6848d019c02c32476f0097f0384d167e1e7969c4
[dpdk.git] / drivers / net / mlx5 / mlx5_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2021 6WIND S.A.
3  * Copyright 2021 Mellanox Technologies, Ltd
4  */
5
6 #include <stdint.h>
7 #include <string.h>
8 #include <stdlib.h>
9
10 #include <rte_mbuf.h>
11 #include <rte_mempool.h>
12 #include <rte_prefetch.h>
13 #include <rte_common.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_ether.h>
16 #include <rte_cycles.h>
17 #include <rte_flow.h>
18
19 #include <mlx5_prm.h>
20 #include <mlx5_common.h>
21 #include <mlx5_common_mr.h>
22
23 #include "mlx5_autoconf.h"
24 #include "mlx5_defs.h"
25 #include "mlx5.h"
26 #include "mlx5_utils.h"
27 #include "mlx5_rxtx.h"
28 #include "mlx5_rx.h"
29
30
31 static __rte_always_inline uint32_t
32 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
33                    volatile struct mlx5_mini_cqe8 *mcqe);
34
35 static __rte_always_inline int
36 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
37                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
38
39 static __rte_always_inline uint32_t
40 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
41
42 static __rte_always_inline void
43 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
44                volatile struct mlx5_cqe *cqe,
45                volatile struct mlx5_mini_cqe8 *mcqe);
46
47 static inline void
48 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
49                         volatile struct mlx5_cqe *__rte_restrict cqe,
50                         uint32_t phcsum, uint8_t l4_type);
51
52 static inline void
53 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
54                     volatile struct mlx5_cqe *__rte_restrict cqe,
55                     volatile struct mlx5_mini_cqe8 *mcqe,
56                     struct mlx5_rxq_data *rxq, uint32_t len);
57
58
59 /**
60  * Internal function to compute the number of used descriptors in an RX queue.
61  *
62  * @param rxq
63  *   The Rx queue.
64  *
65  * @return
66  *   The number of used Rx descriptor.
67  */
68 static uint32_t
69 rx_queue_count(struct mlx5_rxq_data *rxq)
70 {
71         struct rxq_zip *zip = &rxq->zip;
72         volatile struct mlx5_cqe *cqe;
73         const unsigned int cqe_n = (1 << rxq->cqe_n);
74         const unsigned int sges_n = (1 << rxq->sges_n);
75         const unsigned int elts_n = (1 << rxq->elts_n);
76         const unsigned int strd_n = (1 << rxq->strd_num_n);
77         const unsigned int cqe_cnt = cqe_n - 1;
78         unsigned int cq_ci, used;
79
80         /* if we are processing a compressed cqe */
81         if (zip->ai) {
82                 used = zip->cqe_cnt - zip->ai;
83                 cq_ci = zip->cq_ci;
84         } else {
85                 used = 0;
86                 cq_ci = rxq->cq_ci;
87         }
88         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
89         while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
90                 int8_t op_own;
91                 unsigned int n;
92
93                 op_own = cqe->op_own;
94                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
95                         n = rte_be_to_cpu_32(cqe->byte_cnt);
96                 else
97                         n = 1;
98                 cq_ci += n;
99                 used += n;
100                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
101         }
102         used = RTE_MIN(used * sges_n, elts_n * strd_n);
103         return used;
104 }
105
106 /**
107  * DPDK callback to check the status of a Rx descriptor.
108  *
109  * @param rx_queue
110  *   The Rx queue.
111  * @param[in] offset
112  *   The index of the descriptor in the ring.
113  *
114  * @return
115  *   The status of the Rx descriptor.
116  */
117 int
118 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
119 {
120         struct mlx5_rxq_data *rxq = rx_queue;
121         struct mlx5_rxq_ctrl *rxq_ctrl =
122                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
123         struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
124
125         if (dev->rx_pkt_burst == NULL ||
126             dev->rx_pkt_burst == removed_rx_burst) {
127                 rte_errno = ENOTSUP;
128                 return -rte_errno;
129         }
130         if (offset >= (1 << rxq->cqe_n)) {
131                 rte_errno = EINVAL;
132                 return -rte_errno;
133         }
134         if (offset < rx_queue_count(rxq))
135                 return RTE_ETH_RX_DESC_DONE;
136         return RTE_ETH_RX_DESC_AVAIL;
137 }
138
139 /**
140  * DPDK callback to get the RX queue information.
141  *
142  * @param dev
143  *   Pointer to the device structure.
144  *
145  * @param rx_queue_id
146  *   Rx queue identificator.
147  *
148  * @param qinfo
149  *   Pointer to the RX queue information structure.
150  *
151  * @return
152  *   None.
153  */
154
155 void
156 mlx5_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
157                   struct rte_eth_rxq_info *qinfo)
158 {
159         struct mlx5_priv *priv = dev->data->dev_private;
160         struct mlx5_rxq_data *rxq = (*priv->rxqs)[rx_queue_id];
161         struct mlx5_rxq_ctrl *rxq_ctrl =
162                 container_of(rxq, struct mlx5_rxq_ctrl, rxq);
163
164         if (!rxq)
165                 return;
166         qinfo->mp = mlx5_rxq_mprq_enabled(rxq) ?
