net/mlx5: split hairpin flows
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE,
131                          MLX5_EXPANSION_IPV4,
132                          MLX5_EXPANSION_IPV6),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP,
151                          MLX5_EXPANSION_IPV4,
152                          MLX5_EXPANSION_IPV6),
153                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
154                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155                         ETH_RSS_NONFRAG_IPV6_OTHER,
156         },
157         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159                                                  MLX5_EXPANSION_VXLAN_GPE),
160                 .type = RTE_FLOW_ITEM_TYPE_UDP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162         },
163         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164                 .type = RTE_FLOW_ITEM_TYPE_TCP,
165                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166         },
167         [MLX5_EXPANSION_VXLAN] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
170         },
171         [MLX5_EXPANSION_VXLAN_GPE] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173                                                  MLX5_EXPANSION_IPV4,
174                                                  MLX5_EXPANSION_IPV6),
175                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176         },
177         [MLX5_EXPANSION_GRE] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179                 .type = RTE_FLOW_ITEM_TYPE_GRE,
180         },
181         [MLX5_EXPANSION_MPLS] = {
182                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183                                                  MLX5_EXPANSION_IPV6),
184                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
185         },
186         [MLX5_EXPANSION_ETH] = {
187                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188                                                  MLX5_EXPANSION_IPV6),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_ETH_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193                 .type = RTE_FLOW_ITEM_TYPE_ETH,
194         },
195         [MLX5_EXPANSION_VLAN] = {
196                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197                                                  MLX5_EXPANSION_IPV6),
198                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
199         },
200         [MLX5_EXPANSION_IPV4] = {
201                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202                                                  MLX5_EXPANSION_IPV4_TCP),
203                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
204                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205                         ETH_RSS_NONFRAG_IPV4_OTHER,
206         },
207         [MLX5_EXPANSION_IPV4_UDP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_UDP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210         },
211         [MLX5_EXPANSION_IPV4_TCP] = {
212                 .type = RTE_FLOW_ITEM_TYPE_TCP,
213                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214         },
215         [MLX5_EXPANSION_IPV6] = {
216                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217                                                  MLX5_EXPANSION_IPV6_TCP),
218                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
219                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220                         ETH_RSS_NONFRAG_IPV6_OTHER,
221         },
222         [MLX5_EXPANSION_IPV6_UDP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_UDP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225         },
226         [MLX5_EXPANSION_IPV6_TCP] = {
227                 .type = RTE_FLOW_ITEM_TYPE_TCP,
228                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229         },
230 };
231
232 static const struct rte_flow_ops mlx5_flow_ops = {
233         .validate = mlx5_flow_validate,
234         .create = mlx5_flow_create,
235         .destroy = mlx5_flow_destroy,
236         .flush = mlx5_flow_flush,
237         .isolate = mlx5_flow_isolate,
238         .query = mlx5_flow_query,
239 };
240
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243         struct rte_flow_attr attr;
244         struct rte_flow_item items[4];
245         struct rte_flow_item_eth l2;
246         struct rte_flow_item_eth l2_mask;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3;
251         union {
252                 struct rte_flow_item_ipv4 ipv4;
253                 struct rte_flow_item_ipv6 ipv6;
254         } l3_mask;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4;
259         union {
260                 struct rte_flow_item_udp udp;
261                 struct rte_flow_item_tcp tcp;
262         } l4_mask;
263         struct rte_flow_action actions[2];
264         struct rte_flow_action_queue queue;
265 };
266
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275         { 9, 10, 11 }, { 12, 13, 14 },
276 };
277
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_GRE,
295                 .ptype = RTE_PTYPE_TUNNEL_GRE,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_MPLS,
303                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304         },
305         {
306                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
307                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
308         },
309         {
310                 .tunnel = MLX5_FLOW_LAYER_IPIP,
311                 .ptype = RTE_PTYPE_TUNNEL_IP,
312         },
313         {
314                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315                 .ptype = RTE_PTYPE_TUNNEL_IP,
316         },
317 };
318
319 enum mlx5_feature_name {
320         MLX5_HAIRPIN_RX,
321         MLX5_HAIRPIN_TX,
322         MLX5_APPLICATION,
323 };
324
325 /**
326  * Translate tag ID to register.
327  *
328  * @param[in] dev
329  *   Pointer to the Ethernet device structure.
330  * @param[in] feature
331  *   The feature that request the register.
332  * @param[in] id
333  *   The request register ID.
334  * @param[out] error
335  *   Error description in case of any.
336  *
337  * @return
338  *   The request register on success, a negative errno
339  *   value otherwise and rte_errno is set.
340  */
341 __rte_unused
342 static enum modify_reg flow_get_reg_id(struct rte_eth_dev *dev,
343                                        enum mlx5_feature_name feature,
344                                        uint32_t id,
345                                        struct rte_flow_error *error)
346 {
347         static enum modify_reg id2reg[] = {
348                 [0] = REG_A,
349                 [1] = REG_C_2,
350                 [2] = REG_C_3,
351                 [3] = REG_C_4,
352                 [4] = REG_B,};
353
354         dev = (void *)dev;
355         switch (feature) {
356         case MLX5_HAIRPIN_RX:
357                 return REG_B;
358         case MLX5_HAIRPIN_TX:
359                 return REG_A;
360         case MLX5_APPLICATION:
361                 if (id > 4)
362                         return rte_flow_error_set(error, EINVAL,
363                                                   RTE_FLOW_ERROR_TYPE_ITEM,
364                                                   NULL, "invalid tag id");
365                 return id2reg[id];
366         }
367         return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
368                                   NULL, "invalid feature name");
369 }
370
371 /**
372  * Discover the maximum number of priority available.
373  *
374  * @param[in] dev
375  *   Pointer to the Ethernet device structure.
376  *
377  * @return
378  *   number of supported flow priority on success, a negative errno
379  *   value otherwise and rte_errno is set.
380  */
381 int
382 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
383 {
384         struct mlx5_priv *priv = dev->data->dev_private;
385         struct {
386                 struct ibv_flow_attr attr;
387                 struct ibv_flow_spec_eth eth;
388                 struct ibv_flow_spec_action_drop drop;
389         } flow_attr = {
390                 .attr = {
391                         .num_of_specs = 2,
392                         .port = (uint8_t)priv->ibv_port,
393                 },
394                 .eth = {
395                         .type = IBV_FLOW_SPEC_ETH,
396                         .size = sizeof(struct ibv_flow_spec_eth),
397                 },
398                 .drop = {
399                         .size = sizeof(struct ibv_flow_spec_action_drop),
400                         .type = IBV_FLOW_SPEC_ACTION_DROP,
401                 },
402         };
403         struct ibv_flow *flow;
404         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
405         uint16_t vprio[] = { 8, 16 };
406         int i;
407         int priority = 0;
408
409         if (!drop) {
410                 rte_errno = ENOTSUP;
411                 return -rte_errno;
412         }
413         for (i = 0; i != RTE_DIM(vprio); i++) {
414                 flow_attr.attr.priority = vprio[i] - 1;
415                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
416                 if (!flow)
417                         break;
418                 claim_zero(mlx5_glue->destroy_flow(flow));
419                 priority = vprio[i];
420         }
421         mlx5_hrxq_drop_release(dev);
422         switch (priority) {
423         case 8:
424                 priority = RTE_DIM(priority_map_3);
425                 break;
426         case 16:
427                 priority = RTE_DIM(priority_map_5);
428                 break;
429         default:
430                 rte_errno = ENOTSUP;
431                 DRV_LOG(ERR,
432                         "port %u verbs maximum priority: %d expected 8/16",
433                         dev->data->port_id, priority);
434                 return -rte_errno;
435         }
436         DRV_LOG(INFO, "port %u flow maximum priority: %d",
437                 dev->data->port_id, priority);
438         return priority;
439 }
440
441 /**
442  * Adjust flow priority based on the highest layer and the request priority.
443  *
444  * @param[in] dev
445  *   Pointer to the Ethernet device structure.
446  * @param[in] priority
447  *   The rule base priority.
448  * @param[in] subpriority
449  *   The priority based on the items.
450  *
451  * @return
452  *   The new priority.
453  */
454 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
455                                    uint32_t subpriority)
456 {
457         uint32_t res = 0;
458         struct mlx5_priv *priv = dev->data->dev_private;
459
460         switch (priv->config.flow_prio) {
461         case RTE_DIM(priority_map_3):
462                 res = priority_map_3[priority][subpriority];
463                 break;
464         case RTE_DIM(priority_map_5):
465                 res = priority_map_5[priority][subpriority];
466                 break;
467         }
468         return  res;
469 }
470
471 /**
472  * Verify the @p item specifications (spec, last, mask) are compatible with the
473  * NIC capabilities.
474  *
475  * @param[in] item
476  *   Item specification.
477  * @param[in] mask
478  *   @p item->mask or flow default bit-masks.
479  * @param[in] nic_mask
480  *   Bit-masks covering supported fields by the NIC to compare with user mask.
481  * @param[in] size
482  *   Bit-masks size in bytes.
483  * @param[out] error
484  *   Pointer to error structure.
485  *
486  * @return
487  *   0 on success, a negative errno value otherwise and rte_errno is set.
488  */
489 int
490 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
491                           const uint8_t *mask,
492                           const uint8_t *nic_mask,
493                           unsigned int size,
494                           struct rte_flow_error *error)
495 {
496         unsigned int i;
497
498         assert(nic_mask);
499         for (i = 0; i < size; ++i)
500                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
501                         return rte_flow_error_set(error, ENOTSUP,
502                                                   RTE_FLOW_ERROR_TYPE_ITEM,
503                                                   item,
504                                                   "mask enables non supported"
505                                                   " bits");
506         if (!item->spec && (item->mask || item->last))
507                 return rte_flow_error_set(error, EINVAL,
508                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
509                                           "mask/last without a spec is not"
510                                           " supported");
511         if (item->spec && item->last) {
512                 uint8_t spec[size];
513                 uint8_t last[size];
514                 unsigned int i;
515                 int ret;
516
517                 for (i = 0; i < size; ++i) {
518                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
519                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
520                 }
521                 ret = memcmp(spec, last, size);
522                 if (ret != 0)
523                         return rte_flow_error_set(error, EINVAL,
524                                                   RTE_FLOW_ERROR_TYPE_ITEM,
525                                                   item,
526                                                   "range is not valid");
527         }
528         return 0;
529 }
530
531 /**
532  * Adjust the hash fields according to the @p flow information.
533  *
534  * @param[in] dev_flow.
535  *   Pointer to the mlx5_flow.
536  * @param[in] tunnel
537  *   1 when the hash field is for a tunnel item.
538  * @param[in] layer_types
539  *   ETH_RSS_* types.
540  * @param[in] hash_fields
541  *   Item hash fields.
542  *
543  * @return
544  *   The hash fields that should be used.
545  */
546 uint64_t
547 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
548                             int tunnel __rte_unused, uint64_t layer_types,
549                             uint64_t hash_fields)
550 {
551         struct rte_flow *flow = dev_flow->flow;
552 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
553         int rss_request_inner = flow->rss.level >= 2;
554
555         /* Check RSS hash level for tunnel. */
556         if (tunnel && rss_request_inner)
557                 hash_fields |= IBV_RX_HASH_INNER;
558         else if (tunnel || rss_request_inner)
559                 return 0;
560 #endif
561         /* Check if requested layer matches RSS hash fields. */
562         if (!(flow->rss.types & layer_types))
563                 return 0;
564         return hash_fields;
565 }
566
567 /**
568  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
569  * if several tunnel rules are used on this queue, the tunnel ptype will be
570  * cleared.
571  *
572  * @param rxq_ctrl
573  *   Rx queue to update.
574  */
575 static void
576 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
577 {
578         unsigned int i;
579         uint32_t tunnel_ptype = 0;
580
581         /* Look up for the ptype to use. */
582         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
583                 if (!rxq_ctrl->flow_tunnels_n[i])
584                         continue;
585                 if (!tunnel_ptype) {
586                         tunnel_ptype = tunnels_info[i].ptype;
587                 } else {
588                         tunnel_ptype = 0;
589                         break;
590                 }
591         }
592         rxq_ctrl->rxq.tunnel = tunnel_ptype;
593 }
594
595 /**
596  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
597  * flow.
598  *
599  * @param[in] dev
600  *   Pointer to the Ethernet device structure.
601  * @param[in] dev_flow
602  *   Pointer to device flow structure.
603  */
604 static void
605 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
606 {
607         struct mlx5_priv *priv = dev->data->dev_private;
608         struct rte_flow *flow = dev_flow->flow;
609         const int mark = !!(dev_flow->actions &
610                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
611         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
612         unsigned int i;
613
614         for (i = 0; i != flow->rss.queue_num; ++i) {
615                 int idx = (*flow->queue)[i];
616                 struct mlx5_rxq_ctrl *rxq_ctrl =
617                         container_of((*priv->rxqs)[idx],
618                                      struct mlx5_rxq_ctrl, rxq);
619
620                 if (mark) {
621                         rxq_ctrl->rxq.mark = 1;
622                         rxq_ctrl->flow_mark_n++;
623                 }
624                 if (tunnel) {
625                         unsigned int j;
626
627                         /* Increase the counter matching the flow. */
628                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629                                 if ((tunnels_info[j].tunnel &
630                                      dev_flow->layers) ==
631                                     tunnels_info[j].tunnel) {
632                                         rxq_ctrl->flow_tunnels_n[j]++;
633                                         break;
634                                 }
635                         }
636                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
637                 }
638         }
639 }
640
641 /**
642  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
643  *
644  * @param[in] dev
645  *   Pointer to the Ethernet device structure.
646  * @param[in] flow
647  *   Pointer to flow structure.
648  */
649 static void
650 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652         struct mlx5_flow *dev_flow;
653
654         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655                 flow_drv_rxq_flags_set(dev, dev_flow);
656 }
657
658 /**
659  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
660  * device flow if no other flow uses it with the same kind of request.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  * @param[in] dev_flow
665  *   Pointer to the device flow.
666  */
667 static void
668 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
669 {
670         struct mlx5_priv *priv = dev->data->dev_private;
671         struct rte_flow *flow = dev_flow->flow;
672         const int mark = !!(dev_flow->actions &
673                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
674         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
675         unsigned int i;
676
677         assert(dev->data->dev_started);
678         for (i = 0; i != flow->rss.queue_num; ++i) {
679                 int idx = (*flow->queue)[i];
680                 struct mlx5_rxq_ctrl *rxq_ctrl =
681                         container_of((*priv->rxqs)[idx],
682                                      struct mlx5_rxq_ctrl, rxq);
683
684                 if (mark) {
685                         rxq_ctrl->flow_mark_n--;
686                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
687                 }
688                 if (tunnel) {
689                         unsigned int j;
690
691                         /* Decrease the counter matching the flow. */
692                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
693                                 if ((tunnels_info[j].tunnel &
694                                      dev_flow->layers) ==
695                                     tunnels_info[j].tunnel) {
696                                         rxq_ctrl->flow_tunnels_n[j]--;
697                                         break;
698                                 }
699                         }
700                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
701                 }
702         }
703 }
704
705 /**
706  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
707  * @p flow if no other flow uses it with the same kind of request.
