net/mlx4: optimize Tx multi-segment case
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 #define WQE_ONE_DATA_SEG_SIZE \
65         (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
66
67 /**
68  * Pointer-value pair structure used in tx_post_send for saving the first
69  * DWORD (32 byte) of a TXBB.
70  */
71 struct pv {
72         volatile struct mlx4_wqe_data_seg *dseg;
73         uint32_t val;
74 };
75
76 /** A table to translate Rx completion flags to packet type. */
77 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
78         /*
79          * The index to the array should have:
80          *  bit[7] - MLX4_CQE_L2_TUNNEL
81          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
82          *  bit[5] - MLX4_CQE_STATUS_UDP
83          *  bit[4] - MLX4_CQE_STATUS_TCP
84          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
85          *  bit[2] - MLX4_CQE_STATUS_IPV6
86          *  bit[1] - MLX4_CQE_STATUS_IPV4F
87          *  bit[0] - MLX4_CQE_STATUS_IPV4
88          * giving a total of up to 256 entries.
89          */
90         [0x00] = RTE_PTYPE_L2_ETHER,
91         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
92         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG,
94         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
95                      RTE_PTYPE_L4_FRAG,
96         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
97         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
98         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
99                      RTE_PTYPE_L4_FRAG,
100         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP,
102         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP,
104         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_TCP,
106         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107                      RTE_PTYPE_L4_TCP,
108         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109                      RTE_PTYPE_L4_TCP,
110         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
111                      RTE_PTYPE_L4_TCP,
112         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_UDP,
114         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_UDP,
116         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_UDP,
118         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
119                      RTE_PTYPE_L4_UDP,
120         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
121                      RTE_PTYPE_L4_UDP,
122         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
123                      RTE_PTYPE_L4_UDP,
124         /* Tunneled - L3 IPV6 */
125         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
126         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
128         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_FRAG,
134         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
136         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L3_IPV4_EXT,
138         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV4_EXT,
140         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
142         /* Tunneled - L3 IPV6, TCP */
143         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_TCP,
146         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_FRAG |
149                      RTE_PTYPE_INNER_L4_TCP,
150         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT |
162                      RTE_PTYPE_INNER_L4_TCP,
163         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
165                      RTE_PTYPE_INNER_L4_TCP,
166         /* Tunneled - L3 IPV6, UDP */
167         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_UDP,
170         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L4_FRAG |
173                      RTE_PTYPE_INNER_L4_UDP,
174         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_FRAG |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT |
186                      RTE_PTYPE_INNER_L4_UDP,
187         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
189                      RTE_PTYPE_INNER_L4_UDP,
190         /* Tunneled - L3 IPV4 */
191         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
192         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
194         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_FRAG,
200         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
202         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L3_IPV4_EXT,
204         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L3_IPV4_EXT,
206         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT |
208                      RTE_PTYPE_INNER_L4_FRAG,
209         /* Tunneled - L3 IPV4, TCP */
210         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_TCP,
216         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L4_FRAG |
219                      RTE_PTYPE_INNER_L4_TCP,
220         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
221                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L4_FRAG |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT |
232                      RTE_PTYPE_INNER_L4_TCP,
233         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
234                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
235                      RTE_PTYPE_INNER_L4_TCP,
236         /* Tunneled - L3 IPV4, UDP */
237         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_UDP,
243         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
244                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L4_FRAG |
246                      RTE_PTYPE_INNER_L4_UDP,
247         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
248                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L4_FRAG |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
253                      RTE_PTYPE_INNER_L4_UDP,
254         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
255                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
256         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
257                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
258         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
259                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
260                      RTE_PTYPE_INNER_L4_UDP,
261 };
262
263 /**
264  * Stamp a WQE so it won't be reused by the HW.
265  *
266  * Routine is used when freeing WQE used by the chip or when failing
267  * building an WQ entry has failed leaving partial information on the queue.
268  *
269  * @param sq
270  *   Pointer to the SQ structure.
