mbuf: set mbuf fields while in pool
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5_hw.h>
46 #include <infiniband/arch.h>
47 #ifdef PEDANTIC
48 #pragma GCC diagnostic error "-Wpedantic"
49 #endif
50
51 /* DPDK headers don't like -pedantic. */
52 #ifdef PEDANTIC
53 #pragma GCC diagnostic ignored "-Wpedantic"
54 #endif
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58 #include <rte_common.h>
59 #include <rte_branch_prediction.h>
60 #include <rte_ether.h>
61 #ifdef PEDANTIC
62 #pragma GCC diagnostic error "-Wpedantic"
63 #endif
64
65 #include "mlx5.h"
66 #include "mlx5_utils.h"
67 #include "mlx5_rxtx.h"
68 #include "mlx5_autoconf.h"
69 #include "mlx5_defs.h"
70 #include "mlx5_prm.h"
71
72 static inline int
73 check_cqe(volatile struct mlx5_cqe *cqe,
74           unsigned int cqes_n, const uint16_t ci)
75           __attribute__((always_inline));
76
77 static inline void
78 txq_complete(struct txq *txq) __attribute__((always_inline));
79
80 static inline uint32_t
81 txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
82         __attribute__((always_inline));
83
84 static inline void
85 mlx5_tx_dbrec(struct txq *txq, volatile struct mlx5_wqe *wqe)
86         __attribute__((always_inline));
87
88 static inline uint32_t
89 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
90         __attribute__((always_inline));
91
92 static inline int
93 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
94                  uint16_t cqe_cnt, uint32_t *rss_hash)
95                  __attribute__((always_inline));
96
97 static inline uint32_t
98 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
99                    __attribute__((always_inline));
100
101 #ifndef NDEBUG
102
103 /**
104  * Verify or set magic value in CQE.
105  *
106  * @param cqe
107  *   Pointer to CQE.
108  *
109  * @return
110  *   0 the first time.
111  */
112 static inline int
113 check_cqe_seen(volatile struct mlx5_cqe *cqe)
114 {
115         static const uint8_t magic[] = "seen";
116         volatile uint8_t (*buf)[sizeof(cqe->rsvd0)] = &cqe->rsvd0;
117         int ret = 1;
118         unsigned int i;
119
120         for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
121                 if (!ret || (*buf)[i] != magic[i]) {
122                         ret = 0;
123                         (*buf)[i] = magic[i];
124                 }
125         return ret;
126 }
127
128 #endif /* NDEBUG */
129
130 /**
131  * Check whether CQE is valid.
132  *
133  * @param cqe
134  *   Pointer to CQE.
135  * @param cqes_n
136  *   Size of completion queue.
137  * @param ci
138  *   Consumer index.
139  *
140  * @return
141  *   0 on success, 1 on failure.
142  */
143 static inline int
144 check_cqe(volatile struct mlx5_cqe *cqe,
145           unsigned int cqes_n, const uint16_t ci)
146 {
147         uint16_t idx = ci & cqes_n;
148         uint8_t op_own = cqe->op_own;
149         uint8_t op_owner = MLX5_CQE_OWNER(op_own);
150         uint8_t op_code = MLX5_CQE_OPCODE(op_own);
151
152         if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
153                 return 1; /* No CQE. */
154 #ifndef NDEBUG
155         if ((op_code == MLX5_CQE_RESP_ERR) ||
156             (op_code == MLX5_CQE_REQ_ERR)) {
157                 volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
158                 uint8_t syndrome = err_cqe->syndrome;
159
160                 if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
161                     (syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
162                         return 0;
163                 if (!check_cqe_seen(cqe))
164                         ERROR("unexpected CQE error %u (0x%02x)"
165                               " syndrome 0x%02x",
166                               op_code, op_code, syndrome);
167                 return 1;
168         } else if ((op_code != MLX5_CQE_RESP_SEND) &&
169                    (op_code != MLX5_CQE_REQ)) {
170                 if (!check_cqe_seen(cqe))
171                         ERROR("unexpected CQE opcode %u (0x%02x)",
172                               op_code, op_code);
173                 return 1;
174         }
175 #endif /* NDEBUG */
176         return 0;
177 }
178
179 /**
180  * Return the address of the WQE.
181  *
182  * @param txq
183  *   Pointer to TX queue structure.
184  * @param  wqe_ci
185  *   WQE consumer index.
186  *
187  * @return
188  *   WQE address.
189  */
190 static inline uintptr_t *
191 tx_mlx5_wqe(struct txq *txq, uint16_t ci)
192 {
193         ci &= ((1 << txq->wqe_n) - 1);
194         return (uintptr_t *)((uintptr_t)txq->wqes + ci * MLX5_WQE_SIZE);
195 }
196
197 /**
198  * Return the size of tailroom of WQ.
199  *
200  * @param txq
201  *   Pointer to TX queue structure.
202  * @param addr
203  *   Pointer to tail of WQ.
204  *
205  * @return
206  *   Size of tailroom.
207  */
208 static inline size_t
209 tx_mlx5_wq_tailroom(struct txq *txq, void *addr)
210 {
211         size_t tailroom;
212         tailroom = (uintptr_t)(txq->wqes) +
213                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
214                    (uintptr_t)addr;
215         return tailroom;
216 }
217
218 /**
219  * Copy data to tailroom of circular queue.
220  *
221  * @param dst
222  *   Pointer to destination.
223  * @param src
224  *   Pointer to source.
225  * @param n
226  *   Number of bytes to copy.
227  * @param base
228  *   Pointer to head of queue.
229  * @param tailroom
230  *   Size of tailroom from dst.
231  *
232  * @return
233  *   Pointer after copied data.
234  */
235 static inline void *
236 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
237                 void *base, size_t tailroom)
238 {
239         void *ret;
240
241         if (n > tailroom) {
242                 rte_memcpy(dst, src, tailroom);
243                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
244                            n - tailroom);
245                 ret = (uint8_t *)base + n - tailroom;
246         } else {
247                 rte_memcpy(dst, src, n);
248                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
249         }
250         return ret;
251 }
252
253 /**
254  * Manage TX completions.
255  *
256  * When sending a burst, mlx5_tx_burst() posts several WRs.
257  *
258  * @param txq
259  *   Pointer to TX queue structure.