708  *
709  * @param dev
710  *   Pointer to Ethernet device.
711  * @param[in] flow
712  *   Pointer to the flow.
713  */
714 static void
715 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
716 {
717         struct mlx5_flow *dev_flow;
718
719         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
720                 flow_drv_rxq_flags_trim(dev, dev_flow);
721 }
722
723 /**
724  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
725  *
726  * @param dev
727  *   Pointer to Ethernet device.
728  */
729 static void
730 flow_rxq_flags_clear(struct rte_eth_dev *dev)
731 {
732         struct mlx5_priv *priv = dev->data->dev_private;
733         unsigned int i;
734
735         for (i = 0; i != priv->rxqs_n; ++i) {
736                 struct mlx5_rxq_ctrl *rxq_ctrl;
737                 unsigned int j;
738
739                 if (!(*priv->rxqs)[i])
740                         continue;
741                 rxq_ctrl = container_of((*priv->rxqs)[i],
742                                         struct mlx5_rxq_ctrl, rxq);
743                 rxq_ctrl->flow_mark_n = 0;
744                 rxq_ctrl->rxq.mark = 0;
745                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
746                         rxq_ctrl->flow_tunnels_n[j] = 0;
747                 rxq_ctrl->rxq.tunnel = 0;
748         }
749 }
750
751 /*
752  * return a pointer to the desired action in the list of actions.
753  *
754  * @param[in] actions
755  *   The list of actions to search the action in.
756  * @param[in] action
757  *   The action to find.
758  *
759  * @return
760  *   Pointer to the action in the list, if found. NULL otherwise.
761  */
762 const struct rte_flow_action *
763 mlx5_flow_find_action(const struct rte_flow_action *actions,
764                       enum rte_flow_action_type action)
765 {
766         if (actions == NULL)
767                 return NULL;
768         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
769                 if (actions->type == action)
770                         return actions;
771         return NULL;
772 }
773
774 /*
775  * Validate the flag action.
776  *
777  * @param[in] action_flags
778  *   Bit-fields that holds the actions detected until now.
779  * @param[in] attr
780  *   Attributes of flow that includes this action.
781  * @param[out] error
782  *   Pointer to error structure.
783  *
784  * @return
785  *   0 on success, a negative errno value otherwise and rte_errno is set.
786  */
787 int
788 mlx5_flow_validate_action_flag(uint64_t action_flags,
789                                const struct rte_flow_attr *attr,
790                                struct rte_flow_error *error)
791 {
792
793         if (action_flags & MLX5_FLOW_ACTION_DROP)
794                 return rte_flow_error_set(error, EINVAL,
795                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
796                                           "can't drop and flag in same flow");
797         if (action_flags & MLX5_FLOW_ACTION_MARK)
798                 return rte_flow_error_set(error, EINVAL,
799                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
800                                           "can't mark and flag in same flow");
801         if (action_flags & MLX5_FLOW_ACTION_FLAG)
802                 return rte_flow_error_set(error, EINVAL,
803                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
804                                           "can't have 2 flag"
805                                           " actions in same flow");
806         if (attr->egress)
807                 return rte_flow_error_set(error, ENOTSUP,
808                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
809                                           "flag action not supported for "
810                                           "egress");
811         return 0;
812 }
813
814 /*
815  * Validate the mark action.
816  *
817  * @param[in] action
818  *   Pointer to the queue action.
819  * @param[in] action_flags
820  *   Bit-fields that holds the actions detected until now.
821  * @param[in] attr
822  *   Attributes of flow that includes this action.
823  * @param[out] error
824  *   Pointer to error structure.
825  *
826  * @return
827  *   0 on success, a negative errno value otherwise and rte_errno is set.
828  */
829 int
830 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
831                                uint64_t action_flags,
832                                const struct rte_flow_attr *attr,
833                                struct rte_flow_error *error)
834 {
835         const struct rte_flow_action_mark *mark = action->conf;
836
837         if (!mark)
838                 return rte_flow_error_set(error, EINVAL,
839                                           RTE_FLOW_ERROR_TYPE_ACTION,
840                                           action,
841                                           "configuration cannot be null");
842         if (mark->id >= MLX5_FLOW_MARK_MAX)
843                 return rte_flow_error_set(error, EINVAL,
844                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
845                                           &mark->id,
846                                           "mark id must in 0 <= id < "
847                                           RTE_STR(MLX5_FLOW_MARK_MAX));
848         if (action_flags & MLX5_FLOW_ACTION_DROP)
849                 return rte_flow_error_set(error, EINVAL,
850                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851                                           "can't drop and mark in same flow");
852         if (action_flags & MLX5_FLOW_ACTION_FLAG)
853                 return rte_flow_error_set(error, EINVAL,
854                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855                                           "can't flag and mark in same flow");
856         if (action_flags & MLX5_FLOW_ACTION_MARK)
857                 return rte_flow_error_set(error, EINVAL,
858                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
859                                           "can't have 2 mark actions in same"
860                                           " flow");
861         if (attr->egress)
862                 return rte_flow_error_set(error, ENOTSUP,
863                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
864                                           "mark action not supported for "
865                                           "egress");
866         return 0;
867 }
868
869 /*
870  * Validate the drop action.
871  *
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] attr
875  *   Attributes of flow that includes this action.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_validate_action_drop(uint64_t action_flags,
884                                const struct rte_flow_attr *attr,
885                                struct rte_flow_error *error)
886 {
887         if (action_flags & MLX5_FLOW_ACTION_FLAG)
888                 return rte_flow_error_set(error, EINVAL,
889                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
890                                           "can't drop and flag in same flow");
891         if (action_flags & MLX5_FLOW_ACTION_MARK)
892                 return rte_flow_error_set(error, EINVAL,
893                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
894                                           "can't drop and mark in same flow");
895         if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
896                             MLX5_FLOW_FATE_ESWITCH_ACTIONS))
897                 return rte_flow_error_set(error, EINVAL,
898                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
899                                           "can't have 2 fate actions in"
900                                           " same flow");
901         if (attr->egress)
902                 return rte_flow_error_set(error, ENOTSUP,
903                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
904                                           "drop action not supported for "
905                                           "egress");
906         return 0;
907 }
908
909 /*
910  * Validate the queue action.
911  *
912  * @param[in] action
913  *   Pointer to the queue action.
914  * @param[in] action_flags
915  *   Bit-fields that holds the actions detected until now.
916  * @param[in] dev
917  *   Pointer to the Ethernet device structure.
918  * @param[in] attr
919  *   Attributes of flow that includes this action.
920  * @param[out] error
921  *   Pointer to error structure.
922  *
923  * @return
924  *   0 on success, a negative errno value otherwise and rte_errno is set.
925  */
926 int
927 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
928                                 uint64_t action_flags,
929                                 struct rte_eth_dev *dev,
930                                 const struct rte_flow_attr *attr,
931                                 struct rte_flow_error *error)
932 {
933         struct mlx5_priv *priv = dev->data->dev_private;
934         const struct rte_flow_action_queue *queue = action->conf;
935
936         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
937                 return rte_flow_error_set(error, EINVAL,
938                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
939                                           "can't have 2 fate actions in"
940                                           " same flow");
941         if (!priv->rxqs_n)
942                 return rte_flow_error_set(error, EINVAL,
943                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944                                           NULL, "No Rx queues configured");
945         if (queue->index >= priv->rxqs_n)
946                 return rte_flow_error_set(error, EINVAL,
947                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
948                                           &queue->index,
949                                           "queue index out of range");
950         if (!(*priv->rxqs)[queue->index])
951                 return rte_flow_error_set(error, EINVAL,
952                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953                                           &queue->index,
954                                           "queue is not configured");
955         if (attr->egress)
956                 return rte_flow_error_set(error, ENOTSUP,
957                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
958                                           "queue action not supported for "
959                                           "egress");
960         return 0;
961 }
962
963 /*
964  * Validate the rss action.
965  *
966  * @param[in] action
967  *   Pointer to the queue action.
968  * @param[in] action_flags
969  *   Bit-fields that holds the actions detected until now.
970  * @param[in] dev
971  *   Pointer to the Ethernet device structure.
972  * @param[in] attr
973  *   Attributes of flow that includes this action.
974  * @param[in] item_flags
975  *   Items that were detected.
976  * @param[out] error
977  *   Pointer to error structure.
978  *
979  * @return
980  *   0 on success, a negative errno value otherwise and rte_errno is set.
981  */
982 int
983 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
984                               uint64_t action_flags,
985                               struct rte_eth_dev *dev,
986                               const struct rte_flow_attr *attr,
987                               uint64_t item_flags,
988                               struct rte_flow_error *error)
989 {
990         struct mlx5_priv *priv = dev->data->dev_private;
991         const struct rte_flow_action_rss *rss = action->conf;
992         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
993         unsigned int i;
994
995         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
996                 return rte_flow_error_set(error, EINVAL,
997                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
998                                           "can't have 2 fate actions"
999                                           " in same flow");
1000         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1001             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1002                 return rte_flow_error_set(error, ENOTSUP,
1003                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1004                                           &rss->func,
1005                                           "RSS hash function not supported");
1006 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1007         if (rss->level > 2)
1008 #else
1009         if (rss->level > 1)
1010 #endif
1011                 return rte_flow_error_set(error, ENOTSUP,
1012                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1013                                           &rss->level,
1014                                           "tunnel RSS is not supported");
1015         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1016         if (rss->key_len == 0 && rss->key != NULL)
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1019                                           &rss->key_len,
1020                                           "RSS hash key length 0");
1021         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1022                 return rte_flow_error_set(error, ENOTSUP,
1023                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1024                                           &rss->key_len,
1025                                           "RSS hash key too small");
1026         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1027                 return rte_flow_error_set(error, ENOTSUP,
1028                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1029                                           &rss->key_len,
1030                                           "RSS hash key too large");
1031         if (rss->queue_num > priv->config.ind_table_max_size)
1032                 return rte_flow_error_set(error, ENOTSUP,
1033                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1034                                           &rss->queue_num,
1035                                           "number of queues too large");
1036         if (rss->types & MLX5_RSS_HF_MASK)
1037                 return rte_flow_error_set(error, ENOTSUP,
1038                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1039                                           &rss->types,
1040                                           "some RSS protocols are not"
1041                                           " supported");
1042         if (!priv->rxqs_n)
1043                 return rte_flow_error_set(error, EINVAL,
1044                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1045                                           NULL, "No Rx queues configured");
1046         if (!rss->queue_num)
1047                 return rte_flow_error_set(error, EINVAL,
1048                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1049                                           NULL, "No queues configured");
1050         for (i = 0; i != rss->queue_num; ++i) {
1051                 if (!(*priv->rxqs)[rss->queue[i]])
1052                         return rte_flow_error_set
1053                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1054                                  &rss->queue[i], "queue is not configured");
1055         }
1056         if (attr->egress)
1057                 return rte_flow_error_set(error, ENOTSUP,
1058                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1059                                           "rss action not supported for "
1060                                           "egress");
1061         if (rss->level > 1 &&  !tunnel)
1062                 return rte_flow_error_set(error, EINVAL,
1063                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1064                                           "inner RSS is not supported for "
1065                                           "non-tunnel flows");
1066         return 0;
1067 }
1068
1069 /*
1070  * Validate the count action.
1071  *
1072  * @param[in] dev
1073  *   Pointer to the Ethernet device structure.
1074  * @param[in] attr
1075  *   Attributes of flow that includes this action.
1076  * @param[out] error
1077  *   Pointer to error structure.
1078  *
1079  * @return
1080  *   0 on success, a negative errno value otherwise and rte_errno is set.
1081  */
1082 int
1083 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1084                                 const struct rte_flow_attr *attr,
1085                                 struct rte_flow_error *error)
1086 {
1087         if (attr->egress)
1088                 return rte_flow_error_set(error, ENOTSUP,
1089                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1090                                           "count action not supported for "
1091                                           "egress");
1092         return 0;
1093 }
1094
1095 /**
1096  * Verify the @p attributes will be correctly understood by the NIC and store
1097  * them in the @p flow if everything is correct.
1098  *
1099  * @param[in] dev
1100  *   Pointer to the Ethernet device structure.
1101  * @param[in] attributes
1102  *   Pointer to flow attributes
1103  * @param[out] error
1104  *   Pointer to error structure.
1105  *
1106  * @return
1107  *   0 on success, a negative errno value otherwise and rte_errno is set.
1108  */
1109 int
1110 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1111                               const struct rte_flow_attr *attributes,
1112                               struct rte_flow_error *error)
1113 {
1114         struct mlx5_priv *priv = dev->data->dev_private;
1115         uint32_t priority_max = priv->config.flow_prio - 1;
1116
1117         if (attributes->group)
1118                 return rte_flow_error_set(error, ENOTSUP,
1119                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1120                                           NULL, "groups is not supported");
1121         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1122             attributes->priority >= priority_max)
1123                 return rte_flow_error_set(error, ENOTSUP,
1124                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1125                                           NULL, "priority out of range");
1126         if (attributes->egress)
1127                 return rte_flow_error_set(error, ENOTSUP,
1128                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1129                                           "egress is not supported");
1130         if (attributes->transfer && !priv->config.dv_esw_en)
1131                 return rte_flow_error_set(error, ENOTSUP,
1132                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1133                                           NULL, "transfer is not supported");
1134         if (!attributes->ingress)
1135                 return rte_flow_error_set(error, EINVAL,
1136                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1137                                           NULL,
1138                                           "ingress attribute is mandatory");
1139         return 0;
1140 }
1141
1142 /**
1143  * Validate ICMP6 item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1157                                uint64_t item_flags,
1158                                uint8_t target_protocol,
1159                                struct rte_flow_error *error)
1160 {
1161         const struct rte_flow_item_icmp6 *mask = item->mask;
1162         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1164                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1165         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166                                       MLX5_FLOW_LAYER_OUTER_L4;
1167         int ret;
1168
1169         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1170                 return rte_flow_error_set(error, EINVAL,
1171                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1172                                           "protocol filtering not compatible"
1173                                           " with ICMP6 layer");
1174         if (!(item_flags & l3m))
1175                 return rte_flow_error_set(error, EINVAL,
1176                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1177                                           "IPv6 is mandatory to filter on"
1178                                           " ICMP6");
1179         if (item_flags & l4m)
1180                 return rte_flow_error_set(error, EINVAL,
1181                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1182                                           "multiple L4 layers not supported");
1183         if (!mask)
1184                 mask = &rte_flow_item_icmp6_mask;
1185         ret = mlx5_flow_item_acceptable
1186                 (item, (const uint8_t *)mask,
1187                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1188                  sizeof(struct rte_flow_item_icmp6), error);
1189         if (ret < 0)
1190                 return ret;
1191         return 0;
1192 }
1193
1194 /**
1195  * Validate ICMP item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1209                              uint64_t item_flags,
1210                              uint8_t target_protocol,
1211                              struct rte_flow_error *error)
1212 {
1213         const struct rte_flow_item_icmp *mask = item->mask;
1214         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1215         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1216                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1217         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1218                                       MLX5_FLOW_LAYER_OUTER_L4;
1219         int ret;
1220
1221         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1222                 return rte_flow_error_set(error, EINVAL,
1223                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1224                                           "protocol filtering not compatible"
1225                                           " with ICMP layer");
1226         if (!(item_flags & l3m))
1227                 return rte_flow_error_set(error, EINVAL,
1228                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1229                                           "IPv4 is mandatory to filter"
1230                                           " on ICMP");
1231         if (item_flags & l4m)
1232                 return rte_flow_error_set(error, EINVAL,
1233                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1234                                           "multiple L4 layers not supported");
1235         if (!mask)
1236                 mask = &rte_flow_item_icmp_mask;
1237         ret = mlx5_flow_item_acceptable
1238                 (item, (const uint8_t *)mask,
1239                  (const uint8_t *)&rte_flow_item_icmp_mask,
1240                  sizeof(struct rte_flow_item_icmp), error);
1241         if (ret < 0)
1242                 return ret;
1243         return 0;
1244 }
1245
1246 /**
1247  * Validate Ethernet item.
