net/mlx4: mitigate Tx send entry size calculations
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 /**
65  * Pointer-value pair structure used in tx_post_send for saving the first
66  * DWORD (32 byte) of a TXBB.
67  */
68 struct pv {
69         volatile struct mlx4_wqe_data_seg *dseg;
70         uint32_t val;
71 };
72
73 /** A table to translate Rx completion flags to packet type. */
74 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
75         /*
76          * The index to the array should have:
77          *  bit[7] - MLX4_CQE_L2_TUNNEL
78          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
79          *  bit[5] - MLX4_CQE_STATUS_UDP
80          *  bit[4] - MLX4_CQE_STATUS_TCP
81          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
82          *  bit[2] - MLX4_CQE_STATUS_IPV6
83          *  bit[1] - MLX4_CQE_STATUS_IPV4F
84          *  bit[0] - MLX4_CQE_STATUS_IPV4
85          * giving a total of up to 256 entries.
86          */
87         [0x00] = RTE_PTYPE_L2_ETHER,
88         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
89         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_FRAG,
91         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_FRAG,
93         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
94         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
95         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96                      RTE_PTYPE_L4_FRAG,
97         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP,
99         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP,
101         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP,
103         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
104                      RTE_PTYPE_L4_TCP,
105         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
106                      RTE_PTYPE_L4_TCP,
107         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108                      RTE_PTYPE_L4_TCP,
109         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_UDP,
111         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_UDP,
113         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
116                      RTE_PTYPE_L4_UDP,
117         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118                      RTE_PTYPE_L4_UDP,
119         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         /* Tunneled - L3 IPV6 */
122         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
125         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L4_FRAG,
128         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
133         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L3_IPV4_EXT,
135         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV4_EXT,
137         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
139         /* Tunneled - L3 IPV6, TCP */
140         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_TCP,
143         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_FRAG |
146                      RTE_PTYPE_INNER_L4_TCP,
147         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG |
150                      RTE_PTYPE_INNER_L4_TCP,
151         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
162                      RTE_PTYPE_INNER_L4_TCP,
163         /* Tunneled - L3 IPV6, UDP */
164         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_UDP,
167         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG |
174                      RTE_PTYPE_INNER_L4_UDP,
175         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV4_EXT |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
186                      RTE_PTYPE_INNER_L4_UDP,
187         /* Tunneled - L3 IPV4 */
188         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
189         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
191         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_FRAG,
194         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
199         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT,
201         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV4_EXT,
203         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT |
205                      RTE_PTYPE_INNER_L4_FRAG,
206         /* Tunneled - L3 IPV4, TCP */
207         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
209                      RTE_PTYPE_INNER_L4_TCP,
210         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_FRAG |
216                      RTE_PTYPE_INNER_L4_TCP,
217         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_FRAG |
220                      RTE_PTYPE_INNER_L4_TCP,
221         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV4_EXT |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
232                      RTE_PTYPE_INNER_L4_TCP,
233         /* Tunneled - L3 IPV4, UDP */
234         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
236                      RTE_PTYPE_INNER_L4_UDP,
237         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_FRAG |
243                      RTE_PTYPE_INNER_L4_UDP,
244         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246                      RTE_PTYPE_INNER_L4_FRAG |
247                      RTE_PTYPE_INNER_L4_UDP,
248         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
253         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
254                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
255         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
257                      RTE_PTYPE_INNER_L4_UDP,
258 };
259
260 /**
261  * Stamp TXBB burst so it won't be reused by the HW.
262  *
263  * Routine is used when freeing WQE used by the chip or when failing
264  * building an WQ entry has failed leaving partial information on the queue.
265  *
266  * @param sq
267  *   Pointer to the SQ structure.
268  * @param start
269  *   Pointer to the first TXBB to stamp.
270  * @param end
271  *   Pointer to the followed end TXBB to stamp.
272  *
273  * @return
274  *   Stamping burst size in byte units.