260  */
261 static inline void
262 txq_complete(struct txq *txq)
263 {
264         const unsigned int elts_n = 1 << txq->elts_n;
265         const unsigned int cqe_n = 1 << txq->cqe_n;
266         const unsigned int cqe_cnt = cqe_n - 1;
267         uint16_t elts_free = txq->elts_tail;
268         uint16_t elts_tail;
269         uint16_t cq_ci = txq->cq_ci;
270         volatile struct mlx5_cqe *cqe = NULL;
271         volatile struct mlx5_wqe_ctrl *ctrl;
272
273         do {
274                 volatile struct mlx5_cqe *tmp;
275
276                 tmp = &(*txq->cqes)[cq_ci & cqe_cnt];
277                 if (check_cqe(tmp, cqe_n, cq_ci))
278                         break;
279                 cqe = tmp;
280 #ifndef NDEBUG
281                 if (MLX5_CQE_FORMAT(cqe->op_own) == MLX5_COMPRESSED) {
282                         if (!check_cqe_seen(cqe))
283                                 ERROR("unexpected compressed CQE, TX stopped");
284                         return;
285                 }
286                 if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
287                     (MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
288                         if (!check_cqe_seen(cqe))
289                                 ERROR("unexpected error CQE, TX stopped");
290                         return;
291                 }
292 #endif /* NDEBUG */
293                 ++cq_ci;
294         } while (1);
295         if (unlikely(cqe == NULL))
296                 return;
297         txq->wqe_pi = ntohs(cqe->wqe_counter);
298         ctrl = (volatile struct mlx5_wqe_ctrl *)
299                 tx_mlx5_wqe(txq, txq->wqe_pi);
300         elts_tail = ctrl->ctrl3;
301         assert(elts_tail < (1 << txq->wqe_n));
302         /* Free buffers. */
303         while (elts_free != elts_tail) {
304                 struct rte_mbuf *elt = (*txq->elts)[elts_free];
305                 unsigned int elts_free_next =
306                         (elts_free + 1) & (elts_n - 1);
307                 struct rte_mbuf *elt_next = (*txq->elts)[elts_free_next];
308
309 #ifndef NDEBUG
310                 /* Poisoning. */
311                 memset(&(*txq->elts)[elts_free],
312                        0x66,
313                        sizeof((*txq->elts)[elts_free]));
314 #endif
315                 RTE_MBUF_PREFETCH_TO_FREE(elt_next);
316                 /* Only one segment needs to be freed. */
317                 rte_pktmbuf_free_seg(elt);
318                 elts_free = elts_free_next;
319         }
320         txq->cq_ci = cq_ci;
321         txq->elts_tail = elts_tail;
322         /* Update the consumer index. */
323         rte_wmb();
324         *txq->cq_db = htonl(cq_ci);
325 }
326
327 /**
328  * Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
329  * the cloned mbuf is allocated is returned instead.
330  *
331  * @param buf
332  *   Pointer to mbuf.
333  *
334  * @return
335  *   Memory pool where data is located for given mbuf.
336  */
337 static struct rte_mempool *
338 txq_mb2mp(struct rte_mbuf *buf)
339 {
340         if (unlikely(RTE_MBUF_INDIRECT(buf)))
341                 return rte_mbuf_from_indirect(buf)->pool;
342         return buf->pool;
343 }
344
345 /**
346  * Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
347  * Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
348  * remove an entry first.
349  *
350  * @param txq
351  *   Pointer to TX queue structure.
352  * @param[in] mp
353  *   Memory Pool for which a Memory Region lkey must be returned.
354  *
355  * @return
356  *   mr->lkey on success, (uint32_t)-1 on failure.
357  */
358 static inline uint32_t
359 txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
360 {
361         unsigned int i;
362         uint32_t lkey = (uint32_t)-1;
363
364         for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
365                 if (unlikely(txq->mp2mr[i].mp == NULL)) {
366                         /* Unknown MP, add a new MR for it. */
367                         break;
368                 }
369                 if (txq->mp2mr[i].mp == mp) {
370                         assert(txq->mp2mr[i].lkey != (uint32_t)-1);
371                         assert(htonl(txq->mp2mr[i].mr->lkey) ==
372                                txq->mp2mr[i].lkey);
373                         lkey = txq->mp2mr[i].lkey;
374                         break;
375                 }
376         }
377         if (unlikely(lkey == (uint32_t)-1))
378                 lkey = txq_mp2mr_reg(txq, mp, i);
379         return lkey;
380 }
381
382 /**
383  * Ring TX queue doorbell.
384  *
385  * @param txq
386  *   Pointer to TX queue structure.
387  * @param wqe
388  *   Pointer to the last WQE posted in the NIC.
389  */
390 static inline void
391 mlx5_tx_dbrec(struct txq *txq, volatile struct mlx5_wqe *wqe)
392 {
393         uint64_t *dst = (uint64_t *)((uintptr_t)txq->bf_reg);
394         volatile uint64_t *src = ((volatile uint64_t *)wqe);
395
396         rte_wmb();
397         *txq->qp_db = htonl(txq->wqe_ci);
398         /* Ensure ordering between DB record and BF copy. */
399         rte_wmb();
400         *dst = *src;
401 }
402
403 /**
404  * DPDK callback to check the status of a tx descriptor.
405  *
406  * @param tx_queue
407  *   The tx queue.
408  * @param[in] offset
409  *   The index of the descriptor in the ring.
410  *
411  * @return
412  *   The status of the tx descriptor.
413  */
414 int
415 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
416 {
417         struct txq *txq = tx_queue;
418         const unsigned int elts_n = 1 << txq->elts_n;
419         const unsigned int elts_cnt = elts_n - 1;
420         unsigned int used;
421
422         txq_complete(txq);
423         used = (txq->elts_head - txq->elts_tail) & elts_cnt;
424         if (offset < used)
425                 return RTE_ETH_TX_DESC_FULL;
426         return RTE_ETH_TX_DESC_DONE;
427 }
428
429 /**
430  * DPDK callback to check the status of a rx descriptor.
431  *
432  * @param rx_queue
433  *   The rx queue.
434  * @param[in] offset
435  *   The index of the descriptor in the ring.
436  *
437  * @return
438  *   The status of the tx descriptor.
