net/mlx4: merge Tx queue rings management
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 /**
65  * Pointer-value pair structure used in tx_post_send for saving the first
66  * DWORD (32 byte) of a TXBB.
67  */
68 struct pv {
69         volatile struct mlx4_wqe_data_seg *dseg;
70         uint32_t val;
71 };
72
73 /** A table to translate Rx completion flags to packet type. */
74 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
75         /*
76          * The index to the array should have:
77          *  bit[7] - MLX4_CQE_L2_TUNNEL
78          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
79          *  bit[5] - MLX4_CQE_STATUS_UDP
80          *  bit[4] - MLX4_CQE_STATUS_TCP
81          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
82          *  bit[2] - MLX4_CQE_STATUS_IPV6
83          *  bit[1] - MLX4_CQE_STATUS_IPV4F
84          *  bit[0] - MLX4_CQE_STATUS_IPV4
85          * giving a total of up to 256 entries.
86          */
87         [0x00] = RTE_PTYPE_L2_ETHER,
88         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
89         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_FRAG,
91         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_FRAG,
93         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
94         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
95         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96                      RTE_PTYPE_L4_FRAG,
97         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP,
99         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP,
101         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP,
103         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
104                      RTE_PTYPE_L4_TCP,
105         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
106                      RTE_PTYPE_L4_TCP,
107         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108                      RTE_PTYPE_L4_TCP,
109         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_UDP,
111         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_UDP,
113         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
116                      RTE_PTYPE_L4_UDP,
117         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118                      RTE_PTYPE_L4_UDP,
119         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         /* Tunneled - L3 IPV6 */
122         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
125         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L4_FRAG,
128         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
133         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L3_IPV4_EXT,
135         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV4_EXT,
137         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
139         /* Tunneled - L3 IPV6, TCP */
140         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_TCP,
143         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_FRAG |
146                      RTE_PTYPE_INNER_L4_TCP,
147         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG |
150                      RTE_PTYPE_INNER_L4_TCP,
151         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
162                      RTE_PTYPE_INNER_L4_TCP,
163         /* Tunneled - L3 IPV6, UDP */
164         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_UDP,
167         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG |
174                      RTE_PTYPE_INNER_L4_UDP,
175         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV4_EXT |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
186                      RTE_PTYPE_INNER_L4_UDP,
187         /* Tunneled - L3 IPV4 */
188         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
189         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
191         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_FRAG,
194         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
199         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT,
201         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV4_EXT,
203         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT |
205                      RTE_PTYPE_INNER_L4_FRAG,
206         /* Tunneled - L3 IPV4, TCP */
207         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
209                      RTE_PTYPE_INNER_L4_TCP,
210         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_FRAG |
216                      RTE_PTYPE_INNER_L4_TCP,
217         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_FRAG |
220                      RTE_PTYPE_INNER_L4_TCP,
221         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV4_EXT |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
232                      RTE_PTYPE_INNER_L4_TCP,
233         /* Tunneled - L3 IPV4, UDP */
234         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
236                      RTE_PTYPE_INNER_L4_UDP,
237         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_FRAG |
243                      RTE_PTYPE_INNER_L4_UDP,
244         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246                      RTE_PTYPE_INNER_L4_FRAG |
247                      RTE_PTYPE_INNER_L4_UDP,
248         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
253         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
254                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
255         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
257                      RTE_PTYPE_INNER_L4_UDP,
258 };
259
260 /**
261  * Stamp a WQE so it won't be reused by the HW.
262  *
263  * Routine is used when freeing WQE used by the chip or when failing
264  * building an WQ entry has failed leaving partial information on the queue.
265  *
266  * @param sq
267  *   Pointer to the SQ structure.
268  * @param[in, out] wqe
269  *   Pointer of WQE address to stamp. This value is modified on return to
270  *   store the address of the next WQE.
271  *
272  * @return
273  *   WQE size.