271  * @param index
272  *   Index of the freed WQE.
273  * @param num_txbbs
274  *   Number of blocks to stamp.
275  *   If < 0 the routine will use the size written in the WQ entry.
276  * @param owner
277  *   The value of the WQE owner bit to use in the stamp.
278  *
279  * @return
280  *   The number of Tx basic blocs (TXBB) the WQE contained.
281  */
282 static int
283 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
284 {
285         uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
286                                           (!!owner << MLX4_SQ_STAMP_SHIFT));
287         volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
288                                                 (index & sq->txbb_cnt_mask));
289         volatile uint32_t *ptr = (volatile uint32_t *)wqe;
290         int i;
291         int txbbs_size;
292         int num_txbbs;
293
294         /* Extract the size from the control segment of the WQE. */
295         num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
296                                          wqe)->fence_size & 0x3f) << 4);
297         txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
298         /* Optimize the common case when there is no wrap-around. */
299         if (wqe + txbbs_size <= sq->eob) {
300                 /* Stamp the freed descriptor. */
301                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
302                         *ptr = stamp;
303                         ptr += MLX4_SQ_STAMP_DWORDS;
304                 }
305         } else {
306                 /* Stamp the freed descriptor. */
307                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
308                         *ptr = stamp;
309                         ptr += MLX4_SQ_STAMP_DWORDS;
310                         if ((volatile uint8_t *)ptr >= sq->eob) {
311                                 ptr = (volatile uint32_t *)sq->buf;
312                                 stamp ^= RTE_BE32(0x80000000);
313                         }
314                 }
315         }
316         return num_txbbs;
317 }
318
319 /**
320  * Manage Tx completions.
321  *
322  * When sending a burst, mlx4_tx_burst() posts several WRs.
323  * To improve performance, a completion event is only required once every
324  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
325  * for other WRs, but this information would not be used anyway.
326  *
327  * @param txq
328  *   Pointer to Tx queue structure.
329  *
330  * @return
331  *   0 on success, -1 on failure.
332  */
333 static int
334 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
335                                   struct mlx4_sq *sq)
336 {
337         unsigned int elts_comp = txq->elts_comp;
338         unsigned int elts_tail = txq->elts_tail;
339         unsigned int sq_tail = sq->tail;
340         struct mlx4_cq *cq = &txq->mcq;
341         volatile struct mlx4_cqe *cqe;
342         uint32_t cons_index = cq->cons_index;
343         uint16_t new_index;
344         uint16_t nr_txbbs = 0;
345         int pkts = 0;
346
347         /*
348          * Traverse over all CQ entries reported and handle each WQ entry
349          * reported by them.
350          */
351         do {
352                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
353                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
354                     !!(cons_index & cq->cqe_cnt)))
355                         break;
356                 /*
357                  * Make sure we read the CQE after we read the ownership bit.
358                  */
359                 rte_io_rmb();
360 #ifndef NDEBUG
361                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
362                              MLX4_CQE_OPCODE_ERROR)) {
363                         volatile struct mlx4_err_cqe *cqe_err =
364                                 (volatile struct mlx4_err_cqe *)cqe;
365                         ERROR("%p CQE error - vendor syndrome: 0x%x"
366                               " syndrome: 0x%x\n",
367                               (void *)txq, cqe_err->vendor_err,
368                               cqe_err->syndrome);
369                 }
370 #endif /* NDEBUG */
371                 /* Get WQE index reported in the CQE. */
372                 new_index =
373                         rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
374                 do {
375                         /* Free next descriptor. */
376                         sq_tail += nr_txbbs;
377                         nr_txbbs =
378                                 mlx4_txq_stamp_freed_wqe(sq,
379                                      sq_tail & sq->txbb_cnt_mask,
380                                      !!(sq_tail & sq->txbb_cnt));
381                         pkts++;
382                 } while ((sq_tail & sq->txbb_cnt_mask) != new_index);
383                 cons_index++;
384         } while (1);
385         if (unlikely(pkts == 0))
386                 return 0;
387         /* Update CQ. */
388         cq->cons_index = cons_index;
389         *cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
390         sq->tail = sq_tail + nr_txbbs;
391         /* Update the list of packets posted for transmission. */
392         elts_comp -= pkts;
393         assert(elts_comp <= txq->elts_comp);
394         /*
395          * Assume completion status is successful as nothing can be done about
396          * it anyway.
