e082cbbd40fb31dad1f0a5a97acc6c56f5ed5428
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE),
131                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
132                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133                         ETH_RSS_NONFRAG_IPV4_OTHER,
134         },
135         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137                                                  MLX5_EXPANSION_VXLAN_GPE),
138                 .type = RTE_FLOW_ITEM_TYPE_UDP,
139                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140         },
141         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142                 .type = RTE_FLOW_ITEM_TYPE_TCP,
143                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144         },
145         [MLX5_EXPANSION_OUTER_IPV6] = {
146                 .next = RTE_FLOW_EXPAND_RSS_NEXT
147                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
148                          MLX5_EXPANSION_OUTER_IPV6_TCP),
149                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
150                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151                         ETH_RSS_NONFRAG_IPV6_OTHER,
152         },
153         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155                                                  MLX5_EXPANSION_VXLAN_GPE),
156                 .type = RTE_FLOW_ITEM_TYPE_UDP,
157                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158         },
159         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160                 .type = RTE_FLOW_ITEM_TYPE_TCP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162         },
163         [MLX5_EXPANSION_VXLAN] = {
164                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
166         },
167         [MLX5_EXPANSION_VXLAN_GPE] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169                                                  MLX5_EXPANSION_IPV4,
170                                                  MLX5_EXPANSION_IPV6),
171                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172         },
173         [MLX5_EXPANSION_GRE] = {
174                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175                 .type = RTE_FLOW_ITEM_TYPE_GRE,
176         },
177         [MLX5_EXPANSION_MPLS] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179                                                  MLX5_EXPANSION_IPV6),
180                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
181         },
182         [MLX5_EXPANSION_ETH] = {
183                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184                                                  MLX5_EXPANSION_IPV6),
185                 .type = RTE_FLOW_ITEM_TYPE_ETH,
186         },
187         [MLX5_EXPANSION_ETH_VLAN] = {
188                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193                                                  MLX5_EXPANSION_IPV6),
194                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
195         },
196         [MLX5_EXPANSION_IPV4] = {
197                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198                                                  MLX5_EXPANSION_IPV4_TCP),
199                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
200                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201                         ETH_RSS_NONFRAG_IPV4_OTHER,
202         },
203         [MLX5_EXPANSION_IPV4_UDP] = {
204                 .type = RTE_FLOW_ITEM_TYPE_UDP,
205                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206         },
207         [MLX5_EXPANSION_IPV4_TCP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_TCP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210         },
211         [MLX5_EXPANSION_IPV6] = {
212                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213                                                  MLX5_EXPANSION_IPV6_TCP),
214                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
215                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216                         ETH_RSS_NONFRAG_IPV6_OTHER,
217         },
218         [MLX5_EXPANSION_IPV6_UDP] = {
219                 .type = RTE_FLOW_ITEM_TYPE_UDP,
220                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221         },
222         [MLX5_EXPANSION_IPV6_TCP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_TCP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225         },
226 };
227
228 static const struct rte_flow_ops mlx5_flow_ops = {
229         .validate = mlx5_flow_validate,
230         .create = mlx5_flow_create,
231         .destroy = mlx5_flow_destroy,
232         .flush = mlx5_flow_flush,
233         .isolate = mlx5_flow_isolate,
234         .query = mlx5_flow_query,
235 };
236
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239         struct rte_flow_attr attr;
240         struct rte_flow_item items[4];
241         struct rte_flow_item_eth l2;
242         struct rte_flow_item_eth l2_mask;
243         union {
244                 struct rte_flow_item_ipv4 ipv4;
245                 struct rte_flow_item_ipv6 ipv6;
246         } l3;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3_mask;
251         union {
252                 struct rte_flow_item_udp udp;
253                 struct rte_flow_item_tcp tcp;
254         } l4;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4_mask;
259         struct rte_flow_action actions[2];
260         struct rte_flow_action_queue queue;
261 };
262
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271         { 9, 10, 11 }, { 12, 13, 14 },
272 };
273
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281         {
282                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
283                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284         },
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_GRE,
291                 .ptype = RTE_PTYPE_TUNNEL_GRE,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300         },
301 };
302
303 /**
304  * Discover the maximum number of priority available.
305  *
306  * @param[in] dev
307  *   Pointer to the Ethernet device structure.
308  *
309  * @return
310  *   number of supported flow priority on success, a negative errno
311  *   value otherwise and rte_errno is set.
312  */
313 int
314 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
315 {
316         struct mlx5_priv *priv = dev->data->dev_private;
317         struct {
318                 struct ibv_flow_attr attr;
319                 struct ibv_flow_spec_eth eth;
320                 struct ibv_flow_spec_action_drop drop;
321         } flow_attr = {
322                 .attr = {
323                         .num_of_specs = 2,
324                         .port = (uint8_t)priv->ibv_port,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         mlx5_hrxq_drop_release(dev);
354         switch (priority) {
355         case 8:
356                 priority = RTE_DIM(priority_map_3);
357                 break;
358         case 16:
359                 priority = RTE_DIM(priority_map_5);
360                 break;
361         default:
362                 rte_errno = ENOTSUP;
363                 DRV_LOG(ERR,
364                         "port %u verbs maximum priority: %d expected 8/16",
365                         dev->data->port_id, priority);
366                 return -rte_errno;
367         }
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct mlx5_priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fields that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct mlx5_priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct mlx5_priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct mlx5_priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_errno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_errno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct mlx5_priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (!priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           NULL, "No Rx queues configured");
853         if (queue->index >= priv->rxqs_n)
854                 return rte_flow_error_set(error, EINVAL,
855                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856                                           &queue->index,
857                                           "queue index out of range");
858         if (!(*priv->rxqs)[queue->index])
859                 return rte_flow_error_set(error, EINVAL,
860                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861                                           &queue->index,
862                                           "queue is not configured");
863         if (attr->egress)
864                 return rte_flow_error_set(error, ENOTSUP,
865                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866                                           "queue action not supported for "
867                                           "egress");
868         return 0;
869 }
870
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[in] item_flags
883  *   Items that were detected.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_errno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892                               uint64_t action_flags,
893                               struct rte_eth_dev *dev,
894                               const struct rte_flow_attr *attr,
895                               uint64_t item_flags,
896                               struct rte_flow_error *error)
897 {
898         struct mlx5_priv *priv = dev->data->dev_private;
899         const struct rte_flow_action_rss *rss = action->conf;
900         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
901         unsigned int i;
902
903         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
904                 return rte_flow_error_set(error, EINVAL,
905                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
906                                           "can't have 2 fate actions"
907                                           " in same flow");
908         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
909             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
910                 return rte_flow_error_set(error, ENOTSUP,
911                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
912                                           &rss->func,
913                                           "RSS hash function not supported");
914 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
915         if (rss->level > 2)
916 #else
917         if (rss->level > 1)
918 #endif
919                 return rte_flow_error_set(error, ENOTSUP,
920                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
921                                           &rss->level,
922                                           "tunnel RSS is not supported");
923         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
924         if (rss->key_len == 0 && rss->key != NULL)
925                 return rte_flow_error_set(error, ENOTSUP,
926                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
927                                           &rss->key_len,
928                                           "RSS hash key length 0");
929         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
930                 return rte_flow_error_set(error, ENOTSUP,
931                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
932                                           &rss->key_len,
933                                           "RSS hash key too small");
934         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
935                 return rte_flow_error_set(error, ENOTSUP,
936                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
937                                           &rss->key_len,
938                                           "RSS hash key too large");
939         if (rss->queue_num > priv->config.ind_table_max_size)
940                 return rte_flow_error_set(error, ENOTSUP,
941                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
942                                           &rss->queue_num,
943                                           "number of queues too large");
944         if (rss->types & MLX5_RSS_HF_MASK)
945                 return rte_flow_error_set(error, ENOTSUP,
946                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
947                                           &rss->types,
948                                           "some RSS protocols are not"
949                                           " supported");
950         if (!priv->rxqs_n)
951                 return rte_flow_error_set(error, EINVAL,
952                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953                                           NULL, "No Rx queues configured");
954         if (!rss->queue_num)
955                 return rte_flow_error_set(error, EINVAL,
956                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957                                           NULL, "No queues configured");
958         for (i = 0; i != rss->queue_num; ++i) {
959                 if (!(*priv->rxqs)[rss->queue[i]])
960                         return rte_flow_error_set
961                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
962                                  &rss->queue[i], "queue is not configured");
963         }
964         if (attr->egress)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
967                                           "rss action not supported for "
968                                           "egress");
969         if (rss->level > 1 &&  !tunnel)
970                 return rte_flow_error_set(error, EINVAL,
971                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
972                                           "inner RSS is not supported for "
973                                           "non-tunnel flows");
974         return 0;
975 }
976
977 /*
978  * Validate the count action.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attr
983  *   Attributes of flow that includes this action.
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
992                                 const struct rte_flow_attr *attr,
993                                 struct rte_flow_error *error)
994 {
995         if (attr->egress)
996                 return rte_flow_error_set(error, ENOTSUP,
997                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
998                                           "count action not supported for "
999                                           "egress");
1000         return 0;
1001 }
1002
1003 /**
1004  * Verify the @p attributes will be correctly understood by the NIC and store
1005  * them in the @p flow if everything is correct.
1006  *
1007  * @param[in] dev
1008  *   Pointer to the Ethernet device structure.
1009  * @param[in] attributes
1010  *   Pointer to flow attributes
1011  * @param[out] error
1012  *   Pointer to error structure.
1013  *
1014  * @return
1015  *   0 on success, a negative errno value otherwise and rte_errno is set.
1016  */
1017 int
1018 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1019                               const struct rte_flow_attr *attributes,
1020                               struct rte_flow_error *error)
1021 {
1022         struct mlx5_priv *priv = dev->data->dev_private;
1023         uint32_t priority_max = priv->config.flow_prio - 1;
1024
1025         if (attributes->group)
1026                 return rte_flow_error_set(error, ENOTSUP,
1027                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1028                                           NULL, "groups is not supported");
1029         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1030             attributes->priority >= priority_max)
1031                 return rte_flow_error_set(error, ENOTSUP,
1032                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1033                                           NULL, "priority out of range");
1034         if (attributes->egress)
1035                 return rte_flow_error_set(error, ENOTSUP,
1036                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1037                                           "egress is not supported");
1038         if (attributes->transfer && !priv->config.dv_esw_en)
1039                 return rte_flow_error_set(error, ENOTSUP,
1040                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1041                                           NULL, "transfer is not supported");
1042         if (!attributes->ingress)
1043                 return rte_flow_error_set(error, EINVAL,
1044                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1045                                           NULL,
1046                                           "ingress attribute is mandatory");
1047         return 0;
1048 }
1049
1050 /**
1051  * Validate ICMP6 item.