439  */
440 int
441 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
442 {
443         struct rxq *rxq = rx_queue;
444         struct rxq_zip *zip = &rxq->zip;
445         volatile struct mlx5_cqe *cqe;
446         const unsigned int cqe_n = (1 << rxq->cqe_n);
447         const unsigned int cqe_cnt = cqe_n - 1;
448         unsigned int cq_ci;
449         unsigned int used;
450
451         /* if we are processing a compressed cqe */
452         if (zip->ai) {
453                 used = zip->cqe_cnt - zip->ca;
454                 cq_ci = zip->cq_ci;
455         } else {
456                 used = 0;
457                 cq_ci = rxq->cq_ci;
458         }
459         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
460         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
461                 int8_t op_own;
462                 unsigned int n;
463
464                 op_own = cqe->op_own;
465                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
466                         n = ntohl(cqe->byte_cnt);
467                 else
468                         n = 1;
469                 cq_ci += n;
470                 used += n;
471                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
472         }
473         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
474         if (offset < used)
475                 return RTE_ETH_RX_DESC_DONE;
476         return RTE_ETH_RX_DESC_AVAIL;
477 }
478
479 /**
480  * DPDK callback for TX.
481  *
482  * @param dpdk_txq
483  *   Generic pointer to TX queue structure.
484  * @param[in] pkts
485  *   Packets to transmit.
486  * @param pkts_n
487  *   Number of packets in array.
488  *
489  * @return
490  *   Number of packets successfully transmitted (<= pkts_n).
491  */
492 uint16_t
493 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
494 {
495         struct txq *txq = (struct txq *)dpdk_txq;
496         uint16_t elts_head = txq->elts_head;
497         const unsigned int elts_n = 1 << txq->elts_n;
498         unsigned int i = 0;
499         unsigned int j = 0;
500         unsigned int k = 0;
501         unsigned int max;
502         uint16_t max_wqe;
503         unsigned int comp;
504         volatile struct mlx5_wqe_v *wqe = NULL;
505         unsigned int segs_n = 0;
506         struct rte_mbuf *buf = NULL;
507         uint8_t *raw;
508
509         if (unlikely(!pkts_n))
510                 return 0;
511         /* Prefetch first packet cacheline. */
512         rte_prefetch0(*pkts);
513         /* Start processing. */
514         txq_complete(txq);
515         max = (elts_n - (elts_head - txq->elts_tail));
516         if (max > elts_n)
517                 max -= elts_n;
518         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
519         if (unlikely(!max_wqe))
520                 return 0;
521         do {
522                 volatile rte_v128u32_t *dseg = NULL;
523                 uint32_t length;
524                 unsigned int ds = 0;
525                 uintptr_t addr;
526                 uint64_t naddr;
527                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
528                 uint16_t tso_header_sz = 0;
529                 uint16_t ehdr;
530                 uint8_t cs_flags = 0;
531                 uint64_t tso = 0;
532 #ifdef MLX5_PMD_SOFT_COUNTERS
533                 uint32_t total_length = 0;
534 #endif
535
536                 /* first_seg */
537                 buf = *(pkts++);
538                 segs_n = buf->nb_segs;
539                 /*
540                  * Make sure there is enough room to store this packet and
541                  * that one ring entry remains unused.
542                  */
543                 assert(segs_n);
544                 if (max < segs_n + 1)
545                         break;
546                 max -= segs_n;
547                 --segs_n;
548                 if (!segs_n)
549                         --pkts_n;
550                 if (unlikely(--max_wqe == 0))
551                         break;
552                 wqe = (volatile struct mlx5_wqe_v *)
553                         tx_mlx5_wqe(txq, txq->wqe_ci);
554                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
555                 if (pkts_n > 1)
556                         rte_prefetch0(*pkts);
557                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
558                 length = DATA_LEN(buf);
559                 ehdr = (((uint8_t *)addr)[1] << 8) |
560                        ((uint8_t *)addr)[0];
561 #ifdef MLX5_PMD_SOFT_COUNTERS
562                 total_length = length;
563 #endif
564                 if (length < (MLX5_WQE_DWORD_SIZE + 2))
565                         break;
566                 /* Update element. */
567                 (*txq->elts)[elts_head] = buf;
568                 elts_head = (elts_head + 1) & (elts_n - 1);
569                 /* Prefetch next buffer data. */
570                 if (pkts_n > 1) {
571                         volatile void *pkt_addr;
572
573                         pkt_addr = rte_pktmbuf_mtod(*pkts, volatile void *);
574                         rte_prefetch0(pkt_addr);
575                 }
576                 /* Should we enable HW CKSUM offload */
577                 if (buf->ol_flags &
578                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
579                         const uint64_t is_tunneled = buf->ol_flags &
580                                                      (PKT_TX_TUNNEL_GRE |
581                                                       PKT_TX_TUNNEL_VXLAN);
582
583                         if (is_tunneled && txq->tunnel_en) {
584                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
585                                            MLX5_ETH_WQE_L4_INNER_CSUM;
586                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
587                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
588                         } else {
589                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
590                                            MLX5_ETH_WQE_L4_CSUM;
591                         }
592                 }
593                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
594                 /* Replace the Ethernet type by the VLAN if necessary. */
595                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
596                         uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
597                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
598
599                         addr += 2;
600                         length -= 2;
601                         /* Copy Destination and source mac address. */
602                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
603                         /* Copy VLAN. */
604                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
605                         /* Copy missing two bytes to end the DSeg. */
606                         memcpy((uint8_t *)raw + len + sizeof(vlan),
607                                ((uint8_t *)addr) + len, 2);
608                         addr += len + 2;
609                         length -= (len + 2);
610                 } else {
611                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
612                                MLX5_WQE_DWORD_SIZE);
613                         length -= pkt_inline_sz;
614                         addr += pkt_inline_sz;
615                 }
616                 if (txq->tso_en) {
617                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
618                         if (tso) {
619                                 uintptr_t end = (uintptr_t)
620                                                 (((uintptr_t)txq->wqes) +
621                                                 (1 << txq->wqe_n) *
622                                                 MLX5_WQE_SIZE);
623                                 unsigned int copy_b;
624                                 uint8_t vlan_sz = (buf->ol_flags &
625                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
626                                 const uint64_t is_tunneled =
627                                                         buf->ol_flags &
628                                                         (PKT_TX_TUNNEL_GRE |
629                                                          PKT_TX_TUNNEL_VXLAN);
630
631                                 tso_header_sz = buf->l2_len + vlan_sz +
632                                                 buf->l3_len + buf->l4_len;
633
634                                 if (is_tunneled && txq->tunnel_en) {
635                                         tso_header_sz += buf->outer_l2_len +
636                                                          buf->outer_l3_len;
637                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
638                                 } else {
639                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
640                                 }
641                                 if (unlikely(tso_header_sz >
642                                              MLX5_MAX_TSO_HEADER))
643                                         break;
644                                 copy_b = tso_header_sz - pkt_inline_sz;
645                                 /* First seg must contain all headers. */
646                                 assert(copy_b <= length);
647                                 raw += MLX5_WQE_DWORD_SIZE;
648                                 if (copy_b &&
649                                    ((end - (uintptr_t)raw) > copy_b)) {
650                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
651                                                       1 + 3) / 4;
652
653                                         if (unlikely(max_wqe < n))
654                                                 break;
655                                         max_wqe -= n;
656                                         rte_memcpy((void *)raw,
657                                                    (void *)addr, copy_b);
658                                         addr += copy_b;
659                                         length -= copy_b;
660                                         pkt_inline_sz += copy_b;
661                                         /*
662                                          * Another DWORD will be added
663                                          * in the inline part.