275  */
276 static uint32_t
277 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
278                          volatile uint32_t *end)
279 {
280         uint32_t stamp = sq->stamp;
281         int32_t size = (intptr_t)end - (intptr_t)start;
282
283         assert(start != end);
284         /* Hold SQ ring wrap around. */
285         if (size < 0) {
286                 size = (int32_t)sq->size + size;
287                 do {
288                         *start = stamp;
289                         start += MLX4_SQ_STAMP_DWORDS;
290                 } while (start != (volatile uint32_t *)sq->eob);
291                 start = (volatile uint32_t *)sq->buf;
292                 /* Flip invalid stamping ownership. */
293                 stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
294                 sq->stamp = stamp;
295                 if (start == end)
296                         return size;
297         }
298         do {
299                 *start = stamp;
300                 start += MLX4_SQ_STAMP_DWORDS;
301         } while (start != end);
302         return (uint32_t)size;
303 }
304
305 /**
306  * Manage Tx completions.
307  *
308  * When sending a burst, mlx4_tx_burst() posts several WRs.
309  * To improve performance, a completion event is only required once every
310  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
311  * for other WRs, but this information would not be used anyway.
312  *
313  * @param txq
314  *   Pointer to Tx queue structure.
315  */
316 static void
317 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
318                                   struct mlx4_sq *sq)
319 {
320         unsigned int elts_tail = txq->elts_tail;
321         struct mlx4_cq *cq = &txq->mcq;
322         volatile struct mlx4_cqe *cqe;
323         uint32_t completed;
324         uint32_t cons_index = cq->cons_index;
325         volatile uint32_t *first_txbb;
326
327         /*
328          * Traverse over all CQ entries reported and handle each WQ entry
329          * reported by them.
330          */
331         do {
332                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
333                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
334                     !!(cons_index & cq->cqe_cnt)))
335                         break;
336 #ifndef NDEBUG
337                 /*
338                  * Make sure we read the CQE after we read the ownership bit.
339                  */
340                 rte_io_rmb();
341                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
342                              MLX4_CQE_OPCODE_ERROR)) {
343                         volatile struct mlx4_err_cqe *cqe_err =
344                                 (volatile struct mlx4_err_cqe *)cqe;
345                         ERROR("%p CQE error - vendor syndrome: 0x%x"
346                               " syndrome: 0x%x\n",
347                               (void *)txq, cqe_err->vendor_err,
348                               cqe_err->syndrome);
349                         break;
350                 }
351 #endif /* NDEBUG */
352                 cons_index++;
353         } while (1);
354         completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
355         if (unlikely(!completed))
356                 return;
357         /* First stamping address is the end of the last one. */
358         first_txbb = (&(*txq->elts)[elts_tail])->eocb;
359         elts_tail += completed;
360         if (elts_tail >= elts_n)
361                 elts_tail -= elts_n;
362         /* The new tail element holds the end address. */
363         sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
364                 (&(*txq->elts)[elts_tail])->eocb);
365         /* Update CQ consumer index. */
366         cq->cons_index = cons_index;
367         *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
368         txq->elts_comp -= completed;
369         txq->elts_tail = elts_tail;
370 }
371
372 /**
373  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
374  * the cloned mbuf is allocated is returned instead.
375  *
376  * @param buf
377  *   Pointer to mbuf.
378  *
379  * @return
380  *   Memory pool where data is located for given mbuf.
381  */
382 static struct rte_mempool *
383 mlx4_txq_mb2mp(struct rte_mbuf *buf)
384 {
385         if (unlikely(RTE_MBUF_INDIRECT(buf)))
386                 return rte_mbuf_from_indirect(buf)->pool;
387         return buf->pool;
388 }
389
390 /**
391  * Write Tx data segment to the SQ.
392  *
393  * @param dseg
394  *   Pointer to data segment in SQ.
395  * @param lkey
396  *   Memory region lkey.
397  * @param addr
398  *   Data address.
399  * @param byte_count
400  *   Big endian bytes count of the data to send.
401  */
402 static inline void
403 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
404                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
405 {
406         dseg->addr = rte_cpu_to_be_64(addr);
407         dseg->lkey = rte_cpu_to_be_32(lkey);
408 #if RTE_CACHE_LINE_SIZE < 64
409         /*
410          * Need a barrier here before writing the byte_count
411          * fields to make sure that all the data is visible
412          * before the byte_count field is set.
413          * Otherwise, if the segment begins a new cacheline,
414          * the HCA prefetcher could grab the 64-byte chunk and
415          * get a valid (!= 0xffffffff) byte count but stale
416          * data, and end up sending the wrong data.
417          */
418         rte_io_wmb();
419 #endif /* RTE_CACHE_LINE_SIZE */
420         dseg->byte_count = byte_count;
421 }
422
423 /**
424  * Write data segments of multi-segment packet.
