net/mlx5: fix detection and error for multiple item layers
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_action actions[2];
243         struct rte_flow_item items[4];
244         struct rte_flow_item_eth l2;
245         struct rte_flow_item_eth l2_mask;
246         union {
247                 struct rte_flow_item_ipv4 ipv4;
248                 struct rte_flow_item_ipv6 ipv6;
249         } l3;
250         union {
251                 struct rte_flow_item_ipv4 ipv4;
252                 struct rte_flow_item_ipv6 ipv6;
253         } l3_mask;
254         union {
255                 struct rte_flow_item_udp udp;
256                 struct rte_flow_item_tcp tcp;
257         } l4;
258         union {
259                 struct rte_flow_item_udp udp;
260                 struct rte_flow_item_tcp tcp;
261         } l4_mask;
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct {
319                 struct ibv_flow_attr attr;
320                 struct ibv_flow_spec_eth eth;
321                 struct ibv_flow_spec_action_drop drop;
322         } flow_attr = {
323                 .attr = {
324                         .num_of_specs = 2,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         switch (priority) {
354         case 8:
355                 priority = RTE_DIM(priority_map_3);
356                 break;
357         case 16:
358                 priority = RTE_DIM(priority_map_5);
359                 break;
360         default:
361                 rte_errno = ENOTSUP;
362                 DRV_LOG(ERR,
363                         "port %u verbs maximum priority: %d expected 8/16",
364                         dev->data->port_id, vprio[i]);
365                 return -rte_errno;
366         }
367         mlx5_hrxq_drop_release(dev);
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (queue->index >= priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           &queue->index,
853                                           "queue index out of range");
854         if (!(*priv->rxqs)[queue->index])
855                 return rte_flow_error_set(error, EINVAL,
856                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857                                           &queue->index,
858                                           "queue is not configured");
859         if (attr->egress)
860                 return rte_flow_error_set(error, ENOTSUP,
861                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862                                           "queue action not supported for "
863                                           "egress");
864         return 0;
865 }
866
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886                               uint64_t action_flags,
887                               struct rte_eth_dev *dev,
888                               const struct rte_flow_attr *attr,
889                               struct rte_flow_error *error)
890 {
891         struct priv *priv = dev->data->dev_private;
892         const struct rte_flow_action_rss *rss = action->conf;
893         unsigned int i;
894
895         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896                 return rte_flow_error_set(error, EINVAL,
897                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898                                           "can't have 2 fate actions"
899                                           " in same flow");
900         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902                 return rte_flow_error_set(error, ENOTSUP,
903                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904                                           &rss->func,
905                                           "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907         if (rss->level > 2)
908 #else
909         if (rss->level > 1)
910 #endif
911                 return rte_flow_error_set(error, ENOTSUP,
912                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913                                           &rss->level,
914                                           "tunnel RSS is not supported");
915         if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
916                 return rte_flow_error_set(error, ENOTSUP,
917                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
918                                           &rss->key_len,
919                                           "RSS hash key too small");
920         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
921                 return rte_flow_error_set(error, ENOTSUP,
922                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923                                           &rss->key_len,
924                                           "RSS hash key too large");
925         if (rss->queue_num > priv->config.ind_table_max_size)
926                 return rte_flow_error_set(error, ENOTSUP,
927                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
928                                           &rss->queue_num,
929                                           "number of queues too large");
930         if (rss->types & MLX5_RSS_HF_MASK)
931                 return rte_flow_error_set(error, ENOTSUP,
932                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
933                                           &rss->types,
934                                           "some RSS protocols are not"
935                                           " supported");
936         for (i = 0; i != rss->queue_num; ++i) {
937                 if (!(*priv->rxqs)[rss->queue[i]])
938                         return rte_flow_error_set
939                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
940                                  &rss->queue[i], "queue is not configured");
941         }
942         if (attr->egress)
943                 return rte_flow_error_set(error, ENOTSUP,
944                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
945                                           "rss action not supported for "
946                                           "egress");
947         return 0;
948 }
949
950 /*
951  * Validate the count action.
952  *
953  * @param[in] dev
954  *   Pointer to the Ethernet device structure.
955  * @param[in] attr
956  *   Attributes of flow that includes this action.
957  * @param[out] error
958  *   Pointer to error structure.
959  *
960  * @return
961  *   0 on success, a negative errno value otherwise and rte_ernno is set.
962  */
963 int
964 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
965                                 const struct rte_flow_attr *attr,
966                                 struct rte_flow_error *error)
967 {
968         if (attr->egress)
969                 return rte_flow_error_set(error, ENOTSUP,
970                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
971                                           "count action not supported for "
972                                           "egress");
973         return 0;
974 }
975
976 /**
977  * Verify the @p attributes will be correctly understood by the NIC and store
978  * them in the @p flow if everything is correct.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attributes
983  *   Pointer to flow attributes
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
992                               const struct rte_flow_attr *attributes,
993                               struct rte_flow_error *error)
994 {
995         struct priv *priv = dev->data->dev_private;
996         uint32_t priority_max = priv->config.flow_prio - 1;
997
998         if (attributes->group)
999                 return rte_flow_error_set(error, ENOTSUP,
1000                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1001                                           NULL, "groups is not supported");
1002         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1003             attributes->priority >= priority_max)
1004                 return rte_flow_error_set(error, ENOTSUP,
1005                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1006                                           NULL, "priority out of range");
1007         if (attributes->egress)
1008                 return rte_flow_error_set(error, ENOTSUP,
1009                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1010                                           "egress is not supported");
1011         if (attributes->transfer)
1012                 return rte_flow_error_set(error, ENOTSUP,
1013                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1014                                           NULL, "transfer is not supported");
1015         if (!attributes->ingress)
1016                 return rte_flow_error_set(error, EINVAL,
1017                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1018                                           NULL,
1019                                           "ingress attribute is mandatory");
1020         return 0;
1021 }
1022
1023 /**
1024  * Validate Ethernet item.
1025  *
1026  * @param[in] item
1027  *   Item specification.
1028  * @param[in] item_flags
1029  *   Bit-fields that holds the items detected until now.
1030  * @param[out] error
1031  *   Pointer to error structure.
1032  *
1033  * @return
1034  *   0 on success, a negative errno value otherwise and rte_errno is set.
1035  */
1036 int
1037 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1038                             uint64_t item_flags,
1039                             struct rte_flow_error *error)
1040 {
1041         const struct rte_flow_item_eth *mask = item->mask;
1042         const struct rte_flow_item_eth nic_mask = {
1043                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1044                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1045                 .type = RTE_BE16(0xffff),
1046         };
1047         int ret;
1048         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1049         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1050                                        MLX5_FLOW_LAYER_OUTER_L2;
1051
1052         if (item_flags & ethm)
1053                 return rte_flow_error_set(error, ENOTSUP,
1054                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1055                                           "multiple L2 layers not supported");
1056         if (!mask)
1057                 mask = &rte_flow_item_eth_mask;
1058         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1059                                         (const uint8_t *)&nic_mask,
1060                                         sizeof(struct rte_flow_item_eth),
1061                                         error);
1062         return ret;
1063 }
1064
1065 /**
1066  * Validate VLAN item.
1067  *
1068  * @param[in] item
1069  *   Item specification.
1070  * @param[in] item_flags
1071  *   Bit-fields that holds the items detected until now.
1072  * @param[out] error
1073  *   Pointer to error structure.
1074  *
1075  * @return
1076  *   0 on success, a negative errno value otherwise and rte_errno is set.