167                                         rxq->mprq_mp : rxq->mp;
168         qinfo->conf.rx_thresh.pthresh = 0;
169         qinfo->conf.rx_thresh.hthresh = 0;
170         qinfo->conf.rx_thresh.wthresh = 0;
171         qinfo->conf.rx_free_thresh = rxq->rq_repl_thresh;
172         qinfo->conf.rx_drop_en = 1;
173         qinfo->conf.rx_deferred_start = rxq_ctrl ? 0 : 1;
174         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
175         qinfo->scattered_rx = dev->data->scattered_rx;
176         qinfo->nb_desc = mlx5_rxq_mprq_enabled(rxq) ?
177                 (1 << rxq->elts_n) * (1 << rxq->strd_num_n) :
178                 (1 << rxq->elts_n);
179 }
180
181 /**
182  * DPDK callback to get the RX packet burst mode information.
183  *
184  * @param dev
185  *   Pointer to the device structure.
186  *
187  * @param rx_queue_id
188  *   Rx queue identificatior.
189  *
190  * @param mode
191  *   Pointer to the burts mode information.
192  *
193  * @return
194  *   0 as success, -EINVAL as failure.
195  */
196 int
197 mlx5_rx_burst_mode_get(struct rte_eth_dev *dev,
198                        uint16_t rx_queue_id __rte_unused,
199                        struct rte_eth_burst_mode *mode)
200 {
201         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
202         struct mlx5_priv *priv = dev->data->dev_private;
203         struct mlx5_rxq_data *rxq;
204
205         rxq = (*priv->rxqs)[rx_queue_id];
206         if (!rxq) {
207                 rte_errno = EINVAL;
208                 return -rte_errno;
209         }
210         if (pkt_burst == mlx5_rx_burst) {
211                 snprintf(mode->info, sizeof(mode->info), "%s", "Scalar");
212         } else if (pkt_burst == mlx5_rx_burst_mprq) {
213                 snprintf(mode->info, sizeof(mode->info), "%s", "Multi-Packet RQ");
214         } else if (pkt_burst == mlx5_rx_burst_vec) {
215 #if defined RTE_ARCH_X86_64
216                 snprintf(mode->info, sizeof(mode->info), "%s", "Vector SSE");
217 #elif defined RTE_ARCH_ARM64
218                 snprintf(mode->info, sizeof(mode->info), "%s", "Vector Neon");
219 #elif defined RTE_ARCH_PPC_64
220                 snprintf(mode->info, sizeof(mode->info), "%s", "Vector AltiVec");
221 #else
222                 return -EINVAL;
223 #endif
224         } else if (pkt_burst == mlx5_rx_burst_mprq_vec) {
225 #if defined RTE_ARCH_X86_64
226                 snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector SSE");
227 #elif defined RTE_ARCH_ARM64
228                 snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector Neon");
229 #elif defined RTE_ARCH_PPC_64
230                 snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector AltiVec");
231 #else
232                 return -EINVAL;
233 #endif
234         } else {
235                 return -EINVAL;
236         }
237         return 0;
238 }
239
240 /**
241  * DPDK callback to get the number of used descriptors in a RX queue.
242  *
243  * @param rx_queue
244  *   The Rx queue pointer.
245  *
246  * @return
247  *   The number of used rx descriptor.
248  *   -EINVAL if the queue is invalid
249  */
250 uint32_t
251 mlx5_rx_queue_count(void *rx_queue)
252 {
253         struct mlx5_rxq_data *rxq = rx_queue;
254         struct rte_eth_dev *dev;
255
256         if (!rxq) {
257                 rte_errno = EINVAL;
258                 return -rte_errno;
259         }
260
261         dev = &rte_eth_devices[rxq->port_id];
262
263         if (dev->rx_pkt_burst == NULL ||
264             dev->rx_pkt_burst == removed_rx_burst) {
265                 rte_errno = ENOTSUP;
266                 return -rte_errno;
267         }
268
269         return rx_queue_count(rxq);
270 }
271
272 #define CLB_VAL_IDX 0
273 #define CLB_MSK_IDX 1
274 static int
275 mlx5_monitor_callback(const uint64_t value,
276                 const uint64_t opaque[RTE_POWER_MONITOR_OPAQUE_SZ])
277 {
278         const uint64_t m = opaque[CLB_MSK_IDX];
279         const uint64_t v = opaque[CLB_VAL_IDX];
280
281         return (value & m) == v ? -1 : 0;
282 }
283
284 int mlx5_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
285 {
286         struct mlx5_rxq_data *rxq = rx_queue;
287         const unsigned int cqe_num = 1 << rxq->cqe_n;
288         const unsigned int cqe_mask = cqe_num - 1;
289         const uint16_t idx = rxq->cq_ci & cqe_num;
290         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask];
291
292         if (unlikely(rxq->cqes == NULL)) {
293                 rte_errno = EINVAL;
294                 return -rte_errno;
295         }
296         pmc->addr = &cqe->op_own;
297         pmc->opaque[CLB_VAL_IDX] = !!idx;
298         pmc->opaque[CLB_MSK_IDX] = MLX5_CQE_OWNER_MASK;
299         pmc->fn = mlx5_monitor_callback;
300         pmc->size = sizeof(uint8_t);
301         return 0;
302 }
303
304 /**
305  * Translate RX completion flags to packet type.
306  *
307  * @param[in] rxq
308  *   Pointer to RX queue structure.
309  * @param[in] cqe
310  *   Pointer to CQE.
311  *
312  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
313  *
314  * @return
315  *   Packet type for struct rte_mbuf.