1052  *
1053  * @param[in] item
1054  *   Item specification.
1055  * @param[in] item_flags
1056  *   Bit-fields that holds the items detected until now.
1057  * @param[out] error
1058  *   Pointer to error structure.
1059  *
1060  * @return
1061  *   0 on success, a negative errno value otherwise and rte_errno is set.
1062  */
1063 int
1064 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1065                                uint64_t item_flags,
1066                                uint8_t target_protocol,
1067                                struct rte_flow_error *error)
1068 {
1069         const struct rte_flow_item_icmp6 *mask = item->mask;
1070         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1071         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1072                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1073         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1074                                       MLX5_FLOW_LAYER_OUTER_L4;
1075         int ret;
1076
1077         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1078                 return rte_flow_error_set(error, EINVAL,
1079                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1080                                           "protocol filtering not compatible"
1081                                           " with ICMP6 layer");
1082         if (!(item_flags & l3m))
1083                 return rte_flow_error_set(error, EINVAL,
1084                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1085                                           "IPv6 is mandatory to filter on"
1086                                           " ICMP6");
1087         if (item_flags & l4m)
1088                 return rte_flow_error_set(error, EINVAL,
1089                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1090                                           "multiple L4 layers not supported");
1091         if (!mask)
1092                 mask = &rte_flow_item_icmp6_mask;
1093         ret = mlx5_flow_item_acceptable
1094                 (item, (const uint8_t *)mask,
1095                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1096                  sizeof(struct rte_flow_item_icmp6), error);
1097         if (ret < 0)
1098                 return ret;
1099         return 0;
1100 }
1101
1102 /**
1103  * Validate ICMP item.
1104  *
1105  * @param[in] item
1106  *   Item specification.
1107  * @param[in] item_flags
1108  *   Bit-fields that holds the items detected until now.
1109  * @param[out] error
1110  *   Pointer to error structure.
1111  *
1112  * @return
1113  *   0 on success, a negative errno value otherwise and rte_errno is set.
1114  */
1115 int
1116 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1117                              uint64_t item_flags,
1118                              uint8_t target_protocol,
1119                              struct rte_flow_error *error)
1120 {
1121         const struct rte_flow_item_icmp *mask = item->mask;
1122         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1123         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1124                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1125         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1126                                       MLX5_FLOW_LAYER_OUTER_L4;
1127         int ret;
1128
1129         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1130                 return rte_flow_error_set(error, EINVAL,
1131                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1132                                           "protocol filtering not compatible"
1133                                           " with ICMP layer");
1134         if (!(item_flags & l3m))
1135                 return rte_flow_error_set(error, EINVAL,
1136                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1137                                           "IPv4 is mandatory to filter"
1138                                           " on ICMP");
1139         if (item_flags & l4m)
1140                 return rte_flow_error_set(error, EINVAL,
1141                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1142                                           "multiple L4 layers not supported");
1143         if (!mask)
1144                 mask = &rte_flow_item_icmp_mask;
1145         ret = mlx5_flow_item_acceptable
1146                 (item, (const uint8_t *)mask,
1147                  (const uint8_t *)&rte_flow_item_icmp_mask,
1148                  sizeof(struct rte_flow_item_icmp), error);
1149         if (ret < 0)
1150                 return ret;
1151         return 0;
1152 }
1153
1154 /**
1155  * Validate Ethernet item.
1156  *
1157  * @param[in] item
1158  *   Item specification.
1159  * @param[in] item_flags
1160  *   Bit-fields that holds the items detected until now.
1161  * @param[out] error
1162  *   Pointer to error structure.
1163  *
1164  * @return
1165  *   0 on success, a negative errno value otherwise and rte_errno is set.
1166  */
1167 int
1168 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1169                             uint64_t item_flags,
1170                             struct rte_flow_error *error)
1171 {
1172         const struct rte_flow_item_eth *mask = item->mask;
1173         const struct rte_flow_item_eth nic_mask = {
1174                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1175                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1176                 .type = RTE_BE16(0xffff),
1177         };
1178         int ret;
1179         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1180         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1181                                        MLX5_FLOW_LAYER_OUTER_L2;
1182
1183         if (item_flags & ethm)
1184                 return rte_flow_error_set(error, ENOTSUP,
1185                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1186                                           "multiple L2 layers not supported");
1187         if (!mask)
1188                 mask = &rte_flow_item_eth_mask;
1189         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1190                                         (const uint8_t *)&nic_mask,
1191                                         sizeof(struct rte_flow_item_eth),
1192                                         error);
1193         return ret;
1194 }
1195
1196 /**
1197  * Validate VLAN item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1211                              uint64_t item_flags,
1212                              struct rte_flow_error *error)
1213 {
1214         const struct rte_flow_item_vlan *spec = item->spec;
1215         const struct rte_flow_item_vlan *mask = item->mask;
1216         const struct rte_flow_item_vlan nic_mask = {
1217                 .tci = RTE_BE16(0x0fff),
1218                 .inner_type = RTE_BE16(0xffff),
1219         };
1220         uint16_t vlan_tag = 0;
1221         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1222         int ret;
1223         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1224                                         MLX5_FLOW_LAYER_INNER_L4) :
1225                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1226                                         MLX5_FLOW_LAYER_OUTER_L4);
1227         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1228                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1229
1230         if (item_flags & vlanm)
1231                 return rte_flow_error_set(error, EINVAL,
1232                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1233                                           "multiple VLAN layers not supported");
1234         else if ((item_flags & l34m) != 0)
1235                 return rte_flow_error_set(error, EINVAL,
1236                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1237                                           "L2 layer cannot follow L3/L4 layer");
1238         if (!mask)
1239                 mask = &rte_flow_item_vlan_mask;
1240         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1241                                         (const uint8_t *)&nic_mask,
1242                                         sizeof(struct rte_flow_item_vlan),
1243                                         error);
1244         if (ret)
1245                 return ret;
1246         if (spec) {
1247                 vlan_tag = spec->tci;
1248                 vlan_tag &= mask->tci;
1249         }
1250         /*
1251          * From verbs perspective an empty VLAN is equivalent
1252          * to a packet without VLAN layer.
1253          */
1254         if (!vlan_tag)
1255                 return rte_flow_error_set(error, EINVAL,
1256                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1257                                           item->spec,
1258                                           "VLAN cannot be empty");
1259         return 0;
1260 }
1261
1262 /**
1263  * Validate IPV4 item.
1264  *
1265  * @param[in] item
1266  *   Item specification.
1267  * @param[in] item_flags
1268  *   Bit-fields that holds the items detected until now.
1269  * @param[in] acc_mask
1270  *   Acceptable mask, if NULL default internal default mask
1271  *   will be used to check whether item fields are supported.
1272  * @param[out] error
1273  *   Pointer to error structure.
1274  *
1275  * @return
1276  *   0 on success, a negative errno value otherwise and rte_errno is set.
1277  */
1278 int
1279 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1280                              uint64_t item_flags,
1281                              const struct rte_flow_item_ipv4 *acc_mask,
1282                              struct rte_flow_error *error)
1283 {
1284         const struct rte_flow_item_ipv4 *mask = item->mask;
1285         const struct rte_flow_item_ipv4 *spec = item->spec;
1286         const struct rte_flow_item_ipv4 nic_mask = {
1287                 .hdr = {
1288                         .src_addr = RTE_BE32(0xffffffff),
1289                         .dst_addr = RTE_BE32(0xffffffff),
1290                         .type_of_service = 0xff,
1291                         .next_proto_id = 0xff,
1292                 },
1293         };
1294         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1295         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1296                                       MLX5_FLOW_LAYER_OUTER_L3;
1297         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1298                                       MLX5_FLOW_LAYER_OUTER_L4;
1299         int ret;
1300         uint8_t next_proto = 0xFF;
1301
1302         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1303                 if (mask && spec)
1304                         next_proto = mask->hdr.next_proto_id &
1305                                      spec->hdr.next_proto_id;
1306                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1307                         return rte_flow_error_set(error, EINVAL,
1308                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1309                                                   item,
1310                                                   "multiple tunnel "
1311                                                   "not supported");
1312         }
1313         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1314                 return rte_flow_error_set(error, EINVAL,
1315                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1316                                           "wrong tunnel type - IPv6 specified "
1317                                           "but IPv4 item provided");
1318         if (item_flags & l3m)
1319                 return rte_flow_error_set(error, ENOTSUP,
1320                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1321                                           "multiple L3 layers not supported");
1322         else if (item_flags & l4m)
1323                 return rte_flow_error_set(error, EINVAL,
1324                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1325                                           "L3 cannot follow an L4 layer.");
1326         if (!mask)
1327                 mask = &rte_flow_item_ipv4_mask;
1328         else if (mask->hdr.next_proto_id != 0 &&
1329                  mask->hdr.next_proto_id != 0xff)
1330                 return rte_flow_error_set(error, EINVAL,
1331                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1332                                           "partial mask is not supported"
1333                                           " for protocol");
1334         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1335                                         acc_mask ? (const uint8_t *)acc_mask
1336                                                  : (const uint8_t *)&nic_mask,
1337                                         sizeof(struct rte_flow_item_ipv4),
1338                                         error);
1339         if (ret < 0)
1340                 return ret;
1341         return 0;
1342 }
1343
1344 /**
1345  * Validate IPV6 item.
1346  *
1347  * @param[in] item
1348  *   Item specification.
1349  * @param[in] item_flags
1350  *   Bit-fields that holds the items detected until now.
1351  * @param[in] acc_mask
1352  *   Acceptable mask, if NULL default internal default mask
1353  *   will be used to check whether item fields are supported.
1354  * @param[out] error
1355  *   Pointer to error structure.
1356  *
1357  * @return
1358  *   0 on success, a negative errno value otherwise and rte_errno is set.
