f40fee528927ada4ff4c57e59fbd600ef3940979
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE),
131                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
132                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133                         ETH_RSS_NONFRAG_IPV4_OTHER,
134         },
135         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137                                                  MLX5_EXPANSION_VXLAN_GPE),
138                 .type = RTE_FLOW_ITEM_TYPE_UDP,
139                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140         },
141         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142                 .type = RTE_FLOW_ITEM_TYPE_TCP,
143                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144         },
145         [MLX5_EXPANSION_OUTER_IPV6] = {
146                 .next = RTE_FLOW_EXPAND_RSS_NEXT
147                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
148                          MLX5_EXPANSION_OUTER_IPV6_TCP),
149                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
150                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151                         ETH_RSS_NONFRAG_IPV6_OTHER,
152         },
153         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155                                                  MLX5_EXPANSION_VXLAN_GPE),
156                 .type = RTE_FLOW_ITEM_TYPE_UDP,
157                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158         },
159         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160                 .type = RTE_FLOW_ITEM_TYPE_TCP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162         },
163         [MLX5_EXPANSION_VXLAN] = {
164                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
166         },
167         [MLX5_EXPANSION_VXLAN_GPE] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169                                                  MLX5_EXPANSION_IPV4,
170                                                  MLX5_EXPANSION_IPV6),
171                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172         },
173         [MLX5_EXPANSION_GRE] = {
174                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175                 .type = RTE_FLOW_ITEM_TYPE_GRE,
176         },
177         [MLX5_EXPANSION_MPLS] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179                                                  MLX5_EXPANSION_IPV6),
180                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
181         },
182         [MLX5_EXPANSION_ETH] = {
183                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184                                                  MLX5_EXPANSION_IPV6),
185                 .type = RTE_FLOW_ITEM_TYPE_ETH,
186         },
187         [MLX5_EXPANSION_ETH_VLAN] = {
188                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193                                                  MLX5_EXPANSION_IPV6),
194                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
195         },
196         [MLX5_EXPANSION_IPV4] = {
197                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198                                                  MLX5_EXPANSION_IPV4_TCP),
199                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
200                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201                         ETH_RSS_NONFRAG_IPV4_OTHER,
202         },
203         [MLX5_EXPANSION_IPV4_UDP] = {
204                 .type = RTE_FLOW_ITEM_TYPE_UDP,
205                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206         },
207         [MLX5_EXPANSION_IPV4_TCP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_TCP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210         },
211         [MLX5_EXPANSION_IPV6] = {
212                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213                                                  MLX5_EXPANSION_IPV6_TCP),
214                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
215                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216                         ETH_RSS_NONFRAG_IPV6_OTHER,
217         },
218         [MLX5_EXPANSION_IPV6_UDP] = {
219                 .type = RTE_FLOW_ITEM_TYPE_UDP,
220                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221         },
222         [MLX5_EXPANSION_IPV6_TCP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_TCP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225         },
226 };
227
228 static const struct rte_flow_ops mlx5_flow_ops = {
229         .validate = mlx5_flow_validate,
230         .create = mlx5_flow_create,
231         .destroy = mlx5_flow_destroy,
232         .flush = mlx5_flow_flush,
233         .isolate = mlx5_flow_isolate,
234         .query = mlx5_flow_query,
235 };
236
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239         struct rte_flow_attr attr;
240         struct rte_flow_item items[4];
241         struct rte_flow_item_eth l2;
242         struct rte_flow_item_eth l2_mask;
243         union {
244                 struct rte_flow_item_ipv4 ipv4;
245                 struct rte_flow_item_ipv6 ipv6;
246         } l3;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3_mask;
251         union {
252                 struct rte_flow_item_udp udp;
253                 struct rte_flow_item_tcp tcp;
254         } l4;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4_mask;
259         struct rte_flow_action actions[2];
260         struct rte_flow_action_queue queue;
261 };
262
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271         { 9, 10, 11 }, { 12, 13, 14 },
272 };
273
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281         {
282                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
283                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284         },
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_GRE,
291                 .ptype = RTE_PTYPE_TUNNEL_GRE,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
303                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
304         },
305 };
306
307 /**
308  * Discover the maximum number of priority available.
309  *
310  * @param[in] dev
311  *   Pointer to the Ethernet device structure.
312  *
313  * @return
314  *   number of supported flow priority on success, a negative errno
315  *   value otherwise and rte_errno is set.
316  */
317 int
318 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
319 {
320         struct mlx5_priv *priv = dev->data->dev_private;
321         struct {
322                 struct ibv_flow_attr attr;
323                 struct ibv_flow_spec_eth eth;
324                 struct ibv_flow_spec_action_drop drop;
325         } flow_attr = {
326                 .attr = {
327                         .num_of_specs = 2,
328                         .port = (uint8_t)priv->ibv_port,
329                 },
330                 .eth = {
331                         .type = IBV_FLOW_SPEC_ETH,
332                         .size = sizeof(struct ibv_flow_spec_eth),
333                 },
334                 .drop = {
335                         .size = sizeof(struct ibv_flow_spec_action_drop),
336                         .type = IBV_FLOW_SPEC_ACTION_DROP,
337                 },
338         };
339         struct ibv_flow *flow;
340         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
341         uint16_t vprio[] = { 8, 16 };
342         int i;
343         int priority = 0;
344
345         if (!drop) {
346                 rte_errno = ENOTSUP;
347                 return -rte_errno;
348         }
349         for (i = 0; i != RTE_DIM(vprio); i++) {
350                 flow_attr.attr.priority = vprio[i] - 1;
351                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
352                 if (!flow)
353                         break;
354                 claim_zero(mlx5_glue->destroy_flow(flow));
355                 priority = vprio[i];
356         }
357         mlx5_hrxq_drop_release(dev);
358         switch (priority) {
359         case 8:
360                 priority = RTE_DIM(priority_map_3);
361                 break;
362         case 16:
363                 priority = RTE_DIM(priority_map_5);
364                 break;
365         default:
366                 rte_errno = ENOTSUP;
367                 DRV_LOG(ERR,
368                         "port %u verbs maximum priority: %d expected 8/16",
369                         dev->data->port_id, priority);
370                 return -rte_errno;
371         }
372         DRV_LOG(INFO, "port %u flow maximum priority: %d",
373                 dev->data->port_id, priority);
374         return priority;
375 }
376
377 /**
378  * Adjust flow priority based on the highest layer and the request priority.
379  *
380  * @param[in] dev
381  *   Pointer to the Ethernet device structure.
382  * @param[in] priority
383  *   The rule base priority.
384  * @param[in] subpriority
385  *   The priority based on the items.
386  *
387  * @return
388  *   The new priority.
389  */
390 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
391                                    uint32_t subpriority)
392 {
393         uint32_t res = 0;
394         struct mlx5_priv *priv = dev->data->dev_private;
395
396         switch (priv->config.flow_prio) {
397         case RTE_DIM(priority_map_3):
398                 res = priority_map_3[priority][subpriority];
399                 break;
400         case RTE_DIM(priority_map_5):
401                 res = priority_map_5[priority][subpriority];
402                 break;
403         }
404         return  res;
405 }
406
407 /**
408  * Verify the @p item specifications (spec, last, mask) are compatible with the
409  * NIC capabilities.
410  *
411  * @param[in] item
412  *   Item specification.
413  * @param[in] mask
414  *   @p item->mask or flow default bit-masks.
415  * @param[in] nic_mask
416  *   Bit-masks covering supported fields by the NIC to compare with user mask.
417  * @param[in] size
418  *   Bit-masks size in bytes.
419  * @param[out] error
420  *   Pointer to error structure.
421  *
422  * @return
423  *   0 on success, a negative errno value otherwise and rte_errno is set.
424  */
425 int
426 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
427                           const uint8_t *mask,
428                           const uint8_t *nic_mask,
429                           unsigned int size,
430                           struct rte_flow_error *error)
431 {
432         unsigned int i;
433
434         assert(nic_mask);
435         for (i = 0; i < size; ++i)
436                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
437                         return rte_flow_error_set(error, ENOTSUP,
438                                                   RTE_FLOW_ERROR_TYPE_ITEM,
439                                                   item,
440                                                   "mask enables non supported"
441                                                   " bits");
442         if (!item->spec && (item->mask || item->last))
443                 return rte_flow_error_set(error, EINVAL,
444                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
445                                           "mask/last without a spec is not"
446                                           " supported");
447         if (item->spec && item->last) {
448                 uint8_t spec[size];
449                 uint8_t last[size];
450                 unsigned int i;
451                 int ret;
452
453                 for (i = 0; i < size; ++i) {
454                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
455                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
456                 }
457                 ret = memcmp(spec, last, size);
458                 if (ret != 0)
459                         return rte_flow_error_set(error, EINVAL,
460                                                   RTE_FLOW_ERROR_TYPE_ITEM,
461                                                   item,
462                                                   "range is not valid");
463         }
464         return 0;
465 }
466
467 /**
468  * Adjust the hash fields according to the @p flow information.
469  *
470  * @param[in] dev_flow.
471  *   Pointer to the mlx5_flow.
472  * @param[in] tunnel
473  *   1 when the hash field is for a tunnel item.
474  * @param[in] layer_types
475  *   ETH_RSS_* types.
476  * @param[in] hash_fields
477  *   Item hash fields.
478  *
479  * @return
480  *   The hash fields that should be used.
481  */
482 uint64_t
483 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
484                             int tunnel __rte_unused, uint64_t layer_types,
485                             uint64_t hash_fields)
486 {
487         struct rte_flow *flow = dev_flow->flow;
488 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
489         int rss_request_inner = flow->rss.level >= 2;
490
491         /* Check RSS hash level for tunnel. */
492         if (tunnel && rss_request_inner)
493                 hash_fields |= IBV_RX_HASH_INNER;
494         else if (tunnel || rss_request_inner)
495                 return 0;
496 #endif
497         /* Check if requested layer matches RSS hash fields. */
498         if (!(flow->rss.types & layer_types))
499                 return 0;
500         return hash_fields;
501 }
502
503 /**
504  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
505  * if several tunnel rules are used on this queue, the tunnel ptype will be
506  * cleared.
507  *
508  * @param rxq_ctrl
509  *   Rx queue to update.
510  */
511 static void
512 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
513 {
514         unsigned int i;
515         uint32_t tunnel_ptype = 0;
516
517         /* Look up for the ptype to use. */
518         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
519                 if (!rxq_ctrl->flow_tunnels_n[i])
520                         continue;
521                 if (!tunnel_ptype) {
522                         tunnel_ptype = tunnels_info[i].ptype;
523                 } else {
524                         tunnel_ptype = 0;
525                         break;
526                 }
527         }
528         rxq_ctrl->rxq.tunnel = tunnel_ptype;
529 }
530
531 /**
532  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
533  * flow.
534  *
535  * @param[in] dev
536  *   Pointer to the Ethernet device structure.
537  * @param[in] dev_flow
538  *   Pointer to device flow structure.
539  */
540 static void
541 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
542 {
543         struct mlx5_priv *priv = dev->data->dev_private;
544         struct rte_flow *flow = dev_flow->flow;
545         const int mark = !!(flow->actions &
546                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
547         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
548         unsigned int i;
549
550         for (i = 0; i != flow->rss.queue_num; ++i) {
551                 int idx = (*flow->queue)[i];
552                 struct mlx5_rxq_ctrl *rxq_ctrl =
553                         container_of((*priv->rxqs)[idx],
554                                      struct mlx5_rxq_ctrl, rxq);
555
556                 if (mark) {
557                         rxq_ctrl->rxq.mark = 1;
558                         rxq_ctrl->flow_mark_n++;
559                 }
560                 if (tunnel) {
561                         unsigned int j;
562
563                         /* Increase the counter matching the flow. */
564                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
565                                 if ((tunnels_info[j].tunnel &
566                                      dev_flow->layers) ==
567                                     tunnels_info[j].tunnel) {
568                                         rxq_ctrl->flow_tunnels_n[j]++;
569                                         break;
570                                 }
571                         }
572                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
573                 }
574         }
575 }
576
577 /**
578  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
579  *
580  * @param[in] dev
581  *   Pointer to the Ethernet device structure.
582  * @param[in] flow
583  *   Pointer to flow structure.
584  */
585 static void
586 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
587 {
588         struct mlx5_flow *dev_flow;
589
590         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
591                 flow_drv_rxq_flags_set(dev, dev_flow);
592 }
593
594 /**
595  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
596  * device flow if no other flow uses it with the same kind of request.
597  *
598  * @param dev
599  *   Pointer to Ethernet device.