397          */
398         elts_tail += pkts;
399         if (elts_tail >= elts_n)
400                 elts_tail -= elts_n;
401         txq->elts_tail = elts_tail;
402         txq->elts_comp = elts_comp;
403         return 0;
404 }
405
406 /**
407  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
408  * the cloned mbuf is allocated is returned instead.
409  *
410  * @param buf
411  *   Pointer to mbuf.
412  *
413  * @return
414  *   Memory pool where data is located for given mbuf.
415  */
416 static struct rte_mempool *
417 mlx4_txq_mb2mp(struct rte_mbuf *buf)
418 {
419         if (unlikely(RTE_MBUF_INDIRECT(buf)))
420                 return rte_mbuf_from_indirect(buf)->pool;
421         return buf->pool;
422 }
423
424 /**
425  * Write Tx data segment to the SQ.
426  *
427  * @param dseg
428  *   Pointer to data segment in SQ.
429  * @param lkey
430  *   Memory region lkey.
431  * @param addr
432  *   Data address.
433  * @param byte_count
434  *   Big endian bytes count of the data to send.
435  */
436 static inline void
437 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
438                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
439 {
440         dseg->addr = rte_cpu_to_be_64(addr);
441         dseg->lkey = rte_cpu_to_be_32(lkey);
442 #if RTE_CACHE_LINE_SIZE < 64
443         /*
444          * Need a barrier here before writing the byte_count
445          * fields to make sure that all the data is visible
446          * before the byte_count field is set.
447          * Otherwise, if the segment begins a new cacheline,
448          * the HCA prefetcher could grab the 64-byte chunk and
449          * get a valid (!= 0xffffffff) byte count but stale
450          * data, and end up sending the wrong data.
451          */
452         rte_io_wmb();
453 #endif /* RTE_CACHE_LINE_SIZE */
454         dseg->byte_count = byte_count;
455 }
456
457 static int
458 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
459                    volatile struct mlx4_wqe_ctrl_seg **pctrl)
460 {
461         int wqe_real_size;
462         int nr_txbbs;
463         struct pv *pv = (struct pv *)txq->bounce_buf;
464         struct mlx4_sq *sq = &txq->msq;
465         uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
466         volatile struct mlx4_wqe_ctrl_seg *ctrl;
467         volatile struct mlx4_wqe_data_seg *dseg;
468         struct rte_mbuf *sbuf = buf;
469         uint32_t lkey;
470         int pv_counter = 0;
471         int nb_segs = buf->nb_segs;
472
473         /* Calculate the needed work queue entry size for this packet. */
474         wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
475                 nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
476         nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
477         /*
478          * Check that there is room for this WQE in the send queue and that
479          * the WQE size is legal.
480          */
481         if (((sq->head - sq->tail) + nr_txbbs +
482                                 sq->headroom_txbbs) >= sq->txbb_cnt ||
483                         nr_txbbs > MLX4_MAX_WQE_TXBBS) {
484                 return -1;
485         }
486         /* Get the control and data entries of the WQE. */
487         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
488                         mlx4_get_send_wqe(sq, head_idx);
489         dseg = (volatile struct mlx4_wqe_data_seg *)
490                         ((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
491         *pctrl = ctrl;
492         /*
493          * Fill the data segments with buffer information.
494          * First WQE TXBB head segment is always control segment,
495          * so jump to tail TXBB data segments code for the first
496          * WQE data segments filling.