1359  */
1360 int
1361 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1362                              uint64_t item_flags,
1363                              const struct rte_flow_item_ipv6 *acc_mask,
1364                              struct rte_flow_error *error)
1365 {
1366         const struct rte_flow_item_ipv6 *mask = item->mask;
1367         const struct rte_flow_item_ipv6 *spec = item->spec;
1368         const struct rte_flow_item_ipv6 nic_mask = {
1369                 .hdr = {
1370                         .src_addr =
1371                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1372                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1373                         .dst_addr =
1374                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1375                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1376                         .vtc_flow = RTE_BE32(0xffffffff),
1377                         .proto = 0xff,
1378                         .hop_limits = 0xff,
1379                 },
1380         };
1381         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1382         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1383                                       MLX5_FLOW_LAYER_OUTER_L3;
1384         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1385                                       MLX5_FLOW_LAYER_OUTER_L4;
1386         int ret;
1387         uint8_t next_proto = 0xFF;
1388
1389         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1390                 if (mask && spec)
1391                         next_proto = mask->hdr.proto & spec->hdr.proto;
1392                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1393                         return rte_flow_error_set(error, EINVAL,
1394                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1395                                                   item,
1396                                                   "multiple tunnel "
1397                                                   "not supported");
1398         }
1399         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1400                 return rte_flow_error_set(error, EINVAL,
1401                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1402                                           "wrong tunnel type - IPv4 specified "
1403                                           "but IPv6 item provided");
1404         if (item_flags & l3m)
1405                 return rte_flow_error_set(error, ENOTSUP,
1406                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1407                                           "multiple L3 layers not supported");
1408         else if (item_flags & l4m)
1409                 return rte_flow_error_set(error, EINVAL,
1410                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1411                                           "L3 cannot follow an L4 layer.");
1412         if (!mask)
1413                 mask = &rte_flow_item_ipv6_mask;
1414         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1415                                         acc_mask ? (const uint8_t *)acc_mask
1416                                                  : (const uint8_t *)&nic_mask,
1417                                         sizeof(struct rte_flow_item_ipv6),
1418                                         error);
1419         if (ret < 0)
1420                 return ret;
1421         return 0;
1422 }
1423
1424 /**
1425  * Validate UDP item.
1426  *
1427  * @param[in] item
1428  *   Item specification.
1429  * @param[in] item_flags
1430  *   Bit-fields that holds the items detected until now.
1431  * @param[in] target_protocol
1432  *   The next protocol in the previous item.
1433  * @param[in] flow_mask
1434  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1435  * @param[out] error
1436  *   Pointer to error structure.
1437  *
1438  * @return
1439  *   0 on success, a negative errno value otherwise and rte_errno is set.
1440  */
1441 int
1442 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1443                             uint64_t item_flags,
1444                             uint8_t target_protocol,
1445                             struct rte_flow_error *error)
1446 {
1447         const struct rte_flow_item_udp *mask = item->mask;
1448         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1449         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1450                                       MLX5_FLOW_LAYER_OUTER_L3;
1451         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1452                                       MLX5_FLOW_LAYER_OUTER_L4;
1453         int ret;
1454
1455         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1456                 return rte_flow_error_set(error, EINVAL,
1457                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1458                                           "protocol filtering not compatible"
1459                                           " with UDP layer");
1460         if (!(item_flags & l3m))
1461                 return rte_flow_error_set(error, EINVAL,
1462                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1463                                           "L3 is mandatory to filter on L4");
1464         if (item_flags & l4m)
1465                 return rte_flow_error_set(error, EINVAL,
1466                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1467                                           "multiple L4 layers not supported");
1468         if (!mask)
1469                 mask = &rte_flow_item_udp_mask;
1470         ret = mlx5_flow_item_acceptable
1471                 (item, (const uint8_t *)mask,
1472                  (const uint8_t *)&rte_flow_item_udp_mask,
1473                  sizeof(struct rte_flow_item_udp), error);
1474         if (ret < 0)
1475                 return ret;
1476         return 0;
1477 }
1478
1479 /**
1480  * Validate TCP item.
1481  *
1482  * @param[in] item
1483  *   Item specification.
1484  * @param[in] item_flags
1485  *   Bit-fields that holds the items detected until now.
1486  * @param[in] target_protocol
1487  *   The next protocol in the previous item.
1488  * @param[out] error
1489  *   Pointer to error structure.
1490  *
1491  * @return
1492  *   0 on success, a negative errno value otherwise and rte_errno is set.
1493  */
1494 int
1495 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1496                             uint64_t item_flags,
1497                             uint8_t target_protocol,
1498                             const struct rte_flow_item_tcp *flow_mask,
1499                             struct rte_flow_error *error)
1500 {
1501         const struct rte_flow_item_tcp *mask = item->mask;
1502         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1503         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1504                                       MLX5_FLOW_LAYER_OUTER_L3;
1505         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1506                                       MLX5_FLOW_LAYER_OUTER_L4;
1507         int ret;
1508
1509         assert(flow_mask);
1510         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1511                 return rte_flow_error_set(error, EINVAL,
1512                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1513                                           "protocol filtering not compatible"
1514                                           " with TCP layer");
1515         if (!(item_flags & l3m))
1516                 return rte_flow_error_set(error, EINVAL,
1517                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1518                                           "L3 is mandatory to filter on L4");
1519         if (item_flags & l4m)
1520                 return rte_flow_error_set(error, EINVAL,
1521                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1522                                           "multiple L4 layers not supported");
1523         if (!mask)
1524                 mask = &rte_flow_item_tcp_mask;
1525         ret = mlx5_flow_item_acceptable
1526                 (item, (const uint8_t *)mask,
1527                  (const uint8_t *)flow_mask,
1528                  sizeof(struct rte_flow_item_tcp), error);
1529         if (ret < 0)
1530                 return ret;
1531         return 0;
1532 }
1533
1534 /**
1535  * Validate VXLAN item.
1536  *
1537  * @param[in] item
1538  *   Item specification.
1539  * @param[in] item_flags
1540  *   Bit-fields that holds the items detected until now.
1541  * @param[in] target_protocol
1542  *   The next protocol in the previous item.
1543  * @param[out] error
1544  *   Pointer to error structure.
1545  *
1546  * @return
1547  *   0 on success, a negative errno value otherwise and rte_errno is set.
1548  */
1549 int
1550 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1551                               uint64_t item_flags,
1552                               struct rte_flow_error *error)
1553 {
1554         const struct rte_flow_item_vxlan *spec = item->spec;
1555         const struct rte_flow_item_vxlan *mask = item->mask;
1556         int ret;
1557         union vni {
1558                 uint32_t vlan_id;
1559                 uint8_t vni[4];
1560         } id = { .vlan_id = 0, };
1561         uint32_t vlan_id = 0;
1562
1563
1564         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1565                 return rte_flow_error_set(error, ENOTSUP,
1566                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1567                                           "multiple tunnel layers not"
1568                                           " supported");
1569         /*
1570          * Verify only UDPv4 is present as defined in
1571          * https://tools.ietf.org/html/rfc7348
1572          */
1573         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1574                 return rte_flow_error_set(error, EINVAL,
1575                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1576                                           "no outer UDP layer found");
1577         if (!mask)
1578                 mask = &rte_flow_item_vxlan_mask;
1579         ret = mlx5_flow_item_acceptable
1580                 (item, (const uint8_t *)mask,
1581                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1582                  sizeof(struct rte_flow_item_vxlan),
1583                  error);
1584         if (ret < 0)
1585                 return ret;
1586         if (spec) {
1587                 memcpy(&id.vni[1], spec->vni, 3);
1588                 vlan_id = id.vlan_id;
1589                 memcpy(&id.vni[1], mask->vni, 3);
1590                 vlan_id &= id.vlan_id;
1591         }
1592         /*
1593          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1594          * only this layer is defined in the Verbs specification it is
1595          * interpreted as wildcard and all packets will match this
1596          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1597          * udp), all packets matching the layers before will also
1598          * match this rule.  To avoid such situation, VNI 0 is
1599          * currently refused.
1600          */
1601         if (!vlan_id)
1602                 return rte_flow_error_set(error, ENOTSUP,
1603                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1604                                           "VXLAN vni cannot be 0");
1605         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1606                 return rte_flow_error_set(error, ENOTSUP,
1607                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1608                                           "VXLAN tunnel must be fully defined");
1609         return 0;
1610 }
1611
1612 /**
1613  * Validate VXLAN_GPE item.
1614  *
1615  * @param[in] item
1616  *   Item specification.
1617  * @param[in] item_flags
1618  *   Bit-fields that holds the items detected until now.
1619  * @param[in] priv
1620  *   Pointer to the private data structure.
1621  * @param[in] target_protocol
1622  *   The next protocol in the previous item.
1623  * @param[out] error
1624  *   Pointer to error structure.
1625  *
1626  * @return
1627  *   0 on success, a negative errno value otherwise and rte_errno is set.
1628  */
1629 int
1630 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1631                                   uint64_t item_flags,
1632                                   struct rte_eth_dev *dev,
1633                                   struct rte_flow_error *error)
1634 {
1635         struct mlx5_priv *priv = dev->data->dev_private;
1636         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1637         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1638         int ret;
1639         union vni {
1640                 uint32_t vlan_id;
1641                 uint8_t vni[4];
1642         } id = { .vlan_id = 0, };
1643         uint32_t vlan_id = 0;
1644
1645         if (!priv->config.l3_vxlan_en)
1646                 return rte_flow_error_set(error, ENOTSUP,
1647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1648                                           "L3 VXLAN is not enabled by device"
1649                                           " parameter and/or not configured in"
1650                                           " firmware");
1651         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1652                 return rte_flow_error_set(error, ENOTSUP,
1653                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1654                                           "multiple tunnel layers not"
1655                                           " supported");
1656         /*
1657          * Verify only UDPv4 is present as defined in
1658          * https://tools.ietf.org/html/rfc7348
1659          */
1660         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1661                 return rte_flow_error_set(error, EINVAL,
1662                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1663                                           "no outer UDP layer found");
1664         if (!mask)
1665                 mask = &rte_flow_item_vxlan_gpe_mask;
1666         ret = mlx5_flow_item_acceptable
1667                 (item, (const uint8_t *)mask,
1668                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1669                  sizeof(struct rte_flow_item_vxlan_gpe),
1670                  error);
1671         if (ret < 0)
1672                 return ret;
1673         if (spec) {
1674                 if (spec->protocol)
1675                         return rte_flow_error_set(error, ENOTSUP,
1676                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1677                                                   item,
1678                                                   "VxLAN-GPE protocol"
1679                                                   " not supported");
1680                 memcpy(&id.vni[1], spec->vni, 3);
1681                 vlan_id = id.vlan_id;
1682                 memcpy(&id.vni[1], mask->vni, 3);
1683                 vlan_id &= id.vlan_id;
1684         }
1685         /*
1686          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1687          * layer is defined in the Verbs specification it is interpreted as
1688          * wildcard and all packets will match this rule, if it follows a full
1689          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1690          * before will also match this rule.  To avoid such situation, VNI 0
1691          * is currently refused.