1077  */
1078 int
1079 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1080                              uint64_t item_flags,
1081                              struct rte_flow_error *error)
1082 {
1083         const struct rte_flow_item_vlan *spec = item->spec;
1084         const struct rte_flow_item_vlan *mask = item->mask;
1085         const struct rte_flow_item_vlan nic_mask = {
1086                 .tci = RTE_BE16(0x0fff),
1087                 .inner_type = RTE_BE16(0xffff),
1088         };
1089         uint16_t vlan_tag = 0;
1090         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1091         int ret;
1092         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1093                                         MLX5_FLOW_LAYER_INNER_L4) :
1094                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1095                                         MLX5_FLOW_LAYER_OUTER_L4);
1096         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1097                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1098
1099         if (item_flags & vlanm)
1100                 return rte_flow_error_set(error, EINVAL,
1101                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1102                                           "multiple VLAN layers not supported");
1103         else if ((item_flags & l34m) != 0)
1104                 return rte_flow_error_set(error, EINVAL,
1105                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1106                                           "L2 layer cannot follow L3/L4 layer");
1107         if (!mask)
1108                 mask = &rte_flow_item_vlan_mask;
1109         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1110                                         (const uint8_t *)&nic_mask,
1111                                         sizeof(struct rte_flow_item_vlan),
1112                                         error);
1113         if (ret)
1114                 return ret;
1115         if (spec) {
1116                 vlan_tag = spec->tci;
1117                 vlan_tag &= mask->tci;
1118         }
1119         /*
1120          * From verbs perspective an empty VLAN is equivalent
1121          * to a packet without VLAN layer.
1122          */
1123         if (!vlan_tag)
1124                 return rte_flow_error_set(error, EINVAL,
1125                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1126                                           item->spec,
1127                                           "VLAN cannot be empty");
1128         return 0;
1129 }
1130
1131 /**
1132  * Validate IPV4 item.
1133  *
1134  * @param[in] item
1135  *   Item specification.
1136  * @param[in] item_flags
1137  *   Bit-fields that holds the items detected until now.
1138  * @param[out] error
1139  *   Pointer to error structure.
1140  *
1141  * @return
1142  *   0 on success, a negative errno value otherwise and rte_errno is set.
1143  */
1144 int
1145 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1146                              uint64_t item_flags,
1147                              struct rte_flow_error *error)
1148 {
1149         const struct rte_flow_item_ipv4 *mask = item->mask;
1150         const struct rte_flow_item_ipv4 nic_mask = {
1151                 .hdr = {
1152                         .src_addr = RTE_BE32(0xffffffff),
1153                         .dst_addr = RTE_BE32(0xffffffff),
1154                         .type_of_service = 0xff,
1155                         .next_proto_id = 0xff,
1156                 },
1157         };
1158         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1159         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1160                                       MLX5_FLOW_LAYER_OUTER_L3;
1161         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1162                                       MLX5_FLOW_LAYER_OUTER_L4;
1163         int ret;
1164
1165         if (item_flags & l3m)
1166                 return rte_flow_error_set(error, ENOTSUP,
1167                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1168                                           "multiple L3 layers not supported");
1169         else if (item_flags & l4m)
1170                 return rte_flow_error_set(error, EINVAL,
1171                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1172                                           "L3 cannot follow an L4 layer.");
1173         if (!mask)
1174                 mask = &rte_flow_item_ipv4_mask;
1175         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1176                                         (const uint8_t *)&nic_mask,
1177                                         sizeof(struct rte_flow_item_ipv4),
1178                                         error);
1179         if (ret < 0)
1180                 return ret;
1181         return 0;
1182 }
1183
1184 /**
1185  * Validate IPV6 item.
1186  *
1187  * @param[in] item
1188  *   Item specification.
1189  * @param[in] item_flags
1190  *   Bit-fields that holds the items detected until now.
1191  * @param[out] error
1192  *   Pointer to error structure.
1193  *
1194  * @return
1195  *   0 on success, a negative errno value otherwise and rte_errno is set.
1196  */
1197 int
1198 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1199                              uint64_t item_flags,
1200                              struct rte_flow_error *error)
1201 {
1202         const struct rte_flow_item_ipv6 *mask = item->mask;
1203         const struct rte_flow_item_ipv6 nic_mask = {
1204                 .hdr = {
1205                         .src_addr =
1206                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1207                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1208                         .dst_addr =
1209                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1210                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1211                         .vtc_flow = RTE_BE32(0xffffffff),
1212                         .proto = 0xff,
1213                         .hop_limits = 0xff,
1214                 },
1215         };
1216         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1217         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1218                                       MLX5_FLOW_LAYER_OUTER_L3;
1219         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1220                                       MLX5_FLOW_LAYER_OUTER_L4;
1221         int ret;
1222
1223         if (item_flags & l3m)
1224                 return rte_flow_error_set(error, ENOTSUP,
1225                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1226                                           "multiple L3 layers not supported");
1227         else if (item_flags & l4m)
1228                 return rte_flow_error_set(error, EINVAL,
1229                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1230                                           "L3 cannot follow an L4 layer.");
1231         /*
1232          * IPv6 is not recognised by the NIC inside a GRE tunnel.
1233          * Such support has to be disabled as the rule will be
1234          * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1235          * Mellanox OFED 4.4-1.0.0.0.
1236          */
1237         if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE)
1238                 return rte_flow_error_set(error, ENOTSUP,
1239                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1240                                           "IPv6 inside a GRE tunnel is"
1241                                           " not recognised.");
1242         if (!mask)
1243                 mask = &rte_flow_item_ipv6_mask;
1244         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1245                                         (const uint8_t *)&nic_mask,
1246                                         sizeof(struct rte_flow_item_ipv6),
1247                                         error);
1248         if (ret < 0)
1249                 return ret;
1250         return 0;
1251 }
1252
1253 /**
1254  * Validate UDP item.
1255  *
1256  * @param[in] item
1257  *   Item specification.
1258  * @param[in] item_flags
1259  *   Bit-fields that holds the items detected until now.
1260  * @param[in] target_protocol
1261  *   The next protocol in the previous item.
1262  * @param[in] flow_mask
1263  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1264  * @param[out] error
1265  *   Pointer to error structure.
1266  *
1267  * @return
1268  *   0 on success, a negative errno value otherwise and rte_errno is set.
1269  */
1270 int
1271 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1272                             uint64_t item_flags,
1273                             uint8_t target_protocol,
1274                             struct rte_flow_error *error)
1275 {
1276         const struct rte_flow_item_udp *mask = item->mask;
1277         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1278         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1279                                       MLX5_FLOW_LAYER_OUTER_L3;
1280         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1281                                       MLX5_FLOW_LAYER_OUTER_L4;
1282         int ret;
1283
1284         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1285                 return rte_flow_error_set(error, EINVAL,
1286                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1287                                           "protocol filtering not compatible"
1288                                           " with UDP layer");
1289         if (!(item_flags & l3m))
1290                 return rte_flow_error_set(error, EINVAL,
1291                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1292                                           "L3 is mandatory to filter on L4");
1293         if (item_flags & l4m)
1294                 return rte_flow_error_set(error, EINVAL,
1295                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1296                                           "multiple L4 layers not supported");
1297         if (!mask)
1298                 mask = &rte_flow_item_udp_mask;
1299         ret = mlx5_flow_item_acceptable
1300                 (item, (const uint8_t *)mask,
1301                  (const uint8_t *)&rte_flow_item_udp_mask,
1302                  sizeof(struct rte_flow_item_udp), error);
1303         if (ret < 0)
1304                 return ret;
1305         return 0;
1306 }
1307
1308 /**
1309  * Validate TCP item.
1310  *
1311  * @param[in] item
1312  *   Item specification.
1313  * @param[in] item_flags
1314  *   Bit-fields that holds the items detected until now.
1315  * @param[in] target_protocol
1316  *   The next protocol in the previous item.
1317  * @param[out] error
1318  *   Pointer to error structure.
1319  *
1320  * @return
1321  *   0 on success, a negative errno value otherwise and rte_errno is set.