274  */
275 static uint32_t
276 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t **wqe)
277 {
278         uint32_t stamp = sq->stamp;
279         volatile uint32_t *next_txbb = *wqe;
280         /* Extract the size from the control segment of the WQE. */
281         uint32_t size = RTE_ALIGN((uint32_t)
282                                   ((((volatile struct mlx4_wqe_ctrl_seg *)
283                                      next_txbb)->fence_size & 0x3f) << 4),
284                                   MLX4_TXBB_SIZE);
285         uint32_t size_cd = size;
286
287         /* Optimize the common case when there is no wrap-around. */
288         if ((uintptr_t)next_txbb + size < (uintptr_t)sq->eob) {
289                 /* Stamp the freed descriptor. */
290                 do {
291                         *next_txbb = stamp;
292                         next_txbb += MLX4_SQ_STAMP_DWORDS;
293                         size_cd -= MLX4_TXBB_SIZE;
294                 } while (size_cd);
295         } else {
296                 /* Stamp the freed descriptor. */
297                 do {
298                         *next_txbb = stamp;
299                         next_txbb += MLX4_SQ_STAMP_DWORDS;
300                         if ((volatile uint8_t *)next_txbb >= sq->eob) {
301                                 next_txbb = (volatile uint32_t *)sq->buf;
302                                 /* Flip invalid stamping ownership. */
303                                 stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
304                                 sq->stamp = stamp;
305                         }
306                         size_cd -= MLX4_TXBB_SIZE;
307                 } while (size_cd);
308         }
309         *wqe = next_txbb;
310         return size;
311 }
312
313 /**
314  * Manage Tx completions.
315  *
316  * When sending a burst, mlx4_tx_burst() posts several WRs.
317  * To improve performance, a completion event is only required once every
318  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
319  * for other WRs, but this information would not be used anyway.
320  *
321  * @param txq
322  *   Pointer to Tx queue structure.
323  */
324 static void
325 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
326                                   struct mlx4_sq *sq)
327 {
328         unsigned int elts_tail = txq->elts_tail;
329         struct mlx4_cq *cq = &txq->mcq;
330         volatile struct mlx4_cqe *cqe;
331         uint32_t cons_index = cq->cons_index;
332         volatile uint32_t *first_wqe;
333         volatile uint32_t *next_wqe = (volatile uint32_t *)
334                         ((&(*txq->elts)[elts_tail])->wqe);
335         volatile uint32_t *last_wqe;
336         uint16_t mask = (((uintptr_t)sq->eob - (uintptr_t)sq->buf) >>
337                          MLX4_TXBB_SHIFT) - 1;
338         uint32_t pkts = 0;
339         /*
340          * Traverse over all CQ entries reported and handle each WQ entry
341          * reported by them.
342          */
343         do {
344                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
345                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
346                     !!(cons_index & cq->cqe_cnt)))
347                         break;
348 #ifndef NDEBUG
349                 /*
350                  * Make sure we read the CQE after we read the ownership bit.
351                  */
352                 rte_io_rmb();
353                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
354                              MLX4_CQE_OPCODE_ERROR)) {
355                         volatile struct mlx4_err_cqe *cqe_err =
356                                 (volatile struct mlx4_err_cqe *)cqe;
357                         ERROR("%p CQE error - vendor syndrome: 0x%x"
358                               " syndrome: 0x%x\n",
359                               (void *)txq, cqe_err->vendor_err,
360                               cqe_err->syndrome);
361                         break;
362                 }
363 #endif /* NDEBUG */
364                 /* Get WQE address buy index from the CQE. */
365                 last_wqe = (volatile uint32_t *)((uintptr_t)sq->buf +
366                         ((rte_be_to_cpu_16(cqe->wqe_index) & mask) <<
367                          MLX4_TXBB_SHIFT));
368                 do {
369                         /* Free next descriptor. */
370                         first_wqe = next_wqe;
371                         sq->remain_size +=
372                                 mlx4_txq_stamp_freed_wqe(sq, &next_wqe);
373                         pkts++;
374                 } while (first_wqe != last_wqe);
375                 cons_index++;
376         } while (1);
377         if (unlikely(pkts == 0))
378                 return;
379         /* Update CQ consumer index. */
380         cq->cons_index = cons_index;
381         *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
382         txq->elts_comp -= pkts;
383         elts_tail += pkts;
384         if (elts_tail >= elts_n)
385                 elts_tail -= elts_n;
386         txq->elts_tail = elts_tail;
387 }
388
389 /**
390  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
391  * the cloned mbuf is allocated is returned instead.