1248  *
1249  * @param[in] item
1250  *   Item specification.
1251  * @param[in] item_flags
1252  *   Bit-fields that holds the items detected until now.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1261                             uint64_t item_flags,
1262                             struct rte_flow_error *error)
1263 {
1264         const struct rte_flow_item_eth *mask = item->mask;
1265         const struct rte_flow_item_eth nic_mask = {
1266                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1267                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1268                 .type = RTE_BE16(0xffff),
1269         };
1270         int ret;
1271         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1272         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1273                                        MLX5_FLOW_LAYER_OUTER_L2;
1274
1275         if (item_flags & ethm)
1276                 return rte_flow_error_set(error, ENOTSUP,
1277                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1278                                           "multiple L2 layers not supported");
1279         if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1280                 return rte_flow_error_set(error, EINVAL,
1281                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1282                                           "inner L2 layer should not "
1283                                           "follow inner L3 layers");
1284         if (!mask)
1285                 mask = &rte_flow_item_eth_mask;
1286         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1287                                         (const uint8_t *)&nic_mask,
1288                                         sizeof(struct rte_flow_item_eth),
1289                                         error);
1290         return ret;
1291 }
1292
1293 /**
1294  * Validate VLAN item.
1295  *
1296  * @param[in] item
1297  *   Item specification.
1298  * @param[in] item_flags
1299  *   Bit-fields that holds the items detected until now.
1300  * @param[in] dev
1301  *   Ethernet device flow is being created on.
1302  * @param[out] error
1303  *   Pointer to error structure.
1304  *
1305  * @return
1306  *   0 on success, a negative errno value otherwise and rte_errno is set.
1307  */
1308 int
1309 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1310                              uint64_t item_flags,
1311                              struct rte_eth_dev *dev,
1312                              struct rte_flow_error *error)
1313 {
1314         const struct rte_flow_item_vlan *spec = item->spec;
1315         const struct rte_flow_item_vlan *mask = item->mask;
1316         const struct rte_flow_item_vlan nic_mask = {
1317                 .tci = RTE_BE16(UINT16_MAX),
1318                 .inner_type = RTE_BE16(UINT16_MAX),
1319         };
1320         uint16_t vlan_tag = 0;
1321         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1322         int ret;
1323         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1324                                         MLX5_FLOW_LAYER_INNER_L4) :
1325                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1326                                         MLX5_FLOW_LAYER_OUTER_L4);
1327         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1328                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1329
1330         const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1331                                       MLX5_FLOW_LAYER_OUTER_L2;
1332         if (item_flags & vlanm)
1333                 return rte_flow_error_set(error, EINVAL,
1334                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1335                                           "multiple VLAN layers not supported");
1336         else if ((item_flags & l34m) != 0)
1337                 return rte_flow_error_set(error, EINVAL,
1338                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1339                                           "L2 layer cannot follow L3/L4 layer");
1340         else if ((item_flags & l2m) == 0)
1341                 return rte_flow_error_set(error, EINVAL,
1342                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1343                                           "no L2 layer before VLAN");
1344         if (!mask)
1345                 mask = &rte_flow_item_vlan_mask;
1346         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1347                                         (const uint8_t *)&nic_mask,
1348                                         sizeof(struct rte_flow_item_vlan),
1349                                         error);
1350         if (ret)
1351                 return ret;
1352         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1353                 struct mlx5_priv *priv = dev->data->dev_private;
1354
1355                 if (priv->vmwa_context) {
1356                         /*
1357                          * Non-NULL context means we have a virtual machine
1358                          * and SR-IOV enabled, we have to create VLAN interface
1359                          * to make hypervisor to setup E-Switch vport
1360                          * context correctly. We avoid creating the multiple
1361                          * VLAN interfaces, so we cannot support VLAN tag mask.
1362                          */
1363                         return rte_flow_error_set(error, EINVAL,
1364                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1365                                                   item,
1366                                                   "VLAN tag mask is not"
1367                                                   " supported in virtual"
1368                                                   " environment");
1369                 }
1370         }
1371         if (spec) {
1372                 vlan_tag = spec->tci;
1373                 vlan_tag &= mask->tci;
1374         }
1375         /*
1376          * From verbs perspective an empty VLAN is equivalent
1377          * to a packet without VLAN layer.
1378          */
1379         if (!vlan_tag)
1380                 return rte_flow_error_set(error, EINVAL,
1381                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1382                                           item->spec,
1383                                           "VLAN cannot be empty");
1384         return 0;
1385 }
1386
1387 /**
1388  * Validate IPV4 item.
1389  *
1390  * @param[in] item
1391  *   Item specification.
1392  * @param[in] item_flags
1393  *   Bit-fields that holds the items detected until now.
1394  * @param[in] acc_mask
1395  *   Acceptable mask, if NULL default internal default mask
1396  *   will be used to check whether item fields are supported.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1405                              uint64_t item_flags,
1406                              const struct rte_flow_item_ipv4 *acc_mask,
1407                              struct rte_flow_error *error)
1408 {
1409         const struct rte_flow_item_ipv4 *mask = item->mask;
1410         const struct rte_flow_item_ipv4 *spec = item->spec;
1411         const struct rte_flow_item_ipv4 nic_mask = {
1412                 .hdr = {
1413                         .src_addr = RTE_BE32(0xffffffff),
1414                         .dst_addr = RTE_BE32(0xffffffff),
1415                         .type_of_service = 0xff,
1416                         .next_proto_id = 0xff,
1417                 },
1418         };
1419         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1420         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1421                                       MLX5_FLOW_LAYER_OUTER_L3;
1422         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1423                                       MLX5_FLOW_LAYER_OUTER_L4;
1424         int ret;
1425         uint8_t next_proto = 0xFF;
1426
1427         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1428                 if (mask && spec)
1429                         next_proto = mask->hdr.next_proto_id &
1430                                      spec->hdr.next_proto_id;
1431                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1432                         return rte_flow_error_set(error, EINVAL,
1433                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1434                                                   item,
1435                                                   "multiple tunnel "
1436                                                   "not supported");
1437         }
1438         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1439                 return rte_flow_error_set(error, EINVAL,
1440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1441                                           "wrong tunnel type - IPv6 specified "
1442                                           "but IPv4 item provided");
1443         if (item_flags & l3m)
1444                 return rte_flow_error_set(error, ENOTSUP,
1445                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1446                                           "multiple L3 layers not supported");
1447         else if (item_flags & l4m)
1448                 return rte_flow_error_set(error, EINVAL,
1449                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1450                                           "L3 cannot follow an L4 layer.");
1451         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1452                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1453                 return rte_flow_error_set(error, EINVAL,
1454                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1455                                           "L3 cannot follow an NVGRE layer.");
1456         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1457                 return rte_flow_error_set(error, EINVAL,
1458                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1459                                           "no L2 layer before IPV4");
1460         if (!mask)
1461                 mask = &rte_flow_item_ipv4_mask;
1462         else if (mask->hdr.next_proto_id != 0 &&
1463                  mask->hdr.next_proto_id != 0xff)
1464                 return rte_flow_error_set(error, EINVAL,
1465                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1466                                           "partial mask is not supported"
1467                                           " for protocol");
1468         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1469                                         acc_mask ? (const uint8_t *)acc_mask
1470                                                  : (const uint8_t *)&nic_mask,
1471                                         sizeof(struct rte_flow_item_ipv4),
1472                                         error);
1473         if (ret < 0)
1474                 return ret;
1475         return 0;
1476 }
1477
1478 /**
1479  * Validate IPV6 item.
1480  *
1481  * @param[in] item
1482  *   Item specification.
1483  * @param[in] item_flags
1484  *   Bit-fields that holds the items detected until now.
1485  * @param[in] acc_mask
1486  *   Acceptable mask, if NULL default internal default mask
1487  *   will be used to check whether item fields are supported.
1488  * @param[out] error
1489  *   Pointer to error structure.
1490  *
1491  * @return
1492  *   0 on success, a negative errno value otherwise and rte_errno is set.
1493  */
1494 int
1495 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1496                              uint64_t item_flags,
1497                              const struct rte_flow_item_ipv6 *acc_mask,
1498                              struct rte_flow_error *error)
1499 {
1500         const struct rte_flow_item_ipv6 *mask = item->mask;
1501         const struct rte_flow_item_ipv6 *spec = item->spec;
1502         const struct rte_flow_item_ipv6 nic_mask = {
1503                 .hdr = {
1504                         .src_addr =
1505                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1506                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1507                         .dst_addr =
1508                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1509                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1510                         .vtc_flow = RTE_BE32(0xffffffff),
1511                         .proto = 0xff,
1512                         .hop_limits = 0xff,
1513                 },
1514         };
1515         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1516         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1517                                       MLX5_FLOW_LAYER_OUTER_L3;
1518         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1519                                       MLX5_FLOW_LAYER_OUTER_L4;
1520         int ret;
1521         uint8_t next_proto = 0xFF;
1522
1523         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1524                 if (mask && spec)
1525                         next_proto = mask->hdr.proto & spec->hdr.proto;
1526                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1527                         return rte_flow_error_set(error, EINVAL,
1528                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1529                                                   item,
1530                                                   "multiple tunnel "
1531                                                   "not supported");
1532         }
1533         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1534                 return rte_flow_error_set(error, EINVAL,
1535                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1536                                           "wrong tunnel type - IPv4 specified "
1537                                           "but IPv6 item provided");
1538         if (item_flags & l3m)
1539                 return rte_flow_error_set(error, ENOTSUP,
1540                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1541                                           "multiple L3 layers not supported");
1542         else if (item_flags & l4m)
1543                 return rte_flow_error_set(error, EINVAL,
1544                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1545                                           "L3 cannot follow an L4 layer.");
1546         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1547                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1548                 return rte_flow_error_set(error, EINVAL,
1549                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1550                                           "L3 cannot follow an NVGRE layer.");
1551         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1552                 return rte_flow_error_set(error, EINVAL,
1553                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1554                                           "no L2 layer before IPV6");
1555         if (!mask)
1556                 mask = &rte_flow_item_ipv6_mask;
1557         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1558                                         acc_mask ? (const uint8_t *)acc_mask
1559                                                  : (const uint8_t *)&nic_mask,
1560                                         sizeof(struct rte_flow_item_ipv6),
1561                                         error);
1562         if (ret < 0)
1563                 return ret;
1564         return 0;
1565 }
1566
1567 /**
1568  * Validate UDP item.
1569  *
1570  * @param[in] item
1571  *   Item specification.
1572  * @param[in] item_flags
1573  *   Bit-fields that holds the items detected until now.
1574  * @param[in] target_protocol
1575  *   The next protocol in the previous item.
1576  * @param[in] flow_mask
1577  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1578  * @param[out] error
1579  *   Pointer to error structure.
1580  *
1581  * @return
1582  *   0 on success, a negative errno value otherwise and rte_errno is set.
1583  */
1584 int
1585 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1586                             uint64_t item_flags,
1587                             uint8_t target_protocol,
1588                             struct rte_flow_error *error)
1589 {
1590         const struct rte_flow_item_udp *mask = item->mask;
1591         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1592         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1593                                       MLX5_FLOW_LAYER_OUTER_L3;
1594         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1595                                       MLX5_FLOW_LAYER_OUTER_L4;
1596         int ret;
1597
1598         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1599                 return rte_flow_error_set(error, EINVAL,
1600                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1601                                           "protocol filtering not compatible"
1602                                           " with UDP layer");
1603         if (!(item_flags & l3m))
1604                 return rte_flow_error_set(error, EINVAL,
1605                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1606                                           "L3 is mandatory to filter on L4");
1607         if (item_flags & l4m)
1608                 return rte_flow_error_set(error, EINVAL,
1609                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1610                                           "multiple L4 layers not supported");
1611         if (!mask)
1612                 mask = &rte_flow_item_udp_mask;
1613         ret = mlx5_flow_item_acceptable
1614                 (item, (const uint8_t *)mask,
1615                  (const uint8_t *)&rte_flow_item_udp_mask,
1616                  sizeof(struct rte_flow_item_udp), error);
1617         if (ret < 0)
1618                 return ret;
1619         return 0;
1620 }
1621
1622 /**
1623  * Validate TCP item.
1624  *
1625  * @param[in] item
1626  *   Item specification.
1627  * @param[in] item_flags
1628  *   Bit-fields that holds the items detected until now.
1629  * @param[in] target_protocol
1630  *   The next protocol in the previous item.
1631  * @param[out] error
1632  *   Pointer to error structure.
1633  *
1634  * @return
1635  *   0 on success, a negative errno value otherwise and rte_errno is set.
1636  */
1637 int
1638 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1639                             uint64_t item_flags,
1640                             uint8_t target_protocol,
1641                             const struct rte_flow_item_tcp *flow_mask,
1642                             struct rte_flow_error *error)
1643 {
1644         const struct rte_flow_item_tcp *mask = item->mask;
1645         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1646         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1647                                       MLX5_FLOW_LAYER_OUTER_L3;
1648         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1649                                       MLX5_FLOW_LAYER_OUTER_L4;
1650         int ret;
1651
1652         assert(flow_mask);
1653         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1654                 return rte_flow_error_set(error, EINVAL,
1655                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1656                                           "protocol filtering not compatible"
1657                                           " with TCP layer");
1658         if (!(item_flags & l3m))
1659                 return rte_flow_error_set(error, EINVAL,
1660                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1661                                           "L3 is mandatory to filter on L4");
1662         if (item_flags & l4m)
1663                 return rte_flow_error_set(error, EINVAL,
1664                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1665                                           "multiple L4 layers not supported");
1666         if (!mask)
1667                 mask = &rte_flow_item_tcp_mask;
1668         ret = mlx5_flow_item_acceptable
1669                 (item, (const uint8_t *)mask,
1670                  (const uint8_t *)flow_mask,
1671                  sizeof(struct rte_flow_item_tcp), error);
1672         if (ret < 0)
1673                 return ret;
1674         return 0;
1675 }
1676
1677 /**
1678  * Validate VXLAN item.
