                         len -= seg->data_len;
997                         ++pkt->nb_segs;
998                         ++rq_ci;
999                         continue;
1000                 }
1001                 /* The last segment. */
1002                 seg->data_len = len;
1003                 /* Increment bytes counter. */
1004                 rxq->stats.ibytes += pkt->pkt_len;
1005                 /* Return packet. */
1006                 *(pkts++) = pkt;
1007                 pkt = NULL;
1008                 --pkts_n;
1009                 ++i;
1010 skip:
1011                 /* Align consumer index to the next stride. */
1012                 rq_ci >>= sges_n;
1013                 ++rq_ci;
1014                 rq_ci <<= sges_n;
1015         }
1016         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1017                 return 0;
1018         /* Update the consumer index. */
1019         rxq->rq_ci = rq_ci >> sges_n;
1020         rte_wmb();
1021         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1022         *rxq->mcq.set_ci_db =
1023                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1024         /* Increment packets counter. */
1025         rxq->stats.ipackets += i;
1026         return i;
1027 }
1028
1029 /**
1030  * Dummy DPDK callback for Tx.
1031  *
1032  * This function is used to temporarily replace the real callback during
1033  * unsafe control operations on the queue, or in case of error.
1034  *
1035  * @param dpdk_txq
1036  *   Generic pointer to Tx queue structure.
1037  * @param[in] pkts
1038  *   Packets to transmit.
1039  * @param pkts_n
1040  *   Number of packets in array.
1041  *
1042  * @return
1043  *   Number of packets successfully transmitted (<= pkts_n).
1044  */
1045 uint16_t
1046 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1047 {
1048         (void)dpdk_txq;
1049         (void)pkts;
1050         (void)pkts_n;
1051         return 0;
1052 }
1053
1054 /**
1055  * Dummy DPDK callback for Rx.
1056  *
1057  * This function is used to temporarily replace the real callback during
1058  * unsafe control operations on the queue, or in case of error.
1059  *
1060  * @param dpdk_rxq
1061  *   Generic pointer to Rx queue structure.
1062  * @param[out] pkts
1063  *   Array to store received packets.
1064  * @param pkts_n
1065  *   Maximum number of packets in array.
1066  *
1067  * @return
1068  *   Number of packets successfully received (<= pkts_n).
1069  */
1070 uint16_t
1071 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1072 {
1073         (void)dpdk_rxq;
1074         (void)pkts;
1075         (void)pkts_n;
1076         return 0;
1077 }