392  *
393  * @param buf
394  *   Pointer to mbuf.
395  *
396  * @return
397  *   Memory pool where data is located for given mbuf.
398  */
399 static struct rte_mempool *
400 mlx4_txq_mb2mp(struct rte_mbuf *buf)
401 {
402         if (unlikely(RTE_MBUF_INDIRECT(buf)))
403                 return rte_mbuf_from_indirect(buf)->pool;
404         return buf->pool;
405 }
406
407 /**
408  * Write Tx data segment to the SQ.
409  *
410  * @param dseg
411  *   Pointer to data segment in SQ.
412  * @param lkey
413  *   Memory region lkey.
414  * @param addr
415  *   Data address.
416  * @param byte_count
417  *   Big endian bytes count of the data to send.
418  */
419 static inline void
420 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
421                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
422 {
423         dseg->addr = rte_cpu_to_be_64(addr);
424         dseg->lkey = rte_cpu_to_be_32(lkey);
425 #if RTE_CACHE_LINE_SIZE < 64
426         /*
427          * Need a barrier here before writing the byte_count
428          * fields to make sure that all the data is visible
429          * before the byte_count field is set.
430          * Otherwise, if the segment begins a new cacheline,
431          * the HCA prefetcher could grab the 64-byte chunk and
432          * get a valid (!= 0xffffffff) byte count but stale
433          * data, and end up sending the wrong data.
434          */
435         rte_io_wmb();
436 #endif /* RTE_CACHE_LINE_SIZE */
437         dseg->byte_count = byte_count;
438 }
439
440 /**
441  * Write data segments of multi-segment packet.
442  *
443  * @param buf
444  *   Pointer to the first packet mbuf.
445  * @param txq
446  *   Pointer to Tx queue structure.
447  * @param ctrl
448  *   Pointer to the WQE control segment.
449  *
450  * @return
451  *   Pointer to the next WQE control segment on success, NULL otherwise.
452  */
453 static volatile struct mlx4_wqe_ctrl_seg *
454 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
455                    volatile struct mlx4_wqe_ctrl_seg *ctrl)
456 {
457         struct pv *pv = (struct pv *)txq->bounce_buf;
458         struct mlx4_sq *sq = &txq->msq;
459         struct rte_mbuf *sbuf = buf;
460         uint32_t lkey;
461         int pv_counter = 0;
462         int nb_segs = buf->nb_segs;
463         uint32_t wqe_size;
464         volatile struct mlx4_wqe_data_seg *dseg =
465                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
466
467         ctrl->fence_size = 1 + nb_segs;
468         wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
469                              MLX4_TXBB_SIZE);
470         /* Validate WQE size and WQE space in the send queue. */
471         if (sq->remain_size < wqe_size ||
472             wqe_size > MLX4_MAX_WQE_SIZE)
473                 return NULL;
474         /*
475          * Fill the data segments with buffer information.
476          * First WQE TXBB head segment is always control segment,
477          * so jump to tail TXBB data segments code for the first
478          * WQE data segments filling.