425  *
426  * @param buf
427  *   Pointer to the first packet mbuf.
428  * @param txq
429  *   Pointer to Tx queue structure.
430  * @param ctrl
431  *   Pointer to the WQE control segment.
432  *
433  * @return
434  *   Pointer to the next WQE control segment on success, NULL otherwise.
435  */
436 static volatile struct mlx4_wqe_ctrl_seg *
437 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
438                    volatile struct mlx4_wqe_ctrl_seg *ctrl)
439 {
440         struct pv *pv = (struct pv *)txq->bounce_buf;
441         struct mlx4_sq *sq = &txq->msq;
442         struct rte_mbuf *sbuf = buf;
443         uint32_t lkey;
444         int pv_counter = 0;
445         int nb_segs = buf->nb_segs;
446         uint32_t wqe_size;
447         volatile struct mlx4_wqe_data_seg *dseg =
448                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
449
450         ctrl->fence_size = 1 + nb_segs;
451         wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
452                              MLX4_TXBB_SIZE);
453         /* Validate WQE size and WQE space in the send queue. */
454         if (sq->remain_size < wqe_size ||
455             wqe_size > MLX4_MAX_WQE_SIZE)
456                 return NULL;
457         /*
458          * Fill the data segments with buffer information.
459          * First WQE TXBB head segment is always control segment,
460          * so jump to tail TXBB data segments code for the first
461          * WQE data segments filling.
462          */
463         goto txbb_tail_segs;
464 txbb_head_seg:
465         /* Memory region key (big endian) for this memory pool. */
466         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
467         if (unlikely(lkey == (uint32_t)-1)) {
468                 DEBUG("%p: unable to get MP <-> MR association",
469                       (void *)txq);
470                 return NULL;
471         }
472         /* Handle WQE wraparound. */
473         if (dseg >=
474                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
475                 dseg = (volatile struct mlx4_wqe_data_seg *)
476                         sq->buf;
477         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
478         dseg->lkey = rte_cpu_to_be_32(lkey);
479         /*
480          * This data segment starts at the beginning of a new
481          * TXBB, so we need to postpone its byte_count writing
482          * for later.
483          */
484         pv[pv_counter].dseg = dseg;
485         /*
486          * Zero length segment is treated as inline segment
487          * with zero data.
488          */
489         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
490                                                 sbuf->data_len : 0x80000000);
491         sbuf = sbuf->next;
492         dseg++;
493         nb_segs--;
494 txbb_tail_segs:
495         /* Jump to default if there are more than two segments remaining. */
496         switch (nb_segs) {
497         default:
498                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
499                 if (unlikely(lkey == (uint32_t)-1)) {
500                         DEBUG("%p: unable to get MP <-> MR association",
501                               (void *)txq);
502                         return NULL;
503                 }
504                 mlx4_fill_tx_data_seg(dseg, lkey,
505                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
506                                       rte_cpu_to_be_32(sbuf->data_len ?
507                                                        sbuf->data_len :
508                                                        0x80000000));
509                 sbuf = sbuf->next;
510                 dseg++;
511                 nb_segs--;
512                 /* fallthrough */
513         case 2:
514                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
515                 if (unlikely(lkey == (uint32_t)-1)) {
516                         DEBUG("%p: unable to get MP <-> MR association",
517                               (void *)txq);
518                         return NULL;
519                 }
520                 mlx4_fill_tx_data_seg(dseg, lkey,
521                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
522                                       rte_cpu_to_be_32(sbuf->data_len ?
523                                                        sbuf->data_len :
524                                                        0x80000000));
525                 sbuf = sbuf->next;
526                 dseg++;
527                 nb_segs--;
528                 /* fallthrough */
529         case 1:
530                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
531                 if (unlikely(lkey == (uint32_t)-1)) {
532                         DEBUG("%p: unable to get MP <-> MR association",
533                               (void *)txq);
534                         return NULL;
535                 }
536                 mlx4_fill_tx_data_seg(dseg, lkey,
537                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
538                                       rte_cpu_to_be_32(sbuf->data_len ?