1322  */
1323 int
1324 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1325                             uint64_t item_flags,
1326                             uint8_t target_protocol,
1327                             const struct rte_flow_item_tcp *flow_mask,
1328                             struct rte_flow_error *error)
1329 {
1330         const struct rte_flow_item_tcp *mask = item->mask;
1331         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1332         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1333                                       MLX5_FLOW_LAYER_OUTER_L3;
1334         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1335                                       MLX5_FLOW_LAYER_OUTER_L4;
1336         int ret;
1337
1338         assert(flow_mask);
1339         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1340                 return rte_flow_error_set(error, EINVAL,
1341                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1342                                           "protocol filtering not compatible"
1343                                           " with TCP layer");
1344         if (!(item_flags & l3m))
1345                 return rte_flow_error_set(error, EINVAL,
1346                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1347                                           "L3 is mandatory to filter on L4");
1348         if (item_flags & l4m)
1349                 return rte_flow_error_set(error, EINVAL,
1350                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1351                                           "multiple L4 layers not supported");
1352         if (!mask)
1353                 mask = &rte_flow_item_tcp_mask;
1354         ret = mlx5_flow_item_acceptable
1355                 (item, (const uint8_t *)mask,
1356                  (const uint8_t *)flow_mask,
1357                  sizeof(struct rte_flow_item_tcp), error);
1358         if (ret < 0)
1359                 return ret;
1360         return 0;
1361 }
1362
1363 /**
1364  * Validate VXLAN item.
1365  *
1366  * @param[in] item
1367  *   Item specification.
1368  * @param[in] item_flags
1369  *   Bit-fields that holds the items detected until now.
1370  * @param[in] target_protocol
1371  *   The next protocol in the previous item.
1372  * @param[out] error
1373  *   Pointer to error structure.
1374  *
1375  * @return
1376  *   0 on success, a negative errno value otherwise and rte_errno is set.
1377  */
1378 int
1379 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1380                               uint64_t item_flags,
1381                               struct rte_flow_error *error)
1382 {
1383         const struct rte_flow_item_vxlan *spec = item->spec;
1384         const struct rte_flow_item_vxlan *mask = item->mask;
1385         int ret;
1386         union vni {
1387                 uint32_t vlan_id;
1388                 uint8_t vni[4];
1389         } id = { .vlan_id = 0, };
1390         uint32_t vlan_id = 0;
1391
1392
1393         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1394                 return rte_flow_error_set(error, ENOTSUP,
1395                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1396                                           "multiple tunnel layers not"
1397                                           " supported");
1398         /*
1399          * Verify only UDPv4 is present as defined in
1400          * https://tools.ietf.org/html/rfc7348
1401          */
1402         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1403                 return rte_flow_error_set(error, EINVAL,
1404                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1405                                           "no outer UDP layer found");
1406         if (!mask)
1407                 mask = &rte_flow_item_vxlan_mask;
1408         ret = mlx5_flow_item_acceptable
1409                 (item, (const uint8_t *)mask,
1410                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1411                  sizeof(struct rte_flow_item_vxlan),
1412                  error);
1413         if (ret < 0)
1414                 return ret;
1415         if (spec) {
1416                 memcpy(&id.vni[1], spec->vni, 3);
1417                 vlan_id = id.vlan_id;
1418                 memcpy(&id.vni[1], mask->vni, 3);
1419                 vlan_id &= id.vlan_id;
1420         }
1421         /*
1422          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1423          * only this layer is defined in the Verbs specification it is
1424          * interpreted as wildcard and all packets will match this
1425          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1426          * udp), all packets matching the layers before will also
1427          * match this rule.  To avoid such situation, VNI 0 is
1428          * currently refused.
1429          */
1430         if (!vlan_id)
1431                 return rte_flow_error_set(error, ENOTSUP,
1432                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1433                                           "VXLAN vni cannot be 0");
1434         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1435                 return rte_flow_error_set(error, ENOTSUP,
1436                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1437                                           "VXLAN tunnel must be fully defined");
1438         return 0;
1439 }
1440
1441 /**
1442  * Validate VXLAN_GPE item.
1443  *
1444  * @param[in] item
1445  *   Item specification.
1446  * @param[in] item_flags
1447  *   Bit-fields that holds the items detected until now.
1448  * @param[in] priv
1449  *   Pointer to the private data structure.
1450  * @param[in] target_protocol
1451  *   The next protocol in the previous item.
1452  * @param[out] error
1453  *   Pointer to error structure.
1454  *
1455  * @return
1456  *   0 on success, a negative errno value otherwise and rte_errno is set.
1457  */
1458 int
1459 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1460                                   uint64_t item_flags,
1461                                   struct rte_eth_dev *dev,
1462                                   struct rte_flow_error *error)
1463 {
1464         struct priv *priv = dev->data->dev_private;
1465         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1466         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1467         int ret;
1468         union vni {
1469                 uint32_t vlan_id;
1470                 uint8_t vni[4];
1471         } id = { .vlan_id = 0, };
1472         uint32_t vlan_id = 0;
1473
1474         if (!priv->config.l3_vxlan_en)
1475                 return rte_flow_error_set(error, ENOTSUP,
1476                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1477                                           "L3 VXLAN is not enabled by device"
1478                                           " parameter and/or not configured in"
1479                                           " firmware");
1480         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1481                 return rte_flow_error_set(error, ENOTSUP,
1482                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1483                                           "multiple tunnel layers not"
1484                                           " supported");
1485         /*
1486          * Verify only UDPv4 is present as defined in
1487          * https://tools.ietf.org/html/rfc7348
1488          */
1489         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1490                 return rte_flow_error_set(error, EINVAL,
1491                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1492                                           "no outer UDP layer found");
1493         if (!mask)
1494                 mask = &rte_flow_item_vxlan_gpe_mask;
1495         ret = mlx5_flow_item_acceptable
1496                 (item, (const uint8_t *)mask,
1497                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1498                  sizeof(struct rte_flow_item_vxlan_gpe),
1499                  error);
1500         if (ret < 0)
1501                 return ret;
1502         if (spec) {
1503                 if (spec->protocol)
1504                         return rte_flow_error_set(error, ENOTSUP,
1505                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1506                                                   item,
1507                                                   "VxLAN-GPE protocol"
1508                                                   " not supported");
1509                 memcpy(&id.vni[1], spec->vni, 3);
1510                 vlan_id = id.vlan_id;
1511                 memcpy(&id.vni[1], mask->vni, 3);
1512                 vlan_id &= id.vlan_id;
1513         }
1514         /*
1515          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1516          * layer is defined in the Verbs specification it is interpreted as
1517          * wildcard and all packets will match this rule, if it follows a full
1518          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1519          * before will also match this rule.  To avoid such situation, VNI 0
1520          * is currently refused.
1521          */
1522         if (!vlan_id)
1523                 return rte_flow_error_set(error, ENOTSUP,
1524                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1525                                           "VXLAN-GPE vni cannot be 0");
1526         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1527                 return rte_flow_error_set(error, ENOTSUP,
1528                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1529                                           "VXLAN-GPE tunnel must be fully"
1530                                           " defined");
1531         return 0;
1532 }
1533
1534 /**
1535  * Validate GRE item.
1536  *
1537  * @param[in] item
1538  *   Item specification.
1539  * @param[in] item_flags
1540  *   Bit flags to mark detected items.
1541  * @param[in] target_protocol
1542  *   The next protocol in the previous item.
1543  * @param[out] error
1544  *   Pointer to error structure.
1545  *
1546  * @return
1547  *   0 on success, a negative errno value otherwise and rte_errno is set.