479          */
480         goto txbb_tail_segs;
481 txbb_head_seg:
482         /* Memory region key (big endian) for this memory pool. */
483         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
484         if (unlikely(lkey == (uint32_t)-1)) {
485                 DEBUG("%p: unable to get MP <-> MR association",
486                       (void *)txq);
487                 return NULL;
488         }
489         /* Handle WQE wraparound. */
490         if (dseg >=
491                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
492                 dseg = (volatile struct mlx4_wqe_data_seg *)
493                         sq->buf;
494         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
495         dseg->lkey = rte_cpu_to_be_32(lkey);
496         /*
497          * This data segment starts at the beginning of a new
498          * TXBB, so we need to postpone its byte_count writing
499          * for later.
500          */
501         pv[pv_counter].dseg = dseg;
502         /*
503          * Zero length segment is treated as inline segment
504          * with zero data.
505          */
506         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
507                                                 sbuf->data_len : 0x80000000);
508         sbuf = sbuf->next;
509         dseg++;
510         nb_segs--;
511 txbb_tail_segs:
512         /* Jump to default if there are more than two segments remaining. */
513         switch (nb_segs) {
514         default:
515                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
516                 if (unlikely(lkey == (uint32_t)-1)) {
517                         DEBUG("%p: unable to get MP <-> MR association",
518                               (void *)txq);
519                         return NULL;
520                 }
521                 mlx4_fill_tx_data_seg(dseg, lkey,
522                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
523                                       rte_cpu_to_be_32(sbuf->data_len ?
524                                                        sbuf->data_len :
525                                                        0x80000000));
526                 sbuf = sbuf->next;
527                 dseg++;
528                 nb_segs--;
529                 /* fallthrough */
530         case 2:
531                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
532                 if (unlikely(lkey == (uint32_t)-1)) {
533                         DEBUG("%p: unable to get MP <-> MR association",
534                               (void *)txq);
535                         return NULL;
536                 }
537                 mlx4_fill_tx_data_seg(dseg, lkey,
538                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
539                                       rte_cpu_to_be_32(sbuf->data_len ?
540                                                        sbuf->data_len :
541                                                        0x80000000));
542                 sbuf = sbuf->next;
543                 dseg++;
544                 nb_segs--;
545                 /* fallthrough */
546         case 1:
547                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
548                 if (unlikely(lkey == (uint32_t)-1)) {
549                         DEBUG("%p: unable to get MP <-> MR association",
550                               (void *)txq);
551                         return NULL;
552                 }
553                 mlx4_fill_tx_data_seg(dseg, lkey,
554                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
555                                       rte_cpu_to_be_32(sbuf->data_len ?
556                                                        sbuf->data_len :
557                                                        0x80000000));
558                 nb_segs--;
559                 if (nb_segs) {
560                         sbuf = sbuf->next;
561                         dseg++;
562                         goto txbb_head_seg;
563                 }
564                 /* fallthrough */
565         case 0:
566                 break;
567         }
568         /* Write the first DWORD of each TXBB save earlier. */
569         if (pv_counter) {
570                 /* Need a barrier here before writing the byte_count. */
571                 rte_io_wmb();
572                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
573                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
574         }
575         sq->remain_size -= wqe_size;
576         /* Align next WQE address to the next TXBB. */
577         return (volatile struct mlx4_wqe_ctrl_seg *)
578                 ((volatile uint8_t *)ctrl + wqe_size);
579 }
580
581 /**
582  * DPDK callback for Tx.
583  *
584  * @param dpdk_txq
585  *   Generic pointer to Tx queue structure.
586  * @param[in] pkts
587  *   Packets to transmit.
588  * @param pkts_n
589  *   Number of packets in array.
590  *
591  * @return
592  *   Number of packets successfully transmitted (<= pkts_n).