600  * @param[in] dev_flow
601  *   Pointer to the device flow.
602  */
603 static void
604 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
605 {
606         struct mlx5_priv *priv = dev->data->dev_private;
607         struct rte_flow *flow = dev_flow->flow;
608         const int mark = !!(flow->actions &
609                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
610         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
611         unsigned int i;
612
613         assert(dev->data->dev_started);
614         for (i = 0; i != flow->rss.queue_num; ++i) {
615                 int idx = (*flow->queue)[i];
616                 struct mlx5_rxq_ctrl *rxq_ctrl =
617                         container_of((*priv->rxqs)[idx],
618                                      struct mlx5_rxq_ctrl, rxq);
619
620                 if (mark) {
621                         rxq_ctrl->flow_mark_n--;
622                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
623                 }
624                 if (tunnel) {
625                         unsigned int j;
626
627                         /* Decrease the counter matching the flow. */
628                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629                                 if ((tunnels_info[j].tunnel &
630                                      dev_flow->layers) ==
631                                     tunnels_info[j].tunnel) {
632                                         rxq_ctrl->flow_tunnels_n[j]--;
633                                         break;
634                                 }
635                         }
636                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
637                 }
638         }
639 }
640
641 /**
642  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
643  * @p flow if no other flow uses it with the same kind of request.
644  *
645  * @param dev
646  *   Pointer to Ethernet device.
647  * @param[in] flow
648  *   Pointer to the flow.
649  */
650 static void
651 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
652 {
653         struct mlx5_flow *dev_flow;
654
655         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
656                 flow_drv_rxq_flags_trim(dev, dev_flow);
657 }
658
659 /**
660  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  */
665 static void
666 flow_rxq_flags_clear(struct rte_eth_dev *dev)
667 {
668         struct mlx5_priv *priv = dev->data->dev_private;
669         unsigned int i;
670
671         for (i = 0; i != priv->rxqs_n; ++i) {
672                 struct mlx5_rxq_ctrl *rxq_ctrl;
673                 unsigned int j;
674
675                 if (!(*priv->rxqs)[i])
676                         continue;
677                 rxq_ctrl = container_of((*priv->rxqs)[i],
678                                         struct mlx5_rxq_ctrl, rxq);
679                 rxq_ctrl->flow_mark_n = 0;
680                 rxq_ctrl->rxq.mark = 0;
681                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
682                         rxq_ctrl->flow_tunnels_n[j] = 0;
683                 rxq_ctrl->rxq.tunnel = 0;
684         }
685 }
686
687 /*
688  * Validate the flag action.
689  *
690  * @param[in] action_flags
691  *   Bit-fields that holds the actions detected until now.
692  * @param[in] attr
693  *   Attributes of flow that includes this action.
694  * @param[out] error
695  *   Pointer to error structure.
696  *
697  * @return
698  *   0 on success, a negative errno value otherwise and rte_errno is set.
699  */
700 int
701 mlx5_flow_validate_action_flag(uint64_t action_flags,
702                                const struct rte_flow_attr *attr,
703                                struct rte_flow_error *error)
704 {
705
706         if (action_flags & MLX5_FLOW_ACTION_DROP)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't drop and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_MARK)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't mark and flag in same flow");
714         if (action_flags & MLX5_FLOW_ACTION_FLAG)
715                 return rte_flow_error_set(error, EINVAL,
716                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
717                                           "can't have 2 flag"
718                                           " actions in same flow");
719         if (attr->egress)
720                 return rte_flow_error_set(error, ENOTSUP,
721                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
722                                           "flag action not supported for "
723                                           "egress");
724         return 0;
725 }
726
727 /*
728  * Validate the mark action.
729  *
730  * @param[in] action
731  *   Pointer to the queue action.
732  * @param[in] action_flags
733  *   Bit-fields that holds the actions detected until now.
734  * @param[in] attr
735  *   Attributes of flow that includes this action.
736  * @param[out] error
737  *   Pointer to error structure.
738  *
739  * @return
740  *   0 on success, a negative errno value otherwise and rte_errno is set.
741  */
742 int
743 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
744                                uint64_t action_flags,
745                                const struct rte_flow_attr *attr,
746                                struct rte_flow_error *error)
747 {
748         const struct rte_flow_action_mark *mark = action->conf;
749
750         if (!mark)
751                 return rte_flow_error_set(error, EINVAL,
752                                           RTE_FLOW_ERROR_TYPE_ACTION,
753                                           action,
754                                           "configuration cannot be null");
755         if (mark->id >= MLX5_FLOW_MARK_MAX)
756                 return rte_flow_error_set(error, EINVAL,
757                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
758                                           &mark->id,
759                                           "mark id must in 0 <= id < "
760                                           RTE_STR(MLX5_FLOW_MARK_MAX));
761         if (action_flags & MLX5_FLOW_ACTION_DROP)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't drop and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_FLAG)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't flag and mark in same flow");
769         if (action_flags & MLX5_FLOW_ACTION_MARK)
770                 return rte_flow_error_set(error, EINVAL,
771                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
772                                           "can't have 2 mark actions in same"
773                                           " flow");
774         if (attr->egress)
775                 return rte_flow_error_set(error, ENOTSUP,
776                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
777                                           "mark action not supported for "
778                                           "egress");
779         return 0;
780 }
781
782 /*
783  * Validate the drop action.
784  *
785  * @param[in] action_flags
786  *   Bit-fields that holds the actions detected until now.
787  * @param[in] attr
788  *   Attributes of flow that includes this action.
789  * @param[out] error
790  *   Pointer to error structure.
791  *
792  * @return
793  *   0 on success, a negative errno value otherwise and rte_errno is set.
794  */
795 int
796 mlx5_flow_validate_action_drop(uint64_t action_flags,
797                                const struct rte_flow_attr *attr,
798                                struct rte_flow_error *error)
799 {
800         if (action_flags & MLX5_FLOW_ACTION_FLAG)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and flag in same flow");
804         if (action_flags & MLX5_FLOW_ACTION_MARK)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't drop and mark in same flow");
808         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
809                 return rte_flow_error_set(error, EINVAL,
810                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
811                                           "can't have 2 fate actions in"
812                                           " same flow");
813         if (attr->egress)
814                 return rte_flow_error_set(error, ENOTSUP,
815                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
816                                           "drop action not supported for "
817                                           "egress");
818         return 0;
819 }
820
821 /*
822  * Validate the queue action.
823  *
824  * @param[in] action
825  *   Pointer to the queue action.
826  * @param[in] action_flags
827  *   Bit-fields that holds the actions detected until now.
828  * @param[in] dev
829  *   Pointer to the Ethernet device structure.
830  * @param[in] attr
831  *   Attributes of flow that includes this action.
832  * @param[out] error
833  *   Pointer to error structure.
834  *
835  * @return
836  *   0 on success, a negative errno value otherwise and rte_errno is set.
837  */
838 int
839 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
840                                 uint64_t action_flags,
841                                 struct rte_eth_dev *dev,
842                                 const struct rte_flow_attr *attr,
843                                 struct rte_flow_error *error)
844 {
845         struct mlx5_priv *priv = dev->data->dev_private;
846         const struct rte_flow_action_queue *queue = action->conf;
847
848         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
849                 return rte_flow_error_set(error, EINVAL,
850                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851                                           "can't have 2 fate actions in"
852                                           " same flow");
853         if (!priv->rxqs_n)
854                 return rte_flow_error_set(error, EINVAL,
855                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856                                           NULL, "No Rx queues configured");
857         if (queue->index >= priv->rxqs_n)
858                 return rte_flow_error_set(error, EINVAL,
859                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
860                                           &queue->index,
861                                           "queue index out of range");
862         if (!(*priv->rxqs)[queue->index])
863                 return rte_flow_error_set(error, EINVAL,
864                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
865                                           &queue->index,
866                                           "queue is not configured");
867         if (attr->egress)
868                 return rte_flow_error_set(error, ENOTSUP,
869                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
870                                           "queue action not supported for "
871                                           "egress");
872         return 0;
873 }
874
875 /*
876  * Validate the rss action.
877  *
878  * @param[in] action
879  *   Pointer to the queue action.
880  * @param[in] action_flags
881  *   Bit-fields that holds the actions detected until now.
882  * @param[in] dev
883  *   Pointer to the Ethernet device structure.
884  * @param[in] attr
885  *   Attributes of flow that includes this action.
886  * @param[in] item_flags
887  *   Items that were detected.
888  * @param[out] error
889  *   Pointer to error structure.
890  *
891  * @return
892  *   0 on success, a negative errno value otherwise and rte_errno is set.
893  */
894 int
895 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
896                               uint64_t action_flags,
897                               struct rte_eth_dev *dev,
898                               const struct rte_flow_attr *attr,
899                               uint64_t item_flags,
900                               struct rte_flow_error *error)
901 {
902         struct mlx5_priv *priv = dev->data->dev_private;
903         const struct rte_flow_action_rss *rss = action->conf;
904         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
905         unsigned int i;
906
907         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
908                 return rte_flow_error_set(error, EINVAL,
909                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
910                                           "can't have 2 fate actions"
911                                           " in same flow");
912         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
913             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
914                 return rte_flow_error_set(error, ENOTSUP,
915                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
916                                           &rss->func,
917                                           "RSS hash function not supported");
918 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
919         if (rss->level > 2)
920 #else
921         if (rss->level > 1)
922 #endif
923                 return rte_flow_error_set(error, ENOTSUP,
924                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
925                                           &rss->level,
926                                           "tunnel RSS is not supported");
927         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
928         if (rss->key_len == 0 && rss->key != NULL)
929                 return rte_flow_error_set(error, ENOTSUP,
930                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
931                                           &rss->key_len,
932                                           "RSS hash key length 0");
933         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
934                 return rte_flow_error_set(error, ENOTSUP,
935                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
936                                           &rss->key_len,
937                                           "RSS hash key too small");
938         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
939                 return rte_flow_error_set(error, ENOTSUP,
940                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
941                                           &rss->key_len,
942                                           "RSS hash key too large");
943         if (rss->queue_num > priv->config.ind_table_max_size)
944                 return rte_flow_error_set(error, ENOTSUP,
945                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946                                           &rss->queue_num,
947                                           "number of queues too large");
948         if (rss->types & MLX5_RSS_HF_MASK)
949                 return rte_flow_error_set(error, ENOTSUP,
950                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
951                                           &rss->types,
952                                           "some RSS protocols are not"
953                                           " supported");
954         if (!priv->rxqs_n)
955                 return rte_flow_error_set(error, EINVAL,
956                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957                                           NULL, "No Rx queues configured");
958         if (!rss->queue_num)
959                 return rte_flow_error_set(error, EINVAL,
960                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961                                           NULL, "No queues configured");
962         for (i = 0; i != rss->queue_num; ++i) {
963                 if (!(*priv->rxqs)[rss->queue[i]])
964                         return rte_flow_error_set
965                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
966                                  &rss->queue[i], "queue is not configured");
967         }
968         if (attr->egress)
969                 return rte_flow_error_set(error, ENOTSUP,
970                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
971                                           "rss action not supported for "
972                                           "egress");
973         if (rss->level > 1 &&  !tunnel)
974                 return rte_flow_error_set(error, EINVAL,
975                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
976                                           "inner RSS is not supported for "
977                                           "non-tunnel flows");
978         return 0;
979 }
980
981 /*
982  * Validate the count action.
983  *
984  * @param[in] dev
985  *   Pointer to the Ethernet device structure.
986  * @param[in] attr
987  *   Attributes of flow that includes this action.
988  * @param[out] error
989  *   Pointer to error structure.
990  *
991  * @return
992  *   0 on success, a negative errno value otherwise and rte_errno is set.
993  */
994 int
995 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
996                                 const struct rte_flow_attr *attr,
997                                 struct rte_flow_error *error)
998 {
999         if (attr->egress)
1000                 return rte_flow_error_set(error, ENOTSUP,
1001                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1002                                           "count action not supported for "
1003                                           "egress");
1004         return 0;
1005 }
1006
1007 /**
1008  * Verify the @p attributes will be correctly understood by the NIC and store
1009  * them in the @p flow if everything is correct.
1010  *
1011  * @param[in] dev
1012  *   Pointer to the Ethernet device structure.
1013  * @param[in] attributes
1014  *   Pointer to flow attributes
1015  * @param[out] error
1016  *   Pointer to error structure.
1017  *
1018  * @return
1019  *   0 on success, a negative errno value otherwise and rte_errno is set.