539                                                        sbuf->data_len :
540                                                        0x80000000));
541                 nb_segs--;
542                 if (nb_segs) {
543                         sbuf = sbuf->next;
544                         dseg++;
545                         goto txbb_head_seg;
546                 }
547                 /* fallthrough */
548         case 0:
549                 break;
550         }
551         /* Write the first DWORD of each TXBB save earlier. */
552         if (pv_counter) {
553                 /* Need a barrier here before writing the byte_count. */
554                 rte_io_wmb();
555                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
556                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
557         }
558         sq->remain_size -= wqe_size;
559         /* Align next WQE address to the next TXBB. */
560         return (volatile struct mlx4_wqe_ctrl_seg *)
561                 ((volatile uint8_t *)ctrl + wqe_size);
562 }
563
564 /**
565  * DPDK callback for Tx.
566  *
567  * @param dpdk_txq
568  *   Generic pointer to Tx queue structure.
569  * @param[in] pkts
570  *   Packets to transmit.
571  * @param pkts_n
572  *   Number of packets in array.
573  *
574  * @return
575  *   Number of packets successfully transmitted (<= pkts_n).
576  */
577 uint16_t
578 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
579 {
580         struct txq *txq = (struct txq *)dpdk_txq;
581         unsigned int elts_head = txq->elts_head;
582         const unsigned int elts_n = txq->elts_n;
583         unsigned int bytes_sent = 0;
584         unsigned int i;
585         unsigned int max;
586         struct mlx4_sq *sq = &txq->msq;
587         volatile struct mlx4_wqe_ctrl_seg *ctrl;
588         struct txq_elt *elt;
589
590         assert(txq->elts_comp_cd != 0);
591         if (likely(txq->elts_comp != 0))
592                 mlx4_txq_complete(txq, elts_n, sq);
593         max = (elts_n - (elts_head - txq->elts_tail));
594         if (max > elts_n)
595                 max -= elts_n;
596         assert(max >= 1);
597         assert(max <= elts_n);
598         /* Always leave one free entry in the ring. */
599         --max;
600         if (max > pkts_n)
601                 max = pkts_n;
602         elt = &(*txq->elts)[elts_head];
603         /* First Tx burst element saves the next WQE control segment. */
604         ctrl = elt->wqe;
605         for (i = 0; (i != max); ++i) {
606                 struct rte_mbuf *buf = pkts[i];
607                 unsigned int elts_head_next =
608                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
609                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
610                 uint32_t owner_opcode = sq->owner_opcode;
611                 volatile struct mlx4_wqe_data_seg *dseg =
612                                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
613                 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
614                 union {
615                         uint32_t flags;
616                         uint16_t flags16[2];
617                 } srcrb;
618                 uint32_t lkey;
619
620                 /* Clean up old buffer. */
621                 if (likely(elt->buf != NULL)) {
622                         struct rte_mbuf *tmp = elt->buf;
623
624 #ifndef NDEBUG
625                         /* Poisoning. */
626                         memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
627 #endif
628                         /* Faster than rte_pktmbuf_free(). */
629                         do {
630                                 struct rte_mbuf *next = tmp->next;
631
632                                 rte_pktmbuf_free_seg(tmp);
633                                 tmp = next;
634                         } while (tmp != NULL);
635                 }
636                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
637                 if (buf->nb_segs == 1) {
638                         /* Validate WQE space in the send queue. */
639                         if (sq->remain_size < MLX4_TXBB_SIZE) {
640                                 elt->buf = NULL;
641                                 break;
642                         }
643                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
644                         if (unlikely(lkey == (uint32_t)-1)) {
645                                 /* MR does not exist. */
646                                 DEBUG("%p: unable to get MP <-> MR association",
647                                       (void *)txq);
648                                 elt->buf = NULL;
649                                 break;
650                         }
651                         mlx4_fill_tx_data_seg(dseg++, lkey,
652                                               rte_pktmbuf_mtod(buf, uintptr_t),
653                                               rte_cpu_to_be_32(buf->data_len));
654                         /* Set WQE size in 16-byte units. */
655                         ctrl->fence_size = 0x2;
656                         sq->remain_size -= MLX4_TXBB_SIZE;
657                         /* Align next WQE address to the next TXBB. */
658                         ctrl_next = ctrl + 0x4;
659                 } else {
660                         ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
661                         if (!ctrl_next) {
662                                 elt->buf = NULL;
663                                 break;
664                         }
665                 }
666                 /* Hold SQ ring wrap around. */
667                 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
668                         ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
669                                 ((volatile uint8_t *)ctrl_next - sq->size);
670                         /* Flip HW valid ownership. */
671                         sq->owner_opcode ^= 0x1 << MLX4_SQ_OWNER_BIT;
672                 }
673                 /*
674                  * For raw Ethernet, the SOLICIT flag is used to indicate
675                  * that no ICRC should be calculated.