593  */
594 uint16_t
595 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
596 {
597         struct txq *txq = (struct txq *)dpdk_txq;
598         unsigned int elts_head = txq->elts_head;
599         const unsigned int elts_n = txq->elts_n;
600         unsigned int bytes_sent = 0;
601         unsigned int i;
602         unsigned int max;
603         struct mlx4_sq *sq = &txq->msq;
604         volatile struct mlx4_wqe_ctrl_seg *ctrl;
605         struct txq_elt *elt;
606
607         assert(txq->elts_comp_cd != 0);
608         if (likely(txq->elts_comp != 0))
609                 mlx4_txq_complete(txq, elts_n, sq);
610         max = (elts_n - (elts_head - txq->elts_tail));
611         if (max > elts_n)
612                 max -= elts_n;
613         assert(max >= 1);
614         assert(max <= elts_n);
615         /* Always leave one free entry in the ring. */
616         --max;
617         if (max > pkts_n)
618                 max = pkts_n;
619         elt = &(*txq->elts)[elts_head];
620         /* Each element saves its appropriate work queue. */
621         ctrl = elt->wqe;
622         for (i = 0; (i != max); ++i) {
623                 struct rte_mbuf *buf = pkts[i];
624                 unsigned int elts_head_next =
625                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
626                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
627                 uint32_t owner_opcode = sq->owner_opcode;
628                 volatile struct mlx4_wqe_data_seg *dseg =
629                                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
630                 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
631                 union {
632                         uint32_t flags;
633                         uint16_t flags16[2];
634                 } srcrb;
635                 uint32_t lkey;
636
637                 /* Clean up old buffer. */
638                 if (likely(elt->buf != NULL)) {
639                         struct rte_mbuf *tmp = elt->buf;
640
641 #ifndef NDEBUG
642                         /* Poisoning. */
643                         memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
644 #endif
645                         /* Faster than rte_pktmbuf_free(). */
646                         do {
647                                 struct rte_mbuf *next = tmp->next;
648
649                                 rte_pktmbuf_free_seg(tmp);
650                                 tmp = next;
651                         } while (tmp != NULL);
652                 }
653                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
654                 if (buf->nb_segs == 1) {
655                         /* Validate WQE space in the send queue. */
656                         if (sq->remain_size < MLX4_TXBB_SIZE) {
657                                 elt->buf = NULL;
658                                 break;
659                         }
660                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
661                         if (unlikely(lkey == (uint32_t)-1)) {
662                                 /* MR does not exist. */
663                                 DEBUG("%p: unable to get MP <-> MR association",
664                                       (void *)txq);
665                                 elt->buf = NULL;
666                                 break;
667                         }
668                         mlx4_fill_tx_data_seg(dseg++, lkey,
669                                               rte_pktmbuf_mtod(buf, uintptr_t),
670                                               rte_cpu_to_be_32(buf->data_len));
671                         /* Set WQE size in 16-byte units. */
672                         ctrl->fence_size = 0x2;
673                         sq->remain_size -= MLX4_TXBB_SIZE;
674                         /* Align next WQE address to the next TXBB. */
675                         ctrl_next = ctrl + 0x4;
676                 } else {
677                         ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
678                         if (!ctrl_next) {
679                                 elt->buf = NULL;
680                                 break;
681                         }
682                 }
683                 /* Hold SQ ring wrap around. */
684                 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
685                         ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
686                                 ((volatile uint8_t *)ctrl_next - sq->size);
687                         /* Flip HW valid ownership. */
688                         sq->owner_opcode ^= 0x1 << MLX4_SQ_OWNER_BIT;
689                 }
690                 /*
691                  * For raw Ethernet, the SOLICIT flag is used to indicate
692                  * that no ICRC should be calculated.
693                  */
694                 if (--txq->elts_comp_cd == 0) {
695                         txq->elts_comp_cd = txq->elts_comp_cd_init;
696                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
697                                                MLX4_WQE_CTRL_CQ_UPDATE);
698                 } else {
699                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
700                 }
701                 /* Enable HW checksum offload if requested */
702                 if (txq->csum &&
703                     (buf->ol_flags &
704                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
705                         const uint64_t is_tunneled = (buf->ol_flags &
706                                                       (PKT_TX_TUNNEL_GRE |
707                                                        PKT_TX_TUNNEL_VXLAN));
708
709                         if (is_tunneled && txq->csum_l2tun) {
710                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
711                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
712                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
713                                         srcrb.flags |=
714                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
715                         } else {
716                                 srcrb.flags |=
717                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
718                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
719                         }
720                 }
721                 if (txq->lb) {
722                         /*
723                          * Copy destination MAC address to the WQE, this allows
724                          * loopback in eSwitch, so that VFs and PF can
725                          * communicate with each other.