664                                          */
665                                         raw += MLX5_WQE_DS(copy_b) *
666                                                MLX5_WQE_DWORD_SIZE -
667                                                MLX5_WQE_DWORD_SIZE;
668                                 } else {
669                                         /* NOP WQE. */
670                                         wqe->ctrl = (rte_v128u32_t){
671                                                      htonl(txq->wqe_ci << 8),
672                                                      htonl(txq->qp_num_8s | 1),
673                                                      0,
674                                                      0,
675                                         };
676                                         ds = 1;
677                                         total_length = 0;
678                                         pkts--;
679                                         pkts_n++;
680                                         elts_head = (elts_head - 1) &
681                                                     (elts_n - 1);
682                                         k++;
683                                         goto next_wqe;
684                                 }
685                         }
686                 }
687                 /* Inline if enough room. */
688                 if (txq->inline_en || tso) {
689                         uintptr_t end = (uintptr_t)
690                                 (((uintptr_t)txq->wqes) +
691                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
692                         unsigned int max_inline = txq->max_inline *
693                                                   RTE_CACHE_LINE_SIZE -
694                                                   (pkt_inline_sz - 2);
695                         uintptr_t addr_end = (addr + max_inline) &
696                                              ~(RTE_CACHE_LINE_SIZE - 1);
697                         unsigned int copy_b = (addr_end > addr) ?
698                                 RTE_MIN((addr_end - addr), length) :
699                                 0;
700
701                         raw += MLX5_WQE_DWORD_SIZE;
702                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
703                                 /*
704                                  * One Dseg remains in the current WQE.  To
705                                  * keep the computation positive, it is
706                                  * removed after the bytes to Dseg conversion.
707                                  */
708                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
709
710                                 if (unlikely(max_wqe < n))
711                                         break;
712                                 max_wqe -= n;
713                                 if (tso) {
714                                         uint32_t inl =
715                                                 htonl(copy_b | MLX5_INLINE_SEG);
716
717                                         pkt_inline_sz =
718                                                 MLX5_WQE_DS(tso_header_sz) *
719                                                 MLX5_WQE_DWORD_SIZE;
720                                         rte_memcpy((void *)raw,
721                                                    (void *)&inl, sizeof(inl));
722                                         raw += sizeof(inl);
723                                         pkt_inline_sz += sizeof(inl);
724                                 }
725                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
726                                 addr += copy_b;
727                                 length -= copy_b;
728                                 pkt_inline_sz += copy_b;
729                         }
730                         /*
731                          * 2 DWORDs consumed by the WQE header + ETH segment +
732                          * the size of the inline part of the packet.
733                          */
734                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
735                         if (length > 0) {
736                                 if (ds % (MLX5_WQE_SIZE /
737                                           MLX5_WQE_DWORD_SIZE) == 0) {
738                                         if (unlikely(--max_wqe == 0))
739                                                 break;
740                                         dseg = (volatile rte_v128u32_t *)
741                                                tx_mlx5_wqe(txq, txq->wqe_ci +
742                                                            ds / 4);
743                                 } else {
744                                         dseg = (volatile rte_v128u32_t *)
745                                                 ((uintptr_t)wqe +
746                                                  (ds * MLX5_WQE_DWORD_SIZE));
747                                 }
748                                 goto use_dseg;
749                         } else if (!segs_n) {
750                                 goto next_pkt;
751                         } else {
752                                 /* dseg will be advance as part of next_seg */
753                                 dseg = (volatile rte_v128u32_t *)
754                                         ((uintptr_t)wqe +
755                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
756                                 goto next_seg;
757                         }
758                 } else {
759                         /*
760                          * No inline has been done in the packet, only the
761                          * Ethernet Header as been stored.
762                          */
763                         dseg = (volatile rte_v128u32_t *)
764                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
765                         ds = 3;
766 use_dseg:
767                         /* Add the remaining packet as a simple ds. */
768                         naddr = htonll(addr);
769                         *dseg = (rte_v128u32_t){
770                                 htonl(length),
771                                 txq_mp2mr(txq, txq_mb2mp(buf)),
772                                 naddr,
773                                 naddr >> 32,
774                         };
775                         ++ds;
776                         if (!segs_n)
777                                 goto next_pkt;
778                 }
779 next_seg:
780                 assert(buf);
781                 assert(ds);
782                 assert(wqe);
783                 /*
784                  * Spill on next WQE when the current one does not have
785                  * enough room left. Size of WQE must a be a multiple
786                  * of data segment size.