497          */
498         goto txbb_tail_segs;
499 txbb_head_seg:
500         /* Memory region key (big endian) for this memory pool. */
501         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
502         if (unlikely(lkey == (uint32_t)-1)) {
503                 DEBUG("%p: unable to get MP <-> MR association",
504                       (void *)txq);
505                 return -1;
506         }
507         /* Handle WQE wraparound. */
508         if (dseg >=
509                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
510                 dseg = (volatile struct mlx4_wqe_data_seg *)
511                         sq->buf;
512         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
513         dseg->lkey = rte_cpu_to_be_32(lkey);
514         /*
515          * This data segment starts at the beginning of a new
516          * TXBB, so we need to postpone its byte_count writing
517          * for later.
518          */
519         pv[pv_counter].dseg = dseg;
520         /*
521          * Zero length segment is treated as inline segment
522          * with zero data.
523          */
524         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
525                                                 sbuf->data_len : 0x80000000);
526         sbuf = sbuf->next;
527         dseg++;
528         nb_segs--;
529 txbb_tail_segs:
530         /* Jump to default if there are more than two segments remaining. */
531         switch (nb_segs) {
532         default:
533                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
534                 if (unlikely(lkey == (uint32_t)-1)) {
535                         DEBUG("%p: unable to get MP <-> MR association",
536                               (void *)txq);
537                         return -1;
538                 }
539                 mlx4_fill_tx_data_seg(dseg, lkey,
540                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
541                                       rte_cpu_to_be_32(sbuf->data_len ?
542                                                        sbuf->data_len :
543                                                        0x80000000));
544                 sbuf = sbuf->next;
545                 dseg++;
546                 nb_segs--;
547                 /* fallthrough */
548         case 2:
549                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
550                 if (unlikely(lkey == (uint32_t)-1)) {
551                         DEBUG("%p: unable to get MP <-> MR association",
552                               (void *)txq);
553                         return -1;
554                 }
555                 mlx4_fill_tx_data_seg(dseg, lkey,
556                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
557                                       rte_cpu_to_be_32(sbuf->data_len ?
558                                                        sbuf->data_len :
559                                                        0x80000000));
560                 sbuf = sbuf->next;
561                 dseg++;
562                 nb_segs--;
563                 /* fallthrough */
564         case 1:
565                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
566                 if (unlikely(lkey == (uint32_t)-1)) {
567                         DEBUG("%p: unable to get MP <-> MR association",
568                               (void *)txq);
569                         return -1;
570                 }
571                 mlx4_fill_tx_data_seg(dseg, lkey,
572                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
573                                       rte_cpu_to_be_32(sbuf->data_len ?
574                                                        sbuf->data_len :
575                                                        0x80000000));
576                 nb_segs--;
577                 if (nb_segs) {
578                         sbuf = sbuf->next;
579                         dseg++;
580                         goto txbb_head_seg;
581                 }
582                 /* fallthrough */
583         case 0:
584                 break;
585         }
586         /* Write the first DWORD of each TXBB save earlier. */
587         if (pv_counter) {
588                 /* Need a barrier here before writing the byte_count. */
589                 rte_io_wmb();
590                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
591                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
592         }
593         /* Fill the control parameters for this packet. */
594         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
595         return nr_txbbs;
596 }
597
598 /**
599  * DPDK callback for Tx.
600  *
601  * @param dpdk_txq
602  *   Generic pointer to Tx queue structure.
603  * @param[in] pkts
604  *   Packets to transmit.
605  * @param pkts_n
606  *   Number of packets in array.
607  *
608  * @return
609  *   Number of packets successfully transmitted (<= pkts_n).