726                          */
727                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
728                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
729                                               sizeof(uint16_t)));
730                 } else {
731                         ctrl->imm = 0;
732                 }
733                 ctrl->srcrb_flags = srcrb.flags;
734                 /*
735                  * Make sure descriptor is fully written before
736                  * setting ownership bit (because HW can start
737                  * executing as soon as we do).
738                  */
739                 rte_io_wmb();
740                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
741                 elt->buf = buf;
742                 bytes_sent += buf->pkt_len;
743                 elts_head = elts_head_next;
744                 elt_next->wqe = ctrl_next;
745                 ctrl = ctrl_next;
746                 elt = elt_next;
747         }
748         /* Take a shortcut if nothing must be sent. */
749         if (unlikely(i == 0))
750                 return 0;
751         /* Increment send statistics counters. */
752         txq->stats.opackets += i;
753         txq->stats.obytes += bytes_sent;
754         /* Make sure that descriptors are written before doorbell record. */
755         rte_wmb();
756         /* Ring QP doorbell. */
757         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
758         txq->elts_head = elts_head;
759         txq->elts_comp += i;
760         return i;
761 }
762
763 /**
764  * Translate Rx completion flags to packet type.
765  *
766  * @param[in] cqe
767  *   Pointer to CQE.
768  *
769  * @return
770  *   Packet type for struct rte_mbuf.
771  */
772 static inline uint32_t
773 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
774                    uint32_t l2tun_offload)
775 {
776         uint8_t idx = 0;
777         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
778         uint32_t status = rte_be_to_cpu_32(cqe->status);
779
780         /*
781          * The index to the array should have:
782          *  bit[7] - MLX4_CQE_L2_TUNNEL
783          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
784          */
785         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
786                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
787                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
788         /*
789          * The index to the array should have:
790          *  bit[5] - MLX4_CQE_STATUS_UDP
791          *  bit[4] - MLX4_CQE_STATUS_TCP
792          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
793          *  bit[2] - MLX4_CQE_STATUS_IPV6
794          *  bit[1] - MLX4_CQE_STATUS_IPV4F
795          *  bit[0] - MLX4_CQE_STATUS_IPV4
796          * giving a total of up to 256 entries.
797          */
798         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
799         return mlx4_ptype_table[idx];
800 }
801
802 /**
803  * Translate Rx completion flags to offload flags.
804  *
805  * @param flags
806  *   Rx completion flags returned by mlx4_cqe_flags().
807  * @param csum
808  *   Whether Rx checksums are enabled.
809  * @param csum_l2tun
810  *   Whether Rx L2 tunnel checksums are enabled.
811  *
812  * @return
813  *   Offload flags (ol_flags) in mbuf format.
814  */
815 static inline uint32_t
816 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
817 {
818         uint32_t ol_flags = 0;
819
820         if (csum)
821                 ol_flags |=
822                         mlx4_transpose(flags,
823                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
824                                        PKT_RX_IP_CKSUM_GOOD) |
825                         mlx4_transpose(flags,
826                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
827                                        PKT_RX_L4_CKSUM_GOOD);
828         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
829                 ol_flags |=
830                         mlx4_transpose(flags,
831                                        MLX4_CQE_L2_TUNNEL_IPOK,
832                                        PKT_RX_IP_CKSUM_GOOD) |
833                         mlx4_transpose(flags,
834                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
835                                        PKT_RX_L4_CKSUM_GOOD);
836         return ol_flags;
837 }
838
839 /**
840  * Extract checksum information from CQE flags.
841  *
842  * @param cqe
843  *   Pointer to CQE structure.
844  * @param csum
845  *   Whether Rx checksums are enabled.