1548  */
1549 int
1550 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1551                             uint64_t item_flags,
1552                             uint8_t target_protocol,
1553                             struct rte_flow_error *error)
1554 {
1555         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1556         const struct rte_flow_item_gre *mask = item->mask;
1557         int ret;
1558
1559         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1560                 return rte_flow_error_set(error, EINVAL,
1561                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1562                                           "protocol filtering not compatible"
1563                                           " with this GRE layer");
1564         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1565                 return rte_flow_error_set(error, ENOTSUP,
1566                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1567                                           "multiple tunnel layers not"
1568                                           " supported");
1569         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1570                 return rte_flow_error_set(error, ENOTSUP,
1571                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1572                                           "L3 Layer is missing");
1573         if (!mask)
1574                 mask = &rte_flow_item_gre_mask;
1575         ret = mlx5_flow_item_acceptable
1576                 (item, (const uint8_t *)mask,
1577                  (const uint8_t *)&rte_flow_item_gre_mask,
1578                  sizeof(struct rte_flow_item_gre), error);
1579         if (ret < 0)
1580                 return ret;
1581 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1582         if (spec && (spec->protocol & mask->protocol))
1583                 return rte_flow_error_set(error, ENOTSUP,
1584                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1585                                           "without MPLS support the"
1586                                           " specification cannot be used for"
1587                                           " filtering");
1588 #endif
1589         return 0;
1590 }
1591
1592 /**
1593  * Validate MPLS item.
1594  *
1595  * @param[in] item
1596  *   Item specification.
1597  * @param[in] item_flags
1598  *   Bit-fields that holds the items detected until now.
1599  * @param[in] target_protocol
1600  *   The next protocol in the previous item.
1601  * @param[out] error
1602  *   Pointer to error structure.
1603  *
1604  * @return
1605  *   0 on success, a negative errno value otherwise and rte_errno is set.
1606  */
1607 int
1608 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused,
1609                              uint64_t item_flags __rte_unused,
1610                              uint8_t target_protocol __rte_unused,
1611                              struct rte_flow_error *error)
1612 {
1613 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1614         const struct rte_flow_item_mpls *mask = item->mask;
1615         int ret;
1616
1617         if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS)
1618                 return rte_flow_error_set(error, EINVAL,
1619                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1620                                           "protocol filtering not compatible"
1621                                           " with MPLS layer");
1622         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1623                 return rte_flow_error_set(error, ENOTSUP,
1624                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1625                                           "multiple tunnel layers not"
1626                                           " supported");
1627         if (!mask)
1628                 mask = &rte_flow_item_mpls_mask;
1629         ret = mlx5_flow_item_acceptable
1630                 (item, (const uint8_t *)mask,
1631                  (const uint8_t *)&rte_flow_item_mpls_mask,
1632                  sizeof(struct rte_flow_item_mpls), error);
1633         if (ret < 0)
1634                 return ret;
1635         return 0;
1636 #endif
1637         return rte_flow_error_set(error, ENOTSUP,
1638                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1639                                   "MPLS is not supported by Verbs, please"
1640                                   " update.");
1641 }
1642
1643 static int
1644 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1645                    const struct rte_flow_attr *attr __rte_unused,
1646                    const struct rte_flow_item items[] __rte_unused,
1647                    const struct rte_flow_action actions[] __rte_unused,
1648                    struct rte_flow_error *error __rte_unused)
1649 {
1650         rte_errno = ENOTSUP;
1651         return -rte_errno;
1652 }
1653
1654 static struct mlx5_flow *
1655 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1656                   const struct rte_flow_item items[] __rte_unused,
1657                   const struct rte_flow_action actions[] __rte_unused,
1658                   uint64_t *item_flags __rte_unused,
1659                   uint64_t *action_flags __rte_unused,
1660                   struct rte_flow_error *error __rte_unused)
1661 {
1662         rte_errno = ENOTSUP;
1663         return NULL;
1664 }
1665
1666 static int
1667 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1668                     struct mlx5_flow *dev_flow __rte_unused,
1669                     const struct rte_flow_attr *attr __rte_unused,
1670                     const struct rte_flow_item items[] __rte_unused,
1671                     const struct rte_flow_action actions[] __rte_unused,
1672                     struct rte_flow_error *error __rte_unused)
1673 {
1674         rte_errno = ENOTSUP;
1675         return -rte_errno;
1676 }
1677
1678 static int
1679 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1680                 struct rte_flow *flow __rte_unused,
1681                 struct rte_flow_error *error __rte_unused)
1682 {
1683         rte_errno = ENOTSUP;
1684         return -rte_errno;
1685 }
1686
1687 static void
1688 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1689                  struct rte_flow *flow __rte_unused)
1690 {
1691 }
1692
1693 static void
1694 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1695                   struct rte_flow *flow __rte_unused)
1696 {
1697 }
1698
1699 static int
1700 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1701                 struct rte_flow *flow __rte_unused,
1702                 const struct rte_flow_action *actions __rte_unused,
1703                 void *data __rte_unused,
1704                 struct rte_flow_error *error __rte_unused)
1705 {
1706         rte_errno = ENOTSUP;
1707         return -rte_errno;
1708 }
1709
1710 /* Void driver to protect from null pointer reference. */
1711 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1712         .validate = flow_null_validate,
1713         .prepare = flow_null_prepare,
1714         .translate = flow_null_translate,
1715         .apply = flow_null_apply,
1716         .remove = flow_null_remove,
1717         .destroy = flow_null_destroy,
1718         .query = flow_null_query,
1719 };
1720
1721 /**
1722  * Select flow driver type according to flow attributes and device
1723  * configuration.
1724  *
1725  * @param[in] dev
1726  *   Pointer to the dev structure.
1727  * @param[in] attr
1728  *   Pointer to the flow attributes.
1729  *
1730  * @return
1731  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1732  */
1733 static enum mlx5_flow_drv_type
1734 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1735 {
1736         struct priv *priv = dev->data->dev_private;
1737         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1738
1739         if (attr->transfer)
1740                 type = MLX5_FLOW_TYPE_TCF;
1741         else
1742                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1743                                                  MLX5_FLOW_TYPE_VERBS;
1744         return type;
1745 }
1746
1747 #define flow_get_drv_ops(type) flow_drv_ops[type]
1748
1749 /**
1750  * Flow driver validation API. This abstracts calling driver specific functions.
1751  * The type of flow driver is determined according to flow attributes.
1752  *
1753  * @param[in] dev
1754  *   Pointer to the dev structure.
1755  * @param[in] attr
1756  *   Pointer to the flow attributes.
1757  * @param[in] items
1758  *   Pointer to the list of items.
1759  * @param[in] actions
1760  *   Pointer to the list of actions.
1761  * @param[out] error
1762  *   Pointer to the error structure.
1763  *
1764  * @return
1765  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1766  */
1767 static inline int
1768 flow_drv_validate(struct rte_eth_dev *dev,
1769                   const struct rte_flow_attr *attr,
1770                   const struct rte_flow_item items[],
1771                   const struct rte_flow_action actions[],
1772                   struct rte_flow_error *error)
1773 {
1774         const struct mlx5_flow_driver_ops *fops;
1775         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1776
1777         fops = flow_get_drv_ops(type);
1778         return fops->validate(dev, attr, items, actions, error);
1779 }
1780
1781 /**
1782  * Flow driver preparation API. This abstracts calling driver specific
1783  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1784  * calculates the size of memory required for device flow, allocates the memory,
1785  * initializes the device flow and returns the pointer.
1786  *
1787  * @param[in] attr
1788  *   Pointer to the flow attributes.
1789  * @param[in] items
1790  *   Pointer to the list of items.
1791  * @param[in] actions
1792  *   Pointer to the list of actions.
1793  * @param[out] item_flags
1794  *   Pointer to bit mask of all items detected.
1795  * @param[out] action_flags
1796  *   Pointer to bit mask of all actions detected.
1797  * @param[out] error
1798  *   Pointer to the error structure.
1799  *
1800  * @return
1801  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1802  */
1803 static inline struct mlx5_flow *
1804 flow_drv_prepare(struct rte_flow *flow,
1805                  const struct rte_flow_attr *attr,
1806                  const struct rte_flow_item items[],
1807                  const struct rte_flow_action actions[],
1808                  uint64_t *item_flags,
1809                  uint64_t *action_flags,
1810                  struct rte_flow_error *error)
1811 {
1812         const struct mlx5_flow_driver_ops *fops;
1813         enum mlx5_flow_drv_type type = flow->drv_type;
1814
1815         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1816         fops = flow_get_drv_ops(type);
1817         return fops->prepare(attr, items, actions, item_flags, action_flags,
1818                              error);
1819 }
1820
1821 /**
1822  * Flow driver translation API. This abstracts calling driver specific
1823  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1824  * translates a generic flow into a driver flow. flow_drv_prepare() must
1825  * precede.