1020  */
1021 int
1022 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1023                               const struct rte_flow_attr *attributes,
1024                               struct rte_flow_error *error)
1025 {
1026         struct mlx5_priv *priv = dev->data->dev_private;
1027         uint32_t priority_max = priv->config.flow_prio - 1;
1028
1029         if (attributes->group)
1030                 return rte_flow_error_set(error, ENOTSUP,
1031                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1032                                           NULL, "groups is not supported");
1033         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1034             attributes->priority >= priority_max)
1035                 return rte_flow_error_set(error, ENOTSUP,
1036                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1037                                           NULL, "priority out of range");
1038         if (attributes->egress)
1039                 return rte_flow_error_set(error, ENOTSUP,
1040                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1041                                           "egress is not supported");
1042         if (attributes->transfer && !priv->config.dv_esw_en)
1043                 return rte_flow_error_set(error, ENOTSUP,
1044                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1045                                           NULL, "transfer is not supported");
1046         if (!attributes->ingress)
1047                 return rte_flow_error_set(error, EINVAL,
1048                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1049                                           NULL,
1050                                           "ingress attribute is mandatory");
1051         return 0;
1052 }
1053
1054 /**
1055  * Validate ICMP6 item.
1056  *
1057  * @param[in] item
1058  *   Item specification.
1059  * @param[in] item_flags
1060  *   Bit-fields that holds the items detected until now.
1061  * @param[out] error
1062  *   Pointer to error structure.
1063  *
1064  * @return
1065  *   0 on success, a negative errno value otherwise and rte_errno is set.
1066  */
1067 int
1068 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1069                                uint64_t item_flags,
1070                                uint8_t target_protocol,
1071                                struct rte_flow_error *error)
1072 {
1073         const struct rte_flow_item_icmp6 *mask = item->mask;
1074         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1075         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1076                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1077         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1078                                       MLX5_FLOW_LAYER_OUTER_L4;
1079         int ret;
1080
1081         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1082                 return rte_flow_error_set(error, EINVAL,
1083                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1084                                           "protocol filtering not compatible"
1085                                           " with ICMP6 layer");
1086         if (!(item_flags & l3m))
1087                 return rte_flow_error_set(error, EINVAL,
1088                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1089                                           "IPv6 is mandatory to filter on"
1090                                           " ICMP6");
1091         if (item_flags & l4m)
1092                 return rte_flow_error_set(error, EINVAL,
1093                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1094                                           "multiple L4 layers not supported");
1095         if (!mask)
1096                 mask = &rte_flow_item_icmp6_mask;
1097         ret = mlx5_flow_item_acceptable
1098                 (item, (const uint8_t *)mask,
1099                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1100                  sizeof(struct rte_flow_item_icmp6), error);
1101         if (ret < 0)
1102                 return ret;
1103         return 0;
1104 }
1105
1106 /**
1107  * Validate ICMP item.
1108  *
1109  * @param[in] item
1110  *   Item specification.
1111  * @param[in] item_flags
1112  *   Bit-fields that holds the items detected until now.
1113  * @param[out] error
1114  *   Pointer to error structure.
1115  *
1116  * @return
1117  *   0 on success, a negative errno value otherwise and rte_errno is set.
1118  */
1119 int
1120 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1121                              uint64_t item_flags,
1122                              uint8_t target_protocol,
1123                              struct rte_flow_error *error)
1124 {
1125         const struct rte_flow_item_icmp *mask = item->mask;
1126         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1127         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1128                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1129         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1130                                       MLX5_FLOW_LAYER_OUTER_L4;
1131         int ret;
1132
1133         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1134                 return rte_flow_error_set(error, EINVAL,
1135                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1136                                           "protocol filtering not compatible"
1137                                           " with ICMP layer");
1138         if (!(item_flags & l3m))
1139                 return rte_flow_error_set(error, EINVAL,
1140                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1141                                           "IPv4 is mandatory to filter"
1142                                           " on ICMP");
1143         if (item_flags & l4m)
1144                 return rte_flow_error_set(error, EINVAL,
1145                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1146                                           "multiple L4 layers not supported");
1147         if (!mask)
1148                 mask = &rte_flow_item_icmp_mask;
1149         ret = mlx5_flow_item_acceptable
1150                 (item, (const uint8_t *)mask,
1151                  (const uint8_t *)&rte_flow_item_icmp_mask,
1152                  sizeof(struct rte_flow_item_icmp), error);
1153         if (ret < 0)
1154                 return ret;
1155         return 0;
1156 }
1157
1158 /**
1159  * Validate Ethernet item.
1160  *
1161  * @param[in] item
1162  *   Item specification.
1163  * @param[in] item_flags
1164  *   Bit-fields that holds the items detected until now.
1165  * @param[out] error
1166  *   Pointer to error structure.
1167  *
1168  * @return
1169  *   0 on success, a negative errno value otherwise and rte_errno is set.
1170  */
1171 int
1172 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1173                             uint64_t item_flags,
1174                             struct rte_flow_error *error)
1175 {
1176         const struct rte_flow_item_eth *mask = item->mask;
1177         const struct rte_flow_item_eth nic_mask = {
1178                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1179                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1180                 .type = RTE_BE16(0xffff),
1181         };
1182         int ret;
1183         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1184         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1185                                        MLX5_FLOW_LAYER_OUTER_L2;
1186
1187         if (item_flags & ethm)
1188                 return rte_flow_error_set(error, ENOTSUP,
1189                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1190                                           "multiple L2 layers not supported");
1191         if (!mask)
1192                 mask = &rte_flow_item_eth_mask;
1193         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1194                                         (const uint8_t *)&nic_mask,
1195                                         sizeof(struct rte_flow_item_eth),
1196                                         error);
1197         return ret;
1198 }
1199
1200 /**
1201  * Validate VLAN item.
1202  *
1203  * @param[in] item
1204  *   Item specification.
1205  * @param[in] item_flags
1206  *   Bit-fields that holds the items detected until now.
1207  * @param[in] dev
1208  *   Ethernet device flow is being created on.
1209  * @param[out] error
1210  *   Pointer to error structure.
1211  *
1212  * @return
1213  *   0 on success, a negative errno value otherwise and rte_errno is set.
1214  */
1215 int
1216 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1217                              uint64_t item_flags,
1218                              struct rte_eth_dev *dev,
1219                              struct rte_flow_error *error)
1220 {
1221         const struct rte_flow_item_vlan *spec = item->spec;
1222         const struct rte_flow_item_vlan *mask = item->mask;
1223         const struct rte_flow_item_vlan nic_mask = {
1224                 .tci = RTE_BE16(0x0fff),
1225                 .inner_type = RTE_BE16(0xffff),
1226         };
1227         uint16_t vlan_tag = 0;
1228         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1229         int ret;
1230         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1231                                         MLX5_FLOW_LAYER_INNER_L4) :
1232                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1233                                         MLX5_FLOW_LAYER_OUTER_L4);
1234         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1235                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1236
1237         if (item_flags & vlanm)
1238                 return rte_flow_error_set(error, EINVAL,
1239                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1240                                           "multiple VLAN layers not supported");
1241         else if ((item_flags & l34m) != 0)
1242                 return rte_flow_error_set(error, EINVAL,
1243                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1244                                           "L2 layer cannot follow L3/L4 layer");
1245         if (!mask)
1246                 mask = &rte_flow_item_vlan_mask;
1247         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1248                                         (const uint8_t *)&nic_mask,
1249                                         sizeof(struct rte_flow_item_vlan),
1250                                         error);
1251         if (ret)
1252                 return ret;
1253         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1254                 struct mlx5_priv *priv = dev->data->dev_private;
1255
1256                 if (priv->vmwa_context) {
1257                         /*
1258                          * Non-NULL context means we have a virtual machine
1259                          * and SR-IOV enabled, we have to create VLAN interface
1260                          * to make hypervisor to setup E-Switch vport
1261                          * context correctly. We avoid creating the multiple
1262                          * VLAN interfaces, so we cannot support VLAN tag mask.
1263                          */
1264                         return rte_flow_error_set(error, EINVAL,
1265                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1266                                                   item,
1267                                                   "VLAN tag mask is not"
1268                                                   " supported in virtual"
1269                                                   " environment");
1270                 }
1271         }
1272         if (spec) {
1273                 vlan_tag = spec->tci;
1274                 vlan_tag &= mask->tci;
1275         }
1276         /*
1277          * From verbs perspective an empty VLAN is equivalent
1278          * to a packet without VLAN layer.
1279          */
1280         if (!vlan_tag)
1281                 return rte_flow_error_set(error, EINVAL,
1282                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1283                                           item->spec,
1284                                           "VLAN cannot be empty");
1285         return 0;
1286 }
1287
1288 /**
1289  * Validate IPV4 item.
1290  *
1291  * @param[in] item
1292  *   Item specification.
1293  * @param[in] item_flags
1294  *   Bit-fields that holds the items detected until now.
1295  * @param[in] acc_mask
1296  *   Acceptable mask, if NULL default internal default mask
1297  *   will be used to check whether item fields are supported.
1298  * @param[out] error
1299  *   Pointer to error structure.
1300  *
1301  * @return
1302  *   0 on success, a negative errno value otherwise and rte_errno is set.
1303  */
1304 int
1305 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1306                              uint64_t item_flags,
1307                              const struct rte_flow_item_ipv4 *acc_mask,
1308                              struct rte_flow_error *error)
1309 {
1310         const struct rte_flow_item_ipv4 *mask = item->mask;
1311         const struct rte_flow_item_ipv4 *spec = item->spec;
1312         const struct rte_flow_item_ipv4 nic_mask = {
1313                 .hdr = {
1314                         .src_addr = RTE_BE32(0xffffffff),
1315                         .dst_addr = RTE_BE32(0xffffffff),
1316                         .type_of_service = 0xff,
1317                         .next_proto_id = 0xff,
1318                 },
1319         };
1320         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1321         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1322                                       MLX5_FLOW_LAYER_OUTER_L3;
1323         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1324                                       MLX5_FLOW_LAYER_OUTER_L4;
1325         int ret;
1326         uint8_t next_proto = 0xFF;
1327
1328         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1329                 if (mask && spec)
1330                         next_proto = mask->hdr.next_proto_id &
1331                                      spec->hdr.next_proto_id;
1332                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1333                         return rte_flow_error_set(error, EINVAL,
1334                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1335                                                   item,
1336                                                   "multiple tunnel "
1337                                                   "not supported");
1338         }
1339         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1340                 return rte_flow_error_set(error, EINVAL,
1341                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1342                                           "wrong tunnel type - IPv6 specified "
1343                                           "but IPv4 item provided");
1344         if (item_flags & l3m)
1345                 return rte_flow_error_set(error, ENOTSUP,
1346                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1347                                           "multiple L3 layers not supported");
1348         else if (item_flags & l4m)
1349                 return rte_flow_error_set(error, EINVAL,
1350                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1351                                           "L3 cannot follow an L4 layer.");
1352         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1353                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1354                 return rte_flow_error_set(error, EINVAL,
1355                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1356                                           "L3 cannot follow an NVGRE layer.");
1357         if (!mask)
1358                 mask = &rte_flow_item_ipv4_mask;
1359         else if (mask->hdr.next_proto_id != 0 &&
1360                  mask->hdr.next_proto_id != 0xff)
1361                 return rte_flow_error_set(error, EINVAL,
1362                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1363                                           "partial mask is not supported"
1364                                           " for protocol");
1365         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1366                                         acc_mask ? (const uint8_t *)acc_mask
1367                                                  : (const uint8_t *)&nic_mask,
1368                                         sizeof(struct rte_flow_item_ipv4),
1369                                         error);
1370         if (ret < 0)
1371                 return ret;
1372         return 0;
1373 }
1374
1375 /**
1376  * Validate IPV6 item.
1377  *
1378  * @param[in] item
1379  *   Item specification.
1380  * @param[in] item_flags
1381  *   Bit-fields that holds the items detected until now.
1382  * @param[in] acc_mask
1383  *   Acceptable mask, if NULL default internal default mask
1384  *   will be used to check whether item fields are supported.
1385  * @param[out] error
1386  *   Pointer to error structure.
1387  *
1388  * @return
1389  *   0 on success, a negative errno value otherwise and rte_errno is set.