846  * @param csum_l2tun
847  *   Whether Rx L2 tunnel checksums are enabled.
848  *
849  * @return
850  *   CQE checksum information.
851  */
852 static inline uint32_t
853 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
854 {
855         uint32_t flags = 0;
856
857         /*
858          * The relevant bits are in different locations on their
859          * CQE fields therefore we can join them in one 32bit
860          * variable.
861          */
862         if (csum)
863                 flags = (rte_be_to_cpu_32(cqe->status) &
864                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
865         if (csum_l2tun)
866                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
867                           (MLX4_CQE_L2_TUNNEL |
868                            MLX4_CQE_L2_TUNNEL_IPOK |
869                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
870                            MLX4_CQE_L2_TUNNEL_IPV4));
871         return flags;
872 }
873
874 /**
875  * Poll one CQE from CQ.
876  *
877  * @param rxq
878  *   Pointer to the receive queue structure.
879  * @param[out] out
880  *   Just polled CQE.
881  *
882  * @return
883  *   Number of bytes of the CQE, 0 in case there is no completion.
884  */
885 static unsigned int
886 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
887 {
888         int ret = 0;
889         volatile struct mlx4_cqe *cqe = NULL;
890         struct mlx4_cq *cq = &rxq->mcq;
891
892         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
893         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
894             !!(cq->cons_index & cq->cqe_cnt))
895                 goto out;
896         /*
897          * Make sure we read CQ entry contents after we've checked the
898          * ownership bit.
899          */
900         rte_rmb();
901         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
902         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
903                MLX4_CQE_OPCODE_ERROR);
904         ret = rte_be_to_cpu_32(cqe->byte_cnt);
905         ++cq->cons_index;
906 out:
907         *out = cqe;
908         return ret;
909 }
910
911 /**
912  * DPDK callback for Rx with scattered packets support.
913  *
914  * @param dpdk_rxq
915  *   Generic pointer to Rx queue structure.
916  * @param[out] pkts
917  *   Array to store received packets.
918  * @param pkts_n
919  *   Maximum number of packets in array.
920  *
921  * @return
922  *   Number of packets successfully received (<= pkts_n).
923  */
924 uint16_t
925 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
926 {
927         struct rxq *rxq = dpdk_rxq;
928         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
929         const uint16_t sges_n = rxq->sges_n;
930         struct rte_mbuf *pkt = NULL;
931         struct rte_mbuf *seg = NULL;
932         unsigned int i = 0;
933         uint32_t rq_ci = rxq->rq_ci << sges_n;
934         int len = 0;
935
936         while (pkts_n) {
937                 volatile struct mlx4_cqe *cqe;
938                 uint32_t idx = rq_ci & wr_cnt;
939                 struct rte_mbuf *rep = (*rxq->elts)[idx];
940                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
941
942                 /* Update the 'next' pointer of the previous segment. */
943                 if (pkt)
944                         seg->next = rep;
945                 seg = rep;
946                 rte_prefetch0(seg);
947                 rte_prefetch0(scat);
948                 rep = rte_mbuf_raw_alloc(rxq->mp);
949                 if (unlikely(rep == NULL)) {
950                         ++rxq->stats.rx_nombuf;
951                         if (!pkt) {
952                                 /*
953                                  * No buffers before we even started,
954                                  * bail out silently.