316  */
317 static inline uint32_t
318 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
319                                    volatile struct mlx5_mini_cqe8 *mcqe)
320 {
321         uint8_t idx;
322         uint8_t ptype;
323         uint8_t pinfo = (cqe->pkt_info & 0x3) << 6;
324
325         /* Get l3/l4 header from mini-CQE in case L3/L4 format*/
326         if (mcqe == NULL ||
327             rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
328                 ptype = (cqe->hdr_type_etc & 0xfc00) >> 10;
329         else
330                 ptype = mcqe->hdr_type >> 2;
331         /*
332          * The index to the array should have:
333          * bit[1:0] = l3_hdr_type
334          * bit[4:2] = l4_hdr_type
335          * bit[5] = ip_frag
336          * bit[6] = tunneled
337          * bit[7] = outer_l3_type
338          */
339         idx = pinfo | ptype;
340         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
341 }
342
343 /**
344  * Initialize Rx WQ and indexes.
345  *
346  * @param[in] rxq
347  *   Pointer to RX queue structure.
348  */
349 void
350 mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
351 {
352         const unsigned int wqe_n = 1 << rxq->elts_n;
353         unsigned int i;
354
355         for (i = 0; (i != wqe_n); ++i) {
356                 volatile struct mlx5_wqe_data_seg *scat;
357                 uintptr_t addr;
358                 uint32_t byte_count;
359
360                 if (mlx5_rxq_mprq_enabled(rxq)) {
361                         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
362
363                         scat = &((volatile struct mlx5_wqe_mprq *)
364                                 rxq->wqes)[i].dseg;
365                         addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
366                                                          1 << rxq->strd_num_n);
367                         byte_count = (1 << rxq->strd_sz_n) *
368                                         (1 << rxq->strd_num_n);
369                 } else {
370                         struct rte_mbuf *buf = (*rxq->elts)[i];
371
372                         scat = &((volatile struct mlx5_wqe_data_seg *)
373                                         rxq->wqes)[i];
374                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
375                         byte_count = DATA_LEN(buf);
376                 }
377                 /* scat->addr must be able to store a pointer. */
378                 MLX5_ASSERT(sizeof(scat->addr) >= sizeof(uintptr_t));
379                 *scat = (struct mlx5_wqe_data_seg){
380                         .addr = rte_cpu_to_be_64(addr),
381                         .byte_count = rte_cpu_to_be_32(byte_count),
382                         .lkey = mlx5_rx_addr2mr(rxq, addr),
383                 };
384         }
385         rxq->consumed_strd = 0;
386         rxq->decompressed = 0;
387         rxq->rq_pi = 0;
388         rxq->zip = (struct rxq_zip){
389                 .ai = 0,
390         };
391         rxq->elts_ci = mlx5_rxq_mprq_enabled(rxq) ?
392                 (wqe_n >> rxq->sges_n) * (1 << rxq->strd_num_n) : 0;
393         /* Update doorbell counter. */
394         rxq->rq_ci = wqe_n >> rxq->sges_n;
395         rte_io_wmb();
396         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
397 }
398
399 /**
400  * Handle a Rx error.
401  * The function inserts the RQ state to reset when the first error CQE is
402  * shown, then drains the CQ by the caller function loop. When the CQ is empty,
403  * it moves the RQ state to ready and initializes the RQ.
404  * Next CQE identification and error counting are in the caller responsibility.
405  *
406  * @param[in] rxq
407  *   Pointer to RX queue structure.
408  * @param[in] vec
409  *   1 when called from vectorized Rx burst, need to prepare mbufs for the RQ.
410  *   0 when called from non-vectorized Rx burst.
411  *
412  * @return
413  *   -1 in case of recovery error, otherwise the CQE status.
414  */
415 int
416 mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec)
417 {
418         const uint16_t cqe_n = 1 << rxq->cqe_n;
419         const uint16_t cqe_mask = cqe_n - 1;
420         const uint16_t wqe_n = 1 << rxq->elts_n;
421         const uint16_t strd_n = 1 << rxq->strd_num_n;
422         struct mlx5_rxq_ctrl *rxq_ctrl =
423                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
424         union {
425                 volatile struct mlx5_cqe *cqe;
426                 volatile struct mlx5_err_cqe *err_cqe;
427         } u = {
428                 .cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
429         };
430         struct mlx5_mp_arg_queue_state_modify sm;
431         int ret;
432
433         switch (rxq->err_state) {
434         case MLX5_RXQ_ERR_STATE_NO_ERROR:
435                 rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
436                 /* Fall-through */
437         case MLX5_RXQ_ERR_STATE_NEED_RESET:
438                 sm.is_wq = 1;
439                 sm.queue_id = rxq->idx;
440                 sm.state = IBV_WQS_RESET;
441                 if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
442                         return -1;
443                 if (rxq_ctrl->dump_file_n <
444                     rxq_ctrl->priv->config.max_dump_files_num) {
445                         MKSTR(err_str, "Unexpected CQE error syndrome "
446                               "0x%02x CQN = %u RQN = %u wqe_counter = %u"
447                               " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
448                               rxq->cqn, rxq_ctrl->wqn,
449                               rte_be_to_cpu_16(u.err_cqe->wqe_counter),
450                               rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
451                         MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
452                               rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
453                         mlx5_dump_debug_information(name, NULL, err_str, 0);
454                         mlx5_dump_debug_information(name, "MLX5 Error CQ:",
455                                                     (const void *)((uintptr_t)
456                                                                     rxq->cqes),
457                                                     sizeof(*u.cqe) * cqe_n);
458                         mlx5_dump_debug_information(name, "MLX5 Error RQ:",
459                                                     (const void *)((uintptr_t)
460                                                                     rxq->wqes),
461                                                     16 * wqe_n);
462                         rxq_ctrl->dump_file_n++;
463                 }
464                 rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
465                 /* Fall-through */
466         case MLX5_RXQ_ERR_STATE_NEED_READY:
467                 ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
468                 if (ret == MLX5_CQE_STATUS_HW_OWN) {
469                         rte_io_wmb();
470                         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
471                         rte_io_wmb();
472                         /*
473                          * The RQ consumer index must be zeroed while moving
474                          * from RESET state to RDY state.