1390  */
1391 int
1392 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1393                              uint64_t item_flags,
1394                              const struct rte_flow_item_ipv6 *acc_mask,
1395                              struct rte_flow_error *error)
1396 {
1397         const struct rte_flow_item_ipv6 *mask = item->mask;
1398         const struct rte_flow_item_ipv6 *spec = item->spec;
1399         const struct rte_flow_item_ipv6 nic_mask = {
1400                 .hdr = {
1401                         .src_addr =
1402                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1403                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1404                         .dst_addr =
1405                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1406                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1407                         .vtc_flow = RTE_BE32(0xffffffff),
1408                         .proto = 0xff,
1409                         .hop_limits = 0xff,
1410                 },
1411         };
1412         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1413         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1414                                       MLX5_FLOW_LAYER_OUTER_L3;
1415         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1416                                       MLX5_FLOW_LAYER_OUTER_L4;
1417         int ret;
1418         uint8_t next_proto = 0xFF;
1419
1420         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1421                 if (mask && spec)
1422                         next_proto = mask->hdr.proto & spec->hdr.proto;
1423                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1424                         return rte_flow_error_set(error, EINVAL,
1425                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1426                                                   item,
1427                                                   "multiple tunnel "
1428                                                   "not supported");
1429         }
1430         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1431                 return rte_flow_error_set(error, EINVAL,
1432                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1433                                           "wrong tunnel type - IPv4 specified "
1434                                           "but IPv6 item provided");
1435         if (item_flags & l3m)
1436                 return rte_flow_error_set(error, ENOTSUP,
1437                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1438                                           "multiple L3 layers not supported");
1439         else if (item_flags & l4m)
1440                 return rte_flow_error_set(error, EINVAL,
1441                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1442                                           "L3 cannot follow an L4 layer.");
1443         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1444                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1445                 return rte_flow_error_set(error, EINVAL,
1446                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1447                                           "L3 cannot follow an NVGRE layer.");
1448         if (!mask)
1449                 mask = &rte_flow_item_ipv6_mask;
1450         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1451                                         acc_mask ? (const uint8_t *)acc_mask
1452                                                  : (const uint8_t *)&nic_mask,
1453                                         sizeof(struct rte_flow_item_ipv6),
1454                                         error);
1455         if (ret < 0)
1456                 return ret;
1457         return 0;
1458 }
1459
1460 /**
1461  * Validate UDP item.
1462  *
1463  * @param[in] item
1464  *   Item specification.
1465  * @param[in] item_flags
1466  *   Bit-fields that holds the items detected until now.
1467  * @param[in] target_protocol
1468  *   The next protocol in the previous item.
1469  * @param[in] flow_mask
1470  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1471  * @param[out] error
1472  *   Pointer to error structure.
1473  *
1474  * @return
1475  *   0 on success, a negative errno value otherwise and rte_errno is set.
1476  */
1477 int
1478 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1479                             uint64_t item_flags,
1480                             uint8_t target_protocol,
1481                             struct rte_flow_error *error)
1482 {
1483         const struct rte_flow_item_udp *mask = item->mask;
1484         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1485         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1486                                       MLX5_FLOW_LAYER_OUTER_L3;
1487         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1488                                       MLX5_FLOW_LAYER_OUTER_L4;
1489         int ret;
1490
1491         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1492                 return rte_flow_error_set(error, EINVAL,
1493                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1494                                           "protocol filtering not compatible"
1495                                           " with UDP layer");
1496         if (!(item_flags & l3m))
1497                 return rte_flow_error_set(error, EINVAL,
1498                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1499                                           "L3 is mandatory to filter on L4");
1500         if (item_flags & l4m)
1501                 return rte_flow_error_set(error, EINVAL,
1502                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1503                                           "multiple L4 layers not supported");
1504         if (!mask)
1505                 mask = &rte_flow_item_udp_mask;
1506         ret = mlx5_flow_item_acceptable
1507                 (item, (const uint8_t *)mask,
1508                  (const uint8_t *)&rte_flow_item_udp_mask,
1509                  sizeof(struct rte_flow_item_udp), error);
1510         if (ret < 0)
1511                 return ret;
1512         return 0;
1513 }
1514
1515 /**
1516  * Validate TCP item.
1517  *
1518  * @param[in] item
1519  *   Item specification.
1520  * @param[in] item_flags
1521  *   Bit-fields that holds the items detected until now.
1522  * @param[in] target_protocol
1523  *   The next protocol in the previous item.
1524  * @param[out] error
1525  *   Pointer to error structure.
1526  *
1527  * @return
1528  *   0 on success, a negative errno value otherwise and rte_errno is set.
1529  */
1530 int
1531 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1532                             uint64_t item_flags,
1533                             uint8_t target_protocol,
1534                             const struct rte_flow_item_tcp *flow_mask,
1535                             struct rte_flow_error *error)
1536 {
1537         const struct rte_flow_item_tcp *mask = item->mask;
1538         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1539         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1540                                       MLX5_FLOW_LAYER_OUTER_L3;
1541         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1542                                       MLX5_FLOW_LAYER_OUTER_L4;
1543         int ret;
1544
1545         assert(flow_mask);
1546         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1547                 return rte_flow_error_set(error, EINVAL,
1548                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1549                                           "protocol filtering not compatible"
1550                                           " with TCP layer");
1551         if (!(item_flags & l3m))
1552                 return rte_flow_error_set(error, EINVAL,
1553                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1554                                           "L3 is mandatory to filter on L4");
1555         if (item_flags & l4m)
1556                 return rte_flow_error_set(error, EINVAL,
1557                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1558                                           "multiple L4 layers not supported");
1559         if (!mask)
1560                 mask = &rte_flow_item_tcp_mask;
1561         ret = mlx5_flow_item_acceptable
1562                 (item, (const uint8_t *)mask,
1563                  (const uint8_t *)flow_mask,
1564                  sizeof(struct rte_flow_item_tcp), error);
1565         if (ret < 0)
1566                 return ret;
1567         return 0;
1568 }
1569
1570 /**
1571  * Validate VXLAN item.
1572  *
1573  * @param[in] item
1574  *   Item specification.
1575  * @param[in] item_flags
1576  *   Bit-fields that holds the items detected until now.
1577  * @param[in] target_protocol
1578  *   The next protocol in the previous item.
1579  * @param[out] error
1580  *   Pointer to error structure.
1581  *
1582  * @return
1583  *   0 on success, a negative errno value otherwise and rte_errno is set.
1584  */
1585 int
1586 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1587                               uint64_t item_flags,
1588                               struct rte_flow_error *error)
1589 {
1590         const struct rte_flow_item_vxlan *spec = item->spec;
1591         const struct rte_flow_item_vxlan *mask = item->mask;
1592         int ret;
1593         union vni {
1594                 uint32_t vlan_id;
1595                 uint8_t vni[4];
1596         } id = { .vlan_id = 0, };
1597         uint32_t vlan_id = 0;
1598
1599
1600         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1601                 return rte_flow_error_set(error, ENOTSUP,
1602                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1603                                           "multiple tunnel layers not"
1604                                           " supported");
1605         /*
1606          * Verify only UDPv4 is present as defined in
1607          * https://tools.ietf.org/html/rfc7348
1608          */
1609         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1610                 return rte_flow_error_set(error, EINVAL,
1611                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1612                                           "no outer UDP layer found");
1613         if (!mask)
1614                 mask = &rte_flow_item_vxlan_mask;
1615         ret = mlx5_flow_item_acceptable
1616                 (item, (const uint8_t *)mask,
1617                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1618                  sizeof(struct rte_flow_item_vxlan),
1619                  error);
1620         if (ret < 0)
1621                 return ret;
1622         if (spec) {
1623                 memcpy(&id.vni[1], spec->vni, 3);
1624                 vlan_id = id.vlan_id;
1625                 memcpy(&id.vni[1], mask->vni, 3);
1626                 vlan_id &= id.vlan_id;
1627         }
1628         /*
1629          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1630          * only this layer is defined in the Verbs specification it is
1631          * interpreted as wildcard and all packets will match this
1632          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1633          * udp), all packets matching the layers before will also
1634          * match this rule.  To avoid such situation, VNI 0 is
1635          * currently refused.
1636          */
1637         if (!vlan_id)
1638                 return rte_flow_error_set(error, ENOTSUP,
1639                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1640                                           "VXLAN vni cannot be 0");
1641         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1642                 return rte_flow_error_set(error, ENOTSUP,
1643                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1644                                           "VXLAN tunnel must be fully defined");
1645         return 0;
1646 }
1647
1648 /**
1649  * Validate VXLAN_GPE item.
1650  *
1651  * @param[in] item
1652  *   Item specification.
1653  * @param[in] item_flags
1654  *   Bit-fields that holds the items detected until now.
1655  * @param[in] priv
1656  *   Pointer to the private data structure.
1657  * @param[in] target_protocol
1658  *   The next protocol in the previous item.
1659  * @param[out] error
1660  *   Pointer to error structure.
1661  *
1662  * @return
1663  *   0 on success, a negative errno value otherwise and rte_errno is set.
1664  */
1665 int
1666 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1667                                   uint64_t item_flags,
1668                                   struct rte_eth_dev *dev,
1669                                   struct rte_flow_error *error)
1670 {
1671         struct mlx5_priv *priv = dev->data->dev_private;
1672         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1673         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1674         int ret;
1675         union vni {
1676                 uint32_t vlan_id;
1677                 uint8_t vni[4];
1678         } id = { .vlan_id = 0, };
1679         uint32_t vlan_id = 0;
1680
1681         if (!priv->config.l3_vxlan_en)
1682                 return rte_flow_error_set(error, ENOTSUP,
1683                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1684                                           "L3 VXLAN is not enabled by device"
1685                                           " parameter and/or not configured in"
1686                                           " firmware");
1687         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1688                 return rte_flow_error_set(error, ENOTSUP,
1689                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1690                                           "multiple tunnel layers not"
1691                                           " supported");
1692         /*
1693          * Verify only UDPv4 is present as defined in
1694          * https://tools.ietf.org/html/rfc7348
1695          */
1696         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1697                 return rte_flow_error_set(error, EINVAL,
1698                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1699                                           "no outer UDP layer found");
1700         if (!mask)
1701                 mask = &rte_flow_item_vxlan_gpe_mask;
1702         ret = mlx5_flow_item_acceptable
1703                 (item, (const uint8_t *)mask,
1704                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1705                  sizeof(struct rte_flow_item_vxlan_gpe),
1706                  error);
1707         if (ret < 0)
1708                 return ret;
1709         if (spec) {
1710                 if (spec->protocol)
1711                         return rte_flow_error_set(error, ENOTSUP,
1712                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1713                                                   item,
1714                                                   "VxLAN-GPE protocol"
1715                                                   " not supported");
1716                 memcpy(&id.vni[1], spec->vni, 3);
1717                 vlan_id = id.vlan_id;
1718                 memcpy(&id.vni[1], mask->vni, 3);
1719                 vlan_id &= id.vlan_id;
1720         }
1721         /*
1722          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1723          * layer is defined in the Verbs specification it is interpreted as
1724          * wildcard and all packets will match this rule, if it follows a full
1725          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1726          * before will also match this rule.  To avoid such situation, VNI 0
1727          * is currently refused.
1728          */
1729         if (!vlan_id)
1730                 return rte_flow_error_set(error, ENOTSUP,
1731                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1732                                           "VXLAN-GPE vni cannot be 0");
1733         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1734                 return rte_flow_error_set(error, ENOTSUP,
1735                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1736                                           "VXLAN-GPE tunnel must be fully"
1737                                           " defined");
1738         return 0;
1739 }
1740 /**
1741  * Validate GRE Key item.
1742  *
1743  * @param[in] item
1744  *   Item specification.
1745  * @param[in] item_flags
1746  *   Bit flags to mark detected items.
1747  * @param[in] gre_item
1748  *   Pointer to gre_item
1749  * @param[out] error
1750  *   Pointer to error structure.
1751  *
1752  * @return
1753  *   0 on success, a negative errno value otherwise and rte_errno is set.
1754  */
1755 int
1756 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1757                                 uint64_t item_flags,
1758                                 const struct rte_flow_item *gre_item,
1759                                 struct rte_flow_error *error)
1760 {
1761         const rte_be32_t *mask = item->mask;
1762         int ret = 0;
1763         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1764         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1765         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1766
1767         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1768                 return rte_flow_error_set(error, ENOTSUP,
1769                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1770                                           "Multiple GRE key not support");
1771         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1772                 return rte_flow_error_set(error, ENOTSUP,
1773                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1774                                           "No preceding GRE header");
1775         if (item_flags & MLX5_FLOW_LAYER_INNER)
1776                 return rte_flow_error_set(error, ENOTSUP,
1777                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1778                                           "GRE key following a wrong item");
1779         if (!gre_mask)
1780                 gre_mask = &rte_flow_item_gre_mask;
1781         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1782                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1783                 return rte_flow_error_set(error, EINVAL,
1784                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1785                                           "Key bit must be on");
1786
1787         if (!mask)
1788                 mask = &gre_key_default_mask;
1789         ret = mlx5_flow_item_acceptable
1790                 (item, (const uint8_t *)mask,
1791                  (const uint8_t *)&gre_key_default_mask,
1792                  sizeof(rte_be32_t), error);
1793         return ret;
1794 }
1795
1796 /**
1797  * Validate GRE item.