787                  */
788                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
789                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
790                         if (unlikely(--max_wqe == 0))
791                                 break;
792                         dseg = (volatile rte_v128u32_t *)
793                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
794                         rte_prefetch0(tx_mlx5_wqe(txq,
795                                                   txq->wqe_ci + ds / 4 + 1));
796                 } else {
797                         ++dseg;
798                 }
799                 ++ds;
800                 buf = buf->next;
801                 assert(buf);
802                 length = DATA_LEN(buf);
803 #ifdef MLX5_PMD_SOFT_COUNTERS
804                 total_length += length;
805 #endif
806                 /* Store segment information. */
807                 naddr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
808                 *dseg = (rte_v128u32_t){
809                         htonl(length),
810                         txq_mp2mr(txq, txq_mb2mp(buf)),
811                         naddr,
812                         naddr >> 32,
813                 };
814                 (*txq->elts)[elts_head] = buf;
815                 elts_head = (elts_head + 1) & (elts_n - 1);
816                 ++j;
817                 --segs_n;
818                 if (segs_n)
819                         goto next_seg;
820                 else
821                         --pkts_n;
822 next_pkt:
823                 ++i;
824                 /* Initialize known and common part of the WQE structure. */
825                 if (tso) {
826                         wqe->ctrl = (rte_v128u32_t){
827                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_TSO),
828                                 htonl(txq->qp_num_8s | ds),
829                                 0,
830                                 0,
831                         };
832                         wqe->eseg = (rte_v128u32_t){
833                                 0,
834                                 cs_flags | (htons(buf->tso_segsz) << 16),
835                                 0,
836                                 (ehdr << 16) | htons(tso_header_sz),
837                         };
838                 } else {
839                         wqe->ctrl = (rte_v128u32_t){
840                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
841                                 htonl(txq->qp_num_8s | ds),
842                                 0,
843                                 0,
844                         };
845                         wqe->eseg = (rte_v128u32_t){
846                                 0,
847                                 cs_flags,
848                                 0,
849                                 (ehdr << 16) | htons(pkt_inline_sz),
850                         };
851                 }
852 next_wqe:
853                 txq->wqe_ci += (ds + 3) / 4;
854 #ifdef MLX5_PMD_SOFT_COUNTERS
855                 /* Increment sent bytes counter. */
856                 txq->stats.obytes += total_length;
857 #endif
858         } while (pkts_n);
859         /* Take a shortcut if nothing must be sent. */
860         if (unlikely((i + k) == 0))
861                 return 0;
862         /* Check whether completion threshold has been reached. */
863         comp = txq->elts_comp + i + j + k;
864         if (comp >= MLX5_TX_COMP_THRESH) {
865                 volatile struct mlx5_wqe_ctrl *w =
866                         (volatile struct mlx5_wqe_ctrl *)wqe;
867
868                 /* Request completion on last WQE. */
869                 w->ctrl2 = htonl(8);
870                 /* Save elts_head in unused "immediate" field of WQE. */
871                 w->ctrl3 = elts_head;
872                 txq->elts_comp = 0;
873         } else {
874                 txq->elts_comp = comp;
875         }
876 #ifdef MLX5_PMD_SOFT_COUNTERS
877         /* Increment sent packets counter. */
878         txq->stats.opackets += i;
879 #endif
880         /* Ring QP doorbell. */
881         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)wqe);
882         txq->elts_head = elts_head;
883         return i;
884 }
885
886 /**
887  * Open a MPW session.
888  *
889  * @param txq
890  *   Pointer to TX queue structure.
891  * @param mpw
892  *   Pointer to MPW session structure.
893  * @param length
894  *   Packet length.
895  */
896 static inline void
897 mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
898 {
899         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
900         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
901                 (volatile struct mlx5_wqe_data_seg (*)[])
902                 tx_mlx5_wqe(txq, idx + 1);
903
904         mpw->state = MLX5_MPW_STATE_OPENED;
905         mpw->pkts_n = 0;
906         mpw->len = length;
907         mpw->total_len = 0;
908         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
909         mpw->wqe->eseg.mss = htons(length);
910         mpw->wqe->eseg.inline_hdr_sz = 0;
911         mpw->wqe->eseg.rsvd0 = 0;
912         mpw->wqe->eseg.rsvd1 = 0;
913         mpw->wqe->eseg.rsvd2 = 0;
914         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
915                                   (txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
916         mpw->wqe->ctrl[2] = 0;
917         mpw->wqe->ctrl[3] = 0;
918         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
919                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
920         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
921                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
922         mpw->data.dseg[2] = &(*dseg)[0];
923         mpw->data.dseg[3] = &(*dseg)[1];
924         mpw->data.dseg[4] = &(*dseg)[2];
925 }
926
927 /**
928  * Close a MPW session.
929  *
930  * @param txq
931  *   Pointer to TX queue structure.
932  * @param mpw
933  *   Pointer to MPW session structure.
934  */
935 static inline void
936 mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
937 {
938         unsigned int num = mpw->pkts_n;
939
940         /*
941          * Store size in multiple of 16 bytes. Control and Ethernet segments
942          * count as 2.
943          */
944         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
945         mpw->state = MLX5_MPW_STATE_CLOSED;
946         if (num < 3)
947                 ++txq->wqe_ci;
948         else
949                 txq->wqe_ci += 2;
950         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
951         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
952 }
953
954 /**
955  * DPDK callback for TX with MPW support.
956  *
957  * @param dpdk_txq
958  *   Generic pointer to TX queue structure.
959  * @param[in] pkts
960  *   Packets to transmit.
961  * @param pkts_n
962  *   Number of packets in array.
963  *
964  * @return
965  *   Number of packets successfully transmitted (<= pkts_n).
966  */
967 uint16_t
968 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
969 {
970         struct txq *txq = (struct txq *)dpdk_txq;
971         uint16_t elts_head = txq->elts_head;
972         const unsigned int elts_n = 1 << txq->elts_n;
973         unsigned int i = 0;
974         unsigned int j = 0;
975         unsigned int max;
976         uint16_t max_wqe;
977         unsigned int comp;
978         struct mlx5_mpw mpw = {
979                 .state = MLX5_MPW_STATE_CLOSED,
980         };
981
982         if (unlikely(!pkts_n))
983                 return 0;
984         /* Prefetch first packet cacheline. */
985         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
986         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
987         /* Start processing. */
988         txq_complete(txq);
989         max = (elts_n - (elts_head - txq->elts_tail));
990         if (max > elts_n)
991                 max -= elts_n;
992         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
993         if (unlikely(!max_wqe))
994                 return 0;
995         do {
996                 struct rte_mbuf *buf = *(pkts++);
997                 unsigned int elts_head_next;
998                 uint32_t length;
999                 unsigned int segs_n = buf->nb_segs;
1000                 uint32_t cs_flags = 0;
1001
1002                 /*
1003                  * Make sure there is enough room to store this packet and
1004                  * that one ring entry remains unused.