610  */
611 uint16_t
612 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
613 {
614         struct txq *txq = (struct txq *)dpdk_txq;
615         unsigned int elts_head = txq->elts_head;
616         const unsigned int elts_n = txq->elts_n;
617         unsigned int bytes_sent = 0;
618         unsigned int i;
619         unsigned int max;
620         struct mlx4_sq *sq = &txq->msq;
621         int nr_txbbs;
622
623         assert(txq->elts_comp_cd != 0);
624         if (likely(txq->elts_comp != 0))
625                 mlx4_txq_complete(txq, elts_n, sq);
626         max = (elts_n - (elts_head - txq->elts_tail));
627         if (max > elts_n)
628                 max -= elts_n;
629         assert(max >= 1);
630         assert(max <= elts_n);
631         /* Always leave one free entry in the ring. */
632         --max;
633         if (max > pkts_n)
634                 max = pkts_n;
635         for (i = 0; (i != max); ++i) {
636                 struct rte_mbuf *buf = pkts[i];
637                 unsigned int elts_head_next =
638                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
639                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
640                 struct txq_elt *elt = &(*txq->elts)[elts_head];
641                 uint32_t owner_opcode = MLX4_OPCODE_SEND;
642                 volatile struct mlx4_wqe_ctrl_seg *ctrl;
643                 volatile struct mlx4_wqe_data_seg *dseg;
644                 union {
645                         uint32_t flags;
646                         uint16_t flags16[2];
647                 } srcrb;
648                 uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
649                 uint32_t lkey;
650
651                 /* Clean up old buffer. */
652                 if (likely(elt->buf != NULL)) {
653                         struct rte_mbuf *tmp = elt->buf;
654
655 #ifndef NDEBUG
656                         /* Poisoning. */
657                         memset(elt, 0x66, sizeof(*elt));
658 #endif
659                         /* Faster than rte_pktmbuf_free(). */
660                         do {
661                                 struct rte_mbuf *next = tmp->next;
662
663                                 rte_pktmbuf_free_seg(tmp);
664                                 tmp = next;
665                         } while (tmp != NULL);
666                 }
667                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
668                 if (buf->nb_segs == 1) {
669                         /*
670                          * Check that there is room for this WQE in the send
671                          * queue and that the WQE size is legal
672                          */
673                         if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
674                              sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
675                                 elt->buf = NULL;
676                                 break;
677                         }
678                         /* Get the control and data entries of the WQE. */
679                         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
680                                         mlx4_get_send_wqe(sq, head_idx);
681                         dseg = (volatile struct mlx4_wqe_data_seg *)
682                                         ((uintptr_t)ctrl +
683                                         sizeof(struct mlx4_wqe_ctrl_seg));
684
685                         ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
686                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
687                         if (unlikely(lkey == (uint32_t)-1)) {
688                                 /* MR does not exist. */
689                                 DEBUG("%p: unable to get MP <-> MR association",
690                                       (void *)txq);
691                                 elt->buf = NULL;
692                                 break;
693                         }
694                         mlx4_fill_tx_data_seg(dseg, lkey,
695                                               rte_pktmbuf_mtod(buf, uintptr_t),
696                                               rte_cpu_to_be_32(buf->data_len));
697                         nr_txbbs = 1;
698                 } else {
699                         nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
700                         if (nr_txbbs < 0) {
701                                 elt->buf = NULL;
702                                 break;
703                         }
704                 }
705                 /*
706                  * For raw Ethernet, the SOLICIT flag is used to indicate
707                  * that no ICRC should be calculated.
708                  */
709                 txq->elts_comp_cd -= nr_txbbs;
710                 if (unlikely(txq->elts_comp_cd <= 0)) {
711                         txq->elts_comp_cd = txq->elts_comp_cd_init;
712                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
713                                                MLX4_WQE_CTRL_CQ_UPDATE);
714                 } else {
715                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
716                 }
717                 /* Enable HW checksum offload if requested */
718                 if (txq->csum &&
719                     (buf->ol_flags &
720                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
721                         const uint64_t is_tunneled = (buf->ol_flags &
722                                                       (PKT_TX_TUNNEL_GRE |
723                                                        PKT_TX_TUNNEL_VXLAN));
724
725                         if (is_tunneled && txq->csum_l2tun) {
726                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
727                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
728                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
729                                         srcrb.flags |=
730                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
731                         } else {
732                                 srcrb.flags |=
733                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
734                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
735                         }
736                 }
737                 if (txq->lb) {
738                         /*
739                          * Copy destination MAC address to the WQE, this allows
740                          * loopback in eSwitch, so that VFs and PF can
741                          * communicate with each other.