1798  *
1799  * @param[in] item
1800  *   Item specification.
1801  * @param[in] item_flags
1802  *   Bit flags to mark detected items.
1803  * @param[in] target_protocol
1804  *   The next protocol in the previous item.
1805  * @param[out] error
1806  *   Pointer to error structure.
1807  *
1808  * @return
1809  *   0 on success, a negative errno value otherwise and rte_errno is set.
1810  */
1811 int
1812 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1813                             uint64_t item_flags,
1814                             uint8_t target_protocol,
1815                             struct rte_flow_error *error)
1816 {
1817         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1818         const struct rte_flow_item_gre *mask = item->mask;
1819         int ret;
1820         const struct rte_flow_item_gre nic_mask = {
1821                 .c_rsvd0_ver = RTE_BE16(0xB000),
1822                 .protocol = RTE_BE16(UINT16_MAX),
1823         };
1824
1825         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1826                 return rte_flow_error_set(error, EINVAL,
1827                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1828                                           "protocol filtering not compatible"
1829                                           " with this GRE layer");
1830         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1831                 return rte_flow_error_set(error, ENOTSUP,
1832                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1833                                           "multiple tunnel layers not"
1834                                           " supported");
1835         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1836                 return rte_flow_error_set(error, ENOTSUP,
1837                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1838                                           "L3 Layer is missing");
1839         if (!mask)
1840                 mask = &rte_flow_item_gre_mask;
1841         ret = mlx5_flow_item_acceptable
1842                 (item, (const uint8_t *)mask,
1843                  (const uint8_t *)&nic_mask,
1844                  sizeof(struct rte_flow_item_gre), error);
1845         if (ret < 0)
1846                 return ret;
1847 #ifndef HAVE_MLX5DV_DR
1848 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1849         if (spec && (spec->protocol & mask->protocol))
1850                 return rte_flow_error_set(error, ENOTSUP,
1851                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1852                                           "without MPLS support the"
1853                                           " specification cannot be used for"
1854                                           " filtering");
1855 #endif
1856 #endif
1857         return 0;
1858 }
1859
1860 /**
1861  * Validate MPLS item.
1862  *
1863  * @param[in] dev
1864  *   Pointer to the rte_eth_dev structure.
1865  * @param[in] item
1866  *   Item specification.
1867  * @param[in] item_flags
1868  *   Bit-fields that holds the items detected until now.
1869  * @param[in] prev_layer
1870  *   The protocol layer indicated in previous item.
1871  * @param[out] error
1872  *   Pointer to error structure.
1873  *
1874  * @return
1875  *   0 on success, a negative errno value otherwise and rte_errno is set.
1876  */
1877 int
1878 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1879                              const struct rte_flow_item *item __rte_unused,
1880                              uint64_t item_flags __rte_unused,
1881                              uint64_t prev_layer __rte_unused,
1882                              struct rte_flow_error *error)
1883 {
1884 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1885         const struct rte_flow_item_mpls *mask = item->mask;
1886         struct mlx5_priv *priv = dev->data->dev_private;
1887         int ret;
1888
1889         if (!priv->config.mpls_en)
1890                 return rte_flow_error_set(error, ENOTSUP,
1891                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1892                                           "MPLS not supported or"
1893                                           " disabled in firmware"
1894                                           " configuration.");
1895         /* MPLS over IP, UDP, GRE is allowed */
1896         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1897                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1898                             MLX5_FLOW_LAYER_GRE)))
1899                 return rte_flow_error_set(error, EINVAL,
1900                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1901                                           "protocol filtering not compatible"
1902                                           " with MPLS layer");
1903         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1904         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1905             !(item_flags & MLX5_FLOW_LAYER_GRE))
1906                 return rte_flow_error_set(error, ENOTSUP,
1907                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1908                                           "multiple tunnel layers not"
1909                                           " supported");
1910         if (!mask)
1911                 mask = &rte_flow_item_mpls_mask;
1912         ret = mlx5_flow_item_acceptable
1913                 (item, (const uint8_t *)mask,
1914                  (const uint8_t *)&rte_flow_item_mpls_mask,
1915                  sizeof(struct rte_flow_item_mpls), error);
1916         if (ret < 0)
1917                 return ret;
1918         return 0;
1919 #endif
1920         return rte_flow_error_set(error, ENOTSUP,
1921                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1922                                   "MPLS is not supported by Verbs, please"
1923                                   " update.");
1924 }
1925
1926 /**
1927  * Validate NVGRE item.
1928  *
1929  * @param[in] item
1930  *   Item specification.
1931  * @param[in] item_flags
1932  *   Bit flags to mark detected items.
1933  * @param[in] target_protocol
1934  *   The next protocol in the previous item.
1935  * @param[out] error
1936  *   Pointer to error structure.
1937  *
1938  * @return
1939  *   0 on success, a negative errno value otherwise and rte_errno is set.
1940  */
1941 int
1942 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
1943                               uint64_t item_flags,
1944                               uint8_t target_protocol,
1945                               struct rte_flow_error *error)
1946 {
1947         const struct rte_flow_item_nvgre *mask = item->mask;
1948         int ret;
1949
1950         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1951                 return rte_flow_error_set(error, EINVAL,
1952                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1953                                           "protocol filtering not compatible"
1954                                           " with this GRE layer");
1955         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1956                 return rte_flow_error_set(error, ENOTSUP,
1957                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1958                                           "multiple tunnel layers not"
1959                                           " supported");
1960         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1961                 return rte_flow_error_set(error, ENOTSUP,
1962                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1963                                           "L3 Layer is missing");
1964         if (!mask)
1965                 mask = &rte_flow_item_nvgre_mask;
1966         ret = mlx5_flow_item_acceptable
1967                 (item, (const uint8_t *)mask,
1968                  (const uint8_t *)&rte_flow_item_nvgre_mask,
1969                  sizeof(struct rte_flow_item_nvgre), error);
1970         if (ret < 0)
1971                 return ret;
1972         return 0;
1973 }
1974
1975 static int
1976 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1977                    const struct rte_flow_attr *attr __rte_unused,
1978                    const struct rte_flow_item items[] __rte_unused,
1979                    const struct rte_flow_action actions[] __rte_unused,
1980                    struct rte_flow_error *error)
1981 {
1982         return rte_flow_error_set(error, ENOTSUP,
1983                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1984 }
1985
1986 static struct mlx5_flow *
1987 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1988                   const struct rte_flow_item items[] __rte_unused,
1989                   const struct rte_flow_action actions[] __rte_unused,
1990                   struct rte_flow_error *error)
1991 {
1992         rte_flow_error_set(error, ENOTSUP,
1993                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1994         return NULL;
1995 }
1996
1997 static int
1998 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1999                     struct mlx5_flow *dev_flow __rte_unused,
2000                     const struct rte_flow_attr *attr __rte_unused,
2001                     const struct rte_flow_item items[] __rte_unused,
2002                     const struct rte_flow_action actions[] __rte_unused,
2003                     struct rte_flow_error *error)
2004 {
2005         return rte_flow_error_set(error, ENOTSUP,
2006                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2007 }
2008
2009 static int
2010 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2011                 struct rte_flow *flow __rte_unused,
2012                 struct rte_flow_error *error)
2013 {
2014         return rte_flow_error_set(error, ENOTSUP,
2015                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2016 }
2017
2018 static void
2019 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2020                  struct rte_flow *flow __rte_unused)
2021 {
2022 }
2023
2024 static void
2025 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2026                   struct rte_flow *flow __rte_unused)
2027 {
2028 }
2029
2030 static int
2031 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2032                 struct rte_flow *flow __rte_unused,
2033                 const struct rte_flow_action *actions __rte_unused,
2034                 void *data __rte_unused,
2035                 struct rte_flow_error *error)
2036 {
2037         return rte_flow_error_set(error, ENOTSUP,
2038                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2039 }
2040
2041 /* Void driver to protect from null pointer reference. */
2042 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2043         .validate = flow_null_validate,
2044         .prepare = flow_null_prepare,
2045         .translate = flow_null_translate,
2046         .apply = flow_null_apply,
2047         .remove = flow_null_remove,
2048         .destroy = flow_null_destroy,
2049         .query = flow_null_query,
2050 };
2051
2052 /**
2053  * Select flow driver type according to flow attributes and device
2054  * configuration.
2055  *
2056  * @param[in] dev
2057  *   Pointer to the dev structure.
2058  * @param[in] attr
2059  *   Pointer to the flow attributes.
2060  *
2061  * @return
2062  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2063  */
2064 static enum mlx5_flow_drv_type
2065 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2066 {
2067         struct mlx5_priv *priv = dev->data->dev_private;
2068         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2069
2070         if (attr->transfer && priv->config.dv_esw_en)
2071                 type = MLX5_FLOW_TYPE_DV;
2072         if (!attr->transfer)
2073                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2074                                                  MLX5_FLOW_TYPE_VERBS;
2075         return type;
2076 }
2077
2078 #define flow_get_drv_ops(type) flow_drv_ops[type]
2079
2080 /**
2081  * Flow driver validation API. This abstracts calling driver specific functions.
2082  * The type of flow driver is determined according to flow attributes.
2083  *
2084  * @param[in] dev
2085  *   Pointer to the dev structure.
2086  * @param[in] attr
2087  *   Pointer to the flow attributes.
2088  * @param[in] items
2089  *   Pointer to the list of items.
2090  * @param[in] actions
2091  *   Pointer to the list of actions.
2092  * @param[out] error
2093  *   Pointer to the error structure.
2094  *
2095  * @return
2096  *   0 on success, a negative errno value otherwise and rte_errno is set.
2097  */
2098 static inline int
2099 flow_drv_validate(struct rte_eth_dev *dev,
2100                   const struct rte_flow_attr *attr,
2101                   const struct rte_flow_item items[],
2102                   const struct rte_flow_action actions[],
2103                   struct rte_flow_error *error)
2104 {
2105         const struct mlx5_flow_driver_ops *fops;
2106         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2107
2108         fops = flow_get_drv_ops(type);
2109         return fops->validate(dev, attr, items, actions, error);
2110 }
2111
2112 /**
2113  * Flow driver preparation API. This abstracts calling driver specific
2114  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2115  * calculates the size of memory required for device flow, allocates the memory,
2116  * initializes the device flow and returns the pointer.
2117  *
2118  * @note
2119  *   This function initializes device flow structure such as dv or verbs in
2120  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2121  *   rest. For example, adding returning device flow to flow->dev_flow list and
2122  *   setting backward reference to the flow should be done out of this function.
2123  *   layers field is not filled either.
2124  *
2125  * @param[in] attr
2126  *   Pointer to the flow attributes.
2127  * @param[in] items
2128  *   Pointer to the list of items.
2129  * @param[in] actions
2130  *   Pointer to the list of actions.
2131  * @param[out] error
2132  *   Pointer to the error structure.
2133  *
2134  * @return
2135  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2136  */
2137 static inline struct mlx5_flow *
2138 flow_drv_prepare(const struct rte_flow *flow,
2139                  const struct rte_flow_attr *attr,
2140                  const struct rte_flow_item items[],
2141                  const struct rte_flow_action actions[],
2142                  struct rte_flow_error *error)
2143 {
2144         const struct mlx5_flow_driver_ops *fops;
2145         enum mlx5_flow_drv_type type = flow->drv_type;
2146
2147         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2148         fops = flow_get_drv_ops(type);
2149         return fops->prepare(attr, items, actions, error);
2150 }
2151
2152 /**
2153  * Flow driver translation API. This abstracts calling driver specific
2154  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2155  * translates a generic flow into a driver flow. flow_drv_prepare() must
2156  * precede.
2157  *
2158  * @note
2159  *   dev_flow->layers could be filled as a result of parsing during translation
2160  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2161  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2162  *   flow->actions could be overwritten even though all the expanded dev_flows
2163  *   have the same actions.
2164  *
2165  * @param[in] dev
2166  *   Pointer to the rte dev structure.
2167  * @param[in, out] dev_flow
2168  *   Pointer to the mlx5 flow.
2169  * @param[in] attr
2170  *   Pointer to the flow attributes.
2171  * @param[in] items
2172  *   Pointer to the list of items.
2173  * @param[in] actions
2174  *   Pointer to the list of actions.
2175  * @param[out] error
2176  *   Pointer to the error structure.