475                          */
476                         *rxq->rq_db = rte_cpu_to_be_32(0);
477                         rte_io_wmb();
478                         sm.is_wq = 1;
479                         sm.queue_id = rxq->idx;
480                         sm.state = IBV_WQS_RDY;
481                         if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
482                                                     &sm))
483                                 return -1;
484                         if (vec) {
485                                 const uint32_t elts_n =
486                                         mlx5_rxq_mprq_enabled(rxq) ?
487                                         wqe_n * strd_n : wqe_n;
488                                 const uint32_t e_mask = elts_n - 1;
489                                 uint32_t elts_ci =
490                                         mlx5_rxq_mprq_enabled(rxq) ?
491                                         rxq->elts_ci : rxq->rq_ci;
492                                 uint32_t elt_idx;
493                                 struct rte_mbuf **elt;
494                                 int i;
495                                 unsigned int n = elts_n - (elts_ci -
496                                                           rxq->rq_pi);
497
498                                 for (i = 0; i < (int)n; ++i) {
499                                         elt_idx = (elts_ci + i) & e_mask;
500                                         elt = &(*rxq->elts)[elt_idx];
501                                         *elt = rte_mbuf_raw_alloc(rxq->mp);
502                                         if (!*elt) {
503                                                 for (i--; i >= 0; --i) {
504                                                         elt_idx = (elts_ci +
505                                                                    i) & elts_n;
506                                                         elt = &(*rxq->elts)
507                                                                 [elt_idx];
508                                                         rte_pktmbuf_free_seg
509                                                                 (*elt);
510                                                 }
511                                                 return -1;
512                                         }
513                                 }
514                                 for (i = 0; i < (int)elts_n; ++i) {
515                                         elt = &(*rxq->elts)[i];
516                                         DATA_LEN(*elt) =
517                                                 (uint16_t)((*elt)->buf_len -
518                                                 rte_pktmbuf_headroom(*elt));
519                                 }
520                                 /* Padding with a fake mbuf for vec Rx. */
521                                 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
522                                         (*rxq->elts)[elts_n + i] =
523                                                                 &rxq->fake_mbuf;
524                         }
525                         mlx5_rxq_initialize(rxq);
526                         rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
527                 }
528                 return ret;
529         default:
530                 return -1;
531         }
532 }
533
534 /**
535  * Get size of the next packet for a given CQE. For compressed CQEs, the
536  * consumer index is updated only once all packets of the current one have
537  * been processed.
538  *
539  * @param rxq
540  *   Pointer to RX queue.
541  * @param cqe
542  *   CQE to process.
543  * @param[out] mcqe
544  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
545  *   written.
546  *
547  * @return
548  *   0 in case of empty CQE, otherwise the packet size in bytes.
549  */
550 static inline int
551 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
552                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
553 {
554         struct rxq_zip *zip = &rxq->zip;
555         uint16_t cqe_n = cqe_cnt + 1;
556         int len;
557         uint16_t idx, end;
558
559         do {
560                 len = 0;
561                 /* Process compressed data in the CQE and mini arrays. */
562                 if (zip->ai) {
563                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
564                                 (volatile struct mlx5_mini_cqe8 (*)[8])
565                                 (uintptr_t)(&(*rxq->cqes)[zip->ca &
566                                                           cqe_cnt].pkt_info);
567                         len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt &
568                                                rxq->byte_mask);
569                         *mcqe = &(*mc)[zip->ai & 7];
570                         if ((++zip->ai & 7) == 0) {
571                                 /* Invalidate consumed CQEs */
572                                 idx = zip->ca;
573                                 end = zip->na;
574                                 while (idx != end) {
575                                         (*rxq->cqes)[idx & cqe_cnt].op_own =
576                                                 MLX5_CQE_INVALIDATE;
577                                         ++idx;
578                                 }
579                                 /*
580                                  * Increment consumer index to skip the number
581                                  * of CQEs consumed. Hardware leaves holes in
582                                  * the CQ ring for software use.
583                                  */
584                                 zip->ca = zip->na;
585                                 zip->na += 8;
586                         }
587                         if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
588                                 /* Invalidate the rest */
589                                 idx = zip->ca;
590                                 end = zip->cq_ci;
591
592                                 while (idx != end) {
593                                         (*rxq->cqes)[idx & cqe_cnt].op_own =
594                                                 MLX5_CQE_INVALIDATE;
595                                         ++idx;
596                                 }
597                                 rxq->cq_ci = zip->cq_ci;
598                                 zip->ai = 0;
599                         }
600                 /*
601                  * No compressed data, get next CQE and verify if it is
602                  * compressed.