1692          */
1693         if (!vlan_id)
1694                 return rte_flow_error_set(error, ENOTSUP,
1695                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1696                                           "VXLAN-GPE vni cannot be 0");
1697         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1698                 return rte_flow_error_set(error, ENOTSUP,
1699                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1700                                           "VXLAN-GPE tunnel must be fully"
1701                                           " defined");
1702         return 0;
1703 }
1704 /**
1705  * Validate GRE Key item.
1706  *
1707  * @param[in] item
1708  *   Item specification.
1709  * @param[in] item_flags
1710  *   Bit flags to mark detected items.
1711  * @param[in] gre_item
1712  *   Pointer to gre_item
1713  * @param[out] error
1714  *   Pointer to error structure.
1715  *
1716  * @return
1717  *   0 on success, a negative errno value otherwise and rte_errno is set.
1718  */
1719 int
1720 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1721                                 uint64_t item_flags,
1722                                 const struct rte_flow_item *gre_item,
1723                                 struct rte_flow_error *error)
1724 {
1725         const rte_be32_t *mask = item->mask;
1726         int ret = 0;
1727         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1728         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1729         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1730
1731         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1732                 return rte_flow_error_set(error, ENOTSUP,
1733                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1734                                           "Multiple GRE key not support");
1735         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1736                 return rte_flow_error_set(error, ENOTSUP,
1737                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1738                                           "No preceding GRE header");
1739         if (item_flags & MLX5_FLOW_LAYER_INNER)
1740                 return rte_flow_error_set(error, ENOTSUP,
1741                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1742                                           "GRE key following a wrong item");
1743         if (!gre_mask)
1744                 gre_mask = &rte_flow_item_gre_mask;
1745         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1746                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1747                 return rte_flow_error_set(error, EINVAL,
1748                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1749                                           "Key bit must be on");
1750
1751         if (!mask)
1752                 mask = &gre_key_default_mask;
1753         ret = mlx5_flow_item_acceptable
1754                 (item, (const uint8_t *)mask,
1755                  (const uint8_t *)&gre_key_default_mask,
1756                  sizeof(rte_be32_t), error);
1757         return ret;
1758 }
1759
1760 /**
1761  * Validate GRE item.
1762  *
1763  * @param[in] item
1764  *   Item specification.
1765  * @param[in] item_flags
1766  *   Bit flags to mark detected items.
1767  * @param[in] target_protocol
1768  *   The next protocol in the previous item.
1769  * @param[out] error
1770  *   Pointer to error structure.
1771  *
1772  * @return
1773  *   0 on success, a negative errno value otherwise and rte_errno is set.
1774  */
1775 int
1776 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1777                             uint64_t item_flags,
1778                             uint8_t target_protocol,
1779                             struct rte_flow_error *error)
1780 {
1781         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1782         const struct rte_flow_item_gre *mask = item->mask;
1783         int ret;
1784         const struct rte_flow_item_gre nic_mask = {
1785                 .c_rsvd0_ver = RTE_BE16(0xB000),
1786                 .protocol = RTE_BE16(UINT16_MAX),
1787         };
1788
1789         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1790                 return rte_flow_error_set(error, EINVAL,
1791                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1792                                           "protocol filtering not compatible"
1793                                           " with this GRE layer");
1794         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1795                 return rte_flow_error_set(error, ENOTSUP,
1796                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1797                                           "multiple tunnel layers not"
1798                                           " supported");
1799         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1800                 return rte_flow_error_set(error, ENOTSUP,
1801                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1802                                           "L3 Layer is missing");
1803         if (!mask)
1804                 mask = &rte_flow_item_gre_mask;
1805         ret = mlx5_flow_item_acceptable
1806                 (item, (const uint8_t *)mask,
1807                  (const uint8_t *)&nic_mask,
1808                  sizeof(struct rte_flow_item_gre), error);
1809         if (ret < 0)
1810                 return ret;
1811 #ifndef HAVE_MLX5DV_DR
1812 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1813         if (spec && (spec->protocol & mask->protocol))
1814                 return rte_flow_error_set(error, ENOTSUP,
1815                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1816                                           "without MPLS support the"
1817                                           " specification cannot be used for"
1818                                           " filtering");
1819 #endif
1820 #endif
1821         return 0;
1822 }
1823
1824 /**
1825  * Validate MPLS item.
1826  *
1827  * @param[in] dev
1828  *   Pointer to the rte_eth_dev structure.
1829  * @param[in] item
1830  *   Item specification.
1831  * @param[in] item_flags
1832  *   Bit-fields that holds the items detected until now.
1833  * @param[in] prev_layer
1834  *   The protocol layer indicated in previous item.
1835  * @param[out] error
1836  *   Pointer to error structure.
1837  *
1838  * @return
1839  *   0 on success, a negative errno value otherwise and rte_errno is set.
1840  */
1841 int
1842 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1843                              const struct rte_flow_item *item __rte_unused,
1844                              uint64_t item_flags __rte_unused,
1845                              uint64_t prev_layer __rte_unused,
1846                              struct rte_flow_error *error)
1847 {
1848 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1849         const struct rte_flow_item_mpls *mask = item->mask;
1850         struct mlx5_priv *priv = dev->data->dev_private;
1851         int ret;
1852
1853         if (!priv->config.mpls_en)
1854                 return rte_flow_error_set(error, ENOTSUP,
1855                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1856                                           "MPLS not supported or"
1857                                           " disabled in firmware"
1858                                           " configuration.");
1859         /* MPLS over IP, UDP, GRE is allowed */
1860         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1861                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1862                             MLX5_FLOW_LAYER_GRE)))
1863                 return rte_flow_error_set(error, EINVAL,
1864                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1865                                           "protocol filtering not compatible"
1866                                           " with MPLS layer");
1867         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1868         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1869             !(item_flags & MLX5_FLOW_LAYER_GRE))
1870                 return rte_flow_error_set(error, ENOTSUP,
1871                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1872                                           "multiple tunnel layers not"
1873                                           " supported");
1874         if (!mask)
1875                 mask = &rte_flow_item_mpls_mask;
1876         ret = mlx5_flow_item_acceptable
1877                 (item, (const uint8_t *)mask,
1878                  (const uint8_t *)&rte_flow_item_mpls_mask,
1879                  sizeof(struct rte_flow_item_mpls), error);
1880         if (ret < 0)
1881                 return ret;
1882         return 0;
1883 #endif
1884         return rte_flow_error_set(error, ENOTSUP,
1885                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1886                                   "MPLS is not supported by Verbs, please"
1887                                   " update.");
1888 }
1889
1890 static int
1891 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1892                    const struct rte_flow_attr *attr __rte_unused,
1893                    const struct rte_flow_item items[] __rte_unused,
1894                    const struct rte_flow_action actions[] __rte_unused,
1895                    struct rte_flow_error *error)
1896 {
1897         return rte_flow_error_set(error, ENOTSUP,
1898                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1899 }
1900
1901 static struct mlx5_flow *
1902 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1903                   const struct rte_flow_item items[] __rte_unused,
1904                   const struct rte_flow_action actions[] __rte_unused,
1905                   struct rte_flow_error *error)
1906 {
1907         rte_flow_error_set(error, ENOTSUP,
1908                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1909         return NULL;
1910 }
1911
1912 static int
1913 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1914                     struct mlx5_flow *dev_flow __rte_unused,
1915                     const struct rte_flow_attr *attr __rte_unused,
1916                     const struct rte_flow_item items[] __rte_unused,
1917                     const struct rte_flow_action actions[] __rte_unused,
1918                     struct rte_flow_error *error)
1919 {
1920         return rte_flow_error_set(error, ENOTSUP,
1921                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1922 }
1923
1924 static int
1925 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1926                 struct rte_flow *flow __rte_unused,
1927                 struct rte_flow_error *error)
1928 {
1929         return rte_flow_error_set(error, ENOTSUP,
1930                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1931 }
1932
1933 static void
1934 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1935                  struct rte_flow *flow __rte_unused)
1936 {
1937 }
1938
1939 static void
1940 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1941                   struct rte_flow *flow __rte_unused)
1942 {
1943 }
1944
1945 static int
1946 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1947                 struct rte_flow *flow __rte_unused,
1948                 const struct rte_flow_action *actions __rte_unused,
1949                 void *data __rte_unused,
1950                 struct rte_flow_error *error)
1951 {
1952         return rte_flow_error_set(error, ENOTSUP,
1953                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1954 }
1955
1956 /* Void driver to protect from null pointer reference. */
1957 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1958         .validate = flow_null_validate,
1959         .prepare = flow_null_prepare,
1960         .translate = flow_null_translate,
1961         .apply = flow_null_apply,
1962         .remove = flow_null_remove,
1963         .destroy = flow_null_destroy,
1964         .query = flow_null_query,
1965 };
1966
1967 /**
1968  * Select flow driver type according to flow attributes and device
1969  * configuration.
1970  *
1971  * @param[in] dev
1972  *   Pointer to the dev structure.
1973  * @param[in] attr
1974  *   Pointer to the flow attributes.
1975  *
1976  * @return
1977  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1978  */
1979 static enum mlx5_flow_drv_type
1980 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1981 {
1982         struct mlx5_priv *priv = dev->data->dev_private;
1983         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1984
1985         if (attr->transfer && priv->config.dv_esw_en)
1986                 type = MLX5_FLOW_TYPE_DV;
1987         if (!attr->transfer)
1988                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1989                                                  MLX5_FLOW_TYPE_VERBS;
1990         return type;
1991 }
1992
1993 #define flow_get_drv_ops(type) flow_drv_ops[type]
1994
1995 /**
1996  * Flow driver validation API. This abstracts calling driver specific functions.