2177  *
2178  * @return
2179  *   0 on success, a negative errno value otherwise and rte_errno is set.
2180  */
2181 static inline int
2182 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2183                    const struct rte_flow_attr *attr,
2184                    const struct rte_flow_item items[],
2185                    const struct rte_flow_action actions[],
2186                    struct rte_flow_error *error)
2187 {
2188         const struct mlx5_flow_driver_ops *fops;
2189         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2190
2191         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2192         fops = flow_get_drv_ops(type);
2193         return fops->translate(dev, dev_flow, attr, items, actions, error);
2194 }
2195
2196 /**
2197  * Flow driver apply API. This abstracts calling driver specific functions.
2198  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2199  * translated driver flows on to device. flow_drv_translate() must precede.
2200  *
2201  * @param[in] dev
2202  *   Pointer to Ethernet device structure.
2203  * @param[in, out] flow
2204  *   Pointer to flow structure.
2205  * @param[out] error
2206  *   Pointer to error structure.
2207  *
2208  * @return
2209  *   0 on success, a negative errno value otherwise and rte_errno is set.
2210  */
2211 static inline int
2212 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2213                struct rte_flow_error *error)
2214 {
2215         const struct mlx5_flow_driver_ops *fops;
2216         enum mlx5_flow_drv_type type = flow->drv_type;
2217
2218         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2219         fops = flow_get_drv_ops(type);
2220         return fops->apply(dev, flow, error);
2221 }
2222
2223 /**
2224  * Flow driver remove API. This abstracts calling driver specific functions.
2225  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2226  * on device. All the resources of the flow should be freed by calling
2227  * flow_drv_destroy().
2228  *
2229  * @param[in] dev
2230  *   Pointer to Ethernet device.
2231  * @param[in, out] flow
2232  *   Pointer to flow structure.
2233  */
2234 static inline void
2235 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2236 {
2237         const struct mlx5_flow_driver_ops *fops;
2238         enum mlx5_flow_drv_type type = flow->drv_type;
2239
2240         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2241         fops = flow_get_drv_ops(type);
2242         fops->remove(dev, flow);
2243 }
2244
2245 /**
2246  * Flow driver destroy API. This abstracts calling driver specific functions.
2247  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2248  * on device and releases resources of the flow.
2249  *
2250  * @param[in] dev
2251  *   Pointer to Ethernet device.
2252  * @param[in, out] flow
2253  *   Pointer to flow structure.
2254  */
2255 static inline void
2256 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2257 {
2258         const struct mlx5_flow_driver_ops *fops;
2259         enum mlx5_flow_drv_type type = flow->drv_type;
2260
2261         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2262         fops = flow_get_drv_ops(type);
2263         fops->destroy(dev, flow);
2264 }
2265
2266 /**
2267  * Validate a flow supported by the NIC.
2268  *
2269  * @see rte_flow_validate()
2270  * @see rte_flow_ops
2271  */
2272 int
2273 mlx5_flow_validate(struct rte_eth_dev *dev,
2274                    const struct rte_flow_attr *attr,
2275                    const struct rte_flow_item items[],
2276                    const struct rte_flow_action actions[],
2277                    struct rte_flow_error *error)
2278 {
2279         int ret;
2280
2281         ret = flow_drv_validate(dev, attr, items, actions, error);
2282         if (ret < 0)
2283                 return ret;
2284         return 0;
2285 }
2286
2287 /**
2288  * Get RSS action from the action list.
2289  *
2290  * @param[in] actions
2291  *   Pointer to the list of actions.
2292  *
2293  * @return
2294  *   Pointer to the RSS action if exist, else return NULL.
2295  */
2296 static const struct rte_flow_action_rss*
2297 flow_get_rss_action(const struct rte_flow_action actions[])
2298 {
2299         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2300                 switch (actions->type) {
2301                 case RTE_FLOW_ACTION_TYPE_RSS:
2302                         return (const struct rte_flow_action_rss *)
2303                                actions->conf;
2304                 default:
2305                         break;
2306                 }
2307         }
2308         return NULL;
2309 }
2310
2311 static unsigned int
2312 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2313 {
2314         const struct rte_flow_item *item;
2315         unsigned int has_vlan = 0;
2316
2317         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2318                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2319                         has_vlan = 1;
2320                         break;
2321                 }
2322         }
2323         if (has_vlan)
2324                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2325                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2326         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2327                                MLX5_EXPANSION_ROOT_OUTER;
2328 }
2329
2330 /**
2331  * Create a flow and add it to @p list.
2332  *
2333  * @param dev
2334  *   Pointer to Ethernet device.
2335  * @param list
2336  *   Pointer to a TAILQ flow list.
2337  * @param[in] attr
2338  *   Flow rule attributes.
2339  * @param[in] items
2340  *   Pattern specification (list terminated by the END pattern item).
2341  * @param[in] actions
2342  *   Associated actions (list terminated by the END action).
2343  * @param[out] error
2344  *   Perform verbose error reporting if not NULL.
2345  *
2346  * @return
2347  *   A flow on success, NULL otherwise and rte_errno is set.
2348  */
2349 static struct rte_flow *
2350 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2351                  const struct rte_flow_attr *attr,
2352                  const struct rte_flow_item items[],
2353                  const struct rte_flow_action actions[],
2354                  struct rte_flow_error *error)
2355 {
2356         struct rte_flow *flow = NULL;
2357         struct mlx5_flow *dev_flow;
2358         const struct rte_flow_action_rss *rss;
2359         union {
2360                 struct rte_flow_expand_rss buf;
2361                 uint8_t buffer[2048];
2362         } expand_buffer;
2363         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2364         int ret;
2365         uint32_t i;
2366         uint32_t flow_size;
2367
2368         ret = flow_drv_validate(dev, attr, items, actions, error);
2369         if (ret < 0)
2370                 return NULL;
2371         flow_size = sizeof(struct rte_flow);
2372         rss = flow_get_rss_action(actions);
2373         if (rss)
2374                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2375                                             sizeof(void *));
2376         else
2377                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2378         flow = rte_calloc(__func__, 1, flow_size, 0);
2379         if (!flow) {
2380                 rte_errno = ENOMEM;
2381                 return NULL;
2382         }
2383         flow->drv_type = flow_get_drv_type(dev, attr);
2384         flow->ingress = attr->ingress;
2385         flow->transfer = attr->transfer;
2386         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2387                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2388         flow->queue = (void *)(flow + 1);
2389         LIST_INIT(&flow->dev_flows);
2390         if (rss && rss->types) {
2391                 unsigned int graph_root;
2392
2393                 graph_root = find_graph_root(items, rss->level);
2394                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2395                                           items, rss->types,
2396                                           mlx5_support_expansion,
2397                                           graph_root);
2398                 assert(ret > 0 &&
2399                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2400         } else {
2401                 buf->entries = 1;
2402                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2403         }
2404         for (i = 0; i < buf->entries; ++i) {
2405                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2406                                             actions, error);
2407                 if (!dev_flow)
2408                         goto error;
2409                 dev_flow->flow = flow;
2410                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2411                 ret = flow_drv_translate(dev, dev_flow, attr,
2412                                          buf->entry[i].pattern,
2413                                          actions, error);
2414                 if (ret < 0)
2415                         goto error;
2416         }
2417         if (dev->data->dev_started) {
2418                 ret = flow_drv_apply(dev, flow, error);
2419                 if (ret < 0)
2420                         goto error;
2421         }
2422         TAILQ_INSERT_TAIL(list, flow, next);
2423         flow_rxq_flags_set(dev, flow);
2424         return flow;
2425 error:
2426         ret = rte_errno; /* Save rte_errno before cleanup. */
2427         assert(flow);
2428         flow_drv_destroy(dev, flow);
2429         rte_free(flow);
2430         rte_errno = ret; /* Restore rte_errno. */
2431         return NULL;
2432 }
2433
2434 /**
2435  * Create a flow.
2436  *
2437  * @see rte_flow_create()
2438  * @see rte_flow_ops
2439  */
2440 struct rte_flow *
2441 mlx5_flow_create(struct rte_eth_dev *dev,
2442                  const struct rte_flow_attr *attr,
2443                  const struct rte_flow_item items[],
2444                  const struct rte_flow_action actions[],
2445                  struct rte_flow_error *error)
2446 {
2447         struct mlx5_priv *priv = dev->data->dev_private;
2448
2449         return flow_list_create(dev, &priv->flows,
2450                                 attr, items, actions, error);
2451 }
2452
2453 /**
2454  * Destroy a flow in a list.
2455  *
2456  * @param dev
2457  *   Pointer to Ethernet device.
2458  * @param list
2459  *   Pointer to a TAILQ flow list.
2460  * @param[in] flow
2461  *   Flow to destroy.
2462  */
2463 static void
2464 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2465                   struct rte_flow *flow)
2466 {
2467         /*
2468          * Update RX queue flags only if port is started, otherwise it is
2469          * already clean.
2470          */
2471         if (dev->data->dev_started)
2472                 flow_rxq_flags_trim(dev, flow);
2473         flow_drv_destroy(dev, flow);
2474         TAILQ_REMOVE(list, flow, next);
2475         rte_free(flow->fdir);
2476         rte_free(flow);
2477 }
2478
2479 /**
2480  * Destroy all flows.
2481  *
2482  * @param dev
2483  *   Pointer to Ethernet device.
2484  * @param list
2485  *   Pointer to a TAILQ flow list.
2486  */
2487 void
2488 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2489 {
2490         while (!TAILQ_EMPTY(list)) {
2491                 struct rte_flow *flow;
2492
2493                 flow = TAILQ_FIRST(list);
2494                 flow_list_destroy(dev, list, flow);
2495         }
2496 }
2497
2498 /**
2499  * Remove all flows.
2500  *
2501  * @param dev
2502  *   Pointer to Ethernet device.
2503  * @param list
2504  *   Pointer to a TAILQ flow list.
2505  */
2506 void
2507 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2508 {
2509         struct rte_flow *flow;
2510
2511         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2512                 flow_drv_remove(dev, flow);
2513         flow_rxq_flags_clear(dev);
2514 }
2515
2516 /**
2517  * Add all flows.
2518  *
2519  * @param dev
2520  *   Pointer to Ethernet device.
2521  * @param list
2522  *   Pointer to a TAILQ flow list.
2523  *
2524  * @return
2525  *   0 on success, a negative errno value otherwise and rte_errno is set.
2526  */
2527 int
2528 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2529 {
2530         struct rte_flow *flow;
2531         struct rte_flow_error error;
2532         int ret = 0;
2533
2534         TAILQ_FOREACH(flow, list, next) {
2535                 ret = flow_drv_apply(dev, flow, &error);
2536                 if (ret < 0)
2537                         goto error;
2538                 flow_rxq_flags_set(dev, flow);
2539         }
2540         return 0;
2541 error:
2542         ret = rte_errno; /* Save rte_errno before cleanup. */
2543         mlx5_flow_stop(dev, list);
2544         rte_errno = ret; /* Restore rte_errno. */
2545         return -rte_errno;
2546 }
2547
2548 /**
2549  * Verify the flow list is empty
2550  *
2551  * @param dev
2552  *  Pointer to Ethernet device.
2553  *
2554  * @return the number of flows not released.
2555  */
2556 int
2557 mlx5_flow_verify(struct rte_eth_dev *dev)
2558 {
2559         struct mlx5_priv *priv = dev->data->dev_private;
2560         struct rte_flow *flow;
2561         int ret = 0;
2562
2563         TAILQ_FOREACH(flow, &priv->flows, next) {
2564                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2565                         dev->data->port_id, (void *)flow);
2566                 ++ret;
2567         }
2568         return ret;
2569 }
2570
2571 /**
2572  * Enable a control flow configured from the control plane.
2573  *
2574  * @param dev
2575  *   Pointer to Ethernet device.
2576  * @param eth_spec
2577  *   An Ethernet flow spec to apply.
2578  * @param eth_mask
2579  *   An Ethernet flow mask to apply.
2580  * @param vlan_spec
2581  *   A VLAN flow spec to apply.
2582  * @param vlan_mask
2583  *   A VLAN flow mask to apply.
2584  *
2585  * @return
2586  *   0 on success, a negative errno value otherwise and rte_errno is set.