603                  */
604                 } else {
605                         int ret;
606                         int8_t op_own;
607                         uint32_t cq_ci;
608
609                         ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
610                         if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
611                                 if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
612                                              rxq->err_state)) {
613                                         ret = mlx5_rx_err_handle(rxq, 0);
614                                         if (ret == MLX5_CQE_STATUS_HW_OWN ||
615                                             ret == -1)
616                                                 return 0;
617                                 } else {
618                                         return 0;
619                                 }
620                         }
621                         /*
622                          * Introduce the local variable to have queue cq_ci
623                          * index in queue structure always consistent with
624                          * actual CQE boundary (not pointing to the middle
625                          * of compressed CQE session).
626                          */
627                         cq_ci = rxq->cq_ci + 1;
628                         op_own = cqe->op_own;
629                         if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
630                                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
631                                         (volatile struct mlx5_mini_cqe8 (*)[8])
632                                         (uintptr_t)(&(*rxq->cqes)
633                                                 [cq_ci & cqe_cnt].pkt_info);
634
635                                 /* Fix endianness. */
636                                 zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
637                                 /*
638                                  * Current mini array position is the one
639                                  * returned by check_cqe64().
640                                  *
641                                  * If completion comprises several mini arrays,
642                                  * as a special case the second one is located
643                                  * 7 CQEs after the initial CQE instead of 8
644                                  * for subsequent ones.
645                                  */
646                                 zip->ca = cq_ci;
647                                 zip->na = zip->ca + 7;
648                                 /* Compute the next non compressed CQE. */
649                                 zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
650                                 /* Get packet size to return. */
651                                 len = rte_be_to_cpu_32((*mc)[0].byte_cnt &
652                                                        rxq->byte_mask);
653                                 *mcqe = &(*mc)[0];
654                                 zip->ai = 1;
655                                 /* Prefetch all to be invalidated */
656                                 idx = zip->ca;
657                                 end = zip->cq_ci;
658                                 while (idx != end) {
659                                         rte_prefetch0(&(*rxq->cqes)[(idx) &
660                                                                     cqe_cnt]);
661                                         ++idx;
662                                 }
663                         } else {
664                                 rxq->cq_ci = cq_ci;
665                                 len = rte_be_to_cpu_32(cqe->byte_cnt);
666                         }
667                 }
668                 if (unlikely(rxq->err_state)) {
669                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
670                         ++rxq->stats.idropped;
671                 } else {
672                         return len;
673                 }
674         } while (1);
675 }
676
677 /**
678  * Translate RX completion flags to offload flags.
679  *
680  * @param[in] cqe
681  *   Pointer to CQE.
682  *
683  * @return
684  *   Offload flags (ol_flags) for struct rte_mbuf.
685  */
686 static inline uint32_t
687 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
688 {
689         uint32_t ol_flags = 0;
690         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
691
692         ol_flags =
693                 TRANSPOSE(flags,
694                           MLX5_CQE_RX_L3_HDR_VALID,
695                           PKT_RX_IP_CKSUM_GOOD) |
696                 TRANSPOSE(flags,
697                           MLX5_CQE_RX_L4_HDR_VALID,
698                           PKT_RX_L4_CKSUM_GOOD);
699         return ol_flags;
700 }
701
702 /**
703  * Fill in mbuf fields from RX completion flags.
704  * Note that pkt->ol_flags should be initialized outside of this function.
705  *
706  * @param rxq
707  *   Pointer to RX queue.
708  * @param pkt
709  *   mbuf to fill.
710  * @param cqe
711  *   CQE to process.
712  * @param rss_hash_res
713  *   Packet RSS Hash result.
714  */
715 static inline void
716 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
717                volatile struct mlx5_cqe *cqe,
718                volatile struct mlx5_mini_cqe8 *mcqe)
719 {
720         /* Update packet information. */
721         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe, mcqe);
722
723         if (rxq->rss_hash) {
724                 uint32_t rss_hash_res = 0;
725
726                 /* If compressed, take hash result from mini-CQE. */
727                 if (mcqe == NULL ||
728                     rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)
729                         rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
730                 else
731                         rss_hash_res = rte_be_to_cpu_32(mcqe->rx_hash_result);
732                 if (rss_hash_res) {
733                         pkt->hash.rss = rss_hash_res;
734                         pkt->ol_flags |= PKT_RX_RSS_HASH;
735                 }
736         }
737         if (rxq->mark) {
738                 uint32_t mark = 0;
739
740                 /* If compressed, take flow tag from mini-CQE. */
741                 if (mcqe == NULL ||
742                     rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
743                         mark = cqe->sop_drop_qpn;
744                 else
745                         mark = ((mcqe->byte_cnt_flow & 0xff) << 8) |
746                                 (mcqe->flow_tag_high << 16);
747                 if (MLX5_FLOW_MARK_IS_VALID(mark)) {
748                         pkt->ol_flags |= PKT_RX_FDIR;
749                         if (mark != RTE_BE32(MLX5_FLOW_MARK_DEFAULT)) {
750                                 pkt->ol_flags |= PKT_RX_FDIR_ID;
751                                 pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
752                         }
753                 }
754         }
755         if (rxq->dynf_meta) {
756                 uint32_t meta = rte_be_to_cpu_32(cqe->flow_table_metadata) &
757                         rxq->flow_meta_port_mask;
758
759                 if (meta) {
760                         pkt->ol_flags |= rxq->flow_meta_mask;
761                         *RTE_MBUF_DYNFIELD(pkt, rxq->flow_meta_offset,
762                                                 uint32_t *) = meta;
763                 }
764         }
765         if (rxq->csum)
766                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
767         if (rxq->vlan_strip) {
768                 bool vlan_strip;
769
770                 if (mcqe == NULL ||
771                     rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
772                         vlan_strip = cqe->hdr_type_etc &
773                                      RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
774                 else
775                         vlan_strip = mcqe->hdr_type &
776                                      RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
777                 if (vlan_strip) {
778                         pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
779                         pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
780                 }
781         }
782         if (rxq->hw_timestamp) {
783                 uint64_t ts = rte_be_to_cpu_64(cqe->timestamp);
784
785                 if (rxq->rt_timestamp)
786                         ts = mlx5_txpp_convert_rx_ts(rxq->sh, ts);
787                 mlx5_timestamp_set(pkt, rxq->timestamp_offset, ts);
788                 pkt->ol_flags |= rxq->timestamp_rx_flag;
789         }
790 }
791
792 /**
793  * DPDK callback for RX.