1679  *
1680  * @param[in] item
1681  *   Item specification.
1682  * @param[in] item_flags
1683  *   Bit-fields that holds the items detected until now.
1684  * @param[in] target_protocol
1685  *   The next protocol in the previous item.
1686  * @param[out] error
1687  *   Pointer to error structure.
1688  *
1689  * @return
1690  *   0 on success, a negative errno value otherwise and rte_errno is set.
1691  */
1692 int
1693 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1694                               uint64_t item_flags,
1695                               struct rte_flow_error *error)
1696 {
1697         const struct rte_flow_item_vxlan *spec = item->spec;
1698         const struct rte_flow_item_vxlan *mask = item->mask;
1699         int ret;
1700         union vni {
1701                 uint32_t vlan_id;
1702                 uint8_t vni[4];
1703         } id = { .vlan_id = 0, };
1704         uint32_t vlan_id = 0;
1705
1706
1707         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1708                 return rte_flow_error_set(error, ENOTSUP,
1709                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1710                                           "multiple tunnel layers not"
1711                                           " supported");
1712         /*
1713          * Verify only UDPv4 is present as defined in
1714          * https://tools.ietf.org/html/rfc7348
1715          */
1716         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1717                 return rte_flow_error_set(error, EINVAL,
1718                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1719                                           "no outer UDP layer found");
1720         if (!mask)
1721                 mask = &rte_flow_item_vxlan_mask;
1722         ret = mlx5_flow_item_acceptable
1723                 (item, (const uint8_t *)mask,
1724                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1725                  sizeof(struct rte_flow_item_vxlan),
1726                  error);
1727         if (ret < 0)
1728                 return ret;
1729         if (spec) {
1730                 memcpy(&id.vni[1], spec->vni, 3);
1731                 vlan_id = id.vlan_id;
1732                 memcpy(&id.vni[1], mask->vni, 3);
1733                 vlan_id &= id.vlan_id;
1734         }
1735         /*
1736          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1737          * only this layer is defined in the Verbs specification it is
1738          * interpreted as wildcard and all packets will match this
1739          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1740          * udp), all packets matching the layers before will also
1741          * match this rule.  To avoid such situation, VNI 0 is
1742          * currently refused.
1743          */
1744         if (!vlan_id)
1745                 return rte_flow_error_set(error, ENOTSUP,
1746                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1747                                           "VXLAN vni cannot be 0");
1748         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1749                 return rte_flow_error_set(error, ENOTSUP,
1750                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1751                                           "VXLAN tunnel must be fully defined");
1752         return 0;
1753 }
1754
1755 /**
1756  * Validate VXLAN_GPE item.
1757  *
1758  * @param[in] item
1759  *   Item specification.
1760  * @param[in] item_flags
1761  *   Bit-fields that holds the items detected until now.
1762  * @param[in] priv
1763  *   Pointer to the private data structure.
1764  * @param[in] target_protocol
1765  *   The next protocol in the previous item.
1766  * @param[out] error
1767  *   Pointer to error structure.
1768  *
1769  * @return
1770  *   0 on success, a negative errno value otherwise and rte_errno is set.
1771  */
1772 int
1773 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1774                                   uint64_t item_flags,
1775                                   struct rte_eth_dev *dev,
1776                                   struct rte_flow_error *error)
1777 {
1778         struct mlx5_priv *priv = dev->data->dev_private;
1779         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1780         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1781         int ret;
1782         union vni {
1783                 uint32_t vlan_id;
1784                 uint8_t vni[4];
1785         } id = { .vlan_id = 0, };
1786         uint32_t vlan_id = 0;
1787
1788         if (!priv->config.l3_vxlan_en)
1789                 return rte_flow_error_set(error, ENOTSUP,
1790                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1791                                           "L3 VXLAN is not enabled by device"
1792                                           " parameter and/or not configured in"
1793                                           " firmware");
1794         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1795                 return rte_flow_error_set(error, ENOTSUP,
1796                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1797                                           "multiple tunnel layers not"
1798                                           " supported");
1799         /*
1800          * Verify only UDPv4 is present as defined in
1801          * https://tools.ietf.org/html/rfc7348
1802          */
1803         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1804                 return rte_flow_error_set(error, EINVAL,
1805                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1806                                           "no outer UDP layer found");
1807         if (!mask)
1808                 mask = &rte_flow_item_vxlan_gpe_mask;
1809         ret = mlx5_flow_item_acceptable
1810                 (item, (const uint8_t *)mask,
1811                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1812                  sizeof(struct rte_flow_item_vxlan_gpe),
1813                  error);
1814         if (ret < 0)
1815                 return ret;
1816         if (spec) {
1817                 if (spec->protocol)
1818                         return rte_flow_error_set(error, ENOTSUP,
1819                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1820                                                   item,
1821                                                   "VxLAN-GPE protocol"
1822                                                   " not supported");
1823                 memcpy(&id.vni[1], spec->vni, 3);
1824                 vlan_id = id.vlan_id;
1825                 memcpy(&id.vni[1], mask->vni, 3);
1826                 vlan_id &= id.vlan_id;
1827         }
1828         /*
1829          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1830          * layer is defined in the Verbs specification it is interpreted as
1831          * wildcard and all packets will match this rule, if it follows a full
1832          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1833          * before will also match this rule.  To avoid such situation, VNI 0
1834          * is currently refused.
1835          */
1836         if (!vlan_id)
1837                 return rte_flow_error_set(error, ENOTSUP,
1838                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1839                                           "VXLAN-GPE vni cannot be 0");
1840         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1841                 return rte_flow_error_set(error, ENOTSUP,
1842                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1843                                           "VXLAN-GPE tunnel must be fully"
1844                                           " defined");
1845         return 0;
1846 }
1847 /**
1848  * Validate GRE Key item.
1849  *
1850  * @param[in] item
1851  *   Item specification.
1852  * @param[in] item_flags
1853  *   Bit flags to mark detected items.
1854  * @param[in] gre_item
1855  *   Pointer to gre_item
1856  * @param[out] error
1857  *   Pointer to error structure.
1858  *
1859  * @return
1860  *   0 on success, a negative errno value otherwise and rte_errno is set.
1861  */
1862 int
1863 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1864                                 uint64_t item_flags,
1865                                 const struct rte_flow_item *gre_item,
1866                                 struct rte_flow_error *error)
1867 {
1868         const rte_be32_t *mask = item->mask;
1869         int ret = 0;
1870         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1871         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1872         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1873
1874         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1875                 return rte_flow_error_set(error, ENOTSUP,
1876                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1877                                           "Multiple GRE key not support");
1878         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1879                 return rte_flow_error_set(error, ENOTSUP,
1880                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1881                                           "No preceding GRE header");
1882         if (item_flags & MLX5_FLOW_LAYER_INNER)
1883                 return rte_flow_error_set(error, ENOTSUP,
1884                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1885                                           "GRE key following a wrong item");
1886         if (!gre_mask)
1887                 gre_mask = &rte_flow_item_gre_mask;
1888         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1889                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1890                 return rte_flow_error_set(error, EINVAL,
1891                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1892                                           "Key bit must be on");
1893
1894         if (!mask)
1895                 mask = &gre_key_default_mask;
1896         ret = mlx5_flow_item_acceptable
1897                 (item, (const uint8_t *)mask,
1898                  (const uint8_t *)&gre_key_default_mask,
1899                  sizeof(rte_be32_t), error);
1900         return ret;
1901 }
1902
1903 /**
1904  * Validate GRE item.
1905  *
1906  * @param[in] item
1907  *   Item specification.
1908  * @param[in] item_flags
1909  *   Bit flags to mark detected items.
1910  * @param[in] target_protocol
1911  *   The next protocol in the previous item.
1912  * @param[out] error
1913  *   Pointer to error structure.
1914  *
1915  * @return
1916  *   0 on success, a negative errno value otherwise and rte_errno is set.
1917  */
1918 int
1919 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1920                             uint64_t item_flags,
1921                             uint8_t target_protocol,
1922                             struct rte_flow_error *error)
1923 {
1924         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1925         const struct rte_flow_item_gre *mask = item->mask;
1926         int ret;
1927         const struct rte_flow_item_gre nic_mask = {
1928                 .c_rsvd0_ver = RTE_BE16(0xB000),
1929                 .protocol = RTE_BE16(UINT16_MAX),
1930         };
1931
1932         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1933                 return rte_flow_error_set(error, EINVAL,
1934                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1935                                           "protocol filtering not compatible"
1936                                           " with this GRE layer");
1937         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1938                 return rte_flow_error_set(error, ENOTSUP,
1939                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1940                                           "multiple tunnel layers not"
1941                                           " supported");
1942         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1943                 return rte_flow_error_set(error, ENOTSUP,
1944                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1945                                           "L3 Layer is missing");
1946         if (!mask)
1947                 mask = &rte_flow_item_gre_mask;
1948         ret = mlx5_flow_item_acceptable
1949                 (item, (const uint8_t *)mask,
1950                  (const uint8_t *)&nic_mask,
1951                  sizeof(struct rte_flow_item_gre), error);
1952         if (ret < 0)
1953                 return ret;
1954 #ifndef HAVE_MLX5DV_DR
1955 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1956         if (spec && (spec->protocol & mask->protocol))
1957                 return rte_flow_error_set(error, ENOTSUP,
1958                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1959                                           "without MPLS support the"
1960                                           " specification cannot be used for"
1961                                           " filtering");
1962 #endif
1963 #endif
1964         return 0;
1965 }
1966
1967 /**
1968  * Validate Geneve item.
1969  *
1970  * @param[in] item
1971  *   Item specification.
1972  * @param[in] itemFlags
1973  *   Bit-fields that holds the items detected until now.
1974  * @param[in] enPriv
1975  *   Pointer to the private data structure.
1976  * @param[out] error
1977  *   Pointer to error structure.
1978  *
1979  * @return
1980  *   0 on success, a negative errno value otherwise and rte_errno is set.
1981  */
1982
1983 int
1984 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
1985                                uint64_t item_flags,
1986                                struct rte_eth_dev *dev,
1987                                struct rte_flow_error *error)
1988 {
1989         struct mlx5_priv *priv = dev->data->dev_private;
1990         const struct rte_flow_item_geneve *spec = item->spec;
1991         const struct rte_flow_item_geneve *mask = item->mask;
1992         int ret;
1993         uint16_t gbhdr;
1994         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
1995                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
1996         const struct rte_flow_item_geneve nic_mask = {
1997                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
1998                 .vni = "\xff\xff\xff",
1999                 .protocol = RTE_BE16(UINT16_MAX),
2000         };
2001
2002         if (!(priv->config.hca_attr.flex_parser_protocols &
2003               MLX5_HCA_FLEX_GENEVE_ENABLED) ||
2004             !priv->config.hca_attr.tunnel_stateless_geneve_rx)
2005                 return rte_flow_error_set(error, ENOTSUP,
2006                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2007                                           "L3 Geneve is not enabled by device"
2008                                           " parameter and/or not configured in"
2009                                           " firmware");
2010         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2011                 return rte_flow_error_set(error, ENOTSUP,
2012                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2013                                           "multiple tunnel layers not"
2014                                           " supported");
2015         /*
2016          * Verify only UDPv4 is present as defined in
2017          * https://tools.ietf.org/html/rfc7348
2018          */
2019         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2020                 return rte_flow_error_set(error, EINVAL,
2021                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2022                                           "no outer UDP layer found");
2023         if (!mask)
2024                 mask = &rte_flow_item_geneve_mask;
2025         ret = mlx5_flow_item_acceptable
2026                                   (item, (const uint8_t *)mask,
2027                                    (const uint8_t *)&nic_mask,
2028                                    sizeof(struct rte_flow_item_geneve), error);
2029         if (ret)
2030                 return ret;
2031         if (spec) {
2032                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2033                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2034                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2035                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2036                         return rte_flow_error_set(error, ENOTSUP,
2037                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2038                                                   item,
2039                                                   "Geneve protocol unsupported"
2040                                                   " fields are being used");
2041                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2042                         return rte_flow_error_set
2043                                         (error, ENOTSUP,
2044                                          RTE_FLOW_ERROR_TYPE_ITEM,
2045                                          item,
2046                                          "Unsupported Geneve options length");
2047         }
2048         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2049                 return rte_flow_error_set
2050                                     (error, ENOTSUP,
2051                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2052                                      "Geneve tunnel must be fully defined");
2053         return 0;
2054 }
2055
2056 /**
2057  * Validate MPLS item.
2058  *
2059  * @param[in] dev
2060  *   Pointer to the rte_eth_dev structure.
2061  * @param[in] item
2062  *   Item specification.
2063  * @param[in] item_flags
2064  *   Bit-fields that holds the items detected until now.
2065  * @param[in] prev_layer
2066  *   The protocol layer indicated in previous item.
2067  * @param[out] error
2068  *   Pointer to error structure.
2069  *
2070  * @return
2071  *   0 on success, a negative errno value otherwise and rte_errno is set.
2072  */
2073 int
2074 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2075                              const struct rte_flow_item *item __rte_unused,
2076                              uint64_t item_flags __rte_unused,
2077                              uint64_t prev_layer __rte_unused,
2078                              struct rte_flow_error *error)
2079 {
2080 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2081         const struct rte_flow_item_mpls *mask = item->mask;
2082         struct mlx5_priv *priv = dev->data->dev_private;
2083         int ret;
2084
2085         if (!priv->config.mpls_en)
2086                 return rte_flow_error_set(error, ENOTSUP,
2087                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2088                                           "MPLS not supported or"
2089                                           " disabled in firmware"
2090                                           " configuration.");
2091         /* MPLS over IP, UDP, GRE is allowed */
2092         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2093                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2094                             MLX5_FLOW_LAYER_GRE)))
2095                 return rte_flow_error_set(error, EINVAL,
2096                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2097                                           "protocol filtering not compatible"
2098                                           " with MPLS layer");
2099         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2100         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2101             !(item_flags & MLX5_FLOW_LAYER_GRE))
2102                 return rte_flow_error_set(error, ENOTSUP,
2103                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2104                                           "multiple tunnel layers not"
2105                                           " supported");
2106         if (!mask)
2107                 mask = &rte_flow_item_mpls_mask;
2108         ret = mlx5_flow_item_acceptable
2109                 (item, (const uint8_t *)mask,
2110                  (const uint8_t *)&rte_flow_item_mpls_mask,
2111                  sizeof(struct rte_flow_item_mpls), error);
2112         if (ret < 0)
2113                 return ret;
2114         return 0;
2115 #endif
2116         return rte_flow_error_set(error, ENOTSUP,
2117                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2118                                   "MPLS is not supported by Verbs, please"
2119                                   " update.");
2120 }
2121
2122 /**
2123  * Validate NVGRE item.
2124  *
2125  * @param[in] item
2126  *   Item specification.
2127  * @param[in] item_flags
2128  *   Bit flags to mark detected items.
2129  * @param[in] target_protocol
2130  *   The next protocol in the previous item.