742                          */
743                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
744                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
745                                               sizeof(uint16_t)));
746                 } else {
747                         ctrl->imm = 0;
748                 }
749                 ctrl->srcrb_flags = srcrb.flags;
750                 /*
751                  * Make sure descriptor is fully written before
752                  * setting ownership bit (because HW can start
753                  * executing as soon as we do).
754                  */
755                 rte_io_wmb();
756                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
757                                               ((sq->head & sq->txbb_cnt) ?
758                                                        MLX4_BIT_WQE_OWN : 0));
759                 sq->head += nr_txbbs;
760                 elt->buf = buf;
761                 bytes_sent += buf->pkt_len;
762                 elts_head = elts_head_next;
763         }
764         /* Take a shortcut if nothing must be sent. */
765         if (unlikely(i == 0))
766                 return 0;
767         /* Increment send statistics counters. */
768         txq->stats.opackets += i;
769         txq->stats.obytes += bytes_sent;
770         /* Make sure that descriptors are written before doorbell record. */
771         rte_wmb();
772         /* Ring QP doorbell. */
773         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
774         txq->elts_head = elts_head;
775         txq->elts_comp += i;
776         return i;
777 }
778
779 /**
780  * Translate Rx completion flags to packet type.
781  *
782  * @param[in] cqe
783  *   Pointer to CQE.
784  *
785  * @return
786  *   Packet type for struct rte_mbuf.
787  */
788 static inline uint32_t
789 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
790                    uint32_t l2tun_offload)
791 {
792         uint8_t idx = 0;
793         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
794         uint32_t status = rte_be_to_cpu_32(cqe->status);
795
796         /*
797          * The index to the array should have:
798          *  bit[7] - MLX4_CQE_L2_TUNNEL
799          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
800          */
801         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
802                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
803                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
804         /*
805          * The index to the array should have:
806          *  bit[5] - MLX4_CQE_STATUS_UDP
807          *  bit[4] - MLX4_CQE_STATUS_TCP
808          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
809          *  bit[2] - MLX4_CQE_STATUS_IPV6
810          *  bit[1] - MLX4_CQE_STATUS_IPV4F
811          *  bit[0] - MLX4_CQE_STATUS_IPV4
812          * giving a total of up to 256 entries.
813          */
814         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
815         return mlx4_ptype_table[idx];
816 }
817
818 /**
819  * Translate Rx completion flags to offload flags.
820  *
821  * @param flags
822  *   Rx completion flags returned by mlx4_cqe_flags().
823  * @param csum
824  *   Whether Rx checksums are enabled.
825  * @param csum_l2tun
826  *   Whether Rx L2 tunnel checksums are enabled.
827  *
828  * @return
829  *   Offload flags (ol_flags) in mbuf format.
830  */
831 static inline uint32_t
832 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
833 {
834         uint32_t ol_flags = 0;
835
836         if (csum)
837                 ol_flags |=
838                         mlx4_transpose(flags,
839                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
840                                        PKT_RX_IP_CKSUM_GOOD) |
841                         mlx4_transpose(flags,
842                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
843                                        PKT_RX_L4_CKSUM_GOOD);
844         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
845                 ol_flags |=
846                         mlx4_transpose(flags,
847                                        MLX4_CQE_L2_TUNNEL_IPOK,
848                                        PKT_RX_IP_CKSUM_GOOD) |
849                         mlx4_transpose(flags,
850                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
851                                        PKT_RX_L4_CKSUM_GOOD);
852         return ol_flags;
853 }
854
855 /**
856  * Extract checksum information from CQE flags.
857  *
858  * @param cqe
859  *   Pointer to CQE structure.
860  * @param csum
861  *   Whether Rx checksums are enabled.