794  *
795  * @param dpdk_rxq
796  *   Generic pointer to RX queue structure.
797  * @param[out] pkts
798  *   Array to store received packets.
799  * @param pkts_n
800  *   Maximum number of packets in array.
801  *
802  * @return
803  *   Number of packets successfully received (<= pkts_n).
804  */
805 uint16_t
806 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
807 {
808         struct mlx5_rxq_data *rxq = dpdk_rxq;
809         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
810         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
811         const unsigned int sges_n = rxq->sges_n;
812         struct rte_mbuf *pkt = NULL;
813         struct rte_mbuf *seg = NULL;
814         volatile struct mlx5_cqe *cqe =
815                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
816         unsigned int i = 0;
817         unsigned int rq_ci = rxq->rq_ci << sges_n;
818         int len = 0; /* keep its value across iterations. */
819
820         while (pkts_n) {
821                 unsigned int idx = rq_ci & wqe_cnt;
822                 volatile struct mlx5_wqe_data_seg *wqe =
823                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
824                 struct rte_mbuf *rep = (*rxq->elts)[idx];
825                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
826
827                 if (pkt)
828                         NEXT(seg) = rep;
829                 seg = rep;
830                 rte_prefetch0(seg);
831                 rte_prefetch0(cqe);
832                 rte_prefetch0(wqe);
833                 /* Allocate the buf from the same pool. */
834                 rep = rte_mbuf_raw_alloc(seg->pool);
835                 if (unlikely(rep == NULL)) {
836                         ++rxq->stats.rx_nombuf;
837                         if (!pkt) {
838                                 /*
839                                  * no buffers before we even started,
840                                  * bail out silently.
841                                  */
842                                 break;
843                         }
844                         while (pkt != seg) {
845                                 MLX5_ASSERT(pkt != (*rxq->elts)[idx]);
846                                 rep = NEXT(pkt);
847                                 NEXT(pkt) = NULL;
848                                 NB_SEGS(pkt) = 1;
849                                 rte_mbuf_raw_free(pkt);
850                                 pkt = rep;
851                         }
852                         rq_ci >>= sges_n;
853                         ++rq_ci;
854                         rq_ci <<= sges_n;
855                         break;
856                 }
857                 if (!pkt) {
858                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
859                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
860                         if (!len) {
861                                 rte_mbuf_raw_free(rep);
862                                 break;
863                         }
864                         pkt = seg;
865                         MLX5_ASSERT(len >= (rxq->crc_present << 2));
866                         pkt->ol_flags &= EXT_ATTACHED_MBUF;
867                         rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
868                         if (rxq->crc_present)
869                                 len -= RTE_ETHER_CRC_LEN;
870                         PKT_LEN(pkt) = len;
871                         if (cqe->lro_num_seg > 1) {
872                                 mlx5_lro_update_hdr
873                                         (rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
874                                          mcqe, rxq, len);
875                                 pkt->ol_flags |= PKT_RX_LRO;
876                                 pkt->tso_segsz = len / cqe->lro_num_seg;
877                         }
878                 }
879                 DATA_LEN(rep) = DATA_LEN(seg);
880                 PKT_LEN(rep) = PKT_LEN(seg);
881                 SET_DATA_OFF(rep, DATA_OFF(seg));
882                 PORT(rep) = PORT(seg);
883                 (*rxq->elts)[idx] = rep;
884                 /*
885                  * Fill NIC descriptor with the new buffer. The lkey and size
886                  * of the buffers are already known, only the buffer address
887                  * changes.
888                  */
889                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
890                 /* If there's only one MR, no need to replace LKey in WQE. */
891                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
892                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
893                 if (len > DATA_LEN(seg)) {
894                         len -= DATA_LEN(seg);
895                         ++NB_SEGS(pkt);
896                         ++rq_ci;
897                         continue;
898                 }
899                 DATA_LEN(seg) = len;
900 #ifdef MLX5_PMD_SOFT_COUNTERS
901                 /* Increment bytes counter. */
902                 rxq->stats.ibytes += PKT_LEN(pkt);
903 #endif
904                 /* Return packet. */
905                 *(pkts++) = pkt;
906                 pkt = NULL;
907                 --pkts_n;
908                 ++i;
909                 /* Align consumer index to the next stride. */
910                 rq_ci >>= sges_n;
911                 ++rq_ci;
912                 rq_ci <<= sges_n;
913         }
914         if (unlikely(i == 0 && ((rq_ci >> sges_n) == rxq->rq_ci)))
915                 return 0;
916         /* Update the consumer index. */
917         rxq->rq_ci = rq_ci >> sges_n;
918         rte_io_wmb();
919         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
920         rte_io_wmb();
921         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
922 #ifdef MLX5_PMD_SOFT_COUNTERS
923         /* Increment packets counter. */
924         rxq->stats.ipackets += i;
925 #endif
926         return i;
927 }
928
929 /**
930  * Update LRO packet TCP header.