676                  */
677                 if (--txq->elts_comp_cd == 0) {
678                         /* Save the completion burst end address. */
679                         elt_next->eocb = (volatile uint32_t *)ctrl_next;
680                         txq->elts_comp_cd = txq->elts_comp_cd_init;
681                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
682                                                MLX4_WQE_CTRL_CQ_UPDATE);
683                 } else {
684                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
685                 }
686                 /* Enable HW checksum offload if requested */
687                 if (txq->csum &&
688                     (buf->ol_flags &
689                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
690                         const uint64_t is_tunneled = (buf->ol_flags &
691                                                       (PKT_TX_TUNNEL_GRE |
692                                                        PKT_TX_TUNNEL_VXLAN));
693
694                         if (is_tunneled && txq->csum_l2tun) {
695                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
696                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
697                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
698                                         srcrb.flags |=
699                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
700                         } else {
701                                 srcrb.flags |=
702                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
703                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
704                         }
705                 }
706                 if (txq->lb) {
707                         /*
708                          * Copy destination MAC address to the WQE, this allows
709                          * loopback in eSwitch, so that VFs and PF can
710                          * communicate with each other.
711                          */
712                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
713                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
714                                               sizeof(uint16_t)));
715                 } else {
716                         ctrl->imm = 0;
717                 }
718                 ctrl->srcrb_flags = srcrb.flags;
719                 /*
720                  * Make sure descriptor is fully written before
721                  * setting ownership bit (because HW can start
722                  * executing as soon as we do).
723                  */
724                 rte_io_wmb();
725                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
726                 elt->buf = buf;
727                 bytes_sent += buf->pkt_len;
728                 elts_head = elts_head_next;
729                 ctrl = ctrl_next;
730                 elt = elt_next;
731         }
732         /* Take a shortcut if nothing must be sent. */
733         if (unlikely(i == 0))
734                 return 0;
735         /* Save WQE address of the next Tx burst element. */
736         elt->wqe = ctrl;
737         /* Increment send statistics counters. */
738         txq->stats.opackets += i;
739         txq->stats.obytes += bytes_sent;
740         /* Make sure that descriptors are written before doorbell record. */
741         rte_wmb();
742         /* Ring QP doorbell. */
743         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
744         txq->elts_head = elts_head;
745         txq->elts_comp += i;
746         return i;
747 }
748
749 /**
750  * Translate Rx completion flags to packet type.
751  *
752  * @param[in] cqe
753  *   Pointer to CQE.
754  *
755  * @return
756  *   Packet type for struct rte_mbuf.
757  */
758 static inline uint32_t
759 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
760                    uint32_t l2tun_offload)
761 {
762         uint8_t idx = 0;
763         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
764         uint32_t status = rte_be_to_cpu_32(cqe->status);
765
766         /*
767          * The index to the array should have:
768          *  bit[7] - MLX4_CQE_L2_TUNNEL
769          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
770          */
771         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
772                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
773                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
774         /*
775          * The index to the array should have:
776          *  bit[5] - MLX4_CQE_STATUS_UDP
777          *  bit[4] - MLX4_CQE_STATUS_TCP
778          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
779          *  bit[2] - MLX4_CQE_STATUS_IPV6
780          *  bit[1] - MLX4_CQE_STATUS_IPV4F
781          *  bit[0] - MLX4_CQE_STATUS_IPV4
782          * giving a total of up to 256 entries.
783          */
784         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
785         return mlx4_ptype_table[idx];
786 }
787
788 /**
789  * Translate Rx completion flags to offload flags.
790  *
791  * @param flags
792  *   Rx completion flags returned by mlx4_cqe_flags().
793  * @param csum
794  *   Whether Rx checksums are enabled.
795  * @param csum_l2tun
796  *   Whether Rx L2 tunnel checksums are enabled.
797  *
798  * @return
799  *   Offload flags (ol_flags) in mbuf format.