2131  * @param[out] error
2132  *   Pointer to error structure.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2139                               uint64_t item_flags,
2140                               uint8_t target_protocol,
2141                               struct rte_flow_error *error)
2142 {
2143         const struct rte_flow_item_nvgre *mask = item->mask;
2144         int ret;
2145
2146         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2147                 return rte_flow_error_set(error, EINVAL,
2148                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2149                                           "protocol filtering not compatible"
2150                                           " with this GRE layer");
2151         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2152                 return rte_flow_error_set(error, ENOTSUP,
2153                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2154                                           "multiple tunnel layers not"
2155                                           " supported");
2156         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2157                 return rte_flow_error_set(error, ENOTSUP,
2158                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2159                                           "L3 Layer is missing");
2160         if (!mask)
2161                 mask = &rte_flow_item_nvgre_mask;
2162         ret = mlx5_flow_item_acceptable
2163                 (item, (const uint8_t *)mask,
2164                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2165                  sizeof(struct rte_flow_item_nvgre), error);
2166         if (ret < 0)
2167                 return ret;
2168         return 0;
2169 }
2170
2171 static int
2172 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2173                    const struct rte_flow_attr *attr __rte_unused,
2174                    const struct rte_flow_item items[] __rte_unused,
2175                    const struct rte_flow_action actions[] __rte_unused,
2176                    bool external __rte_unused,
2177                    struct rte_flow_error *error)
2178 {
2179         return rte_flow_error_set(error, ENOTSUP,
2180                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2181 }
2182
2183 static struct mlx5_flow *
2184 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2185                   const struct rte_flow_item items[] __rte_unused,
2186                   const struct rte_flow_action actions[] __rte_unused,
2187                   struct rte_flow_error *error)
2188 {
2189         rte_flow_error_set(error, ENOTSUP,
2190                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2191         return NULL;
2192 }
2193
2194 static int
2195 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2196                     struct mlx5_flow *dev_flow __rte_unused,
2197                     const struct rte_flow_attr *attr __rte_unused,
2198                     const struct rte_flow_item items[] __rte_unused,
2199                     const struct rte_flow_action actions[] __rte_unused,
2200                     struct rte_flow_error *error)
2201 {
2202         return rte_flow_error_set(error, ENOTSUP,
2203                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2204 }
2205
2206 static int
2207 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2208                 struct rte_flow *flow __rte_unused,
2209                 struct rte_flow_error *error)
2210 {
2211         return rte_flow_error_set(error, ENOTSUP,
2212                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2213 }
2214
2215 static void
2216 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2217                  struct rte_flow *flow __rte_unused)
2218 {
2219 }
2220
2221 static void
2222 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2223                   struct rte_flow *flow __rte_unused)
2224 {
2225 }
2226
2227 static int
2228 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2229                 struct rte_flow *flow __rte_unused,
2230                 const struct rte_flow_action *actions __rte_unused,
2231                 void *data __rte_unused,
2232                 struct rte_flow_error *error)
2233 {
2234         return rte_flow_error_set(error, ENOTSUP,
2235                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2236 }
2237
2238 /* Void driver to protect from null pointer reference. */
2239 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2240         .validate = flow_null_validate,
2241         .prepare = flow_null_prepare,
2242         .translate = flow_null_translate,
2243         .apply = flow_null_apply,
2244         .remove = flow_null_remove,
2245         .destroy = flow_null_destroy,
2246         .query = flow_null_query,
2247 };
2248
2249 /**
2250  * Select flow driver type according to flow attributes and device
2251  * configuration.
2252  *
2253  * @param[in] dev
2254  *   Pointer to the dev structure.
2255  * @param[in] attr
2256  *   Pointer to the flow attributes.
2257  *
2258  * @return
2259  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2260  */
2261 static enum mlx5_flow_drv_type
2262 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2263 {
2264         struct mlx5_priv *priv = dev->data->dev_private;
2265         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2266
2267         if (attr->transfer && priv->config.dv_esw_en)
2268                 type = MLX5_FLOW_TYPE_DV;
2269         if (!attr->transfer)
2270                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2271                                                  MLX5_FLOW_TYPE_VERBS;
2272         return type;
2273 }
2274
2275 #define flow_get_drv_ops(type) flow_drv_ops[type]
2276
2277 /**
2278  * Flow driver validation API. This abstracts calling driver specific functions.
2279  * The type of flow driver is determined according to flow attributes.
2280  *
2281  * @param[in] dev
2282  *   Pointer to the dev structure.
2283  * @param[in] attr
2284  *   Pointer to the flow attributes.
2285  * @param[in] items
2286  *   Pointer to the list of items.
2287  * @param[in] actions
2288  *   Pointer to the list of actions.
2289  * @param[in] external
2290  *   This flow rule is created by request external to PMD.
2291  * @param[out] error
2292  *   Pointer to the error structure.
2293  *
2294  * @return
2295  *   0 on success, a negative errno value otherwise and rte_errno is set.
2296  */
2297 static inline int
2298 flow_drv_validate(struct rte_eth_dev *dev,
2299                   const struct rte_flow_attr *attr,
2300                   const struct rte_flow_item items[],
2301                   const struct rte_flow_action actions[],
2302                   bool external, struct rte_flow_error *error)
2303 {
2304         const struct mlx5_flow_driver_ops *fops;
2305         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2306
2307         fops = flow_get_drv_ops(type);
2308         return fops->validate(dev, attr, items, actions, external, error);
2309 }
2310
2311 /**
2312  * Flow driver preparation API. This abstracts calling driver specific
2313  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2314  * calculates the size of memory required for device flow, allocates the memory,
2315  * initializes the device flow and returns the pointer.
2316  *
2317  * @note
2318  *   This function initializes device flow structure such as dv or verbs in
2319  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2320  *   rest. For example, adding returning device flow to flow->dev_flow list and
2321  *   setting backward reference to the flow should be done out of this function.
2322  *   layers field is not filled either.
2323  *
2324  * @param[in] attr
2325  *   Pointer to the flow attributes.
2326  * @param[in] items
2327  *   Pointer to the list of items.
2328  * @param[in] actions
2329  *   Pointer to the list of actions.
2330  * @param[out] error
2331  *   Pointer to the error structure.
2332  *
2333  * @return
2334  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2335  */
2336 static inline struct mlx5_flow *
2337 flow_drv_prepare(const struct rte_flow *flow,
2338                  const struct rte_flow_attr *attr,
2339                  const struct rte_flow_item items[],
2340                  const struct rte_flow_action actions[],
2341                  struct rte_flow_error *error)
2342 {
2343         const struct mlx5_flow_driver_ops *fops;
2344         enum mlx5_flow_drv_type type = flow->drv_type;
2345
2346         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2347         fops = flow_get_drv_ops(type);
2348         return fops->prepare(attr, items, actions, error);
2349 }
2350
2351 /**
2352  * Flow driver translation API. This abstracts calling driver specific
2353  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2354  * translates a generic flow into a driver flow. flow_drv_prepare() must
2355  * precede.
2356  *
2357  * @note
2358  *   dev_flow->layers could be filled as a result of parsing during translation
2359  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2360  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2361  *   flow->actions could be overwritten even though all the expanded dev_flows
2362  *   have the same actions.
2363  *
2364  * @param[in] dev
2365  *   Pointer to the rte dev structure.
2366  * @param[in, out] dev_flow
2367  *   Pointer to the mlx5 flow.
2368  * @param[in] attr
2369  *   Pointer to the flow attributes.
2370  * @param[in] items
2371  *   Pointer to the list of items.
2372  * @param[in] actions
2373  *   Pointer to the list of actions.
2374  * @param[out] error
2375  *   Pointer to the error structure.
2376  *
2377  * @return
2378  *   0 on success, a negative errno value otherwise and rte_errno is set.
2379  */
2380 static inline int
2381 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2382                    const struct rte_flow_attr *attr,
2383                    const struct rte_flow_item items[],
2384                    const struct rte_flow_action actions[],
2385                    struct rte_flow_error *error)
2386 {
2387         const struct mlx5_flow_driver_ops *fops;
2388         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2389
2390         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2391         fops = flow_get_drv_ops(type);
2392         return fops->translate(dev, dev_flow, attr, items, actions, error);
2393 }
2394
2395 /**
2396  * Flow driver apply API. This abstracts calling driver specific functions.
2397  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2398  * translated driver flows on to device. flow_drv_translate() must precede.
2399  *
2400  * @param[in] dev
2401  *   Pointer to Ethernet device structure.
2402  * @param[in, out] flow
2403  *   Pointer to flow structure.
2404  * @param[out] error
2405  *   Pointer to error structure.
2406  *
2407  * @return
2408  *   0 on success, a negative errno value otherwise and rte_errno is set.
2409  */
2410 static inline int
2411 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2412                struct rte_flow_error *error)
2413 {
2414         const struct mlx5_flow_driver_ops *fops;
2415         enum mlx5_flow_drv_type type = flow->drv_type;
2416
2417         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2418         fops = flow_get_drv_ops(type);
2419         return fops->apply(dev, flow, error);
2420 }
2421
2422 /**
2423  * Flow driver remove API. This abstracts calling driver specific functions.
2424  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2425  * on device. All the resources of the flow should be freed by calling
2426  * flow_drv_destroy().
2427  *
2428  * @param[in] dev
2429  *   Pointer to Ethernet device.
2430  * @param[in, out] flow
2431  *   Pointer to flow structure.
2432  */
2433 static inline void
2434 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2435 {
2436         const struct mlx5_flow_driver_ops *fops;
2437         enum mlx5_flow_drv_type type = flow->drv_type;
2438
2439         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2440         fops = flow_get_drv_ops(type);
2441         fops->remove(dev, flow);
2442 }
2443
2444 /**
2445  * Flow driver destroy API. This abstracts calling driver specific functions.
2446  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2447  * on device and releases resources of the flow.
2448  *
2449  * @param[in] dev
2450  *   Pointer to Ethernet device.
2451  * @param[in, out] flow
2452  *   Pointer to flow structure.
2453  */
2454 static inline void
2455 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2456 {
2457         const struct mlx5_flow_driver_ops *fops;
2458         enum mlx5_flow_drv_type type = flow->drv_type;
2459
2460         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2461         fops = flow_get_drv_ops(type);
2462         fops->destroy(dev, flow);
2463 }
2464
2465 /**
2466  * Validate a flow supported by the NIC.
2467  *
2468  * @see rte_flow_validate()
2469  * @see rte_flow_ops
2470  */
2471 int
2472 mlx5_flow_validate(struct rte_eth_dev *dev,
2473                    const struct rte_flow_attr *attr,
2474                    const struct rte_flow_item items[],
2475                    const struct rte_flow_action actions[],
2476                    struct rte_flow_error *error)
2477 {
2478         int ret;
2479
2480         ret = flow_drv_validate(dev, attr, items, actions, true, error);
2481         if (ret < 0)
2482                 return ret;
2483         return 0;
2484 }
2485
2486 /**
2487  * Get RSS action from the action list.
2488  *
2489  * @param[in] actions
2490  *   Pointer to the list of actions.
2491  *
2492  * @return
2493  *   Pointer to the RSS action if exist, else return NULL.
2494  */
2495 static const struct rte_flow_action_rss*
2496 flow_get_rss_action(const struct rte_flow_action actions[])
2497 {
2498         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2499                 switch (actions->type) {
2500                 case RTE_FLOW_ACTION_TYPE_RSS:
2501                         return (const struct rte_flow_action_rss *)
2502                                actions->conf;
2503                 default:
2504                         break;
2505                 }
2506         }
2507         return NULL;
2508 }
2509
2510 static unsigned int
2511 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2512 {
2513         const struct rte_flow_item *item;
2514         unsigned int has_vlan = 0;
2515
2516         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2517                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2518                         has_vlan = 1;
2519                         break;
2520                 }
2521         }
2522         if (has_vlan)
2523                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2524                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2525         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2526                                MLX5_EXPANSION_ROOT_OUTER;
2527 }
2528
2529 /**
2530  * Check if the flow should be splited due to hairpin.
2531  * The reason for the split is that in current HW we can't
2532  * support encap on Rx, so if a flow have encap we move it
2533  * to Tx.
2534  *
2535  * @param dev
2536  *   Pointer to Ethernet device.
2537  * @param[in] attr
2538  *   Flow rule attributes.
2539  * @param[in] actions
2540  *   Associated actions (list terminated by the END action).
2541  *
2542  * @return
2543  *   > 0 the number of actions and the flow should be split,
2544  *   0 when no split required.
2545  */
2546 static int
2547 flow_check_hairpin_split(struct rte_eth_dev *dev,
2548                          const struct rte_flow_attr *attr,
2549                          const struct rte_flow_action actions[])
2550 {
2551         int queue_action = 0;
2552         int action_n = 0;
2553         int encap = 0;
2554         const struct rte_flow_action_queue *queue;
2555         const struct rte_flow_action_rss *rss;
2556         const struct rte_flow_action_raw_encap *raw_encap;
2557
2558         if (!attr->ingress)
2559                 return 0;
2560         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2561                 switch (actions->type) {
2562                 case RTE_FLOW_ACTION_TYPE_QUEUE:
2563                         queue = actions->conf;
2564                         if (mlx5_rxq_get_type(dev, queue->index) !=
2565                             MLX5_RXQ_TYPE_HAIRPIN)
2566                                 return 0;
2567                         queue_action = 1;
2568                         action_n++;
2569                         break;
2570                 case RTE_FLOW_ACTION_TYPE_RSS:
2571                         rss = actions->conf;
2572                         if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
2573                             MLX5_RXQ_TYPE_HAIRPIN)
2574                                 return 0;
2575                         queue_action = 1;
2576                         action_n++;
2577                         break;
2578                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2579                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2580                         encap = 1;
2581                         action_n++;
2582                         break;
2583                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2584                         raw_encap = actions->conf;
2585                         if (raw_encap->size >
2586                             (sizeof(struct rte_flow_item_eth) +
2587                              sizeof(struct rte_flow_item_ipv4)))
2588                                 encap = 1;
2589                         action_n++;
2590                         break;
2591                 default:
2592                         action_n++;
2593                         break;
2594                 }
2595         }
2596         if (encap == 1 && queue_action)
2597                 return action_n;
2598         return 0;
2599 }
2600
2601 #define MLX5_MAX_SPLIT_ACTIONS 24
2602 #define MLX5_MAX_SPLIT_ITEMS 24
2603
2604 /**
2605  * Split the hairpin flow.
2606  * Since HW can't support encap on Rx we move the encap to Tx.
2607  * If the count action is after the encap then we also
2608  * move the count action. in this case the count will also measure
2609  * the outer bytes.
2610  *
2611  * @param dev
2612  *   Pointer to Ethernet device.
2613  * @param[in] actions
2614  *   Associated actions (list terminated by the END action).
2615  * @param[out] actions_rx
2616  *   Rx flow actions.
2617  * @param[out] actions_tx
2618  *   Tx flow actions..
2619  * @param[out] pattern_tx
2620  *   The pattern items for the Tx flow.
2621  * @param[out] flow_id
2622  *   The flow ID connected to this flow.