931  * The HW LRO feature doesn't update the TCP header after coalescing the
932  * TCP segments but supplies information in CQE to fill it by SW.
933  *
934  * @param tcp
935  *   Pointer to the TCP header.
936  * @param cqe
937  *   Pointer to the completion entry.
938  * @param phcsum
939  *   The L3 pseudo-header checksum.
940  */
941 static inline void
942 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
943                         volatile struct mlx5_cqe *__rte_restrict cqe,
944                         uint32_t phcsum, uint8_t l4_type)
945 {
946         /*
947          * The HW calculates only the TCP payload checksum, need to complete
948          * the TCP header checksum and the L3 pseudo-header checksum.
949          */
950         uint32_t csum = phcsum + cqe->csum;
951
952         if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
953             l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
954                 tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
955                 tcp->recv_ack = cqe->lro_ack_seq_num;
956                 tcp->rx_win = cqe->lro_tcp_win;
957         }
958         if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
959                 tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
960         tcp->cksum = 0;
961         csum += rte_raw_cksum(tcp, (tcp->data_off >> 4) * 4);
962         csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
963         csum = (~csum) & 0xffff;
964         if (csum == 0)
965                 csum = 0xffff;
966         tcp->cksum = csum;
967 }
968
969 /**
970  * Update LRO packet headers.
971  * The HW LRO feature doesn't update the L3/TCP headers after coalescing the
972  * TCP segments but supply information in CQE to fill it by SW.
973  *
974  * @param padd
975  *   The packet address.
976  * @param cqe
977  *   Pointer to the completion entry.
978  * @param len
979  *   The packet length.
980  */
981 static inline void
982 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
983                     volatile struct mlx5_cqe *__rte_restrict cqe,
984                     volatile struct mlx5_mini_cqe8 *mcqe,
985                     struct mlx5_rxq_data *rxq, uint32_t len)
986 {
987         union {
988                 struct rte_ether_hdr *eth;
989                 struct rte_vlan_hdr *vlan;
990                 struct rte_ipv4_hdr *ipv4;
991                 struct rte_ipv6_hdr *ipv6;
992                 struct rte_tcp_hdr *tcp;
993                 uint8_t *hdr;
994         } h = {
995                 .hdr = padd,
996         };
997         uint16_t proto = h.eth->ether_type;
998         uint32_t phcsum;
999         uint8_t l4_type;
1000
1001         h.eth++;
1002         while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
1003                proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
1004                 proto = h.vlan->eth_proto;
1005                 h.vlan++;
1006         }
1007         if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
1008                 h.ipv4->time_to_live = cqe->lro_min_ttl;
1009                 h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
1010                 h.ipv4->hdr_checksum = 0;
1011                 h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
1012                 phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
1013                 h.ipv4++;
1014         } else {
1015                 h.ipv6->hop_limits = cqe->lro_min_ttl;
1016                 h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
1017                                                        sizeof(*h.ipv6));
1018                 phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
1019                 h.ipv6++;
1020         }
1021         if (mcqe == NULL ||
1022             rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
1023                 l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
1024                            MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1025         else
1026                 l4_type = (rte_be_to_cpu_16(mcqe->hdr_type) &
1027                            MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1028         mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum, l4_type);
1029 }
1030
1031 void
1032 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
1033 {
1034         mlx5_mprq_buf_free_cb(NULL, buf);
1035 }
1036
1037 /**
1038  * DPDK callback for RX with Multi-Packet RQ support.
1039  *
1040  * @param dpdk_rxq
1041  *   Generic pointer to RX queue structure.
1042  * @param[out] pkts
1043  *   Array to store received packets.
1044  * @param pkts_n
1045  *   Maximum number of packets in array.
1046  *
1047  * @return
1048  *   Number of packets successfully received (<= pkts_n).
1049  */
1050 uint16_t
1051 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1052 {
1053         struct mlx5_rxq_data *rxq = dpdk_rxq;
1054         const uint32_t strd_n = 1 << rxq->strd_num_n;
1055         const uint32_t strd_sz = 1 << rxq->strd_sz_n;
1056         const uint32_t cq_mask = (1 << rxq->cqe_n) - 1;
1057         const uint32_t wq_mask = (1 << rxq->elts_n) - 1;
1058         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1059         unsigned int i = 0;
1060         uint32_t rq_ci = rxq->rq_ci;
1061         uint16_t consumed_strd = rxq->consumed_strd;
1062         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1063
1064         while (i < pkts_n) {
1065                 struct rte_mbuf *pkt;
1066                 int ret;
1067                 uint32_t len;
1068                 uint16_t strd_cnt;
1069                 uint16_t strd_idx;
1070                 uint32_t byte_cnt;
1071                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1072                 enum mlx5_rqx_code rxq_code;
1073
1074                 if (consumed_strd == strd_n) {
1075                         /* Replace WQE if the buffer is still in use. */
1076                         mprq_buf_replace(rxq, rq_ci & wq_mask);
1077                         /* Advance to the next WQE. */
1078                         consumed_strd = 0;
1079                         ++rq_ci;
1080                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1081                 }
1082                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1083                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
1084                 if (!ret)
1085                         break;
1086                 byte_cnt = ret;
1087                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1088                 MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1089                 if (rxq->crc_present)
1090                         len -= RTE_ETHER_CRC_LEN;
1091                 if (mcqe &&
1092                     rxq->mcqe_format == MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1093                         strd_cnt = (len / strd_sz) + !!(len % strd_sz);
1094                 else
1095                         strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
1096                                    MLX5_MPRQ_STRIDE_NUM_SHIFT;
1097                 MLX5_ASSERT(strd_cnt);
1098                 consumed_strd += strd_cnt;
1099                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
1100                         continue;
1101                 strd_idx = rte_be_to_cpu_16(mcqe == NULL ?