1005                  */
1006                 assert(segs_n);
1007                 if (max < segs_n + 1)
1008                         break;
1009                 /* Do not bother with large packets MPW cannot handle. */
1010                 if (segs_n > MLX5_MPW_DSEG_MAX)
1011                         break;
1012                 max -= segs_n;
1013                 --pkts_n;
1014                 /* Should we enable HW CKSUM offload */
1015                 if (buf->ol_flags &
1016                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1017                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1018                 /* Retrieve packet information. */
1019                 length = PKT_LEN(buf);
1020                 assert(length);
1021                 /* Start new session if packet differs. */
1022                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
1023                     ((mpw.len != length) ||
1024                      (segs_n != 1) ||
1025                      (mpw.wqe->eseg.cs_flags != cs_flags)))
1026                         mlx5_mpw_close(txq, &mpw);
1027                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1028                         /*
1029                          * Multi-Packet WQE consumes at most two WQE.
1030                          * mlx5_mpw_new() expects to be able to use such
1031                          * resources.
1032                          */
1033                         if (unlikely(max_wqe < 2))
1034                                 break;
1035                         max_wqe -= 2;
1036                         mlx5_mpw_new(txq, &mpw, length);
1037                         mpw.wqe->eseg.cs_flags = cs_flags;
1038                 }
1039                 /* Multi-segment packets must be alone in their MPW. */
1040                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1041 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1042                 length = 0;
1043 #endif
1044                 do {
1045                         volatile struct mlx5_wqe_data_seg *dseg;
1046                         uintptr_t addr;
1047
1048                         elts_head_next = (elts_head + 1) & (elts_n - 1);
1049                         assert(buf);
1050                         (*txq->elts)[elts_head] = buf;
1051                         dseg = mpw.data.dseg[mpw.pkts_n];
1052                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1053                         *dseg = (struct mlx5_wqe_data_seg){
1054                                 .byte_count = htonl(DATA_LEN(buf)),
1055                                 .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
1056                                 .addr = htonll(addr),
1057                         };
1058                         elts_head = elts_head_next;
1059 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1060                         length += DATA_LEN(buf);
1061 #endif
1062                         buf = buf->next;
1063                         ++mpw.pkts_n;
1064                         ++j;
1065                 } while (--segs_n);
1066                 assert(length == mpw.len);
1067                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1068                         mlx5_mpw_close(txq, &mpw);
1069                 elts_head = elts_head_next;
1070 #ifdef MLX5_PMD_SOFT_COUNTERS
1071                 /* Increment sent bytes counter. */
1072                 txq->stats.obytes += length;
1073 #endif
1074                 ++i;
1075         } while (pkts_n);
1076         /* Take a shortcut if nothing must be sent. */
1077         if (unlikely(i == 0))
1078                 return 0;
1079         /* Check whether completion threshold has been reached. */
1080         /* "j" includes both packets and segments. */
1081         comp = txq->elts_comp + j;
1082         if (comp >= MLX5_TX_COMP_THRESH) {
1083                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1084
1085                 /* Request completion on last WQE. */
1086                 wqe->ctrl[2] = htonl(8);
1087                 /* Save elts_head in unused "immediate" field of WQE. */
1088                 wqe->ctrl[3] = elts_head;
1089                 txq->elts_comp = 0;
1090         } else {
1091                 txq->elts_comp = comp;
1092         }
1093 #ifdef MLX5_PMD_SOFT_COUNTERS
1094         /* Increment sent packets counter. */
1095         txq->stats.opackets += i;
1096 #endif
1097         /* Ring QP doorbell. */
1098         if (mpw.state == MLX5_MPW_STATE_OPENED)
1099                 mlx5_mpw_close(txq, &mpw);
1100         mlx5_tx_dbrec(txq, mpw.wqe);
1101         txq->elts_head = elts_head;
1102         return i;
1103 }
1104
1105 /**
1106  * Open a MPW inline session.
1107  *
1108  * @param txq
1109  *   Pointer to TX queue structure.
1110  * @param mpw
1111  *   Pointer to MPW session structure.
1112  * @param length
1113  *   Packet length.
1114  */
1115 static inline void
1116 mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
1117 {
1118         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1119         struct mlx5_wqe_inl_small *inl;
1120
1121         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1122         mpw->pkts_n = 0;
1123         mpw->len = length;
1124         mpw->total_len = 0;
1125         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1126         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
1127                                   (txq->wqe_ci << 8) |
1128                                   MLX5_OPCODE_TSO);
1129         mpw->wqe->ctrl[2] = 0;
1130         mpw->wqe->ctrl[3] = 0;
1131         mpw->wqe->eseg.mss = htons(length);
1132         mpw->wqe->eseg.inline_hdr_sz = 0;
1133         mpw->wqe->eseg.cs_flags = 0;
1134         mpw->wqe->eseg.rsvd0 = 0;
1135         mpw->wqe->eseg.rsvd1 = 0;
1136         mpw->wqe->eseg.rsvd2 = 0;
1137         inl = (struct mlx5_wqe_inl_small *)
1138                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1139         mpw->data.raw = (uint8_t *)&inl->raw;
1140 }
1141
1142 /**
1143  * Close a MPW inline session.
1144  *
1145  * @param txq
1146  *   Pointer to TX queue structure.
1147  * @param mpw
1148  *   Pointer to MPW session structure.
1149  */
1150 static inline void
1151 mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
1152 {
1153         unsigned int size;
1154         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1155                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1156
1157         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1158         /*
1159          * Store size in multiple of 16 bytes. Control and Ethernet segments
1160          * count as 2.
1161          */
1162         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
1163         mpw->state = MLX5_MPW_STATE_CLOSED;
1164         inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
1165         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1166 }
1167
1168 /**
1169  * DPDK callback for TX with MPW inline support.
1170  *
1171  * @param dpdk_txq
1172  *   Generic pointer to TX queue structure.
1173  * @param[in] pkts
1174  *   Packets to transmit.
1175  * @param pkts_n
1176  *   Number of packets in array.
1177  *
1178  * @return
1179  *   Number of packets successfully transmitted (<= pkts_n).