800  */
801 static inline uint32_t
802 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
803 {
804         uint32_t ol_flags = 0;
805
806         if (csum)
807                 ol_flags |=
808                         mlx4_transpose(flags,
809                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
810                                        PKT_RX_IP_CKSUM_GOOD) |
811                         mlx4_transpose(flags,
812                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
813                                        PKT_RX_L4_CKSUM_GOOD);
814         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
815                 ol_flags |=
816                         mlx4_transpose(flags,
817                                        MLX4_CQE_L2_TUNNEL_IPOK,
818                                        PKT_RX_IP_CKSUM_GOOD) |
819                         mlx4_transpose(flags,
820                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
821                                        PKT_RX_L4_CKSUM_GOOD);
822         return ol_flags;
823 }
824
825 /**
826  * Extract checksum information from CQE flags.
827  *
828  * @param cqe
829  *   Pointer to CQE structure.
830  * @param csum
831  *   Whether Rx checksums are enabled.
832  * @param csum_l2tun
833  *   Whether Rx L2 tunnel checksums are enabled.
834  *
835  * @return
836  *   CQE checksum information.
837  */
838 static inline uint32_t
839 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
840 {
841         uint32_t flags = 0;
842
843         /*
844          * The relevant bits are in different locations on their
845          * CQE fields therefore we can join them in one 32bit
846          * variable.
847          */
848         if (csum)
849                 flags = (rte_be_to_cpu_32(cqe->status) &
850                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
851         if (csum_l2tun)
852                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
853                           (MLX4_CQE_L2_TUNNEL |
854                            MLX4_CQE_L2_TUNNEL_IPOK |
855                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
856                            MLX4_CQE_L2_TUNNEL_IPV4));
857         return flags;
858 }
859
860 /**
861  * Poll one CQE from CQ.
862  *
863  * @param rxq
864  *   Pointer to the receive queue structure.
865  * @param[out] out
866  *   Just polled CQE.
867  *
868  * @return
869  *   Number of bytes of the CQE, 0 in case there is no completion.
870  */
871 static unsigned int
872 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
873 {
874         int ret = 0;
875         volatile struct mlx4_cqe *cqe = NULL;
876         struct mlx4_cq *cq = &rxq->mcq;
877
878         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
879         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
880             !!(cq->cons_index & cq->cqe_cnt))
881                 goto out;
882         /*
883          * Make sure we read CQ entry contents after we've checked the
884          * ownership bit.
885          */
886         rte_rmb();
887         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
888         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
889                MLX4_CQE_OPCODE_ERROR);
890         ret = rte_be_to_cpu_32(cqe->byte_cnt);
891         ++cq->cons_index;
892 out:
893         *out = cqe;
894         return ret;
895 }
896
897 /**
898  * DPDK callback for Rx with scattered packets support.
899  *
900  * @param dpdk_rxq
901  *   Generic pointer to Rx queue structure.
902  * @param[out] pkts
903  *   Array to store received packets.
904  * @param pkts_n
905  *   Maximum number of packets in array.
906  *
907  * @return
908  *   Number of packets successfully received (<= pkts_n).
909  */
910 uint16_t
911 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
912 {
913         struct rxq *rxq = dpdk_rxq;
914         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
915         const uint16_t sges_n = rxq->sges_n;
916         struct rte_mbuf *pkt = NULL;
917         struct rte_mbuf *seg = NULL;
918         unsigned int i = 0;
919         uint32_t rq_ci = rxq->rq_ci << sges_n;
920         int len = 0;
921
922         while (pkts_n) {
923                 volatile struct mlx4_cqe *cqe;
924                 uint32_t idx = rq_ci & wr_cnt;
925                 struct rte_mbuf *rep = (*rxq->elts)[idx];
926                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
927
928                 /* Update the 'next' pointer of the previous segment. */
929                 if (pkt)
930                         seg->next = rep;
931                 seg = rep;
932                 rte_prefetch0(seg);
933                 rte_prefetch0(scat);
934                 rep = rte_mbuf_raw_alloc(rxq->mp);
935                 if (unlikely(rep == NULL)) {
936                         ++rxq->stats.rx_nombuf;
937                         if (!pkt) {
938                                 /*
939                                  * No buffers before we even started,
940                                  * bail out silently.