2623  *
2624  * @return
2625  *   0 on success.
2626  */
2627 static int
2628 flow_hairpin_split(struct rte_eth_dev *dev,
2629                    const struct rte_flow_action actions[],
2630                    struct rte_flow_action actions_rx[],
2631                    struct rte_flow_action actions_tx[],
2632                    struct rte_flow_item pattern_tx[],
2633                    uint32_t *flow_id)
2634 {
2635         struct mlx5_priv *priv = dev->data->dev_private;
2636         const struct rte_flow_action_raw_encap *raw_encap;
2637         const struct rte_flow_action_raw_decap *raw_decap;
2638         struct mlx5_rte_flow_action_set_tag *set_tag;
2639         struct rte_flow_action *tag_action;
2640         struct mlx5_rte_flow_item_tag *tag_item;
2641         struct rte_flow_item *item;
2642         char *addr;
2643         struct rte_flow_error error;
2644         int encap = 0;
2645
2646         mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
2647         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2648                 switch (actions->type) {
2649                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2650                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2651                         rte_memcpy(actions_tx, actions,
2652                                sizeof(struct rte_flow_action));
2653                         actions_tx++;
2654                         break;
2655                 case RTE_FLOW_ACTION_TYPE_COUNT:
2656                         if (encap) {
2657                                 rte_memcpy(actions_tx, actions,
2658                                            sizeof(struct rte_flow_action));
2659                                 actions_tx++;
2660                         } else {
2661                                 rte_memcpy(actions_rx, actions,
2662                                            sizeof(struct rte_flow_action));
2663                                 actions_rx++;
2664                         }
2665                         break;
2666                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2667                         raw_encap = actions->conf;
2668                         if (raw_encap->size >
2669                             (sizeof(struct rte_flow_item_eth) +
2670                              sizeof(struct rte_flow_item_ipv4))) {
2671                                 memcpy(actions_tx, actions,
2672                                        sizeof(struct rte_flow_action));
2673                                 actions_tx++;
2674                                 encap = 1;
2675                         } else {
2676                                 rte_memcpy(actions_rx, actions,
2677                                            sizeof(struct rte_flow_action));
2678                                 actions_rx++;
2679                         }
2680                         break;
2681                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
2682                         raw_decap = actions->conf;
2683                         if (raw_decap->size <
2684                             (sizeof(struct rte_flow_item_eth) +
2685                              sizeof(struct rte_flow_item_ipv4))) {
2686                                 memcpy(actions_tx, actions,
2687                                        sizeof(struct rte_flow_action));
2688                                 actions_tx++;
2689                         } else {
2690                                 rte_memcpy(actions_rx, actions,
2691                                            sizeof(struct rte_flow_action));
2692                                 actions_rx++;
2693                         }
2694                         break;
2695                 default:
2696                         rte_memcpy(actions_rx, actions,
2697                                    sizeof(struct rte_flow_action));
2698                         actions_rx++;
2699                         break;
2700                 }
2701         }
2702         /* Add set meta action and end action for the Rx flow. */
2703         tag_action = actions_rx;
2704         tag_action->type = MLX5_RTE_FLOW_ACTION_TYPE_TAG;
2705         actions_rx++;
2706         rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
2707         actions_rx++;
2708         set_tag = (void *)actions_rx;
2709         set_tag->id = flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, &error);
2710         set_tag->data = rte_cpu_to_be_32(*flow_id);
2711         tag_action->conf = set_tag;
2712         /* Create Tx item list. */
2713         rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
2714         addr = (void *)&pattern_tx[2];
2715         item = pattern_tx;
2716         item->type = MLX5_RTE_FLOW_ITEM_TYPE_TAG;
2717         tag_item = (void *)addr;
2718         tag_item->data = rte_cpu_to_be_32(*flow_id);
2719         tag_item->id = flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, &error);
2720         item->spec = tag_item;
2721         addr += sizeof(struct mlx5_rte_flow_item_tag);
2722         tag_item = (void *)addr;
2723         tag_item->data = UINT32_MAX;
2724         tag_item->id = UINT16_MAX;
2725         item->mask = tag_item;
2726         addr += sizeof(struct mlx5_rte_flow_item_tag);
2727         item->last = NULL;
2728         item++;
2729         item->type = RTE_FLOW_ITEM_TYPE_END;
2730         return 0;
2731 }
2732
2733 /**
2734  * Create a flow and add it to @p list.
2735  *
2736  * @param dev
2737  *   Pointer to Ethernet device.
2738  * @param list
2739  *   Pointer to a TAILQ flow list.
2740  * @param[in] attr
2741  *   Flow rule attributes.
2742  * @param[in] items
2743  *   Pattern specification (list terminated by the END pattern item).
2744  * @param[in] actions
2745  *   Associated actions (list terminated by the END action).
2746  * @param[in] external
2747  *   This flow rule is created by request external to PMD.
2748  * @param[out] error
2749  *   Perform verbose error reporting if not NULL.
2750  *
2751  * @return
2752  *   A flow on success, NULL otherwise and rte_errno is set.
2753  */
2754 static struct rte_flow *
2755 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2756                  const struct rte_flow_attr *attr,
2757                  const struct rte_flow_item items[],
2758                  const struct rte_flow_action actions[],
2759                  bool external, struct rte_flow_error *error)
2760 {
2761         struct mlx5_priv *priv = dev->data->dev_private;
2762         struct rte_flow *flow = NULL;
2763         struct mlx5_flow *dev_flow;
2764         const struct rte_flow_action_rss *rss;
2765         union {
2766                 struct rte_flow_expand_rss buf;
2767                 uint8_t buffer[2048];
2768         } expand_buffer;
2769         union {
2770                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2771                 uint8_t buffer[2048];
2772         } actions_rx;
2773         union {
2774                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2775                 uint8_t buffer[2048];
2776         } actions_hairpin_tx;
2777         union {
2778                 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
2779                 uint8_t buffer[2048];
2780         } items_tx;
2781         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2782         const struct rte_flow_action *p_actions_rx = actions;
2783         int ret;
2784         uint32_t i;
2785         uint32_t flow_size;
2786         int hairpin_flow = 0;
2787         uint32_t hairpin_id = 0;
2788         struct rte_flow_attr attr_tx = { .priority = 0 };
2789
2790         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
2791         if (hairpin_flow > 0) {
2792                 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
2793                         rte_errno = EINVAL;
2794                         return NULL;
2795                 }
2796                 flow_hairpin_split(dev, actions, actions_rx.actions,
2797                                    actions_hairpin_tx.actions, items_tx.items,
2798                                    &hairpin_id);
2799                 p_actions_rx = actions_rx.actions;
2800         }
2801         ret = flow_drv_validate(dev, attr, items, p_actions_rx, external,
2802                                 error);
2803         if (ret < 0)
2804                 goto error_before_flow;
2805         flow_size = sizeof(struct rte_flow);
2806         rss = flow_get_rss_action(p_actions_rx);
2807         if (rss)
2808                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2809                                             sizeof(void *));
2810         else
2811                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2812         flow = rte_calloc(__func__, 1, flow_size, 0);
2813         if (!flow) {
2814                 rte_errno = ENOMEM;
2815                 goto error_before_flow;
2816         }
2817         flow->drv_type = flow_get_drv_type(dev, attr);
2818         flow->ingress = attr->ingress;
2819         flow->transfer = attr->transfer;
2820         if (hairpin_id != 0)
2821                 flow->hairpin_flow_id = hairpin_id;
2822         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2823                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2824         flow->queue = (void *)(flow + 1);
2825         LIST_INIT(&flow->dev_flows);
2826         if (rss && rss->types) {
2827                 unsigned int graph_root;
2828
2829                 graph_root = find_graph_root(items, rss->level);
2830                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2831                                           items, rss->types,
2832                                           mlx5_support_expansion,
2833                                           graph_root);
2834                 assert(ret > 0 &&
2835                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2836         } else {
2837                 buf->entries = 1;
2838                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2839         }
2840         for (i = 0; i < buf->entries; ++i) {
2841                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2842                                             p_actions_rx, error);
2843                 if (!dev_flow)
2844                         goto error;
2845                 dev_flow->flow = flow;
2846                 dev_flow->external = external;
2847                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2848                 ret = flow_drv_translate(dev, dev_flow, attr,
2849                                          buf->entry[i].pattern,
2850                                          p_actions_rx, error);
2851                 if (ret < 0)
2852                         goto error;
2853         }
2854         /* Create the tx flow. */
2855         if (hairpin_flow) {
2856                 attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
2857                 attr_tx.ingress = 0;
2858                 attr_tx.egress = 1;
2859                 dev_flow = flow_drv_prepare(flow, &attr_tx, items_tx.items,
2860                                             actions_hairpin_tx.actions, error);
2861                 if (!dev_flow)
2862                         goto error;
2863                 dev_flow->flow = flow;
2864                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2865                 ret = flow_drv_translate(dev, dev_flow, &attr_tx,
2866                                          items_tx.items,
2867                                          actions_hairpin_tx.actions, error);
2868                 if (ret < 0)
2869                         goto error;
2870         }
2871         if (dev->data->dev_started) {
2872                 ret = flow_drv_apply(dev, flow, error);
2873                 if (ret < 0)
2874                         goto error;
2875         }
2876         TAILQ_INSERT_TAIL(list, flow, next);
2877         flow_rxq_flags_set(dev, flow);
2878         return flow;
2879 error_before_flow:
2880         if (hairpin_id)
2881                 mlx5_flow_id_release(priv->sh->flow_id_pool,
2882                                      hairpin_id);
2883         return NULL;
2884 error:
2885         ret = rte_errno; /* Save rte_errno before cleanup. */
2886         if (flow->hairpin_flow_id)
2887                 mlx5_flow_id_release(priv->sh->flow_id_pool,
2888                                      flow->hairpin_flow_id);
2889         assert(flow);
2890         flow_drv_destroy(dev, flow);
2891         rte_free(flow);
2892         rte_errno = ret; /* Restore rte_errno. */
2893         return NULL;
2894 }
2895
2896 /**
2897  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2898  * incoming packets to table 1.
2899  *
2900  * Other flow rules, requested for group n, will be created in
2901  * e-switch table n+1.
2902  * Jump action to e-switch group n will be created to group n+1.
2903  *
2904  * Used when working in switchdev mode, to utilise advantages of table 1
2905  * and above.
2906  *
2907  * @param dev
2908  *   Pointer to Ethernet device.
2909  *
2910  * @return
2911  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2912  */
2913 struct rte_flow *
2914 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2915 {
2916         const struct rte_flow_attr attr = {
2917                 .group = 0,
2918                 .priority = 0,
2919                 .ingress = 1,
2920                 .egress = 0,
2921                 .transfer = 1,
2922         };
2923         const struct rte_flow_item pattern = {
2924                 .type = RTE_FLOW_ITEM_TYPE_END,
2925         };
2926         struct rte_flow_action_jump jump = {
2927                 .group = 1,
2928         };
2929         const struct rte_flow_action actions[] = {
2930                 {
2931                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
2932                         .conf = &jump,
2933                 },
2934                 {
2935                         .type = RTE_FLOW_ACTION_TYPE_END,
2936                 },
2937         };
2938         struct mlx5_priv *priv = dev->data->dev_private;
2939         struct rte_flow_error error;
2940
2941         return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2942                                 actions, false, &error);
2943 }
2944
2945 /**
2946  * Create a flow.
2947  *
2948  * @see rte_flow_create()
2949  * @see rte_flow_ops
2950  */
2951 struct rte_flow *
2952 mlx5_flow_create(struct rte_eth_dev *dev,
2953                  const struct rte_flow_attr *attr,
2954                  const struct rte_flow_item items[],
2955                  const struct rte_flow_action actions[],
2956                  struct rte_flow_error *error)
2957 {
2958         struct mlx5_priv *priv = dev->data->dev_private;
2959
2960         return flow_list_create(dev, &priv->flows,
2961                                 attr, items, actions, true, error);
2962 }
2963
2964 /**
2965  * Destroy a flow in a list.
2966  *
2967  * @param dev
2968  *   Pointer to Ethernet device.
2969  * @param list
2970  *   Pointer to a TAILQ flow list.
2971  * @param[in] flow
2972  *   Flow to destroy.
2973  */
2974 static void
2975 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2976                   struct rte_flow *flow)
2977 {
2978         struct mlx5_priv *priv = dev->data->dev_private;
2979
2980         /*
2981          * Update RX queue flags only if port is started, otherwise it is
2982          * already clean.
2983          */
2984         if (dev->data->dev_started)
2985                 flow_rxq_flags_trim(dev, flow);
2986         if (flow->hairpin_flow_id)
2987                 mlx5_flow_id_release(priv->sh->flow_id_pool,
2988                                      flow->hairpin_flow_id);
2989         flow_drv_destroy(dev, flow);
2990         TAILQ_REMOVE(list, flow, next);
2991         rte_free(flow->fdir);
2992         rte_free(flow);
2993 }
2994
2995 /**
2996  * Destroy all flows.
2997  *
2998  * @param dev
2999  *   Pointer to Ethernet device.
3000  * @param list
3001  *   Pointer to a TAILQ flow list.
3002  */
3003 void
3004 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
3005 {
3006         while (!TAILQ_EMPTY(list)) {
3007                 struct rte_flow *flow;
3008
3009                 flow = TAILQ_FIRST(list);
3010                 flow_list_destroy(dev, list, flow);
3011         }
3012 }
3013
3014 /**
3015  * Remove all flows.
3016  *
3017  * @param dev
3018  *   Pointer to Ethernet device.
3019  * @param list
3020  *   Pointer to a TAILQ flow list.
3021  */
3022 void
3023 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
3024 {
3025         struct rte_flow *flow;
3026
3027         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
3028                 flow_drv_remove(dev, flow);
3029         flow_rxq_flags_clear(dev);
3030 }
3031
3032 /**
3033  * Add all flows.
3034  *
3035  * @param dev
3036  *   Pointer to Ethernet device.
3037  * @param list
3038  *   Pointer to a TAILQ flow list.
3039  *
3040  * @return
3041  *   0 on success, a negative errno value otherwise and rte_errno is set.
3042  */
3043 int
3044 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
3045 {
3046         struct rte_flow *flow;
3047         struct rte_flow_error error;
3048         int ret = 0;
3049
3050         TAILQ_FOREACH(flow, list, next) {
3051                 ret = flow_drv_apply(dev, flow, &error);
3052                 if (ret < 0)
3053                         goto error;
3054                 flow_rxq_flags_set(dev, flow);
3055         }
3056         return 0;
3057 error:
3058         ret = rte_errno; /* Save rte_errno before cleanup. */
3059         mlx5_flow_stop(dev, list);
3060         rte_errno = ret; /* Restore rte_errno. */
3061         return -rte_errno;
3062 }
3063
3064 /**
3065  * Verify the flow list is empty
3066  *
3067  * @param dev
3068  *  Pointer to Ethernet device.
3069  *
3070  * @return the number of flows not released.