1180  */
1181 uint16_t
1182 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1183                          uint16_t pkts_n)
1184 {
1185         struct txq *txq = (struct txq *)dpdk_txq;
1186         uint16_t elts_head = txq->elts_head;
1187         const unsigned int elts_n = 1 << txq->elts_n;
1188         unsigned int i = 0;
1189         unsigned int j = 0;
1190         unsigned int max;
1191         uint16_t max_wqe;
1192         unsigned int comp;
1193         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1194         struct mlx5_mpw mpw = {
1195                 .state = MLX5_MPW_STATE_CLOSED,
1196         };
1197         /*
1198          * Compute the maximum number of WQE which can be consumed by inline
1199          * code.
1200          * - 2 DSEG for:
1201          *   - 1 control segment,
1202          *   - 1 Ethernet segment,
1203          * - N Dseg from the inline request.
1204          */
1205         const unsigned int wqe_inl_n =
1206                 ((2 * MLX5_WQE_DWORD_SIZE +
1207                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1208                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1209
1210         if (unlikely(!pkts_n))
1211                 return 0;
1212         /* Prefetch first packet cacheline. */
1213         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1214         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1215         /* Start processing. */
1216         txq_complete(txq);
1217         max = (elts_n - (elts_head - txq->elts_tail));
1218         if (max > elts_n)
1219                 max -= elts_n;
1220         do {
1221                 struct rte_mbuf *buf = *(pkts++);
1222                 unsigned int elts_head_next;
1223                 uintptr_t addr;
1224                 uint32_t length;
1225                 unsigned int segs_n = buf->nb_segs;
1226                 uint32_t cs_flags = 0;
1227
1228                 /*
1229                  * Make sure there is enough room to store this packet and
1230                  * that one ring entry remains unused.
1231                  */
1232                 assert(segs_n);
1233                 if (max < segs_n + 1)
1234                         break;
1235                 /* Do not bother with large packets MPW cannot handle. */
1236                 if (segs_n > MLX5_MPW_DSEG_MAX)
1237                         break;
1238                 max -= segs_n;
1239                 --pkts_n;
1240                 /*
1241                  * Compute max_wqe in case less WQE were consumed in previous
1242                  * iteration.
1243                  */
1244                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1245                 /* Should we enable HW CKSUM offload */
1246                 if (buf->ol_flags &
1247                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1248                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1249                 /* Retrieve packet information. */
1250                 length = PKT_LEN(buf);
1251                 /* Start new session if packet differs. */
1252                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1253                         if ((mpw.len != length) ||
1254                             (segs_n != 1) ||
1255                             (mpw.wqe->eseg.cs_flags != cs_flags))
1256                                 mlx5_mpw_close(txq, &mpw);
1257                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1258                         if ((mpw.len != length) ||
1259                             (segs_n != 1) ||
1260                             (length > inline_room) ||
1261                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1262                                 mlx5_mpw_inline_close(txq, &mpw);
1263                                 inline_room =
1264                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1265                         }
1266                 }
1267                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1268                         if ((segs_n != 1) ||
1269                             (length > inline_room)) {
1270                                 /*
1271                                  * Multi-Packet WQE consumes at most two WQE.
1272                                  * mlx5_mpw_new() expects to be able to use
1273                                  * such resources.
1274                                  */
1275                                 if (unlikely(max_wqe < 2))
1276                                         break;
1277                                 max_wqe -= 2;
1278                                 mlx5_mpw_new(txq, &mpw, length);
1279                                 mpw.wqe->eseg.cs_flags = cs_flags;
1280                         } else {
1281                                 if (unlikely(max_wqe < wqe_inl_n))
1282                                         break;
1283                                 max_wqe -= wqe_inl_n;
1284                                 mlx5_mpw_inline_new(txq, &mpw, length);
1285                                 mpw.wqe->eseg.cs_flags = cs_flags;
1286                         }
1287                 }
1288                 /* Multi-segment packets must be alone in their MPW. */
1289                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1290                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1291                         assert(inline_room ==
1292                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1293 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1294                         length = 0;
1295 #endif
1296                         do {
1297                                 volatile struct mlx5_wqe_data_seg *dseg;
1298
1299                                 elts_head_next =
1300                                         (elts_head + 1) & (elts_n - 1);
1301                                 assert(buf);
1302                                 (*txq->elts)[elts_head] = buf;
1303                                 dseg = mpw.data.dseg[mpw.pkts_n];
1304                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1305                                 *dseg = (struct mlx5_wqe_data_seg){
1306                                         .byte_count = htonl(DATA_LEN(buf)),
1307                                         .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
1308                                         .addr = htonll(addr),
1309                                 };
1310                                 elts_head = elts_head_next;
1311 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1312                                 length += DATA_LEN(buf);
1313 #endif
1314                                 buf = buf->next;
1315                                 ++mpw.pkts_n;
1316                                 ++j;
1317                         } while (--segs_n);
1318                         assert(length == mpw.len);
1319                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1320                                 mlx5_mpw_close(txq, &mpw);
1321                 } else {
1322                         unsigned int max;
1323
1324                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1325                         assert(length <= inline_room);
1326                         assert(length == DATA_LEN(buf));
1327                         elts_head_next = (elts_head + 1) & (elts_n - 1);
1328                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1329                         (*txq->elts)[elts_head] = buf;
1330                         /* Maximum number of bytes before wrapping. */
1331                         max = ((((uintptr_t)(txq->wqes)) +
1332                                 (1 << txq->wqe_n) *
1333                                 MLX5_WQE_SIZE) -
1334                                (uintptr_t)mpw.data.raw);
1335                         if (length > max) {
1336                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1337                                            (void *)addr,
1338                                            max);
1339                                 mpw.data.raw = (volatile void *)txq->wqes;
1340                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1341                                            (void *)(addr + max),
1342                                            length - max);
1343                                 mpw.data.raw += length - max;
1344                         } else {
1345                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1346                                            (void *)addr,
1347                                            length);
1348
1349                                 if (length == max)
1350                                         mpw.data.raw =
1351                                                 (volatile void *)txq->wqes;
1352                                 else
1353                                         mpw.data.raw += length;
1354                         }
1355                         ++mpw.pkts_n;
1356                         mpw.total_len += length;
1357                         ++j;
1358                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1359                                 mlx5_mpw_inline_close(txq, &mpw);
1360                                 inline_room =
1361                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1362                         } else {
1363                                 inline_room -= length;
1364                         }
1365                 }
1366                 elts_head = elts_head_next;
1367 #ifdef MLX5_PMD_SOFT_COUNTERS
1368                 /* Increment sent bytes counter. */
1369                 txq->stats.obytes += length;
1370 #endif
1371                 ++i;
1372         } while (pkts_n);
1373         /* Take a shortcut if nothing must be sent. */
1374         if (unlikely(i == 0))
1375                 return 0;
1376         /* Check whether completion threshold has been reached. */
1377         /* "j" includes both packets and segments. */
1378         comp = txq->elts_comp + j;
1379         if (comp >= MLX5_TX_COMP_THRESH) {
1380                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1381
1382                 /* Request completion on last WQE. */
1383                 wqe->ctrl[2] = htonl(8);
1384                 /* Save elts_head in unused "immediate" field of WQE. */
1385                 wqe->ctrl[3] = elts_head;
1386                 txq->elts_comp = 0;
1387         } else {
1388                 txq->elts_comp = comp;
1389         }
1390 #ifdef MLX5_PMD_SOFT_COUNTERS
1391         /* Increment sent packets counter. */
1392         txq->stats.opackets += i;
1393 #endif
1394         /* Ring QP doorbell. */
1395         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1396                 mlx5_mpw_inline_close(txq, &mpw);
1397         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1398                 mlx5_mpw_close(txq, &mpw);
1399         mlx5_tx_dbrec(txq, mpw.wqe);
1400         txq->elts_head = elts_head;
1401         return i;
1402 }
1403
1404 /**
1405  * Open an Enhanced MPW session.