941                                  */
942                                 break;
943                         }
944                         while (pkt != seg) {
945                                 assert(pkt != (*rxq->elts)[idx]);
946                                 rep = pkt->next;
947                                 pkt->next = NULL;
948                                 pkt->nb_segs = 1;
949                                 rte_mbuf_raw_free(pkt);
950                                 pkt = rep;
951                         }
952                         break;
953                 }
954                 if (!pkt) {
955                         /* Looking for the new packet. */
956                         len = mlx4_cq_poll_one(rxq, &cqe);
957                         if (!len) {
958                                 rte_mbuf_raw_free(rep);
959                                 break;
960                         }
961                         if (unlikely(len < 0)) {
962                                 /* Rx error, packet is likely too large. */
963                                 rte_mbuf_raw_free(rep);
964                                 ++rxq->stats.idropped;
965                                 goto skip;
966                         }
967                         pkt = seg;
968                         /* Update packet information. */
969                         pkt->packet_type =
970                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
971                         pkt->ol_flags = PKT_RX_RSS_HASH;
972                         pkt->hash.rss = cqe->immed_rss_invalid;
973                         pkt->pkt_len = len;
974                         if (rxq->csum | rxq->csum_l2tun) {
975                                 uint32_t flags =
976                                         mlx4_cqe_flags(cqe,
977                                                        rxq->csum,
978                                                        rxq->csum_l2tun);
979
980                                 pkt->ol_flags =
981                                         rxq_cq_to_ol_flags(flags,
982                                                            rxq->csum,
983                                                            rxq->csum_l2tun);
984                         }
985                 }
986                 rep->nb_segs = 1;
987                 rep->port = rxq->port_id;
988                 rep->data_len = seg->data_len;
989                 rep->data_off = seg->data_off;
990                 (*rxq->elts)[idx] = rep;
991                 /*
992                  * Fill NIC descriptor with the new buffer. The lkey and size
993                  * of the buffers are already known, only the buffer address
994                  * changes.
995                  */
996                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
997                 if (len > seg->data_len) {
998                         len -= seg->data_len;
999                         ++pkt->nb_segs;
1000                         ++rq_ci;
1001                         continue;
1002                 }
1003                 /* The last segment. */
1004                 seg->data_len = len;
1005                 /* Increment bytes counter. */
1006                 rxq->stats.ibytes += pkt->pkt_len;
1007                 /* Return packet. */
1008                 *(pkts++) = pkt;
1009                 pkt = NULL;
1010                 --pkts_n;
1011                 ++i;
1012 skip:
1013                 /* Align consumer index to the next stride. */
1014                 rq_ci >>= sges_n;
1015                 ++rq_ci;
1016                 rq_ci <<= sges_n;
1017         }
1018         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1019                 return 0;
1020         /* Update the consumer index. */
1021         rxq->rq_ci = rq_ci >> sges_n;
1022         rte_wmb();
1023         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1024         *rxq->mcq.set_ci_db =
1025                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1026         /* Increment packets counter. */
1027         rxq->stats.ipackets += i;
1028         return i;
1029 }
1030
1031 /**
1032  * Dummy DPDK callback for Tx.
1033  *
1034  * This function is used to temporarily replace the real callback during
1035  * unsafe control operations on the queue, or in case of error.
1036  *
1037  * @param dpdk_txq
1038  *   Generic pointer to Tx queue structure.
1039  * @param[in] pkts
1040  *   Packets to transmit.
1041  * @param pkts_n
1042  *   Number of packets in array.
1043  *
1044  * @return
1045  *   Number of packets successfully transmitted (<= pkts_n).
1046  */
1047 uint16_t
1048 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1049 {
1050         (void)dpdk_txq;
1051         (void)pkts;
1052         (void)pkts_n;
1053         return 0;
1054 }
1055
1056 /**
1057  * Dummy DPDK callback for Rx.
1058  *
1059  * This function is used to temporarily replace the real callback during
1060  * unsafe control operations on the queue, or in case of error.
1061  *
1062  * @param dpdk_rxq
1063  *   Generic pointer to Rx queue structure.
1064  * @param[out] pkts
1065  *   Array to store received packets.
1066  * @param pkts_n
1067  *   Maximum number of packets in array.
1068  *
1069  * @return
1070  *   Number of packets successfully received (<= pkts_n).
1071  */
1072 uint16_t
1073 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1074 {
1075         (void)dpdk_rxq;
1076         (void)pkts;
1077         (void)pkts_n;
1078         return 0;
1079 }