1997  * The type of flow driver is determined according to flow attributes.
1998  *
1999  * @param[in] dev
2000  *   Pointer to the dev structure.
2001  * @param[in] attr
2002  *   Pointer to the flow attributes.
2003  * @param[in] items
2004  *   Pointer to the list of items.
2005  * @param[in] actions
2006  *   Pointer to the list of actions.
2007  * @param[out] error
2008  *   Pointer to the error structure.
2009  *
2010  * @return
2011  *   0 on success, a negative errno value otherwise and rte_errno is set.
2012  */
2013 static inline int
2014 flow_drv_validate(struct rte_eth_dev *dev,
2015                   const struct rte_flow_attr *attr,
2016                   const struct rte_flow_item items[],
2017                   const struct rte_flow_action actions[],
2018                   struct rte_flow_error *error)
2019 {
2020         const struct mlx5_flow_driver_ops *fops;
2021         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2022
2023         fops = flow_get_drv_ops(type);
2024         return fops->validate(dev, attr, items, actions, error);
2025 }
2026
2027 /**
2028  * Flow driver preparation API. This abstracts calling driver specific
2029  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2030  * calculates the size of memory required for device flow, allocates the memory,
2031  * initializes the device flow and returns the pointer.
2032  *
2033  * @note
2034  *   This function initializes device flow structure such as dv or verbs in
2035  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2036  *   rest. For example, adding returning device flow to flow->dev_flow list and
2037  *   setting backward reference to the flow should be done out of this function.
2038  *   layers field is not filled either.
2039  *
2040  * @param[in] attr
2041  *   Pointer to the flow attributes.
2042  * @param[in] items
2043  *   Pointer to the list of items.
2044  * @param[in] actions
2045  *   Pointer to the list of actions.
2046  * @param[out] error
2047  *   Pointer to the error structure.
2048  *
2049  * @return
2050  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2051  */
2052 static inline struct mlx5_flow *
2053 flow_drv_prepare(const struct rte_flow *flow,
2054                  const struct rte_flow_attr *attr,
2055                  const struct rte_flow_item items[],
2056                  const struct rte_flow_action actions[],
2057                  struct rte_flow_error *error)
2058 {
2059         const struct mlx5_flow_driver_ops *fops;
2060         enum mlx5_flow_drv_type type = flow->drv_type;
2061
2062         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2063         fops = flow_get_drv_ops(type);
2064         return fops->prepare(attr, items, actions, error);
2065 }
2066
2067 /**
2068  * Flow driver translation API. This abstracts calling driver specific
2069  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2070  * translates a generic flow into a driver flow. flow_drv_prepare() must
2071  * precede.
2072  *
2073  * @note
2074  *   dev_flow->layers could be filled as a result of parsing during translation
2075  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2076  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2077  *   flow->actions could be overwritten even though all the expanded dev_flows
2078  *   have the same actions.
2079  *
2080  * @param[in] dev
2081  *   Pointer to the rte dev structure.
2082  * @param[in, out] dev_flow
2083  *   Pointer to the mlx5 flow.
2084  * @param[in] attr
2085  *   Pointer to the flow attributes.
2086  * @param[in] items
2087  *   Pointer to the list of items.
2088  * @param[in] actions
2089  *   Pointer to the list of actions.
2090  * @param[out] error
2091  *   Pointer to the error structure.
2092  *
2093  * @return
2094  *   0 on success, a negative errno value otherwise and rte_errno is set.
2095  */
2096 static inline int
2097 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2098                    const struct rte_flow_attr *attr,
2099                    const struct rte_flow_item items[],
2100                    const struct rte_flow_action actions[],
2101                    struct rte_flow_error *error)
2102 {
2103         const struct mlx5_flow_driver_ops *fops;
2104         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2105
2106         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2107         fops = flow_get_drv_ops(type);
2108         return fops->translate(dev, dev_flow, attr, items, actions, error);
2109 }
2110
2111 /**
2112  * Flow driver apply API. This abstracts calling driver specific functions.
2113  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2114  * translated driver flows on to device. flow_drv_translate() must precede.
2115  *
2116  * @param[in] dev
2117  *   Pointer to Ethernet device structure.
2118  * @param[in, out] flow
2119  *   Pointer to flow structure.
2120  * @param[out] error
2121  *   Pointer to error structure.
2122  *
2123  * @return
2124  *   0 on success, a negative errno value otherwise and rte_errno is set.
2125  */
2126 static inline int
2127 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2128                struct rte_flow_error *error)
2129 {
2130         const struct mlx5_flow_driver_ops *fops;
2131         enum mlx5_flow_drv_type type = flow->drv_type;
2132
2133         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2134         fops = flow_get_drv_ops(type);
2135         return fops->apply(dev, flow, error);
2136 }
2137
2138 /**
2139  * Flow driver remove API. This abstracts calling driver specific functions.
2140  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2141  * on device. All the resources of the flow should be freed by calling
2142  * flow_drv_destroy().
2143  *
2144  * @param[in] dev
2145  *   Pointer to Ethernet device.
2146  * @param[in, out] flow
2147  *   Pointer to flow structure.
2148  */
2149 static inline void
2150 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2151 {
2152         const struct mlx5_flow_driver_ops *fops;
2153         enum mlx5_flow_drv_type type = flow->drv_type;
2154
2155         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2156         fops = flow_get_drv_ops(type);
2157         fops->remove(dev, flow);
2158 }
2159
2160 /**
2161  * Flow driver destroy API. This abstracts calling driver specific functions.
2162  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2163  * on device and releases resources of the flow.
2164  *
2165  * @param[in] dev
2166  *   Pointer to Ethernet device.
2167  * @param[in, out] flow
2168  *   Pointer to flow structure.
2169  */
2170 static inline void
2171 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2172 {
2173         const struct mlx5_flow_driver_ops *fops;
2174         enum mlx5_flow_drv_type type = flow->drv_type;
2175
2176         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2177         fops = flow_get_drv_ops(type);
2178         fops->destroy(dev, flow);
2179 }
2180
2181 /**
2182  * Validate a flow supported by the NIC.
2183  *
2184  * @see rte_flow_validate()
2185  * @see rte_flow_ops
2186  */
2187 int
2188 mlx5_flow_validate(struct rte_eth_dev *dev,
2189                    const struct rte_flow_attr *attr,
2190                    const struct rte_flow_item items[],
2191                    const struct rte_flow_action actions[],
2192                    struct rte_flow_error *error)
2193 {
2194         int ret;
2195
2196         ret = flow_drv_validate(dev, attr, items, actions, error);
2197         if (ret < 0)
2198                 return ret;
2199         return 0;
2200 }
2201
2202 /**
2203  * Get RSS action from the action list.
2204  *
2205  * @param[in] actions
2206  *   Pointer to the list of actions.
2207  *
2208  * @return
2209  *   Pointer to the RSS action if exist, else return NULL.
2210  */
2211 static const struct rte_flow_action_rss*
2212 flow_get_rss_action(const struct rte_flow_action actions[])
2213 {
2214         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2215                 switch (actions->type) {
2216                 case RTE_FLOW_ACTION_TYPE_RSS:
2217                         return (const struct rte_flow_action_rss *)
2218                                actions->conf;
2219                 default:
2220                         break;
2221                 }
2222         }
2223         return NULL;
2224 }
2225
2226 static unsigned int
2227 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2228 {
2229         const struct rte_flow_item *item;
2230         unsigned int has_vlan = 0;
2231
2232         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2233                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2234                         has_vlan = 1;
2235                         break;
2236                 }
2237         }
2238         if (has_vlan)
2239                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2240                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2241         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2242                                MLX5_EXPANSION_ROOT_OUTER;
2243 }
2244
2245 /**
2246  * Create a flow and add it to @p list.
2247  *
2248  * @param dev
2249  *   Pointer to Ethernet device.
2250  * @param list
2251  *   Pointer to a TAILQ flow list.
2252  * @param[in] attr
2253  *   Flow rule attributes.
2254  * @param[in] items
2255  *   Pattern specification (list terminated by the END pattern item).
2256  * @param[in] actions
2257  *   Associated actions (list terminated by the END action).
2258  * @param[out] error
2259  *   Perform verbose error reporting if not NULL.
2260  *
2261  * @return
2262  *   A flow on success, NULL otherwise and rte_errno is set.
2263  */
2264 static struct rte_flow *
2265 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2266                  const struct rte_flow_attr *attr,
2267                  const struct rte_flow_item items[],
2268                  const struct rte_flow_action actions[],
2269                  struct rte_flow_error *error)
2270 {
2271         struct rte_flow *flow = NULL;
2272         struct mlx5_flow *dev_flow;
2273         const struct rte_flow_action_rss *rss;
2274         union {
2275                 struct rte_flow_expand_rss buf;
2276                 uint8_t buffer[2048];
2277         } expand_buffer;
2278         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2279         int ret;
2280         uint32_t i;
2281         uint32_t flow_size;
2282
2283         ret = flow_drv_validate(dev, attr, items, actions, error);
2284         if (ret < 0)
2285                 return NULL;
2286         flow_size = sizeof(struct rte_flow);
2287         rss = flow_get_rss_action(actions);
2288         if (rss)
2289                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2290                                             sizeof(void *));
2291         else
2292                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2293         flow = rte_calloc(__func__, 1, flow_size, 0);
2294         if (!flow) {
2295                 rte_errno = ENOMEM;
2296                 return NULL;
2297         }
2298         flow->drv_type = flow_get_drv_type(dev, attr);
2299         flow->ingress = attr->ingress;
2300         flow->transfer = attr->transfer;
2301         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2302                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2303         flow->queue = (void *)(flow + 1);
2304         LIST_INIT(&flow->dev_flows);
2305         if (rss && rss->types) {
2306                 unsigned int graph_root;
2307
2308                 graph_root = find_graph_root(items, rss->level);
2309                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2310                                           items, rss->types,
2311                                           mlx5_support_expansion,
2312                                           graph_root);
2313                 assert(ret > 0 &&
2314                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2315         } else {
2316                 buf->entries = 1;
2317                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2318         }
2319         for (i = 0; i < buf->entries; ++i) {
2320                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2321                                             actions, error);
2322                 if (!dev_flow)
2323                         goto error;
2324                 dev_flow->flow = flow;
2325                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2326                 ret = flow_drv_translate(dev, dev_flow, attr,
2327                                          buf->entry[i].pattern,
2328                                          actions, error);
2329                 if (ret < 0)
2330                         goto error;
2331         }
2332         if (dev->data->dev_started) {
2333                 ret = flow_drv_apply(dev, flow, error);
2334                 if (ret < 0)
2335                         goto error;
2336         }
2337         TAILQ_INSERT_TAIL(list, flow, next);
2338         flow_rxq_flags_set(dev, flow);
2339         return flow;
2340 error:
2341         ret = rte_errno; /* Save rte_errno before cleanup. */
2342         assert(flow);
2343         flow_drv_destroy(dev, flow);
2344         rte_free(flow);
2345         rte_errno = ret; /* Restore rte_errno. */
2346         return NULL;
2347 }
2348
2349 /**
2350  * Create a flow.