1826  *
1827  *
1828  * @param[in] dev
1829  *   Pointer to the rte dev structure.
1830  * @param[in, out] dev_flow
1831  *   Pointer to the mlx5 flow.
1832  * @param[in] attr
1833  *   Pointer to the flow attributes.
1834  * @param[in] items
1835  *   Pointer to the list of items.
1836  * @param[in] actions
1837  *   Pointer to the list of actions.
1838  * @param[out] error
1839  *   Pointer to the error structure.
1840  *
1841  * @return
1842  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1843  */
1844 static inline int
1845 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1846                    const struct rte_flow_attr *attr,
1847                    const struct rte_flow_item items[],
1848                    const struct rte_flow_action actions[],
1849                    struct rte_flow_error *error)
1850 {
1851         const struct mlx5_flow_driver_ops *fops;
1852         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1853
1854         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1855         fops = flow_get_drv_ops(type);
1856         return fops->translate(dev, dev_flow, attr, items, actions, error);
1857 }
1858
1859 /**
1860  * Flow driver apply API. This abstracts calling driver specific functions.
1861  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1862  * translated driver flows on to device. flow_drv_translate() must precede.
1863  *
1864  * @param[in] dev
1865  *   Pointer to Ethernet device structure.
1866  * @param[in, out] flow
1867  *   Pointer to flow structure.
1868  * @param[out] error
1869  *   Pointer to error structure.
1870  *
1871  * @return
1872  *   0 on success, a negative errno value otherwise and rte_errno is set.
1873  */
1874 static inline int
1875 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1876                struct rte_flow_error *error)
1877 {
1878         const struct mlx5_flow_driver_ops *fops;
1879         enum mlx5_flow_drv_type type = flow->drv_type;
1880
1881         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1882         fops = flow_get_drv_ops(type);
1883         return fops->apply(dev, flow, error);
1884 }
1885
1886 /**
1887  * Flow driver remove API. This abstracts calling driver specific functions.
1888  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1889  * on device. All the resources of the flow should be freed by calling
1890  * flow_dv_destroy().
1891  *
1892  * @param[in] dev
1893  *   Pointer to Ethernet device.
1894  * @param[in, out] flow
1895  *   Pointer to flow structure.
1896  */
1897 static inline void
1898 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1899 {
1900         const struct mlx5_flow_driver_ops *fops;
1901         enum mlx5_flow_drv_type type = flow->drv_type;
1902
1903         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1904         fops = flow_get_drv_ops(type);
1905         fops->remove(dev, flow);
1906 }
1907
1908 /**
1909  * Flow driver destroy API. This abstracts calling driver specific functions.
1910  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1911  * on device and releases resources of the flow.
1912  *
1913  * @param[in] dev
1914  *   Pointer to Ethernet device.
1915  * @param[in, out] flow
1916  *   Pointer to flow structure.
1917  */
1918 static inline void
1919 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1920 {
1921         const struct mlx5_flow_driver_ops *fops;
1922         enum mlx5_flow_drv_type type = flow->drv_type;
1923
1924         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1925         fops = flow_get_drv_ops(type);
1926         fops->destroy(dev, flow);
1927 }
1928
1929 /**
1930  * Validate a flow supported by the NIC.
1931  *
1932  * @see rte_flow_validate()
1933  * @see rte_flow_ops
1934  */
1935 int
1936 mlx5_flow_validate(struct rte_eth_dev *dev,
1937                    const struct rte_flow_attr *attr,
1938                    const struct rte_flow_item items[],
1939                    const struct rte_flow_action actions[],
1940                    struct rte_flow_error *error)
1941 {
1942         int ret;
1943
1944         ret = flow_drv_validate(dev, attr, items, actions, error);
1945         if (ret < 0)
1946                 return ret;
1947         return 0;
1948 }
1949
1950 /**
1951  * Get RSS action from the action list.
1952  *
1953  * @param[in] actions
1954  *   Pointer to the list of actions.
1955  *
1956  * @return
1957  *   Pointer to the RSS action if exist, else return NULL.
1958  */
1959 static const struct rte_flow_action_rss*
1960 flow_get_rss_action(const struct rte_flow_action actions[])
1961 {
1962         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1963                 switch (actions->type) {
1964                 case RTE_FLOW_ACTION_TYPE_RSS:
1965                         return (const struct rte_flow_action_rss *)
1966                                actions->conf;
1967                 default:
1968                         break;
1969                 }
1970         }
1971         return NULL;
1972 }
1973
1974 static unsigned int
1975 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1976 {
1977         const struct rte_flow_item *item;
1978         unsigned int has_vlan = 0;
1979
1980         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1981                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1982                         has_vlan = 1;
1983                         break;
1984                 }
1985         }
1986         if (has_vlan)
1987                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
1988                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
1989         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
1990                                MLX5_EXPANSION_ROOT_OUTER;
1991 }
1992
1993 /**
1994  * Create a flow and add it to @p list.
1995  *
1996  * @param dev
1997  *   Pointer to Ethernet device.
1998  * @param list
1999  *   Pointer to a TAILQ flow list.
2000  * @param[in] attr
2001  *   Flow rule attributes.
2002  * @param[in] items
2003  *   Pattern specification (list terminated by the END pattern item).
2004  * @param[in] actions
2005  *   Associated actions (list terminated by the END action).
2006  * @param[out] error
2007  *   Perform verbose error reporting if not NULL.
2008  *
2009  * @return
2010  *   A flow on success, NULL otherwise and rte_errno is set.
2011  */
2012 static struct rte_flow *
2013 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2014                  const struct rte_flow_attr *attr,
2015                  const struct rte_flow_item items[],
2016                  const struct rte_flow_action actions[],
2017                  struct rte_flow_error *error)
2018 {
2019         struct rte_flow *flow = NULL;
2020         struct mlx5_flow *dev_flow;
2021         uint64_t action_flags = 0;
2022         uint64_t item_flags = 0;
2023         const struct rte_flow_action_rss *rss;
2024         union {
2025                 struct rte_flow_expand_rss buf;
2026                 uint8_t buffer[2048];
2027         } expand_buffer;
2028         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2029         int ret;
2030         uint32_t i;
2031         uint32_t flow_size;
2032
2033         ret = flow_drv_validate(dev, attr, items, actions, error);
2034         if (ret < 0)
2035                 return NULL;
2036         flow_size = sizeof(struct rte_flow);
2037         rss = flow_get_rss_action(actions);
2038         if (rss)
2039                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2040                                             sizeof(void *));
2041         else
2042                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2043         flow = rte_calloc(__func__, 1, flow_size, 0);
2044         flow->drv_type = flow_get_drv_type(dev, attr);
2045         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2046                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2047         flow->queue = (void *)(flow + 1);
2048         LIST_INIT(&flow->dev_flows);
2049         if (rss && rss->types) {
2050                 unsigned int graph_root;
2051
2052                 graph_root = find_graph_root(items, rss->level);
2053                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2054                                           items, rss->types,
2055                                           mlx5_support_expansion,
2056                                           graph_root);
2057                 assert(ret > 0 &&
2058                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2059         } else {
2060                 buf->entries = 1;
2061                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2062         }
2063         for (i = 0; i < buf->entries; ++i) {
2064                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2065                                             actions, &item_flags, &action_flags,
2066                                             error);
2067                 if (!dev_flow)
2068                         goto error;
2069                 dev_flow->flow = flow;
2070                 dev_flow->layers = item_flags;
2071                 /* Store actions once as expanded flows have same actions. */
2072                 if (i == 0)
2073                         flow->actions = action_flags;
2074                 assert(flow->actions == action_flags);
2075                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2076                 ret = flow_drv_translate(dev, dev_flow, attr,
2077                                          buf->entry[i].pattern,
2078                                          actions, error);
2079                 if (ret < 0)
2080                         goto error;
2081         }
2082         if (dev->data->dev_started) {
2083                 ret = flow_drv_apply(dev, flow, error);
2084                 if (ret < 0)
2085                         goto error;
2086         }
2087         TAILQ_INSERT_TAIL(list, flow, next);
2088         flow_rxq_flags_set(dev, flow);
2089         return flow;
2090 error:
2091         ret = rte_errno; /* Save rte_errno before cleanup. */
2092         assert(flow);
2093         flow_drv_destroy(dev, flow);
2094         rte_free(flow);
2095         rte_errno = ret; /* Restore rte_errno. */
2096         return NULL;
2097 }
2098
2099 /**
2100  * Create a flow.