862  * @param csum_l2tun
863  *   Whether Rx L2 tunnel checksums are enabled.
864  *
865  * @return
866  *   CQE checksum information.
867  */
868 static inline uint32_t
869 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
870 {
871         uint32_t flags = 0;
872
873         /*
874          * The relevant bits are in different locations on their
875          * CQE fields therefore we can join them in one 32bit
876          * variable.
877          */
878         if (csum)
879                 flags = (rte_be_to_cpu_32(cqe->status) &
880                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
881         if (csum_l2tun)
882                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
883                           (MLX4_CQE_L2_TUNNEL |
884                            MLX4_CQE_L2_TUNNEL_IPOK |
885                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
886                            MLX4_CQE_L2_TUNNEL_IPV4));
887         return flags;
888 }
889
890 /**
891  * Poll one CQE from CQ.
892  *
893  * @param rxq
894  *   Pointer to the receive queue structure.
895  * @param[out] out
896  *   Just polled CQE.
897  *
898  * @return
899  *   Number of bytes of the CQE, 0 in case there is no completion.
900  */
901 static unsigned int
902 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
903 {
904         int ret = 0;
905         volatile struct mlx4_cqe *cqe = NULL;
906         struct mlx4_cq *cq = &rxq->mcq;
907
908         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
909         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
910             !!(cq->cons_index & cq->cqe_cnt))
911                 goto out;
912         /*
913          * Make sure we read CQ entry contents after we've checked the
914          * ownership bit.
915          */
916         rte_rmb();
917         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
918         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
919                MLX4_CQE_OPCODE_ERROR);
920         ret = rte_be_to_cpu_32(cqe->byte_cnt);
921         ++cq->cons_index;
922 out:
923         *out = cqe;
924         return ret;
925 }
926
927 /**
928  * DPDK callback for Rx with scattered packets support.
929  *
930  * @param dpdk_rxq
931  *   Generic pointer to Rx queue structure.
932  * @param[out] pkts
933  *   Array to store received packets.
934  * @param pkts_n
935  *   Maximum number of packets in array.
936  *
937  * @return
938  *   Number of packets successfully received (<= pkts_n).
939  */
940 uint16_t
941 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
942 {
943         struct rxq *rxq = dpdk_rxq;
944         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
945         const uint16_t sges_n = rxq->sges_n;
946         struct rte_mbuf *pkt = NULL;
947         struct rte_mbuf *seg = NULL;
948         unsigned int i = 0;
949         uint32_t rq_ci = rxq->rq_ci << sges_n;
950         int len = 0;
951
952         while (pkts_n) {
953                 volatile struct mlx4_cqe *cqe;
954                 uint32_t idx = rq_ci & wr_cnt;
955                 struct rte_mbuf *rep = (*rxq->elts)[idx];
956                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
957
958                 /* Update the 'next' pointer of the previous segment. */
959                 if (pkt)
960                         seg->next = rep;
961                 seg = rep;
962                 rte_prefetch0(seg);
963                 rte_prefetch0(scat);
964                 rep = rte_mbuf_raw_alloc(rxq->mp);
965                 if (unlikely(rep == NULL)) {
966                         ++rxq->stats.rx_nombuf;
967                         if (!pkt) {
968                                 /*
969                                  * No buffers before we even started,
970                                  * bail out silently.