2351  *
2352  * @see rte_flow_create()
2353  * @see rte_flow_ops
2354  */
2355 struct rte_flow *
2356 mlx5_flow_create(struct rte_eth_dev *dev,
2357                  const struct rte_flow_attr *attr,
2358                  const struct rte_flow_item items[],
2359                  const struct rte_flow_action actions[],
2360                  struct rte_flow_error *error)
2361 {
2362         struct mlx5_priv *priv = dev->data->dev_private;
2363
2364         return flow_list_create(dev, &priv->flows,
2365                                 attr, items, actions, error);
2366 }
2367
2368 /**
2369  * Destroy a flow in a list.
2370  *
2371  * @param dev
2372  *   Pointer to Ethernet device.
2373  * @param list
2374  *   Pointer to a TAILQ flow list.
2375  * @param[in] flow
2376  *   Flow to destroy.
2377  */
2378 static void
2379 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2380                   struct rte_flow *flow)
2381 {
2382         /*
2383          * Update RX queue flags only if port is started, otherwise it is
2384          * already clean.
2385          */
2386         if (dev->data->dev_started)
2387                 flow_rxq_flags_trim(dev, flow);
2388         flow_drv_destroy(dev, flow);
2389         TAILQ_REMOVE(list, flow, next);
2390         rte_free(flow->fdir);
2391         rte_free(flow);
2392 }
2393
2394 /**
2395  * Destroy all flows.
2396  *
2397  * @param dev
2398  *   Pointer to Ethernet device.
2399  * @param list
2400  *   Pointer to a TAILQ flow list.
2401  */
2402 void
2403 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2404 {
2405         while (!TAILQ_EMPTY(list)) {
2406                 struct rte_flow *flow;
2407
2408                 flow = TAILQ_FIRST(list);
2409                 flow_list_destroy(dev, list, flow);
2410         }
2411 }
2412
2413 /**
2414  * Remove all flows.
2415  *
2416  * @param dev
2417  *   Pointer to Ethernet device.
2418  * @param list
2419  *   Pointer to a TAILQ flow list.
2420  */
2421 void
2422 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2423 {
2424         struct rte_flow *flow;
2425
2426         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2427                 flow_drv_remove(dev, flow);
2428         flow_rxq_flags_clear(dev);
2429 }
2430
2431 /**
2432  * Add all flows.
2433  *
2434  * @param dev
2435  *   Pointer to Ethernet device.
2436  * @param list
2437  *   Pointer to a TAILQ flow list.
2438  *
2439  * @return
2440  *   0 on success, a negative errno value otherwise and rte_errno is set.
2441  */
2442 int
2443 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2444 {
2445         struct rte_flow *flow;
2446         struct rte_flow_error error;
2447         int ret = 0;
2448
2449         TAILQ_FOREACH(flow, list, next) {
2450                 ret = flow_drv_apply(dev, flow, &error);
2451                 if (ret < 0)
2452                         goto error;
2453                 flow_rxq_flags_set(dev, flow);
2454         }
2455         return 0;
2456 error:
2457         ret = rte_errno; /* Save rte_errno before cleanup. */
2458         mlx5_flow_stop(dev, list);
2459         rte_errno = ret; /* Restore rte_errno. */
2460         return -rte_errno;
2461 }
2462
2463 /**
2464  * Verify the flow list is empty
2465  *
2466  * @param dev
2467  *  Pointer to Ethernet device.
2468  *
2469  * @return the number of flows not released.
2470  */
2471 int
2472 mlx5_flow_verify(struct rte_eth_dev *dev)
2473 {
2474         struct mlx5_priv *priv = dev->data->dev_private;
2475         struct rte_flow *flow;
2476         int ret = 0;
2477
2478         TAILQ_FOREACH(flow, &priv->flows, next) {
2479                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2480                         dev->data->port_id, (void *)flow);
2481                 ++ret;
2482         }
2483         return ret;
2484 }
2485
2486 /**
2487  * Enable a control flow configured from the control plane.
2488  *
2489  * @param dev
2490  *   Pointer to Ethernet device.
2491  * @param eth_spec
2492  *   An Ethernet flow spec to apply.
2493  * @param eth_mask
2494  *   An Ethernet flow mask to apply.
2495  * @param vlan_spec
2496  *   A VLAN flow spec to apply.
2497  * @param vlan_mask
2498  *   A VLAN flow mask to apply.
2499  *
2500  * @return
2501  *   0 on success, a negative errno value otherwise and rte_errno is set.
2502  */
2503 int
2504 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2505                     struct rte_flow_item_eth *eth_spec,
2506                     struct rte_flow_item_eth *eth_mask,
2507                     struct rte_flow_item_vlan *vlan_spec,
2508                     struct rte_flow_item_vlan *vlan_mask)
2509 {
2510         struct mlx5_priv *priv = dev->data->dev_private;
2511         const struct rte_flow_attr attr = {
2512                 .ingress = 1,
2513                 .priority = MLX5_FLOW_PRIO_RSVD,
2514         };
2515         struct rte_flow_item items[] = {
2516                 {
2517                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2518                         .spec = eth_spec,
2519                         .last = NULL,
2520                         .mask = eth_mask,
2521                 },
2522                 {
2523                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2524                                               RTE_FLOW_ITEM_TYPE_END,
2525                         .spec = vlan_spec,
2526                         .last = NULL,
2527                         .mask = vlan_mask,
2528                 },
2529                 {
2530                         .type = RTE_FLOW_ITEM_TYPE_END,
2531                 },
2532         };
2533         uint16_t queue[priv->reta_idx_n];
2534         struct rte_flow_action_rss action_rss = {
2535                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2536                 .level = 0,
2537                 .types = priv->rss_conf.rss_hf,
2538                 .key_len = priv->rss_conf.rss_key_len,
2539                 .queue_num = priv->reta_idx_n,
2540                 .key = priv->rss_conf.rss_key,
2541                 .queue = queue,
2542         };
2543         struct rte_flow_action actions[] = {
2544                 {
2545                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2546                         .conf = &action_rss,
2547                 },
2548                 {
2549                         .type = RTE_FLOW_ACTION_TYPE_END,
2550                 },
2551         };
2552         struct rte_flow *flow;
2553         struct rte_flow_error error;
2554         unsigned int i;
2555
2556         if (!priv->reta_idx_n || !priv->rxqs_n) {
2557                 return 0;
2558         }
2559         for (i = 0; i != priv->reta_idx_n; ++i)
2560                 queue[i] = (*priv->reta_idx)[i];
2561         flow = flow_list_create(dev, &priv->ctrl_flows,
2562                                 &attr, items, actions, &error);
2563         if (!flow)
2564                 return -rte_errno;
2565         return 0;
2566 }
2567
2568 /**
2569  * Enable a flow control configured from the control plane.
2570  *
2571  * @param dev
2572  *   Pointer to Ethernet device.
2573  * @param eth_spec
2574  *   An Ethernet flow spec to apply.
2575  * @param eth_mask
2576  *   An Ethernet flow mask to apply.
2577  *
2578  * @return
2579  *   0 on success, a negative errno value otherwise and rte_errno is set.
2580  */
2581 int
2582 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2583                struct rte_flow_item_eth *eth_spec,
2584                struct rte_flow_item_eth *eth_mask)
2585 {
2586         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2587 }
2588
2589 /**
2590  * Destroy a flow.
2591  *
2592  * @see rte_flow_destroy()
2593  * @see rte_flow_ops
2594  */
2595 int
2596 mlx5_flow_destroy(struct rte_eth_dev *dev,
2597                   struct rte_flow *flow,
2598                   struct rte_flow_error *error __rte_unused)
2599 {
2600         struct mlx5_priv *priv = dev->data->dev_private;
2601
2602         flow_list_destroy(dev, &priv->flows, flow);
2603         return 0;
2604 }
2605
2606 /**
2607  * Destroy all flows.
2608  *
2609  * @see rte_flow_flush()
2610  * @see rte_flow_ops
2611  */
2612 int
2613 mlx5_flow_flush(struct rte_eth_dev *dev,
2614                 struct rte_flow_error *error __rte_unused)
2615 {
2616         struct mlx5_priv *priv = dev->data->dev_private;
2617
2618         mlx5_flow_list_flush(dev, &priv->flows);
2619         return 0;
2620 }
2621
2622 /**
2623  * Isolated mode.
2624  *
2625  * @see rte_flow_isolate()
2626  * @see rte_flow_ops
2627  */
2628 int
2629 mlx5_flow_isolate(struct rte_eth_dev *dev,
2630                   int enable,
2631                   struct rte_flow_error *error)
2632 {
2633         struct mlx5_priv *priv = dev->data->dev_private;
2634
2635         if (dev->data->dev_started) {
2636                 rte_flow_error_set(error, EBUSY,
2637                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2638                                    NULL,
2639                                    "port must be stopped first");
2640                 return -rte_errno;
2641         }
2642         priv->isolated = !!enable;
2643         if (enable)
2644                 dev->dev_ops = &mlx5_dev_ops_isolate;
2645         else
2646                 dev->dev_ops = &mlx5_dev_ops;
2647         return 0;
2648 }
2649
2650 /**
2651  * Query a flow.
2652  *
2653  * @see rte_flow_query()
2654  * @see rte_flow_ops
2655  */
2656 static int
2657 flow_drv_query(struct rte_eth_dev *dev,
2658                struct rte_flow *flow,
2659                const struct rte_flow_action *actions,
2660                void *data,
2661                struct rte_flow_error *error)
2662 {
2663         const struct mlx5_flow_driver_ops *fops;
2664         enum mlx5_flow_drv_type ftype = flow->drv_type;
2665
2666         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2667         fops = flow_get_drv_ops(ftype);
2668
2669         return fops->query(dev, flow, actions, data, error);
2670 }
2671
2672 /**
2673  * Query a flow.