2587  */
2588 int
2589 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2590                     struct rte_flow_item_eth *eth_spec,
2591                     struct rte_flow_item_eth *eth_mask,
2592                     struct rte_flow_item_vlan *vlan_spec,
2593                     struct rte_flow_item_vlan *vlan_mask)
2594 {
2595         struct mlx5_priv *priv = dev->data->dev_private;
2596         const struct rte_flow_attr attr = {
2597                 .ingress = 1,
2598                 .priority = MLX5_FLOW_PRIO_RSVD,
2599         };
2600         struct rte_flow_item items[] = {
2601                 {
2602                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2603                         .spec = eth_spec,
2604                         .last = NULL,
2605                         .mask = eth_mask,
2606                 },
2607                 {
2608                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2609                                               RTE_FLOW_ITEM_TYPE_END,
2610                         .spec = vlan_spec,
2611                         .last = NULL,
2612                         .mask = vlan_mask,
2613                 },
2614                 {
2615                         .type = RTE_FLOW_ITEM_TYPE_END,
2616                 },
2617         };
2618         uint16_t queue[priv->reta_idx_n];
2619         struct rte_flow_action_rss action_rss = {
2620                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2621                 .level = 0,
2622                 .types = priv->rss_conf.rss_hf,
2623                 .key_len = priv->rss_conf.rss_key_len,
2624                 .queue_num = priv->reta_idx_n,
2625                 .key = priv->rss_conf.rss_key,
2626                 .queue = queue,
2627         };
2628         struct rte_flow_action actions[] = {
2629                 {
2630                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2631                         .conf = &action_rss,
2632                 },
2633                 {
2634                         .type = RTE_FLOW_ACTION_TYPE_END,
2635                 },
2636         };
2637         struct rte_flow *flow;
2638         struct rte_flow_error error;
2639         unsigned int i;
2640
2641         if (!priv->reta_idx_n || !priv->rxqs_n) {
2642                 return 0;
2643         }
2644         for (i = 0; i != priv->reta_idx_n; ++i)
2645                 queue[i] = (*priv->reta_idx)[i];
2646         flow = flow_list_create(dev, &priv->ctrl_flows,
2647                                 &attr, items, actions, &error);
2648         if (!flow)
2649                 return -rte_errno;
2650         return 0;
2651 }
2652
2653 /**
2654  * Enable a flow control configured from the control plane.
2655  *
2656  * @param dev
2657  *   Pointer to Ethernet device.
2658  * @param eth_spec
2659  *   An Ethernet flow spec to apply.
2660  * @param eth_mask
2661  *   An Ethernet flow mask to apply.
2662  *
2663  * @return
2664  *   0 on success, a negative errno value otherwise and rte_errno is set.
2665  */
2666 int
2667 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2668                struct rte_flow_item_eth *eth_spec,
2669                struct rte_flow_item_eth *eth_mask)
2670 {
2671         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2672 }
2673
2674 /**
2675  * Destroy a flow.
2676  *
2677  * @see rte_flow_destroy()
2678  * @see rte_flow_ops
2679  */
2680 int
2681 mlx5_flow_destroy(struct rte_eth_dev *dev,
2682                   struct rte_flow *flow,
2683                   struct rte_flow_error *error __rte_unused)
2684 {
2685         struct mlx5_priv *priv = dev->data->dev_private;
2686
2687         flow_list_destroy(dev, &priv->flows, flow);
2688         return 0;
2689 }
2690
2691 /**
2692  * Destroy all flows.
2693  *
2694  * @see rte_flow_flush()
2695  * @see rte_flow_ops
2696  */
2697 int
2698 mlx5_flow_flush(struct rte_eth_dev *dev,
2699                 struct rte_flow_error *error __rte_unused)
2700 {
2701         struct mlx5_priv *priv = dev->data->dev_private;
2702
2703         mlx5_flow_list_flush(dev, &priv->flows);
2704         return 0;
2705 }
2706
2707 /**
2708  * Isolated mode.
2709  *
2710  * @see rte_flow_isolate()
2711  * @see rte_flow_ops
2712  */
2713 int
2714 mlx5_flow_isolate(struct rte_eth_dev *dev,
2715                   int enable,
2716                   struct rte_flow_error *error)
2717 {
2718         struct mlx5_priv *priv = dev->data->dev_private;
2719
2720         if (dev->data->dev_started) {
2721                 rte_flow_error_set(error, EBUSY,
2722                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2723                                    NULL,
2724                                    "port must be stopped first");
2725                 return -rte_errno;
2726         }
2727         priv->isolated = !!enable;
2728         if (enable)
2729                 dev->dev_ops = &mlx5_dev_ops_isolate;
2730         else
2731                 dev->dev_ops = &mlx5_dev_ops;
2732         return 0;
2733 }
2734
2735 /**
2736  * Query a flow.
2737  *
2738  * @see rte_flow_query()
2739  * @see rte_flow_ops
2740  */
2741 static int
2742 flow_drv_query(struct rte_eth_dev *dev,
2743                struct rte_flow *flow,
2744                const struct rte_flow_action *actions,
2745                void *data,
2746                struct rte_flow_error *error)
2747 {
2748         const struct mlx5_flow_driver_ops *fops;
2749         enum mlx5_flow_drv_type ftype = flow->drv_type;
2750
2751         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2752         fops = flow_get_drv_ops(ftype);
2753
2754         return fops->query(dev, flow, actions, data, error);
2755 }
2756
2757 /**
2758  * Query a flow.
2759  *
2760  * @see rte_flow_query()
2761  * @see rte_flow_ops
2762  */
2763 int
2764 mlx5_flow_query(struct rte_eth_dev *dev,
2765                 struct rte_flow *flow,
2766                 const struct rte_flow_action *actions,
2767                 void *data,
2768                 struct rte_flow_error *error)
2769 {
2770         int ret;
2771
2772         ret = flow_drv_query(dev, flow, actions, data, error);
2773         if (ret < 0)
2774                 return ret;
2775         return 0;
2776 }
2777
2778 /**
2779  * Convert a flow director filter to a generic flow.
2780  *
2781  * @param dev
2782  *   Pointer to Ethernet device.
2783  * @param fdir_filter
2784  *   Flow director filter to add.
2785  * @param attributes
2786  *   Generic flow parameters structure.
2787  *
2788  * @return
2789  *   0 on success, a negative errno value otherwise and rte_errno is set.
2790  */
2791 static int
2792 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2793                          const struct rte_eth_fdir_filter *fdir_filter,
2794                          struct mlx5_fdir *attributes)
2795 {
2796         struct mlx5_priv *priv = dev->data->dev_private;
2797         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2798         const struct rte_eth_fdir_masks *mask =
2799                 &dev->data->dev_conf.fdir_conf.mask;
2800
2801         /* Validate queue number. */
2802         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2803                 DRV_LOG(ERR, "port %u invalid queue number %d",
2804                         dev->data->port_id, fdir_filter->action.rx_queue);
2805                 rte_errno = EINVAL;
2806                 return -rte_errno;
2807         }
2808         attributes->attr.ingress = 1;
2809         attributes->items[0] = (struct rte_flow_item) {
2810                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2811                 .spec = &attributes->l2,
2812                 .mask = &attributes->l2_mask,
2813         };
2814         switch (fdir_filter->action.behavior) {
2815         case RTE_ETH_FDIR_ACCEPT:
2816                 attributes->actions[0] = (struct rte_flow_action){
2817                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2818                         .conf = &attributes->queue,
2819                 };
2820                 break;
2821         case RTE_ETH_FDIR_REJECT:
2822                 attributes->actions[0] = (struct rte_flow_action){
2823                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2824                 };
2825                 break;
2826         default:
2827                 DRV_LOG(ERR, "port %u invalid behavior %d",
2828                         dev->data->port_id,
2829                         fdir_filter->action.behavior);
2830                 rte_errno = ENOTSUP;
2831                 return -rte_errno;
2832         }
2833         attributes->queue.index = fdir_filter->action.rx_queue;
2834         /* Handle L3. */
2835         switch (fdir_filter->input.flow_type) {
2836         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2837         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2838         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2839                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2840                         .src_addr = input->flow.ip4_flow.src_ip,
2841                         .dst_addr = input->flow.ip4_flow.dst_ip,
2842                         .time_to_live = input->flow.ip4_flow.ttl,
2843                         .type_of_service = input->flow.ip4_flow.tos,
2844                 };
2845                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2846                         .src_addr = mask->ipv4_mask.src_ip,
2847                         .dst_addr = mask->ipv4_mask.dst_ip,
2848                         .time_to_live = mask->ipv4_mask.ttl,
2849                         .type_of_service = mask->ipv4_mask.tos,
2850                         .next_proto_id = mask->ipv4_mask.proto,
2851                 };
2852                 attributes->items[1] = (struct rte_flow_item){
2853                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2854                         .spec = &attributes->l3,
2855                         .mask = &attributes->l3_mask,
2856                 };
2857                 break;
2858         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2859         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2860         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2861                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2862                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2863                         .proto = input->flow.ipv6_flow.proto,
2864                 };
2865
2866                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2867                        input->flow.ipv6_flow.src_ip,
2868                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2869                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2870                        input->flow.ipv6_flow.dst_ip,
2871                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2872                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2873                        mask->ipv6_mask.src_ip,
2874                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2875                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2876                        mask->ipv6_mask.dst_ip,
2877                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2878                 attributes->items[1] = (struct rte_flow_item){
2879                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2880                         .spec = &attributes->l3,
2881                         .mask = &attributes->l3_mask,
2882                 };
2883                 break;
2884         default:
2885                 DRV_LOG(ERR, "port %u invalid flow type%d",
2886                         dev->data->port_id, fdir_filter->input.flow_type);
2887                 rte_errno = ENOTSUP;
2888                 return -rte_errno;
2889         }
2890         /* Handle L4. */
2891         switch (fdir_filter->input.flow_type) {
2892         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2893                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2894                         .src_port = input->flow.udp4_flow.src_port,
2895                         .dst_port = input->flow.udp4_flow.dst_port,
2896                 };
2897                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2898                         .src_port = mask->src_port_mask,
2899                         .dst_port = mask->dst_port_mask,
2900                 };
2901                 attributes->items[2] = (struct rte_flow_item){
2902                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2903                         .spec = &attributes->l4,
2904                         .mask = &attributes->l4_mask,
2905                 };
2906                 break;
2907         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2908                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2909                         .src_port = input->flow.tcp4_flow.src_port,
2910                         .dst_port = input->flow.tcp4_flow.dst_port,
2911                 };
2912                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2913                         .src_port = mask->src_port_mask,
2914                         .dst_port = mask->dst_port_mask,
2915                 };
2916                 attributes->items[2] = (struct rte_flow_item){
2917                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2918                         .spec = &attributes->l4,
2919                         .mask = &attributes->l4_mask,
2920                 };
2921                 break;
2922         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2923                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2924                         .src_port = input->flow.udp6_flow.src_port,
2925                         .dst_port = input->flow.udp6_flow.dst_port,
2926                 };
2927                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2928                         .src_port = mask->src_port_mask,
2929                         .dst_port = mask->dst_port_mask,
2930                 };
2931                 attributes->items[2] = (struct rte_flow_item){
2932                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2933                         .spec = &attributes->l4,
2934                         .mask = &attributes->l4_mask,
2935                 };
2936                 break;
2937         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2938                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2939                         .src_port = input->flow.tcp6_flow.src_port,
2940                         .dst_port = input->flow.tcp6_flow.dst_port,
2941                 };
2942                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2943                         .src_port = mask->src_port_mask,
2944                         .dst_port = mask->dst_port_mask,
2945                 };
2946                 attributes->items[2] = (struct rte_flow_item){
2947                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2948                         .spec = &attributes->l4,
2949                         .mask = &attributes->l4_mask,
2950                 };
2951                 break;
2952         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2953         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2954                 break;
2955         default:
2956                 DRV_LOG(ERR, "port %u invalid flow type%d",
2957                         dev->data->port_id, fdir_filter->input.flow_type);
2958                 rte_errno = ENOTSUP;
2959                 return -rte_errno;
2960         }
2961         return 0;
2962 }
2963
2964 #define FLOW_FDIR_CMP(f1, f2, fld) \
2965         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2966
2967 /**
2968  * Compare two FDIR flows. If items and actions are identical, the two flows are
2969  * regarded as same.
2970  *
2971  * @param dev
2972  *   Pointer to Ethernet device.
2973  * @param f1
2974  *   FDIR flow to compare.
2975  * @param f2
2976  *   FDIR flow to compare.
2977  *
2978  * @return
2979  *   Zero on match, 1 otherwise.
2980  */
2981 static int
2982 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2983 {
2984         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2985             FLOW_FDIR_CMP(f1, f2, l2) ||
2986             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2987             FLOW_FDIR_CMP(f1, f2, l3) ||
2988             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2989             FLOW_FDIR_CMP(f1, f2, l4) ||
2990             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2991             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2992                 return 1;
2993         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2994             FLOW_FDIR_CMP(f1, f2, queue))
2995                 return 1;
2996         return 0;
2997 }
2998
2999 /**
3000  * Search device flow list to find out a matched FDIR flow.