971                                  */
972                                 break;
973                         }
974                         while (pkt != seg) {
975                                 assert(pkt != (*rxq->elts)[idx]);
976                                 rep = pkt->next;
977                                 pkt->next = NULL;
978                                 pkt->nb_segs = 1;
979                                 rte_mbuf_raw_free(pkt);
980                                 pkt = rep;
981                         }
982                         break;
983                 }
984                 if (!pkt) {
985                         /* Looking for the new packet. */
986                         len = mlx4_cq_poll_one(rxq, &cqe);
987                         if (!len) {
988                                 rte_mbuf_raw_free(rep);
989                                 break;
990                         }
991                         if (unlikely(len < 0)) {
992                                 /* Rx error, packet is likely too large. */
993                                 rte_mbuf_raw_free(rep);
994                                 ++rxq->stats.idropped;
995                                 goto skip;
996                         }
997                         pkt = seg;
998                         /* Update packet information. */
999                         pkt->packet_type =
1000                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
1001                         pkt->ol_flags = PKT_RX_RSS_HASH;
1002                         pkt->hash.rss = cqe->immed_rss_invalid;
1003                         pkt->pkt_len = len;
1004                         if (rxq->csum | rxq->csum_l2tun) {
1005                                 uint32_t flags =
1006                                         mlx4_cqe_flags(cqe,
1007                                                        rxq->csum,
1008                                                        rxq->csum_l2tun);
1009
1010                                 pkt->ol_flags =
1011                                         rxq_cq_to_ol_flags(flags,
1012                                                            rxq->csum,
1013                                                            rxq->csum_l2tun);
1014                         }
1015                 }
1016                 rep->nb_segs = 1;
1017                 rep->port = rxq->port_id;
1018                 rep->data_len = seg->data_len;
1019                 rep->data_off = seg->data_off;
1020                 (*rxq->elts)[idx] = rep;
1021                 /*
1022                  * Fill NIC descriptor with the new buffer. The lkey and size
1023                  * of the buffers are already known, only the buffer address
1024                  * changes.
1025                  */
1026                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1027                 if (len > seg->data_len) {
1028                         len -= seg->data_len;
1029                         ++pkt->nb_segs;
1030                         ++rq_ci;
1031                         continue;
1032                 }
1033                 /* The last segment. */
1034                 seg->data_len = len;
1035                 /* Increment bytes counter. */
1036                 rxq->stats.ibytes += pkt->pkt_len;
1037                 /* Return packet. */
1038                 *(pkts++) = pkt;
1039                 pkt = NULL;
1040                 --pkts_n;
1041                 ++i;
1042 skip:
1043                 /* Align consumer index to the next stride. */
1044                 rq_ci >>= sges_n;
1045                 ++rq_ci;
1046                 rq_ci <<= sges_n;
1047         }
1048         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1049                 return 0;
1050         /* Update the consumer index. */
1051         rxq->rq_ci = rq_ci >> sges_n;
1052         rte_wmb();
1053         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1054         *rxq->mcq.set_ci_db =
1055                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1056         /* Increment packets counter. */
1057         rxq->stats.ipackets += i;
1058         return i;
1059 }
1060
1061 /**
1062  * Dummy DPDK callback for Tx.
1063  *
1064  * This function is used to temporarily replace the real callback during
1065  * unsafe control operations on the queue, or in case of error.
1066  *
1067  * @param dpdk_txq
1068  *   Generic pointer to Tx queue structure.
1069  * @param[in] pkts
1070  *   Packets to transmit.
1071  * @param pkts_n
1072  *   Number of packets in array.
1073  *
1074  * @return
1075  *   Number of packets successfully transmitted (<= pkts_n).
1076  */
1077 uint16_t
1078 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1079 {
1080         (void)dpdk_txq;
1081         (void)pkts;
1082         (void)pkts_n;
1083         return 0;
1084 }
1085
1086 /**
1087  * Dummy DPDK callback for Rx.
1088  *
1089  * This function is used to temporarily replace the real callback during
1090  * unsafe control operations on the queue, or in case of error.
1091  *
1092  * @param dpdk_rxq
1093  *   Generic pointer to Rx queue structure.
1094  * @param[out] pkts
1095  *   Array to store received packets.
1096  * @param pkts_n
1097  *   Maximum number of packets in array.
1098  *
1099  * @return
1100  *   Number of packets successfully received (<= pkts_n).
1101  */
1102 uint16_t
1103 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1104 {
1105         (void)dpdk_rxq;
1106         (void)pkts;
1107         (void)pkts_n;
1108         return 0;
1109 }