3071  */
3072 int
3073 mlx5_flow_verify(struct rte_eth_dev *dev)
3074 {
3075         struct mlx5_priv *priv = dev->data->dev_private;
3076         struct rte_flow *flow;
3077         int ret = 0;
3078
3079         TAILQ_FOREACH(flow, &priv->flows, next) {
3080                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
3081                         dev->data->port_id, (void *)flow);
3082                 ++ret;
3083         }
3084         return ret;
3085 }
3086
3087 /**
3088  * Enable default hairpin egress flow.
3089  *
3090  * @param dev
3091  *   Pointer to Ethernet device.
3092  * @param queue
3093  *   The queue index.
3094  *
3095  * @return
3096  *   0 on success, a negative errno value otherwise and rte_errno is set.
3097  */
3098 int
3099 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
3100                             uint32_t queue)
3101 {
3102         struct mlx5_priv *priv = dev->data->dev_private;
3103         const struct rte_flow_attr attr = {
3104                 .egress = 1,
3105                 .priority = 0,
3106         };
3107         struct mlx5_rte_flow_item_tx_queue queue_spec = {
3108                 .queue = queue,
3109         };
3110         struct mlx5_rte_flow_item_tx_queue queue_mask = {
3111                 .queue = UINT32_MAX,
3112         };
3113         struct rte_flow_item items[] = {
3114                 {
3115                         .type = MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
3116                         .spec = &queue_spec,
3117                         .last = NULL,
3118                         .mask = &queue_mask,
3119                 },
3120                 {
3121                         .type = RTE_FLOW_ITEM_TYPE_END,
3122                 },
3123         };
3124         struct rte_flow_action_jump jump = {
3125                 .group = MLX5_HAIRPIN_TX_TABLE,
3126         };
3127         struct rte_flow_action actions[2];
3128         struct rte_flow *flow;
3129         struct rte_flow_error error;
3130
3131         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
3132         actions[0].conf = &jump;
3133         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
3134         flow = flow_list_create(dev, &priv->ctrl_flows,
3135                                 &attr, items, actions, false, &error);
3136         if (!flow) {
3137                 DRV_LOG(DEBUG,
3138                         "Failed to create ctrl flow: rte_errno(%d),"
3139                         " type(%d), message(%s)\n",
3140                         rte_errno, error.type,
3141                         error.message ? error.message : " (no stated reason)");
3142                 return -rte_errno;
3143         }
3144         return 0;
3145 }
3146
3147 /**
3148  * Enable a control flow configured from the control plane.
3149  *
3150  * @param dev
3151  *   Pointer to Ethernet device.
3152  * @param eth_spec
3153  *   An Ethernet flow spec to apply.
3154  * @param eth_mask
3155  *   An Ethernet flow mask to apply.
3156  * @param vlan_spec
3157  *   A VLAN flow spec to apply.
3158  * @param vlan_mask
3159  *   A VLAN flow mask to apply.
3160  *
3161  * @return
3162  *   0 on success, a negative errno value otherwise and rte_errno is set.
3163  */
3164 int
3165 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
3166                     struct rte_flow_item_eth *eth_spec,
3167                     struct rte_flow_item_eth *eth_mask,
3168                     struct rte_flow_item_vlan *vlan_spec,
3169                     struct rte_flow_item_vlan *vlan_mask)
3170 {
3171         struct mlx5_priv *priv = dev->data->dev_private;
3172         const struct rte_flow_attr attr = {
3173                 .ingress = 1,
3174                 .priority = MLX5_FLOW_PRIO_RSVD,
3175         };
3176         struct rte_flow_item items[] = {
3177                 {
3178                         .type = RTE_FLOW_ITEM_TYPE_ETH,
3179                         .spec = eth_spec,
3180                         .last = NULL,
3181                         .mask = eth_mask,
3182                 },
3183                 {
3184                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
3185                                               RTE_FLOW_ITEM_TYPE_END,
3186                         .spec = vlan_spec,
3187                         .last = NULL,
3188                         .mask = vlan_mask,
3189                 },
3190                 {
3191                         .type = RTE_FLOW_ITEM_TYPE_END,
3192                 },
3193         };
3194         uint16_t queue[priv->reta_idx_n];
3195         struct rte_flow_action_rss action_rss = {
3196                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3197                 .level = 0,
3198                 .types = priv->rss_conf.rss_hf,
3199                 .key_len = priv->rss_conf.rss_key_len,
3200                 .queue_num = priv->reta_idx_n,
3201                 .key = priv->rss_conf.rss_key,
3202                 .queue = queue,
3203         };
3204         struct rte_flow_action actions[] = {
3205                 {
3206                         .type = RTE_FLOW_ACTION_TYPE_RSS,
3207                         .conf = &action_rss,
3208                 },
3209                 {
3210                         .type = RTE_FLOW_ACTION_TYPE_END,
3211                 },
3212         };
3213         struct rte_flow *flow;
3214         struct rte_flow_error error;
3215         unsigned int i;
3216
3217         if (!priv->reta_idx_n || !priv->rxqs_n) {
3218                 return 0;
3219         }
3220         for (i = 0; i != priv->reta_idx_n; ++i)
3221                 queue[i] = (*priv->reta_idx)[i];
3222         flow = flow_list_create(dev, &priv->ctrl_flows,
3223                                 &attr, items, actions, false, &error);
3224         if (!flow)
3225                 return -rte_errno;
3226         return 0;
3227 }
3228
3229 /**
3230  * Enable a flow control configured from the control plane.
3231  *
3232  * @param dev
3233  *   Pointer to Ethernet device.
3234  * @param eth_spec
3235  *   An Ethernet flow spec to apply.
3236  * @param eth_mask
3237  *   An Ethernet flow mask to apply.
3238  *
3239  * @return
3240  *   0 on success, a negative errno value otherwise and rte_errno is set.
3241  */
3242 int
3243 mlx5_ctrl_flow(struct rte_eth_dev *dev,
3244                struct rte_flow_item_eth *eth_spec,
3245                struct rte_flow_item_eth *eth_mask)
3246 {
3247         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
3248 }
3249
3250 /**
3251  * Destroy a flow.
3252  *
3253  * @see rte_flow_destroy()
3254  * @see rte_flow_ops
3255  */
3256 int
3257 mlx5_flow_destroy(struct rte_eth_dev *dev,
3258                   struct rte_flow *flow,
3259                   struct rte_flow_error *error __rte_unused)
3260 {
3261         struct mlx5_priv *priv = dev->data->dev_private;
3262
3263         flow_list_destroy(dev, &priv->flows, flow);
3264         return 0;
3265 }
3266
3267 /**
3268  * Destroy all flows.
3269  *
3270  * @see rte_flow_flush()
3271  * @see rte_flow_ops
3272  */
3273 int
3274 mlx5_flow_flush(struct rte_eth_dev *dev,
3275                 struct rte_flow_error *error __rte_unused)
3276 {
3277         struct mlx5_priv *priv = dev->data->dev_private;
3278
3279         mlx5_flow_list_flush(dev, &priv->flows);
3280         return 0;
3281 }
3282
3283 /**
3284  * Isolated mode.
3285  *
3286  * @see rte_flow_isolate()
3287  * @see rte_flow_ops
3288  */
3289 int
3290 mlx5_flow_isolate(struct rte_eth_dev *dev,
3291                   int enable,
3292                   struct rte_flow_error *error)
3293 {
3294         struct mlx5_priv *priv = dev->data->dev_private;
3295
3296         if (dev->data->dev_started) {
3297                 rte_flow_error_set(error, EBUSY,
3298                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3299                                    NULL,
3300                                    "port must be stopped first");
3301                 return -rte_errno;
3302         }
3303         priv->isolated = !!enable;
3304         if (enable)
3305                 dev->dev_ops = &mlx5_dev_ops_isolate;
3306         else
3307                 dev->dev_ops = &mlx5_dev_ops;
3308         return 0;
3309 }
3310
3311 /**
3312  * Query a flow.
3313  *
3314  * @see rte_flow_query()
3315  * @see rte_flow_ops
3316  */
3317 static int
3318 flow_drv_query(struct rte_eth_dev *dev,
3319                struct rte_flow *flow,
3320                const struct rte_flow_action *actions,
3321                void *data,
3322                struct rte_flow_error *error)
3323 {
3324         const struct mlx5_flow_driver_ops *fops;
3325         enum mlx5_flow_drv_type ftype = flow->drv_type;
3326
3327         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
3328         fops = flow_get_drv_ops(ftype);
3329
3330         return fops->query(dev, flow, actions, data, error);
3331 }
3332
3333 /**
3334  * Query a flow.
3335  *
3336  * @see rte_flow_query()
3337  * @see rte_flow_ops
3338  */
3339 int
3340 mlx5_flow_query(struct rte_eth_dev *dev,
3341                 struct rte_flow *flow,
3342                 const struct rte_flow_action *actions,
3343                 void *data,
3344                 struct rte_flow_error *error)
3345 {
3346         int ret;
3347
3348         ret = flow_drv_query(dev, flow, actions, data, error);
3349         if (ret < 0)
3350                 return ret;
3351         return 0;
3352 }
3353
3354 /**
3355  * Convert a flow director filter to a generic flow.
3356  *
3357  * @param dev
3358  *   Pointer to Ethernet device.
3359  * @param fdir_filter
3360  *   Flow director filter to add.
3361  * @param attributes
3362  *   Generic flow parameters structure.
3363  *
3364  * @return
3365  *   0 on success, a negative errno value otherwise and rte_errno is set.
3366  */
3367 static int
3368 flow_fdir_filter_convert(struct rte_eth_dev *dev,
3369                          const struct rte_eth_fdir_filter *fdir_filter,
3370                          struct mlx5_fdir *attributes)
3371 {
3372         struct mlx5_priv *priv = dev->data->dev_private;
3373         const struct rte_eth_fdir_input *input = &fdir_filter->input;
3374         const struct rte_eth_fdir_masks *mask =
3375                 &dev->data->dev_conf.fdir_conf.mask;
3376
3377         /* Validate queue number. */
3378         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3379                 DRV_LOG(ERR, "port %u invalid queue number %d",
3380                         dev->data->port_id, fdir_filter->action.rx_queue);
3381                 rte_errno = EINVAL;
3382                 return -rte_errno;
3383         }
3384         attributes->attr.ingress = 1;
3385         attributes->items[0] = (struct rte_flow_item) {
3386                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3387                 .spec = &attributes->l2,
3388                 .mask = &attributes->l2_mask,
3389         };
3390         switch (fdir_filter->action.behavior) {
3391         case RTE_ETH_FDIR_ACCEPT:
3392                 attributes->actions[0] = (struct rte_flow_action){
3393                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
3394                         .conf = &attributes->queue,
3395                 };
3396                 break;
3397         case RTE_ETH_FDIR_REJECT:
3398                 attributes->actions[0] = (struct rte_flow_action){
3399                         .type = RTE_FLOW_ACTION_TYPE_DROP,
3400                 };
3401                 break;
3402         default:
3403                 DRV_LOG(ERR, "port %u invalid behavior %d",
3404                         dev->data->port_id,
3405                         fdir_filter->action.behavior);
3406                 rte_errno = ENOTSUP;
3407                 return -rte_errno;
3408         }
3409         attributes->queue.index = fdir_filter->action.rx_queue;
3410         /* Handle L3. */
3411         switch (fdir_filter->input.flow_type) {
3412         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3413         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3414         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3415                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3416                         .src_addr = input->flow.ip4_flow.src_ip,
3417                         .dst_addr = input->flow.ip4_flow.dst_ip,
3418                         .time_to_live = input->flow.ip4_flow.ttl,
3419                         .type_of_service = input->flow.ip4_flow.tos,
3420                 };
3421                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3422                         .src_addr = mask->ipv4_mask.src_ip,
3423                         .dst_addr = mask->ipv4_mask.dst_ip,
3424                         .time_to_live = mask->ipv4_mask.ttl,
3425                         .type_of_service = mask->ipv4_mask.tos,
3426                         .next_proto_id = mask->ipv4_mask.proto,
3427                 };
3428                 attributes->items[1] = (struct rte_flow_item){
3429                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
3430                         .spec = &attributes->l3,
3431                         .mask = &attributes->l3_mask,
3432                 };
3433                 break;
3434         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3435         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3436         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3437                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3438                         .hop_limits = input->flow.ipv6_flow.hop_limits,
3439                         .proto = input->flow.ipv6_flow.proto,
3440                 };
3441
3442                 memcpy(attributes->l3.ipv6.hdr.src_addr,
3443                        input->flow.ipv6_flow.src_ip,
3444                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3445                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
3446                        input->flow.ipv6_flow.dst_ip,
3447                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3448                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3449                        mask->ipv6_mask.src_ip,
3450                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3451                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3452                        mask->ipv6_mask.dst_ip,
3453                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3454                 attributes->items[1] = (struct rte_flow_item){
3455                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3456                         .spec = &attributes->l3,
3457                         .mask = &attributes->l3_mask,
3458                 };
3459                 break;
3460         default:
3461                 DRV_LOG(ERR, "port %u invalid flow type%d",
3462                         dev->data->port_id, fdir_filter->input.flow_type);
3463                 rte_errno = ENOTSUP;
3464                 return -rte_errno;
3465         }
3466         /* Handle L4. */
3467         switch (fdir_filter->input.flow_type) {
3468         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3469                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3470                         .src_port = input->flow.udp4_flow.src_port,
3471                         .dst_port = input->flow.udp4_flow.dst_port,
3472                 };
3473                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3474                         .src_port = mask->src_port_mask,
3475                         .dst_port = mask->dst_port_mask,
3476                 };
3477                 attributes->items[2] = (struct rte_flow_item){
3478                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3479                         .spec = &attributes->l4,
3480                         .mask = &attributes->l4_mask,
3481                 };
3482                 break;
3483         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3484                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3485                         .src_port = input->flow.tcp4_flow.src_port,
3486                         .dst_port = input->flow.tcp4_flow.dst_port,
3487                 };
3488                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3489                         .src_port = mask->src_port_mask,
3490                         .dst_port = mask->dst_port_mask,
3491                 };
3492                 attributes->items[2] = (struct rte_flow_item){
3493                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3494                         .spec = &attributes->l4,
3495                         .mask = &attributes->l4_mask,
3496                 };
3497                 break;
3498         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3499                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3500                         .src_port = input->flow.udp6_flow.src_port,
3501                         .dst_port = input->flow.udp6_flow.dst_port,
3502                 };
3503                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3504                         .src_port = mask->src_port_mask,
3505                         .dst_port = mask->dst_port_mask,
3506                 };
3507                 attributes->items[2] = (struct rte_flow_item){
3508                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3509                         .spec = &attributes->l4,
3510                         .mask = &attributes->l4_mask,
3511                 };
3512                 break;
3513         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3514                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3515                         .src_port = input->flow.tcp6_flow.src_port,
3516                         .dst_port = input->flow.tcp6_flow.dst_port,
3517                 };
3518                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3519                         .src_port = mask->src_port_mask,
3520                         .dst_port = mask->dst_port_mask,
3521                 };
3522                 attributes->items[2] = (struct rte_flow_item){
3523                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3524                         .spec = &attributes->l4,
3525                         .mask = &attributes->l4_mask,
3526                 };
3527                 break;
3528         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3529         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3530                 break;
3531         default:
3532                 DRV_LOG(ERR, "port %u invalid flow type%d",
3533                         dev->data->port_id, fdir_filter->input.flow_type);
3534                 rte_errno = ENOTSUP;
3535                 return -rte_errno;
3536         }
3537         return 0;
3538 }
3539
3540 #define FLOW_FDIR_CMP(f1, f2, fld) \
3541         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3542
3543 /**
3544  * Compare two FDIR flows. If items and actions are identical, the two flows are
3545  * regarded as same.