3001  *
3002  * @param dev
3003  *   Pointer to Ethernet device.
3004  * @param fdir_flow
3005  *   FDIR flow to lookup.
3006  *
3007  * @return
3008  *   Pointer of flow if found, NULL otherwise.
3009  */
3010 static struct rte_flow *
3011 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3012 {
3013         struct mlx5_priv *priv = dev->data->dev_private;
3014         struct rte_flow *flow = NULL;
3015
3016         assert(fdir_flow);
3017         TAILQ_FOREACH(flow, &priv->flows, next) {
3018                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3019                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3020                                 dev->data->port_id, (void *)flow);
3021                         break;
3022                 }
3023         }
3024         return flow;
3025 }
3026
3027 /**
3028  * Add new flow director filter and store it in list.
3029  *
3030  * @param dev
3031  *   Pointer to Ethernet device.
3032  * @param fdir_filter
3033  *   Flow director filter to add.
3034  *
3035  * @return
3036  *   0 on success, a negative errno value otherwise and rte_errno is set.
3037  */
3038 static int
3039 flow_fdir_filter_add(struct rte_eth_dev *dev,
3040                      const struct rte_eth_fdir_filter *fdir_filter)
3041 {
3042         struct mlx5_priv *priv = dev->data->dev_private;
3043         struct mlx5_fdir *fdir_flow;
3044         struct rte_flow *flow;
3045         int ret;
3046
3047         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3048         if (!fdir_flow) {
3049                 rte_errno = ENOMEM;
3050                 return -rte_errno;
3051         }
3052         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3053         if (ret)
3054                 goto error;
3055         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3056         if (flow) {
3057                 rte_errno = EEXIST;
3058                 goto error;
3059         }
3060         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3061                                 fdir_flow->items, fdir_flow->actions, NULL);
3062         if (!flow)
3063                 goto error;
3064         assert(!flow->fdir);
3065         flow->fdir = fdir_flow;
3066         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3067                 dev->data->port_id, (void *)flow);
3068         return 0;
3069 error:
3070         rte_free(fdir_flow);
3071         return -rte_errno;
3072 }
3073
3074 /**
3075  * Delete specific filter.
3076  *
3077  * @param dev
3078  *   Pointer to Ethernet device.
3079  * @param fdir_filter
3080  *   Filter to be deleted.
3081  *
3082  * @return
3083  *   0 on success, a negative errno value otherwise and rte_errno is set.
3084  */
3085 static int
3086 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3087                         const struct rte_eth_fdir_filter *fdir_filter)
3088 {
3089         struct mlx5_priv *priv = dev->data->dev_private;
3090         struct rte_flow *flow;
3091         struct mlx5_fdir fdir_flow = {
3092                 .attr.group = 0,
3093         };
3094         int ret;
3095
3096         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3097         if (ret)
3098                 return -rte_errno;
3099         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3100         if (!flow) {
3101                 rte_errno = ENOENT;
3102                 return -rte_errno;
3103         }
3104         flow_list_destroy(dev, &priv->flows, flow);
3105         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3106                 dev->data->port_id, (void *)flow);
3107         return 0;
3108 }
3109
3110 /**
3111  * Update queue for specific filter.
3112  *
3113  * @param dev
3114  *   Pointer to Ethernet device.
3115  * @param fdir_filter
3116  *   Filter to be updated.
3117  *
3118  * @return
3119  *   0 on success, a negative errno value otherwise and rte_errno is set.
3120  */
3121 static int
3122 flow_fdir_filter_update(struct rte_eth_dev *dev,
3123                         const struct rte_eth_fdir_filter *fdir_filter)
3124 {
3125         int ret;
3126
3127         ret = flow_fdir_filter_delete(dev, fdir_filter);
3128         if (ret)
3129                 return ret;
3130         return flow_fdir_filter_add(dev, fdir_filter);
3131 }
3132
3133 /**
3134  * Flush all filters.
3135  *
3136  * @param dev
3137  *   Pointer to Ethernet device.
3138  */
3139 static void
3140 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3141 {
3142         struct mlx5_priv *priv = dev->data->dev_private;
3143
3144         mlx5_flow_list_flush(dev, &priv->flows);
3145 }
3146
3147 /**
3148  * Get flow director information.
3149  *
3150  * @param dev
3151  *   Pointer to Ethernet device.
3152  * @param[out] fdir_info
3153  *   Resulting flow director information.
3154  */
3155 static void
3156 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3157 {
3158         struct rte_eth_fdir_masks *mask =
3159                 &dev->data->dev_conf.fdir_conf.mask;
3160
3161         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3162         fdir_info->guarant_spc = 0;
3163         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3164         fdir_info->max_flexpayload = 0;
3165         fdir_info->flow_types_mask[0] = 0;
3166         fdir_info->flex_payload_unit = 0;
3167         fdir_info->max_flex_payload_segment_num = 0;
3168         fdir_info->flex_payload_limit = 0;
3169         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3170 }
3171
3172 /**
3173  * Deal with flow director operations.
3174  *
3175  * @param dev
3176  *   Pointer to Ethernet device.
3177  * @param filter_op
3178  *   Operation to perform.
3179  * @param arg
3180  *   Pointer to operation-specific structure.
3181  *
3182  * @return
3183  *   0 on success, a negative errno value otherwise and rte_errno is set.
3184  */
3185 static int
3186 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3187                     void *arg)
3188 {
3189         enum rte_fdir_mode fdir_mode =
3190                 dev->data->dev_conf.fdir_conf.mode;
3191
3192         if (filter_op == RTE_ETH_FILTER_NOP)
3193                 return 0;
3194         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3195             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3196                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3197                         dev->data->port_id, fdir_mode);
3198                 rte_errno = EINVAL;
3199                 return -rte_errno;
3200         }
3201         switch (filter_op) {
3202         case RTE_ETH_FILTER_ADD:
3203                 return flow_fdir_filter_add(dev, arg);
3204         case RTE_ETH_FILTER_UPDATE:
3205                 return flow_fdir_filter_update(dev, arg);
3206         case RTE_ETH_FILTER_DELETE:
3207                 return flow_fdir_filter_delete(dev, arg);
3208         case RTE_ETH_FILTER_FLUSH:
3209                 flow_fdir_filter_flush(dev);
3210                 break;
3211         case RTE_ETH_FILTER_INFO:
3212                 flow_fdir_info_get(dev, arg);
3213                 break;
3214         default:
3215                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3216                         dev->data->port_id, filter_op);
3217                 rte_errno = EINVAL;
3218                 return -rte_errno;
3219         }
3220         return 0;
3221 }
3222
3223 /**
3224  * Manage filter operations.
3225  *
3226  * @param dev
3227  *   Pointer to Ethernet device structure.
3228  * @param filter_type
3229  *   Filter type.
3230  * @param filter_op
3231  *   Operation to perform.
3232  * @param arg
3233  *   Pointer to operation-specific structure.
3234  *
3235  * @return
3236  *   0 on success, a negative errno value otherwise and rte_errno is set.
3237  */
3238 int
3239 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3240                      enum rte_filter_type filter_type,
3241                      enum rte_filter_op filter_op,
3242                      void *arg)
3243 {
3244         switch (filter_type) {
3245         case RTE_ETH_FILTER_GENERIC:
3246                 if (filter_op != RTE_ETH_FILTER_GET) {
3247                         rte_errno = EINVAL;
3248                         return -rte_errno;
3249                 }
3250                 *(const void **)arg = &mlx5_flow_ops;
3251                 return 0;
3252         case RTE_ETH_FILTER_FDIR:
3253                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3254         default:
3255                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3256                         dev->data->port_id, filter_type);
3257                 rte_errno = ENOTSUP;
3258                 return -rte_errno;
3259         }
3260         return 0;
3261 }
3262
3263 #define MLX5_POOL_QUERY_FREQ_US 1000000
3264
3265 /**
3266  * Set the periodic procedure for triggering asynchronous batch queries for all
3267  * the counter pools.
3268  *
3269  * @param[in] sh
3270  *   Pointer to mlx5_ibv_shared object.
3271  */
3272 void
3273 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3274 {
3275         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3276         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3277         uint32_t us;
3278
3279         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3280         pools_n += rte_atomic16_read(&cont->n_valid);
3281         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3282         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3283         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3284                 sh->cmng.query_thread_on = 0;
3285                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3286         } else {
3287                 sh->cmng.query_thread_on = 1;
3288         }
3289 }
3290
3291 /**
3292  * The periodic procedure for triggering asynchronous batch queries for all the
3293  * counter pools. This function is probably called by the host thread.
3294  *
3295  * @param[in] arg
3296  *   The parameter for the alarm process.
3297  */
3298 void
3299 mlx5_flow_query_alarm(void *arg)
3300 {
3301         struct mlx5_ibv_shared *sh = arg;
3302         struct mlx5_devx_obj *dcs;
3303         uint16_t offset;
3304         int ret;
3305         uint8_t batch = sh->cmng.batch;
3306         uint16_t pool_index = sh->cmng.pool_index;
3307         struct mlx5_pools_container *cont;
3308         struct mlx5_pools_container *mcont;
3309         struct mlx5_flow_counter_pool *pool;
3310
3311         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3312                 goto set_alarm;
3313 next_container:
3314         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3315         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3316         /* Check if resize was done and need to flip a container. */
3317         if (cont != mcont) {
3318                 if (cont->pools) {
3319                         /* Clean the old container. */
3320                         rte_free(cont->pools);
3321                         memset(cont, 0, sizeof(*cont));
3322                 }
3323                 rte_cio_wmb();
3324                  /* Flip the host container. */
3325                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3326                 cont = mcont;
3327         }
3328         if (!cont->pools) {
3329                 /* 2 empty containers case is unexpected. */
3330                 if (unlikely(batch != sh->cmng.batch))
3331                         goto set_alarm;
3332                 batch ^= 0x1;
3333                 pool_index = 0;
3334                 goto next_container;
3335         }
3336         pool = cont->pools[pool_index];
3337         if (pool->raw_hw)
3338                 /* There is a pool query in progress. */
3339                 goto set_alarm;
3340         pool->raw_hw =
3341                 LIST_FIRST(&sh->cmng.free_stat_raws);
3342         if (!pool->raw_hw)
3343                 /* No free counter statistics raw memory. */
3344                 goto set_alarm;
3345         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3346                                                               (&pool->a64_dcs);
3347         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3348         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3349                                                offset, NULL, NULL,
3350                                                pool->raw_hw->mem_mng->dm->id,
3351                                                (void *)(uintptr_t)
3352                                                (pool->raw_hw->data + offset),
3353                                                sh->devx_comp,
3354                                                (uint64_t)(uintptr_t)pool);
3355         if (ret) {
3356                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3357                         " %d\n", pool->min_dcs->id);
3358                 pool->raw_hw = NULL;
3359                 goto set_alarm;
3360         }
3361         pool->raw_hw->min_dcs_id = dcs->id;
3362         LIST_REMOVE(pool->raw_hw, next);
3363         sh->cmng.pending_queries++;
3364         pool_index++;
3365         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3366                 batch ^= 0x1;
3367                 pool_index = 0;
3368         }
3369 set_alarm:
3370         sh->cmng.batch = batch;
3371         sh->cmng.pool_index = pool_index;
3372         mlx5_set_query_alarm(sh);
3373 }
3374
3375 /**
3376  * Handler for the HW respond about ready values from an asynchronous batch
3377  * query. This function is probably called by the host thread.
3378  *
3379  * @param[in] sh
3380  *   The pointer to the shared IB device context.
3381  * @param[in] async_id
3382  *   The Devx async ID.
3383  * @param[in] status
3384  *   The status of the completion.
3385  */
3386 void
3387 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3388                                   uint64_t async_id, int status)
3389 {
3390         struct mlx5_flow_counter_pool *pool =
3391                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3392         struct mlx5_counter_stats_raw *raw_to_free;
3393
3394         if (unlikely(status)) {
3395                 raw_to_free = pool->raw_hw;
3396         } else {
3397                 raw_to_free = pool->raw;
3398                 rte_spinlock_lock(&pool->sl);
3399                 pool->raw = pool->raw_hw;
3400                 rte_spinlock_unlock(&pool->sl);
3401                 rte_atomic64_add(&pool->query_gen, 1);
3402                 /* Be sure the new raw counters data is updated in memory. */
3403                 rte_cio_wmb();
3404         }
3405         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3406         pool->raw_hw = NULL;
3407         sh->cmng.pending_queries--;
3408 }