2101  *
2102  * @see rte_flow_create()
2103  * @see rte_flow_ops
2104  */
2105 struct rte_flow *
2106 mlx5_flow_create(struct rte_eth_dev *dev,
2107                  const struct rte_flow_attr *attr,
2108                  const struct rte_flow_item items[],
2109                  const struct rte_flow_action actions[],
2110                  struct rte_flow_error *error)
2111 {
2112         return flow_list_create(dev,
2113                                 &((struct priv *)dev->data->dev_private)->flows,
2114                                 attr, items, actions, error);
2115 }
2116
2117 /**
2118  * Destroy a flow in a list.
2119  *
2120  * @param dev
2121  *   Pointer to Ethernet device.
2122  * @param list
2123  *   Pointer to a TAILQ flow list.
2124  * @param[in] flow
2125  *   Flow to destroy.
2126  */
2127 static void
2128 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2129                   struct rte_flow *flow)
2130 {
2131         flow_drv_destroy(dev, flow);
2132         TAILQ_REMOVE(list, flow, next);
2133         /*
2134          * Update RX queue flags only if port is started, otherwise it is
2135          * already clean.
2136          */
2137         if (dev->data->dev_started)
2138                 flow_rxq_flags_trim(dev, flow);
2139         rte_free(flow);
2140 }
2141
2142 /**
2143  * Destroy all flows.
2144  *
2145  * @param dev
2146  *   Pointer to Ethernet device.
2147  * @param list
2148  *   Pointer to a TAILQ flow list.
2149  */
2150 void
2151 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2152 {
2153         while (!TAILQ_EMPTY(list)) {
2154                 struct rte_flow *flow;
2155
2156                 flow = TAILQ_FIRST(list);
2157                 flow_list_destroy(dev, list, flow);
2158         }
2159 }
2160
2161 /**
2162  * Remove all flows.
2163  *
2164  * @param dev
2165  *   Pointer to Ethernet device.
2166  * @param list
2167  *   Pointer to a TAILQ flow list.
2168  */
2169 void
2170 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2171 {
2172         struct rte_flow *flow;
2173
2174         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2175                 flow_drv_remove(dev, flow);
2176         flow_rxq_flags_clear(dev);
2177 }
2178
2179 /**
2180  * Add all flows.
2181  *
2182  * @param dev
2183  *   Pointer to Ethernet device.
2184  * @param list
2185  *   Pointer to a TAILQ flow list.
2186  *
2187  * @return
2188  *   0 on success, a negative errno value otherwise and rte_errno is set.
2189  */
2190 int
2191 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2192 {
2193         struct rte_flow *flow;
2194         struct rte_flow_error error;
2195         int ret = 0;
2196
2197         TAILQ_FOREACH(flow, list, next) {
2198                 ret = flow_drv_apply(dev, flow, &error);
2199                 if (ret < 0)
2200                         goto error;
2201                 flow_rxq_flags_set(dev, flow);
2202         }
2203         return 0;
2204 error:
2205         ret = rte_errno; /* Save rte_errno before cleanup. */
2206         mlx5_flow_stop(dev, list);
2207         rte_errno = ret; /* Restore rte_errno. */
2208         return -rte_errno;
2209 }
2210
2211 /**
2212  * Verify the flow list is empty
2213  *
2214  * @param dev
2215  *  Pointer to Ethernet device.
2216  *
2217  * @return the number of flows not released.
2218  */
2219 int
2220 mlx5_flow_verify(struct rte_eth_dev *dev)
2221 {
2222         struct priv *priv = dev->data->dev_private;
2223         struct rte_flow *flow;
2224         int ret = 0;
2225
2226         TAILQ_FOREACH(flow, &priv->flows, next) {
2227                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2228                         dev->data->port_id, (void *)flow);
2229                 ++ret;
2230         }
2231         return ret;
2232 }
2233
2234 /**
2235  * Enable a control flow configured from the control plane.
2236  *
2237  * @param dev
2238  *   Pointer to Ethernet device.
2239  * @param eth_spec
2240  *   An Ethernet flow spec to apply.
2241  * @param eth_mask
2242  *   An Ethernet flow mask to apply.
2243  * @param vlan_spec
2244  *   A VLAN flow spec to apply.
2245  * @param vlan_mask
2246  *   A VLAN flow mask to apply.
2247  *
2248  * @return
2249  *   0 on success, a negative errno value otherwise and rte_errno is set.
2250  */
2251 int
2252 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2253                     struct rte_flow_item_eth *eth_spec,
2254                     struct rte_flow_item_eth *eth_mask,
2255                     struct rte_flow_item_vlan *vlan_spec,
2256                     struct rte_flow_item_vlan *vlan_mask)
2257 {
2258         struct priv *priv = dev->data->dev_private;
2259         const struct rte_flow_attr attr = {
2260                 .ingress = 1,
2261                 .priority = MLX5_FLOW_PRIO_RSVD,
2262         };
2263         struct rte_flow_item items[] = {
2264                 {
2265                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2266                         .spec = eth_spec,
2267                         .last = NULL,
2268                         .mask = eth_mask,
2269                 },
2270                 {
2271                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2272                                               RTE_FLOW_ITEM_TYPE_END,
2273                         .spec = vlan_spec,
2274                         .last = NULL,
2275                         .mask = vlan_mask,
2276                 },
2277                 {
2278                         .type = RTE_FLOW_ITEM_TYPE_END,
2279                 },
2280         };
2281         uint16_t queue[priv->reta_idx_n];
2282         struct rte_flow_action_rss action_rss = {
2283                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2284                 .level = 0,
2285                 .types = priv->rss_conf.rss_hf,
2286                 .key_len = priv->rss_conf.rss_key_len,
2287                 .queue_num = priv->reta_idx_n,
2288                 .key = priv->rss_conf.rss_key,
2289                 .queue = queue,
2290         };
2291         struct rte_flow_action actions[] = {
2292                 {
2293                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2294                         .conf = &action_rss,
2295                 },
2296                 {
2297                         .type = RTE_FLOW_ACTION_TYPE_END,
2298                 },
2299         };
2300         struct rte_flow *flow;
2301         struct rte_flow_error error;
2302         unsigned int i;
2303
2304         if (!priv->reta_idx_n) {
2305                 rte_errno = EINVAL;
2306                 return -rte_errno;
2307         }
2308         for (i = 0; i != priv->reta_idx_n; ++i)
2309                 queue[i] = (*priv->reta_idx)[i];
2310         flow = flow_list_create(dev, &priv->ctrl_flows,
2311                                 &attr, items, actions, &error);
2312         if (!flow)
2313                 return -rte_errno;
2314         return 0;
2315 }
2316
2317 /**
2318  * Enable a flow control configured from the control plane.
2319  *
2320  * @param dev
2321  *   Pointer to Ethernet device.
2322  * @param eth_spec
2323  *   An Ethernet flow spec to apply.
2324  * @param eth_mask
2325  *   An Ethernet flow mask to apply.
2326  *
2327  * @return
2328  *   0 on success, a negative errno value otherwise and rte_errno is set.
2329  */
2330 int
2331 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2332                struct rte_flow_item_eth *eth_spec,
2333                struct rte_flow_item_eth *eth_mask)
2334 {
2335         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2336 }
2337
2338 /**
2339  * Destroy a flow.