2674  *
2675  * @see rte_flow_query()
2676  * @see rte_flow_ops
2677  */
2678 int
2679 mlx5_flow_query(struct rte_eth_dev *dev,
2680                 struct rte_flow *flow,
2681                 const struct rte_flow_action *actions,
2682                 void *data,
2683                 struct rte_flow_error *error)
2684 {
2685         int ret;
2686
2687         ret = flow_drv_query(dev, flow, actions, data, error);
2688         if (ret < 0)
2689                 return ret;
2690         return 0;
2691 }
2692
2693 /**
2694  * Convert a flow director filter to a generic flow.
2695  *
2696  * @param dev
2697  *   Pointer to Ethernet device.
2698  * @param fdir_filter
2699  *   Flow director filter to add.
2700  * @param attributes
2701  *   Generic flow parameters structure.
2702  *
2703  * @return
2704  *   0 on success, a negative errno value otherwise and rte_errno is set.
2705  */
2706 static int
2707 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2708                          const struct rte_eth_fdir_filter *fdir_filter,
2709                          struct mlx5_fdir *attributes)
2710 {
2711         struct mlx5_priv *priv = dev->data->dev_private;
2712         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2713         const struct rte_eth_fdir_masks *mask =
2714                 &dev->data->dev_conf.fdir_conf.mask;
2715
2716         /* Validate queue number. */
2717         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2718                 DRV_LOG(ERR, "port %u invalid queue number %d",
2719                         dev->data->port_id, fdir_filter->action.rx_queue);
2720                 rte_errno = EINVAL;
2721                 return -rte_errno;
2722         }
2723         attributes->attr.ingress = 1;
2724         attributes->items[0] = (struct rte_flow_item) {
2725                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2726                 .spec = &attributes->l2,
2727                 .mask = &attributes->l2_mask,
2728         };
2729         switch (fdir_filter->action.behavior) {
2730         case RTE_ETH_FDIR_ACCEPT:
2731                 attributes->actions[0] = (struct rte_flow_action){
2732                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2733                         .conf = &attributes->queue,
2734                 };
2735                 break;
2736         case RTE_ETH_FDIR_REJECT:
2737                 attributes->actions[0] = (struct rte_flow_action){
2738                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2739                 };
2740                 break;
2741         default:
2742                 DRV_LOG(ERR, "port %u invalid behavior %d",
2743                         dev->data->port_id,
2744                         fdir_filter->action.behavior);
2745                 rte_errno = ENOTSUP;
2746                 return -rte_errno;
2747         }
2748         attributes->queue.index = fdir_filter->action.rx_queue;
2749         /* Handle L3. */
2750         switch (fdir_filter->input.flow_type) {
2751         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2752         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2753         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2754                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2755                         .src_addr = input->flow.ip4_flow.src_ip,
2756                         .dst_addr = input->flow.ip4_flow.dst_ip,
2757                         .time_to_live = input->flow.ip4_flow.ttl,
2758                         .type_of_service = input->flow.ip4_flow.tos,
2759                 };
2760                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2761                         .src_addr = mask->ipv4_mask.src_ip,
2762                         .dst_addr = mask->ipv4_mask.dst_ip,
2763                         .time_to_live = mask->ipv4_mask.ttl,
2764                         .type_of_service = mask->ipv4_mask.tos,
2765                         .next_proto_id = mask->ipv4_mask.proto,
2766                 };
2767                 attributes->items[1] = (struct rte_flow_item){
2768                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2769                         .spec = &attributes->l3,
2770                         .mask = &attributes->l3_mask,
2771                 };
2772                 break;
2773         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2774         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2775         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2776                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2777                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2778                         .proto = input->flow.ipv6_flow.proto,
2779                 };
2780
2781                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2782                        input->flow.ipv6_flow.src_ip,
2783                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2784                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2785                        input->flow.ipv6_flow.dst_ip,
2786                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2787                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2788                        mask->ipv6_mask.src_ip,
2789                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2790                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2791                        mask->ipv6_mask.dst_ip,
2792                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2793                 attributes->items[1] = (struct rte_flow_item){
2794                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2795                         .spec = &attributes->l3,
2796                         .mask = &attributes->l3_mask,
2797                 };
2798                 break;
2799         default:
2800                 DRV_LOG(ERR, "port %u invalid flow type%d",
2801                         dev->data->port_id, fdir_filter->input.flow_type);
2802                 rte_errno = ENOTSUP;
2803                 return -rte_errno;
2804         }
2805         /* Handle L4. */
2806         switch (fdir_filter->input.flow_type) {
2807         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2808                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2809                         .src_port = input->flow.udp4_flow.src_port,
2810                         .dst_port = input->flow.udp4_flow.dst_port,
2811                 };
2812                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2813                         .src_port = mask->src_port_mask,
2814                         .dst_port = mask->dst_port_mask,
2815                 };
2816                 attributes->items[2] = (struct rte_flow_item){
2817                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2818                         .spec = &attributes->l4,
2819                         .mask = &attributes->l4_mask,
2820                 };
2821                 break;
2822         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2823                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2824                         .src_port = input->flow.tcp4_flow.src_port,
2825                         .dst_port = input->flow.tcp4_flow.dst_port,
2826                 };
2827                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2828                         .src_port = mask->src_port_mask,
2829                         .dst_port = mask->dst_port_mask,
2830                 };
2831                 attributes->items[2] = (struct rte_flow_item){
2832                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2833                         .spec = &attributes->l4,
2834                         .mask = &attributes->l4_mask,
2835                 };
2836                 break;
2837         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2838                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2839                         .src_port = input->flow.udp6_flow.src_port,
2840                         .dst_port = input->flow.udp6_flow.dst_port,
2841                 };
2842                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2843                         .src_port = mask->src_port_mask,
2844                         .dst_port = mask->dst_port_mask,
2845                 };
2846                 attributes->items[2] = (struct rte_flow_item){
2847                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2848                         .spec = &attributes->l4,
2849                         .mask = &attributes->l4_mask,
2850                 };
2851                 break;
2852         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2853                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2854                         .src_port = input->flow.tcp6_flow.src_port,
2855                         .dst_port = input->flow.tcp6_flow.dst_port,
2856                 };
2857                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2858                         .src_port = mask->src_port_mask,
2859                         .dst_port = mask->dst_port_mask,
2860                 };
2861                 attributes->items[2] = (struct rte_flow_item){
2862                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2863                         .spec = &attributes->l4,
2864                         .mask = &attributes->l4_mask,
2865                 };
2866                 break;
2867         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2868         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2869                 break;
2870         default:
2871                 DRV_LOG(ERR, "port %u invalid flow type%d",
2872                         dev->data->port_id, fdir_filter->input.flow_type);
2873                 rte_errno = ENOTSUP;
2874                 return -rte_errno;
2875         }
2876         return 0;
2877 }
2878
2879 #define FLOW_FDIR_CMP(f1, f2, fld) \
2880         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2881
2882 /**
2883  * Compare two FDIR flows. If items and actions are identical, the two flows are
2884  * regarded as same.
2885  *
2886  * @param dev
2887  *   Pointer to Ethernet device.
2888  * @param f1
2889  *   FDIR flow to compare.
2890  * @param f2
2891  *   FDIR flow to compare.
2892  *
2893  * @return
2894  *   Zero on match, 1 otherwise.
2895  */
2896 static int
2897 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2898 {
2899         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2900             FLOW_FDIR_CMP(f1, f2, l2) ||
2901             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2902             FLOW_FDIR_CMP(f1, f2, l3) ||
2903             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2904             FLOW_FDIR_CMP(f1, f2, l4) ||
2905             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2906             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2907                 return 1;
2908         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2909             FLOW_FDIR_CMP(f1, f2, queue))
2910                 return 1;
2911         return 0;
2912 }
2913
2914 /**
2915  * Search device flow list to find out a matched FDIR flow.
2916  *
2917  * @param dev
2918  *   Pointer to Ethernet device.
2919  * @param fdir_flow
2920  *   FDIR flow to lookup.
2921  *
2922  * @return
2923  *   Pointer of flow if found, NULL otherwise.
2924  */
2925 static struct rte_flow *
2926 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2927 {
2928         struct mlx5_priv *priv = dev->data->dev_private;
2929         struct rte_flow *flow = NULL;
2930
2931         assert(fdir_flow);
2932         TAILQ_FOREACH(flow, &priv->flows, next) {
2933                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2934                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2935                                 dev->data->port_id, (void *)flow);
2936                         break;
2937                 }
2938         }
2939         return flow;
2940 }
2941
2942 /**
2943  * Add new flow director filter and store it in list.
2944  *
2945  * @param dev
2946  *   Pointer to Ethernet device.
2947  * @param fdir_filter
2948  *   Flow director filter to add.
2949  *
2950  * @return
2951  *   0 on success, a negative errno value otherwise and rte_errno is set.
2952  */
2953 static int
2954 flow_fdir_filter_add(struct rte_eth_dev *dev,
2955                      const struct rte_eth_fdir_filter *fdir_filter)
2956 {
2957         struct mlx5_priv *priv = dev->data->dev_private;
2958         struct mlx5_fdir *fdir_flow;
2959         struct rte_flow *flow;
2960         int ret;
2961
2962         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2963         if (!fdir_flow) {
2964                 rte_errno = ENOMEM;
2965                 return -rte_errno;
2966         }
2967         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2968         if (ret)
2969                 goto error;
2970         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2971         if (flow) {
2972                 rte_errno = EEXIST;
2973                 goto error;
2974         }
2975         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2976                                 fdir_flow->items, fdir_flow->actions, NULL);
2977         if (!flow)
2978                 goto error;
2979         assert(!flow->fdir);
2980         flow->fdir = fdir_flow;
2981         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2982                 dev->data->port_id, (void *)flow);
2983         return 0;
2984 error:
2985         rte_free(fdir_flow);
2986         return -rte_errno;
2987 }
2988
2989 /**
2990  * Delete specific filter.
2991  *
2992  * @param dev
2993  *   Pointer to Ethernet device.