955                                  */
956                                 break;
957                         }
958                         while (pkt != seg) {
959                                 assert(pkt != (*rxq->elts)[idx]);
960                                 rep = pkt->next;
961                                 pkt->next = NULL;
962                                 pkt->nb_segs = 1;
963                                 rte_mbuf_raw_free(pkt);
964                                 pkt = rep;
965                         }
966                         break;
967                 }
968                 if (!pkt) {
969                         /* Looking for the new packet. */
970                         len = mlx4_cq_poll_one(rxq, &cqe);
971                         if (!len) {
972                                 rte_mbuf_raw_free(rep);
973                                 break;
974                         }
975                         if (unlikely(len < 0)) {
976                                 /* Rx error, packet is likely too large. */
977                                 rte_mbuf_raw_free(rep);
978                                 ++rxq->stats.idropped;
979                                 goto skip;
980                         }
981                         pkt = seg;
982                         /* Update packet information. */
983                         pkt->packet_type =
984                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
985                         pkt->ol_flags = PKT_RX_RSS_HASH;
986                         pkt->hash.rss = cqe->immed_rss_invalid;
987                         pkt->pkt_len = len;
988                         if (rxq->csum | rxq->csum_l2tun) {
989                                 uint32_t flags =
990                                         mlx4_cqe_flags(cqe,
991                                                        rxq->csum,
992                                                        rxq->csum_l2tun);
993
994                                 pkt->ol_flags =
995                                         rxq_cq_to_ol_flags(flags,
996                                                            rxq->csum,
997                                                            rxq->csum_l2tun);
998                         }
999                 }
1000                 rep->nb_segs = 1;
1001                 rep->port = rxq->port_id;
1002                 rep->data_len = seg->data_len;
1003                 rep->data_off = seg->data_off;
1004                 (*rxq->elts)[idx] = rep;
1005                 /*
1006                  * Fill NIC descriptor with the new buffer. The lkey and size
1007                  * of the buffers are already known, only the buffer address
1008                  * changes.
1009                  */
1010                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1011                 if (len > seg->data_len) {
1012                         len -= seg->data_len;
1013                         ++pkt->nb_segs;
1014                         ++rq_ci;
1015                         continue;
1016                 }
1017                 /* The last segment. */
1018                 seg->data_len = len;
1019                 /* Increment bytes counter. */
1020                 rxq->stats.ibytes += pkt->pkt_len;
1021                 /* Return packet. */
1022                 *(pkts++) = pkt;
1023                 pkt = NULL;
1024                 --pkts_n;
1025                 ++i;
1026 skip:
1027                 /* Align consumer index to the next stride. */
1028                 rq_ci >>= sges_n;
1029                 ++rq_ci;
1030                 rq_ci <<= sges_n;
1031         }
1032         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1033                 return 0;
1034         /* Update the consumer index. */
1035         rxq->rq_ci = rq_ci >> sges_n;
1036         rte_wmb();
1037         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1038         *rxq->mcq.set_ci_db =
1039                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1040         /* Increment packets counter. */
1041         rxq->stats.ipackets += i;
1042         return i;
1043 }
1044
1045 /**
1046  * Dummy DPDK callback for Tx.
1047  *
1048  * This function is used to temporarily replace the real callback during
1049  * unsafe control operations on the queue, or in case of error.
1050  *
1051  * @param dpdk_txq
1052  *   Generic pointer to Tx queue structure.
1053  * @param[in] pkts
1054  *   Packets to transmit.
1055  * @param pkts_n
1056  *   Number of packets in array.
1057  *
1058  * @return
1059  *   Number of packets successfully transmitted (<= pkts_n).
1060  */
1061 uint16_t
1062 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1063 {
1064         (void)dpdk_txq;
1065         (void)pkts;
1066         (void)pkts_n;
1067         return 0;
1068 }
1069
1070 /**
1071  * Dummy DPDK callback for Rx.
1072  *
1073  * This function is used to temporarily replace the real callback during
1074  * unsafe control operations on the queue, or in case of error.
1075  *
1076  * @param dpdk_rxq
1077  *   Generic pointer to Rx queue structure.
1078  * @param[out] pkts
1079  *   Array to store received packets.
1080  * @param pkts_n
1081  *   Maximum number of packets in array.
1082  *
1083  * @return
1084  *   Number of packets successfully received (<= pkts_n).
1085  */
1086 uint16_t
1087 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1088 {
1089         (void)dpdk_rxq;
1090         (void)pkts;
1091         (void)pkts_n;
1092         return 0;
1093 }