2340  *
2341  * @see rte_flow_destroy()
2342  * @see rte_flow_ops
2343  */
2344 int
2345 mlx5_flow_destroy(struct rte_eth_dev *dev,
2346                   struct rte_flow *flow,
2347                   struct rte_flow_error *error __rte_unused)
2348 {
2349         struct priv *priv = dev->data->dev_private;
2350
2351         flow_list_destroy(dev, &priv->flows, flow);
2352         return 0;
2353 }
2354
2355 /**
2356  * Destroy all flows.
2357  *
2358  * @see rte_flow_flush()
2359  * @see rte_flow_ops
2360  */
2361 int
2362 mlx5_flow_flush(struct rte_eth_dev *dev,
2363                 struct rte_flow_error *error __rte_unused)
2364 {
2365         struct priv *priv = dev->data->dev_private;
2366
2367         mlx5_flow_list_flush(dev, &priv->flows);
2368         return 0;
2369 }
2370
2371 /**
2372  * Isolated mode.
2373  *
2374  * @see rte_flow_isolate()
2375  * @see rte_flow_ops
2376  */
2377 int
2378 mlx5_flow_isolate(struct rte_eth_dev *dev,
2379                   int enable,
2380                   struct rte_flow_error *error)
2381 {
2382         struct priv *priv = dev->data->dev_private;
2383
2384         if (dev->data->dev_started) {
2385                 rte_flow_error_set(error, EBUSY,
2386                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2387                                    NULL,
2388                                    "port must be stopped first");
2389                 return -rte_errno;
2390         }
2391         priv->isolated = !!enable;
2392         if (enable)
2393                 dev->dev_ops = &mlx5_dev_ops_isolate;
2394         else
2395                 dev->dev_ops = &mlx5_dev_ops;
2396         return 0;
2397 }
2398
2399 /**
2400  * Query a flow.
2401  *
2402  * @see rte_flow_query()
2403  * @see rte_flow_ops
2404  */
2405 static int
2406 flow_drv_query(struct rte_eth_dev *dev,
2407                struct rte_flow *flow,
2408                const struct rte_flow_action *actions,
2409                void *data,
2410                struct rte_flow_error *error)
2411 {
2412         const struct mlx5_flow_driver_ops *fops;
2413         enum mlx5_flow_drv_type ftype = flow->drv_type;
2414
2415         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2416         fops = flow_get_drv_ops(ftype);
2417
2418         return fops->query(dev, flow, actions, data, error);
2419 }
2420
2421 /**
2422  * Query a flow.
2423  *
2424  * @see rte_flow_query()
2425  * @see rte_flow_ops
2426  */
2427 int
2428 mlx5_flow_query(struct rte_eth_dev *dev,
2429                 struct rte_flow *flow,
2430                 const struct rte_flow_action *actions,
2431                 void *data,
2432                 struct rte_flow_error *error)
2433 {
2434         int ret;
2435
2436         ret = flow_drv_query(dev, flow, actions, data, error);
2437         if (ret < 0)
2438                 return ret;
2439         return 0;
2440 }
2441
2442 /**
2443  * Convert a flow director filter to a generic flow.
2444  *
2445  * @param dev
2446  *   Pointer to Ethernet device.
2447  * @param fdir_filter
2448  *   Flow director filter to add.
2449  * @param attributes
2450  *   Generic flow parameters structure.
2451  *
2452  * @return
2453  *   0 on success, a negative errno value otherwise and rte_errno is set.
2454  */
2455 static int
2456 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
2457                          const struct rte_eth_fdir_filter *fdir_filter,
2458                          struct mlx5_fdir *attributes)
2459 {
2460         struct priv *priv = dev->data->dev_private;
2461         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2462         const struct rte_eth_fdir_masks *mask =
2463                 &dev->data->dev_conf.fdir_conf.mask;
2464
2465         /* Validate queue number. */
2466         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2467                 DRV_LOG(ERR, "port %u invalid queue number %d",
2468                         dev->data->port_id, fdir_filter->action.rx_queue);
2469                 rte_errno = EINVAL;
2470                 return -rte_errno;
2471         }
2472         attributes->attr.ingress = 1;
2473         attributes->items[0] = (struct rte_flow_item) {
2474                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2475                 .spec = &attributes->l2,
2476                 .mask = &attributes->l2_mask,
2477         };
2478         switch (fdir_filter->action.behavior) {
2479         case RTE_ETH_FDIR_ACCEPT:
2480                 attributes->actions[0] = (struct rte_flow_action){
2481                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2482                         .conf = &attributes->queue,
2483                 };
2484                 break;
2485         case RTE_ETH_FDIR_REJECT:
2486                 attributes->actions[0] = (struct rte_flow_action){
2487                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2488                 };
2489                 break;
2490         default:
2491                 DRV_LOG(ERR, "port %u invalid behavior %d",
2492                         dev->data->port_id,
2493                         fdir_filter->action.behavior);
2494                 rte_errno = ENOTSUP;
2495                 return -rte_errno;
2496         }
2497         attributes->queue.index = fdir_filter->action.rx_queue;
2498         /* Handle L3. */
2499         switch (fdir_filter->input.flow_type) {
2500         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2501         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2502         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2503                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2504                         .src_addr = input->flow.ip4_flow.src_ip,
2505                         .dst_addr = input->flow.ip4_flow.dst_ip,
2506                         .time_to_live = input->flow.ip4_flow.ttl,
2507                         .type_of_service = input->flow.ip4_flow.tos,
2508                 };
2509                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2510                         .src_addr = mask->ipv4_mask.src_ip,
2511                         .dst_addr = mask->ipv4_mask.dst_ip,
2512                         .time_to_live = mask->ipv4_mask.ttl,
2513                         .type_of_service = mask->ipv4_mask.tos,
2514                         .next_proto_id = mask->ipv4_mask.proto,
2515                 };
2516                 attributes->items[1] = (struct rte_flow_item){
2517                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2518                         .spec = &attributes->l3,
2519                         .mask = &attributes->l3_mask,
2520                 };
2521                 break;
2522         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2523         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2524         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2525                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2526                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2527                         .proto = input->flow.ipv6_flow.proto,
2528                 };
2529
2530                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2531                        input->flow.ipv6_flow.src_ip,
2532                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2533                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2534                        input->flow.ipv6_flow.dst_ip,
2535                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2536                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2537                        mask->ipv6_mask.src_ip,
2538                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2539                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2540                        mask->ipv6_mask.dst_ip,
2541                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2542                 attributes->items[1] = (struct rte_flow_item){
2543                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2544                         .spec = &attributes->l3,
2545                         .mask = &attributes->l3_mask,
2546                 };
2547                 break;
2548         default:
2549                 DRV_LOG(ERR, "port %u invalid flow type%d",
2550                         dev->data->port_id, fdir_filter->input.flow_type);
2551                 rte_errno = ENOTSUP;
2552                 return -rte_errno;
2553         }
2554         /* Handle L4. */
2555         switch (fdir_filter->input.flow_type) {
2556         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2557                 attributes->l4.udp.hdr = (struct udp_hdr){
2558                         .src_port = input->flow.udp4_flow.src_port,
2559                         .dst_port = input->flow.udp4_flow.dst_port,
2560                 };
2561                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2562                         .src_port = mask->src_port_mask,
2563                         .dst_port = mask->dst_port_mask,
2564                 };
2565                 attributes->items[2] = (struct rte_flow_item){
2566                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2567                         .spec = &attributes->l4,
2568                         .mask = &attributes->l4_mask,
2569                 };
2570                 break;
2571         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2572                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2573                         .src_port = input->flow.tcp4_flow.src_port,
2574                         .dst_port = input->flow.tcp4_flow.dst_port,
2575                 };
2576                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2577                         .src_port = mask->src_port_mask,
2578                         .dst_port = mask->dst_port_mask,
2579                 };
2580                 attributes->items[2] = (struct rte_flow_item){
2581                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2582                         .spec = &attributes->l4,
2583                         .mask = &attributes->l4_mask,
2584                 };
2585                 break;
2586         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2587                 attributes->l4.udp.hdr = (struct udp_hdr){
2588                         .src_port = input->flow.udp6_flow.src_port,
2589                         .dst_port = input->flow.udp6_flow.dst_port,
2590                 };
2591                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2592                         .src_port = mask->src_port_mask,
2593                         .dst_port = mask->dst_port_mask,
2594                 };
2595                 attributes->items[2] = (struct rte_flow_item){
2596                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2597                         .spec = &attributes->l4,
2598                         .mask = &attributes->l4_mask,
2599                 };
2600                 break;
2601         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2602                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2603                         .src_port = input->flow.tcp6_flow.src_port,
2604                         .dst_port = input->flow.tcp6_flow.dst_port,
2605                 };
2606                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2607                         .src_port = mask->src_port_mask,
2608                         .dst_port = mask->dst_port_mask,
2609                 };
2610                 attributes->items[2] = (struct rte_flow_item){
2611                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2612                         .spec = &attributes->l4,
2613                         .mask = &attributes->l4_mask,
2614                 };
2615                 break;
2616         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2617         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2618                 break;
2619         default:
2620                 DRV_LOG(ERR, "port %u invalid flow type%d",
2621                         dev->data->port_id, fdir_filter->input.flow_type);
2622                 rte_errno = ENOTSUP;
2623                 return -rte_errno;
2624         }
2625         return 0;
2626 }
2627
2628 /**
2629  * Add new flow director filter and store it in list.