3546  *
3547  * @param dev
3548  *   Pointer to Ethernet device.
3549  * @param f1
3550  *   FDIR flow to compare.
3551  * @param f2
3552  *   FDIR flow to compare.
3553  *
3554  * @return
3555  *   Zero on match, 1 otherwise.
3556  */
3557 static int
3558 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3559 {
3560         if (FLOW_FDIR_CMP(f1, f2, attr) ||
3561             FLOW_FDIR_CMP(f1, f2, l2) ||
3562             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3563             FLOW_FDIR_CMP(f1, f2, l3) ||
3564             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3565             FLOW_FDIR_CMP(f1, f2, l4) ||
3566             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3567             FLOW_FDIR_CMP(f1, f2, actions[0].type))
3568                 return 1;
3569         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3570             FLOW_FDIR_CMP(f1, f2, queue))
3571                 return 1;
3572         return 0;
3573 }
3574
3575 /**
3576  * Search device flow list to find out a matched FDIR flow.
3577  *
3578  * @param dev
3579  *   Pointer to Ethernet device.
3580  * @param fdir_flow
3581  *   FDIR flow to lookup.
3582  *
3583  * @return
3584  *   Pointer of flow if found, NULL otherwise.
3585  */
3586 static struct rte_flow *
3587 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3588 {
3589         struct mlx5_priv *priv = dev->data->dev_private;
3590         struct rte_flow *flow = NULL;
3591
3592         assert(fdir_flow);
3593         TAILQ_FOREACH(flow, &priv->flows, next) {
3594                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3595                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3596                                 dev->data->port_id, (void *)flow);
3597                         break;
3598                 }
3599         }
3600         return flow;
3601 }
3602
3603 /**
3604  * Add new flow director filter and store it in list.
3605  *
3606  * @param dev
3607  *   Pointer to Ethernet device.
3608  * @param fdir_filter
3609  *   Flow director filter to add.
3610  *
3611  * @return
3612  *   0 on success, a negative errno value otherwise and rte_errno is set.
3613  */
3614 static int
3615 flow_fdir_filter_add(struct rte_eth_dev *dev,
3616                      const struct rte_eth_fdir_filter *fdir_filter)
3617 {
3618         struct mlx5_priv *priv = dev->data->dev_private;
3619         struct mlx5_fdir *fdir_flow;
3620         struct rte_flow *flow;
3621         int ret;
3622
3623         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3624         if (!fdir_flow) {
3625                 rte_errno = ENOMEM;
3626                 return -rte_errno;
3627         }
3628         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3629         if (ret)
3630                 goto error;
3631         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3632         if (flow) {
3633                 rte_errno = EEXIST;
3634                 goto error;
3635         }
3636         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3637                                 fdir_flow->items, fdir_flow->actions, true,
3638                                 NULL);
3639         if (!flow)
3640                 goto error;
3641         assert(!flow->fdir);
3642         flow->fdir = fdir_flow;
3643         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3644                 dev->data->port_id, (void *)flow);
3645         return 0;
3646 error:
3647         rte_free(fdir_flow);
3648         return -rte_errno;
3649 }
3650
3651 /**
3652  * Delete specific filter.
3653  *
3654  * @param dev
3655  *   Pointer to Ethernet device.
3656  * @param fdir_filter
3657  *   Filter to be deleted.
3658  *
3659  * @return
3660  *   0 on success, a negative errno value otherwise and rte_errno is set.
3661  */
3662 static int
3663 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3664                         const struct rte_eth_fdir_filter *fdir_filter)
3665 {
3666         struct mlx5_priv *priv = dev->data->dev_private;
3667         struct rte_flow *flow;
3668         struct mlx5_fdir fdir_flow = {
3669                 .attr.group = 0,
3670         };
3671         int ret;
3672
3673         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3674         if (ret)
3675                 return -rte_errno;
3676         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3677         if (!flow) {
3678                 rte_errno = ENOENT;
3679                 return -rte_errno;
3680         }
3681         flow_list_destroy(dev, &priv->flows, flow);
3682         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3683                 dev->data->port_id, (void *)flow);
3684         return 0;
3685 }
3686
3687 /**
3688  * Update queue for specific filter.
3689  *
3690  * @param dev
3691  *   Pointer to Ethernet device.
3692  * @param fdir_filter
3693  *   Filter to be updated.
3694  *
3695  * @return
3696  *   0 on success, a negative errno value otherwise and rte_errno is set.
3697  */
3698 static int
3699 flow_fdir_filter_update(struct rte_eth_dev *dev,
3700                         const struct rte_eth_fdir_filter *fdir_filter)
3701 {
3702         int ret;
3703
3704         ret = flow_fdir_filter_delete(dev, fdir_filter);
3705         if (ret)
3706                 return ret;
3707         return flow_fdir_filter_add(dev, fdir_filter);
3708 }
3709
3710 /**
3711  * Flush all filters.
3712  *
3713  * @param dev
3714  *   Pointer to Ethernet device.
3715  */
3716 static void
3717 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3718 {
3719         struct mlx5_priv *priv = dev->data->dev_private;
3720
3721         mlx5_flow_list_flush(dev, &priv->flows);
3722 }
3723
3724 /**
3725  * Get flow director information.
3726  *
3727  * @param dev
3728  *   Pointer to Ethernet device.
3729  * @param[out] fdir_info
3730  *   Resulting flow director information.
3731  */
3732 static void
3733 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3734 {
3735         struct rte_eth_fdir_masks *mask =
3736                 &dev->data->dev_conf.fdir_conf.mask;
3737
3738         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3739         fdir_info->guarant_spc = 0;
3740         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3741         fdir_info->max_flexpayload = 0;
3742         fdir_info->flow_types_mask[0] = 0;
3743         fdir_info->flex_payload_unit = 0;
3744         fdir_info->max_flex_payload_segment_num = 0;
3745         fdir_info->flex_payload_limit = 0;
3746         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3747 }
3748
3749 /**
3750  * Deal with flow director operations.
3751  *
3752  * @param dev
3753  *   Pointer to Ethernet device.
3754  * @param filter_op
3755  *   Operation to perform.
3756  * @param arg
3757  *   Pointer to operation-specific structure.
3758  *
3759  * @return
3760  *   0 on success, a negative errno value otherwise and rte_errno is set.
3761  */
3762 static int
3763 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3764                     void *arg)
3765 {
3766         enum rte_fdir_mode fdir_mode =
3767                 dev->data->dev_conf.fdir_conf.mode;
3768
3769         if (filter_op == RTE_ETH_FILTER_NOP)
3770                 return 0;
3771         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3772             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3773                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3774                         dev->data->port_id, fdir_mode);
3775                 rte_errno = EINVAL;
3776                 return -rte_errno;
3777         }
3778         switch (filter_op) {
3779         case RTE_ETH_FILTER_ADD:
3780                 return flow_fdir_filter_add(dev, arg);
3781         case RTE_ETH_FILTER_UPDATE:
3782                 return flow_fdir_filter_update(dev, arg);
3783         case RTE_ETH_FILTER_DELETE:
3784                 return flow_fdir_filter_delete(dev, arg);
3785         case RTE_ETH_FILTER_FLUSH:
3786                 flow_fdir_filter_flush(dev);
3787                 break;
3788         case RTE_ETH_FILTER_INFO:
3789                 flow_fdir_info_get(dev, arg);
3790                 break;
3791         default:
3792                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3793                         dev->data->port_id, filter_op);
3794                 rte_errno = EINVAL;
3795                 return -rte_errno;
3796         }
3797         return 0;
3798 }
3799
3800 /**
3801  * Manage filter operations.
3802  *
3803  * @param dev
3804  *   Pointer to Ethernet device structure.
3805  * @param filter_type
3806  *   Filter type.
3807  * @param filter_op
3808  *   Operation to perform.
3809  * @param arg
3810  *   Pointer to operation-specific structure.
3811  *
3812  * @return
3813  *   0 on success, a negative errno value otherwise and rte_errno is set.
3814  */
3815 int
3816 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3817                      enum rte_filter_type filter_type,
3818                      enum rte_filter_op filter_op,
3819                      void *arg)
3820 {
3821         switch (filter_type) {
3822         case RTE_ETH_FILTER_GENERIC:
3823                 if (filter_op != RTE_ETH_FILTER_GET) {
3824                         rte_errno = EINVAL;
3825                         return -rte_errno;
3826                 }
3827                 *(const void **)arg = &mlx5_flow_ops;
3828                 return 0;
3829         case RTE_ETH_FILTER_FDIR:
3830                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3831         default:
3832                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3833                         dev->data->port_id, filter_type);
3834                 rte_errno = ENOTSUP;
3835                 return -rte_errno;
3836         }
3837         return 0;
3838 }
3839
3840 #define MLX5_POOL_QUERY_FREQ_US 1000000
3841
3842 /**
3843  * Set the periodic procedure for triggering asynchronous batch queries for all
3844  * the counter pools.
3845  *
3846  * @param[in] sh
3847  *   Pointer to mlx5_ibv_shared object.
3848  */
3849 void
3850 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3851 {
3852         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3853         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3854         uint32_t us;
3855
3856         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3857         pools_n += rte_atomic16_read(&cont->n_valid);
3858         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3859         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3860         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3861                 sh->cmng.query_thread_on = 0;
3862                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3863         } else {
3864                 sh->cmng.query_thread_on = 1;
3865         }
3866 }
3867
3868 /**
3869  * The periodic procedure for triggering asynchronous batch queries for all the
3870  * counter pools. This function is probably called by the host thread.
3871  *
3872  * @param[in] arg
3873  *   The parameter for the alarm process.
3874  */
3875 void
3876 mlx5_flow_query_alarm(void *arg)
3877 {
3878         struct mlx5_ibv_shared *sh = arg;
3879         struct mlx5_devx_obj *dcs;
3880         uint16_t offset;
3881         int ret;
3882         uint8_t batch = sh->cmng.batch;
3883         uint16_t pool_index = sh->cmng.pool_index;
3884         struct mlx5_pools_container *cont;
3885         struct mlx5_pools_container *mcont;
3886         struct mlx5_flow_counter_pool *pool;
3887
3888         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3889                 goto set_alarm;
3890 next_container:
3891         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3892         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3893         /* Check if resize was done and need to flip a container. */
3894         if (cont != mcont) {
3895                 if (cont->pools) {
3896                         /* Clean the old container. */
3897                         rte_free(cont->pools);
3898                         memset(cont, 0, sizeof(*cont));
3899                 }
3900                 rte_cio_wmb();
3901                  /* Flip the host container. */
3902                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3903                 cont = mcont;
3904         }
3905         if (!cont->pools) {
3906                 /* 2 empty containers case is unexpected. */
3907                 if (unlikely(batch != sh->cmng.batch))
3908                         goto set_alarm;
3909                 batch ^= 0x1;
3910                 pool_index = 0;
3911                 goto next_container;
3912         }
3913         pool = cont->pools[pool_index];
3914         if (pool->raw_hw)
3915                 /* There is a pool query in progress. */
3916                 goto set_alarm;
3917         pool->raw_hw =
3918                 LIST_FIRST(&sh->cmng.free_stat_raws);
3919         if (!pool->raw_hw)
3920                 /* No free counter statistics raw memory. */
3921                 goto set_alarm;
3922         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3923                                                               (&pool->a64_dcs);
3924         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3925         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3926                                                offset, NULL, NULL,
3927                                                pool->raw_hw->mem_mng->dm->id,
3928                                                (void *)(uintptr_t)
3929                                                (pool->raw_hw->data + offset),
3930                                                sh->devx_comp,
3931                                                (uint64_t)(uintptr_t)pool);
3932         if (ret) {
3933                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3934                         " %d\n", pool->min_dcs->id);
3935                 pool->raw_hw = NULL;
3936                 goto set_alarm;
3937         }
3938         pool->raw_hw->min_dcs_id = dcs->id;
3939         LIST_REMOVE(pool->raw_hw, next);
3940         sh->cmng.pending_queries++;
3941         pool_index++;
3942         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3943                 batch ^= 0x1;
3944                 pool_index = 0;
3945         }
3946 set_alarm:
3947         sh->cmng.batch = batch;
3948         sh->cmng.pool_index = pool_index;
3949         mlx5_set_query_alarm(sh);
3950 }
3951
3952 /**
3953  * Handler for the HW respond about ready values from an asynchronous batch
3954  * query. This function is probably called by the host thread.
3955  *
3956  * @param[in] sh
3957  *   The pointer to the shared IB device context.
3958  * @param[in] async_id
3959  *   The Devx async ID.
3960  * @param[in] status
3961  *   The status of the completion.
3962  */
3963 void
3964 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3965                                   uint64_t async_id, int status)
3966 {
3967         struct mlx5_flow_counter_pool *pool =
3968                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3969         struct mlx5_counter_stats_raw *raw_to_free;
3970
3971         if (unlikely(status)) {
3972                 raw_to_free = pool->raw_hw;
3973         } else {
3974                 raw_to_free = pool->raw;
3975                 rte_spinlock_lock(&pool->sl);
3976                 pool->raw = pool->raw_hw;
3977                 rte_spinlock_unlock(&pool->sl);
3978                 rte_atomic64_add(&pool->query_gen, 1);
3979                 /* Be sure the new raw counters data is updated in memory. */
3980                 rte_cio_wmb();
3981         }
3982         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3983         pool->raw_hw = NULL;
3984         sh->cmng.pending_queries--;
3985 }
3986
3987 /**
3988  * Translate the rte_flow group index to HW table value.
3989  *
3990  * @param[in] attributes
3991  *   Pointer to flow attributes
3992  * @param[in] external
3993  *   Value is part of flow rule created by request external to PMD.
3994  * @param[in] group
3995  *   rte_flow group index value.
3996  * @param[out] table
3997  *   HW table value.
3998  * @param[out] error
3999  *   Pointer to error structure.
4000  *
4001  * @return
4002  *   0 on success, a negative errno value otherwise and rte_errno is set.
4003  */
4004 int
4005 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
4006                          uint32_t group, uint32_t *table,
4007                          struct rte_flow_error *error)
4008 {
4009         if (attributes->transfer && external) {
4010                 if (group == UINT32_MAX)
4011                         return rte_flow_error_set
4012                                                 (error, EINVAL,
4013                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
4014                                                  NULL,
4015                                                  "group index not supported");
4016                 *table = group + 1;
4017         } else {
4018                 *table = group;
4019         }
4020         return 0;
4021 }