1102                                         cqe->wqe_counter :
1103                                         mcqe->stride_idx);
1104                 MLX5_ASSERT(strd_idx < strd_n);
1105                 MLX5_ASSERT(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) &
1106                             wq_mask));
1107                 pkt = rte_pktmbuf_alloc(rxq->mp);
1108                 if (unlikely(pkt == NULL)) {
1109                         ++rxq->stats.rx_nombuf;
1110                         break;
1111                 }
1112                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1113                 MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1114                 if (rxq->crc_present)
1115                         len -= RTE_ETHER_CRC_LEN;
1116                 rxq_code = mprq_buf_to_pkt(rxq, pkt, len, buf,
1117                                            strd_idx, strd_cnt);
1118                 if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) {
1119                         rte_pktmbuf_free_seg(pkt);
1120                         if (rxq_code == MLX5_RXQ_CODE_DROPPED) {
1121                                 ++rxq->stats.idropped;
1122                                 continue;
1123                         }
1124                         if (rxq_code == MLX5_RXQ_CODE_NOMBUF) {
1125                                 ++rxq->stats.rx_nombuf;
1126                                 break;
1127                         }
1128                 }
1129                 rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1130                 if (cqe->lro_num_seg > 1) {
1131                         mlx5_lro_update_hdr(rte_pktmbuf_mtod(pkt, uint8_t *),
1132                                             cqe, mcqe, rxq, len);
1133                         pkt->ol_flags |= PKT_RX_LRO;
1134                         pkt->tso_segsz = len / cqe->lro_num_seg;
1135                 }
1136                 PKT_LEN(pkt) = len;
1137                 PORT(pkt) = rxq->port_id;
1138 #ifdef MLX5_PMD_SOFT_COUNTERS
1139                 /* Increment bytes counter. */
1140                 rxq->stats.ibytes += PKT_LEN(pkt);
1141 #endif
1142                 /* Return packet. */
1143                 *(pkts++) = pkt;
1144                 ++i;
1145         }
1146         /* Update the consumer indexes. */
1147         rxq->consumed_strd = consumed_strd;
1148         rte_io_wmb();
1149         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1150         if (rq_ci != rxq->rq_ci) {
1151                 rxq->rq_ci = rq_ci;
1152                 rte_io_wmb();
1153                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1154         }
1155 #ifdef MLX5_PMD_SOFT_COUNTERS
1156         /* Increment packets counter. */
1157         rxq->stats.ipackets += i;
1158 #endif
1159         return i;
1160 }
1161
1162 /**
1163  * Dummy DPDK callback for RX.
1164  *
1165  * This function is used to temporarily replace the real callback during
1166  * unsafe control operations on the queue, or in case of error.
1167  *
1168  * @param dpdk_rxq
1169  *   Generic pointer to RX queue structure.
1170  * @param[out] pkts
1171  *   Array to store received packets.
1172  * @param pkts_n
1173  *   Maximum number of packets in array.
1174  *
1175  * @return
1176  *   Number of packets successfully received (<= pkts_n).
1177  */
1178 uint16_t
1179 removed_rx_burst(void *dpdk_rxq __rte_unused,
1180                  struct rte_mbuf **pkts __rte_unused,
1181                  uint16_t pkts_n __rte_unused)
1182 {
1183         rte_mb();
1184         return 0;
1185 }
1186
1187 /*
1188  * Vectorized Rx routines are not compiled in when required vector instructions
1189  * are not supported on a target architecture.
1190  * The following null stubs are needed for linkage when those are not included
1191  * outside of this file (e.g. mlx5_rxtx_vec_sse.c for x86).
1192  */
1193
1194 __rte_weak uint16_t
1195 mlx5_rx_burst_vec(void *dpdk_rxq __rte_unused,
1196                   struct rte_mbuf **pkts __rte_unused,
1197                   uint16_t pkts_n __rte_unused)
1198 {
1199         return 0;
1200 }
1201
1202 __rte_weak uint16_t
1203 mlx5_rx_burst_mprq_vec(void *dpdk_rxq __rte_unused,
1204                        struct rte_mbuf **pkts __rte_unused,
1205                        uint16_t pkts_n __rte_unused)
1206 {
1207         return 0;
1208 }
1209
1210 __rte_weak int
1211 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
1212 {
1213         return -ENOTSUP;
1214 }
1215
1216 __rte_weak int
1217 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
1218 {
1219         return -ENOTSUP;
1220 }
1221