2630  *
2631  * @param dev
2632  *   Pointer to Ethernet device.
2633  * @param fdir_filter
2634  *   Flow director filter to add.
2635  *
2636  * @return
2637  *   0 on success, a negative errno value otherwise and rte_errno is set.
2638  */
2639 static int
2640 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
2641                      const struct rte_eth_fdir_filter *fdir_filter)
2642 {
2643         struct priv *priv = dev->data->dev_private;
2644         struct mlx5_fdir attributes = {
2645                 .attr.group = 0,
2646                 .l2_mask = {
2647                         .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2648                         .src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2649                         .type = 0,
2650                 },
2651         };
2652         struct rte_flow_error error;
2653         struct rte_flow *flow;
2654         int ret;
2655
2656         ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
2657         if (ret)
2658                 return ret;
2659         flow = flow_list_create(dev, &priv->flows, &attributes.attr,
2660                                 attributes.items, attributes.actions, &error);
2661         if (flow) {
2662                 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
2663                         (void *)flow);
2664                 return 0;
2665         }
2666         return -rte_errno;
2667 }
2668
2669 /**
2670  * Delete specific filter.
2671  *
2672  * @param dev
2673  *   Pointer to Ethernet device.
2674  * @param fdir_filter
2675  *   Filter to be deleted.
2676  *
2677  * @return
2678  *   0 on success, a negative errno value otherwise and rte_errno is set.
2679  */
2680 static int
2681 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
2682                         const struct rte_eth_fdir_filter *fdir_filter
2683                         __rte_unused)
2684 {
2685         rte_errno = ENOTSUP;
2686         return -rte_errno;
2687 }
2688
2689 /**
2690  * Update queue for specific filter.
2691  *
2692  * @param dev
2693  *   Pointer to Ethernet device.
2694  * @param fdir_filter
2695  *   Filter to be updated.
2696  *
2697  * @return
2698  *   0 on success, a negative errno value otherwise and rte_errno is set.
2699  */
2700 static int
2701 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
2702                         const struct rte_eth_fdir_filter *fdir_filter)
2703 {
2704         int ret;
2705
2706         ret = mlx5_fdir_filter_delete(dev, fdir_filter);
2707         if (ret)
2708                 return ret;
2709         return mlx5_fdir_filter_add(dev, fdir_filter);
2710 }
2711
2712 /**
2713  * Flush all filters.
2714  *
2715  * @param dev
2716  *   Pointer to Ethernet device.
2717  */
2718 static void
2719 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
2720 {
2721         struct priv *priv = dev->data->dev_private;
2722
2723         mlx5_flow_list_flush(dev, &priv->flows);
2724 }
2725
2726 /**
2727  * Get flow director information.
2728  *
2729  * @param dev
2730  *   Pointer to Ethernet device.
2731  * @param[out] fdir_info
2732  *   Resulting flow director information.
2733  */
2734 static void
2735 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2736 {
2737         struct rte_eth_fdir_masks *mask =
2738                 &dev->data->dev_conf.fdir_conf.mask;
2739
2740         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2741         fdir_info->guarant_spc = 0;
2742         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2743         fdir_info->max_flexpayload = 0;
2744         fdir_info->flow_types_mask[0] = 0;
2745         fdir_info->flex_payload_unit = 0;
2746         fdir_info->max_flex_payload_segment_num = 0;
2747         fdir_info->flex_payload_limit = 0;
2748         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2749 }
2750
2751 /**
2752  * Deal with flow director operations.
2753  *
2754  * @param dev
2755  *   Pointer to Ethernet device.
2756  * @param filter_op
2757  *   Operation to perform.
2758  * @param arg
2759  *   Pointer to operation-specific structure.
2760  *
2761  * @return
2762  *   0 on success, a negative errno value otherwise and rte_errno is set.
2763  */
2764 static int
2765 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2766                     void *arg)
2767 {
2768         enum rte_fdir_mode fdir_mode =
2769                 dev->data->dev_conf.fdir_conf.mode;
2770
2771         if (filter_op == RTE_ETH_FILTER_NOP)
2772                 return 0;
2773         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2774             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2775                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2776                         dev->data->port_id, fdir_mode);
2777                 rte_errno = EINVAL;
2778                 return -rte_errno;
2779         }
2780         switch (filter_op) {
2781         case RTE_ETH_FILTER_ADD:
2782                 return mlx5_fdir_filter_add(dev, arg);
2783         case RTE_ETH_FILTER_UPDATE:
2784                 return mlx5_fdir_filter_update(dev, arg);
2785         case RTE_ETH_FILTER_DELETE:
2786                 return mlx5_fdir_filter_delete(dev, arg);
2787         case RTE_ETH_FILTER_FLUSH:
2788                 mlx5_fdir_filter_flush(dev);
2789                 break;
2790         case RTE_ETH_FILTER_INFO:
2791                 mlx5_fdir_info_get(dev, arg);
2792                 break;
2793         default:
2794                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2795                         dev->data->port_id, filter_op);
2796                 rte_errno = EINVAL;
2797                 return -rte_errno;
2798         }
2799         return 0;
2800 }
2801
2802 /**
2803  * Manage filter operations.
2804  *
2805  * @param dev
2806  *   Pointer to Ethernet device structure.
2807  * @param filter_type
2808  *   Filter type.
2809  * @param filter_op
2810  *   Operation to perform.
2811  * @param arg
2812  *   Pointer to operation-specific structure.
2813  *
2814  * @return
2815  *   0 on success, a negative errno value otherwise and rte_errno is set.
2816  */
2817 int
2818 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2819                      enum rte_filter_type filter_type,
2820                      enum rte_filter_op filter_op,
2821                      void *arg)
2822 {
2823         switch (filter_type) {
2824         case RTE_ETH_FILTER_GENERIC:
2825                 if (filter_op != RTE_ETH_FILTER_GET) {
2826                         rte_errno = EINVAL;
2827                         return -rte_errno;
2828                 }
2829                 *(const void **)arg = &mlx5_flow_ops;
2830                 return 0;
2831         case RTE_ETH_FILTER_FDIR:
2832                 return mlx5_fdir_ctrl_func(dev, filter_op, arg);
2833         default:
2834                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2835                         dev->data->port_id, filter_type);
2836                 rte_errno = ENOTSUP;
2837                 return -rte_errno;
2838         }
2839         return 0;
2840 }