2994  * @param fdir_filter
2995  *   Filter to be deleted.
2996  *
2997  * @return
2998  *   0 on success, a negative errno value otherwise and rte_errno is set.
2999  */
3000 static int
3001 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3002                         const struct rte_eth_fdir_filter *fdir_filter)
3003 {
3004         struct mlx5_priv *priv = dev->data->dev_private;
3005         struct rte_flow *flow;
3006         struct mlx5_fdir fdir_flow = {
3007                 .attr.group = 0,
3008         };
3009         int ret;
3010
3011         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3012         if (ret)
3013                 return -rte_errno;
3014         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3015         if (!flow) {
3016                 rte_errno = ENOENT;
3017                 return -rte_errno;
3018         }
3019         flow_list_destroy(dev, &priv->flows, flow);
3020         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3021                 dev->data->port_id, (void *)flow);
3022         return 0;
3023 }
3024
3025 /**
3026  * Update queue for specific filter.
3027  *
3028  * @param dev
3029  *   Pointer to Ethernet device.
3030  * @param fdir_filter
3031  *   Filter to be updated.
3032  *
3033  * @return
3034  *   0 on success, a negative errno value otherwise and rte_errno is set.
3035  */
3036 static int
3037 flow_fdir_filter_update(struct rte_eth_dev *dev,
3038                         const struct rte_eth_fdir_filter *fdir_filter)
3039 {
3040         int ret;
3041
3042         ret = flow_fdir_filter_delete(dev, fdir_filter);
3043         if (ret)
3044                 return ret;
3045         return flow_fdir_filter_add(dev, fdir_filter);
3046 }
3047
3048 /**
3049  * Flush all filters.
3050  *
3051  * @param dev
3052  *   Pointer to Ethernet device.
3053  */
3054 static void
3055 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3056 {
3057         struct mlx5_priv *priv = dev->data->dev_private;
3058
3059         mlx5_flow_list_flush(dev, &priv->flows);
3060 }
3061
3062 /**
3063  * Get flow director information.
3064  *
3065  * @param dev
3066  *   Pointer to Ethernet device.
3067  * @param[out] fdir_info
3068  *   Resulting flow director information.
3069  */
3070 static void
3071 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3072 {
3073         struct rte_eth_fdir_masks *mask =
3074                 &dev->data->dev_conf.fdir_conf.mask;
3075
3076         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3077         fdir_info->guarant_spc = 0;
3078         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3079         fdir_info->max_flexpayload = 0;
3080         fdir_info->flow_types_mask[0] = 0;
3081         fdir_info->flex_payload_unit = 0;
3082         fdir_info->max_flex_payload_segment_num = 0;
3083         fdir_info->flex_payload_limit = 0;
3084         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3085 }
3086
3087 /**
3088  * Deal with flow director operations.
3089  *
3090  * @param dev
3091  *   Pointer to Ethernet device.
3092  * @param filter_op
3093  *   Operation to perform.
3094  * @param arg
3095  *   Pointer to operation-specific structure.
3096  *
3097  * @return
3098  *   0 on success, a negative errno value otherwise and rte_errno is set.
3099  */
3100 static int
3101 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3102                     void *arg)
3103 {
3104         enum rte_fdir_mode fdir_mode =
3105                 dev->data->dev_conf.fdir_conf.mode;
3106
3107         if (filter_op == RTE_ETH_FILTER_NOP)
3108                 return 0;
3109         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3110             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3111                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3112                         dev->data->port_id, fdir_mode);
3113                 rte_errno = EINVAL;
3114                 return -rte_errno;
3115         }
3116         switch (filter_op) {
3117         case RTE_ETH_FILTER_ADD:
3118                 return flow_fdir_filter_add(dev, arg);
3119         case RTE_ETH_FILTER_UPDATE:
3120                 return flow_fdir_filter_update(dev, arg);
3121         case RTE_ETH_FILTER_DELETE:
3122                 return flow_fdir_filter_delete(dev, arg);
3123         case RTE_ETH_FILTER_FLUSH:
3124                 flow_fdir_filter_flush(dev);
3125                 break;
3126         case RTE_ETH_FILTER_INFO:
3127                 flow_fdir_info_get(dev, arg);
3128                 break;
3129         default:
3130                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3131                         dev->data->port_id, filter_op);
3132                 rte_errno = EINVAL;
3133                 return -rte_errno;
3134         }
3135         return 0;
3136 }
3137
3138 /**
3139  * Manage filter operations.
3140  *
3141  * @param dev
3142  *   Pointer to Ethernet device structure.
3143  * @param filter_type
3144  *   Filter type.
3145  * @param filter_op
3146  *   Operation to perform.
3147  * @param arg
3148  *   Pointer to operation-specific structure.
3149  *
3150  * @return
3151  *   0 on success, a negative errno value otherwise and rte_errno is set.
3152  */
3153 int
3154 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3155                      enum rte_filter_type filter_type,
3156                      enum rte_filter_op filter_op,
3157                      void *arg)
3158 {
3159         switch (filter_type) {
3160         case RTE_ETH_FILTER_GENERIC:
3161                 if (filter_op != RTE_ETH_FILTER_GET) {
3162                         rte_errno = EINVAL;
3163                         return -rte_errno;
3164                 }
3165                 *(const void **)arg = &mlx5_flow_ops;
3166                 return 0;
3167         case RTE_ETH_FILTER_FDIR:
3168                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3169         default:
3170                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3171                         dev->data->port_id, filter_type);
3172                 rte_errno = ENOTSUP;
3173                 return -rte_errno;
3174         }
3175         return 0;
3176 }
3177
3178 #define MLX5_POOL_QUERY_FREQ_US 1000000
3179
3180 /**
3181  * Set the periodic procedure for triggering asynchronous batch queries for all
3182  * the counter pools.
3183  *
3184  * @param[in] sh
3185  *   Pointer to mlx5_ibv_shared object.
3186  */
3187 void
3188 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3189 {
3190         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3191         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3192         uint32_t us;
3193
3194         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3195         pools_n += rte_atomic16_read(&cont->n_valid);
3196         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3197         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3198         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3199                 sh->cmng.query_thread_on = 0;
3200                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3201         } else {
3202                 sh->cmng.query_thread_on = 1;
3203         }
3204 }
3205
3206 /**
3207  * The periodic procedure for triggering asynchronous batch queries for all the
3208  * counter pools. This function is probably called by the host thread.
3209  *
3210  * @param[in] arg
3211  *   The parameter for the alarm process.
3212  */
3213 void
3214 mlx5_flow_query_alarm(void *arg)
3215 {
3216         struct mlx5_ibv_shared *sh = arg;
3217         struct mlx5_devx_obj *dcs;
3218         uint16_t offset;
3219         int ret;
3220         uint8_t batch = sh->cmng.batch;
3221         uint16_t pool_index = sh->cmng.pool_index;
3222         struct mlx5_pools_container *cont;
3223         struct mlx5_pools_container *mcont;
3224         struct mlx5_flow_counter_pool *pool;
3225
3226         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3227                 goto set_alarm;
3228 next_container:
3229         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3230         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3231         /* Check if resize was done and need to flip a container. */
3232         if (cont != mcont) {
3233                 if (cont->pools) {
3234                         /* Clean the old container. */
3235                         rte_free(cont->pools);
3236                         memset(cont, 0, sizeof(*cont));
3237                 }
3238                 rte_cio_wmb();
3239                  /* Flip the host container. */
3240                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3241                 cont = mcont;
3242         }
3243         if (!cont->pools) {
3244                 /* 2 empty containers case is unexpected. */
3245                 if (unlikely(batch != sh->cmng.batch))
3246                         goto set_alarm;
3247                 batch ^= 0x1;
3248                 pool_index = 0;
3249                 goto next_container;
3250         }
3251         pool = cont->pools[pool_index];
3252         if (pool->raw_hw)
3253                 /* There is a pool query in progress. */
3254                 goto set_alarm;
3255         pool->raw_hw =
3256                 LIST_FIRST(&sh->cmng.free_stat_raws);
3257         if (!pool->raw_hw)
3258                 /* No free counter statistics raw memory. */
3259                 goto set_alarm;
3260         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3261                                                               (&pool->a64_dcs);
3262         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3263         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3264                                                offset, NULL, NULL,
3265                                                pool->raw_hw->mem_mng->dm->id,
3266                                                (void *)(uintptr_t)
3267                                                (pool->raw_hw->data + offset),
3268                                                sh->devx_comp,
3269                                                (uint64_t)(uintptr_t)pool);
3270         if (ret) {
3271                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3272                         " %d\n", pool->min_dcs->id);
3273                 pool->raw_hw = NULL;
3274                 goto set_alarm;
3275         }
3276         pool->raw_hw->min_dcs_id = dcs->id;
3277         LIST_REMOVE(pool->raw_hw, next);
3278         sh->cmng.pending_queries++;
3279         pool_index++;
3280         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3281                 batch ^= 0x1;
3282                 pool_index = 0;
3283         }
3284 set_alarm:
3285         sh->cmng.batch = batch;
3286         sh->cmng.pool_index = pool_index;
3287         mlx5_set_query_alarm(sh);
3288 }
3289
3290 /**
3291  * Handler for the HW respond about ready values from an asynchronous batch
3292  * query. This function is probably called by the host thread.
3293  *
3294  * @param[in] sh
3295  *   The pointer to the shared IB device context.
3296  * @param[in] async_id
3297  *   The Devx async ID.
3298  * @param[in] status
3299  *   The status of the completion.
3300  */
3301 void
3302 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3303                                   uint64_t async_id, int status)
3304 {
3305         struct mlx5_flow_counter_pool *pool =
3306                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3307         struct mlx5_counter_stats_raw *raw_to_free;
3308
3309         if (unlikely(status)) {
3310                 raw_to_free = pool->raw_hw;
3311         } else {
3312                 raw_to_free = pool->raw;
3313                 rte_spinlock_lock(&pool->sl);
3314                 pool->raw = pool->raw_hw;
3315                 rte_spinlock_unlock(&pool->sl);
3316                 rte_atomic64_add(&pool->query_gen, 1);
3317                 /* Be sure the new raw counters data is updated in memory. */
3318                 rte_cio_wmb();
3319         }
3320         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3321         pool->raw_hw = NULL;
3322         sh->cmng.pending_queries--;
3323 }