1406  *
1407  * @param txq
1408  *   Pointer to TX queue structure.
1409  * @param mpw
1410  *   Pointer to MPW session structure.
1411  * @param length
1412  *   Packet length.
1413  */
1414 static inline void
1415 mlx5_empw_new(struct txq *txq, struct mlx5_mpw *mpw, int padding)
1416 {
1417         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1418
1419         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1420         mpw->pkts_n = 0;
1421         mpw->total_len = sizeof(struct mlx5_wqe);
1422         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1423         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1424                                   (txq->wqe_ci << 8) |
1425                                   MLX5_OPCODE_ENHANCED_MPSW);
1426         mpw->wqe->ctrl[2] = 0;
1427         mpw->wqe->ctrl[3] = 0;
1428         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1429         if (unlikely(padding)) {
1430                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1431
1432                 /* Pad the first 2 DWORDs with zero-length inline header. */
1433                 *(volatile uint32_t *)addr = htonl(MLX5_INLINE_SEG);
1434                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1435                         htonl(MLX5_INLINE_SEG);
1436                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1437                 /* Start from the next WQEBB. */
1438                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1439         } else {
1440                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1441         }
1442 }
1443
1444 /**
1445  * Close an Enhanced MPW session.
1446  *
1447  * @param txq
1448  *   Pointer to TX queue structure.
1449  * @param mpw
1450  *   Pointer to MPW session structure.
1451  *
1452  * @return
1453  *   Number of consumed WQEs.
1454  */
1455 static inline uint16_t
1456 mlx5_empw_close(struct txq *txq, struct mlx5_mpw *mpw)
1457 {
1458         uint16_t ret;
1459
1460         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1461          * count as 2.
1462          */
1463         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(mpw->total_len));
1464         mpw->state = MLX5_MPW_STATE_CLOSED;
1465         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1466         txq->wqe_ci += ret;
1467         return ret;
1468 }
1469
1470 /**
1471  * DPDK callback for TX with Enhanced MPW support.
1472  *
1473  * @param dpdk_txq
1474  *   Generic pointer to TX queue structure.
1475  * @param[in] pkts
1476  *   Packets to transmit.
1477  * @param pkts_n
1478  *   Number of packets in array.
1479  *
1480  * @return
1481  *   Number of packets successfully transmitted (<= pkts_n).
1482  */
1483 uint16_t
1484 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1485 {
1486         struct txq *txq = (struct txq *)dpdk_txq;
1487         uint16_t elts_head = txq->elts_head;
1488         const unsigned int elts_n = 1 << txq->elts_n;
1489         unsigned int i = 0;
1490         unsigned int j = 0;
1491         unsigned int max_elts;
1492         uint16_t max_wqe;
1493         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1494         unsigned int mpw_room = 0;
1495         unsigned int inl_pad = 0;
1496         uint32_t inl_hdr;
1497         struct mlx5_mpw mpw = {
1498                 .state = MLX5_MPW_STATE_CLOSED,
1499         };
1500
1501         if (unlikely(!pkts_n))
1502                 return 0;
1503         /* Start processing. */
1504         txq_complete(txq);
1505         max_elts = (elts_n - (elts_head - txq->elts_tail));
1506         if (max_elts > elts_n)
1507                 max_elts -= elts_n;
1508         /* A CQE slot must always be available. */
1509         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1510         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1511         if (unlikely(!max_wqe))
1512                 return 0;
1513         do {
1514                 struct rte_mbuf *buf = *(pkts++);
1515                 unsigned int elts_head_next;
1516                 uintptr_t addr;
1517                 uint64_t naddr;
1518                 unsigned int n;
1519                 unsigned int do_inline = 0; /* Whether inline is possible. */
1520                 uint32_t length;
1521                 unsigned int segs_n = buf->nb_segs;
1522                 uint32_t cs_flags = 0;
1523
1524                 /*
1525                  * Make sure there is enough room to store this packet and
1526                  * that one ring entry remains unused.
1527                  */
1528                 assert(segs_n);
1529                 if (max_elts - j < segs_n + 1)
1530                         break;
1531                 /* Do not bother with large packets MPW cannot handle. */
1532                 if (segs_n > MLX5_MPW_DSEG_MAX)
1533                         break;
1534                 /* Should we enable HW CKSUM offload. */
1535                 if (buf->ol_flags &
1536                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1537                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1538                 /* Retrieve packet information. */
1539                 length = PKT_LEN(buf);
1540                 /* Start new session if:
1541                  * - multi-segment packet
1542                  * - no space left even for a dseg
1543                  * - next packet can be inlined with a new WQE
1544                  * - cs_flag differs
1545                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1546                  * segmented packet.
1547                  */
1548                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1549                         if ((segs_n != 1) ||
1550                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1551                               mpw_room) ||
1552                             (length <= txq->inline_max_packet_sz &&
1553                              inl_pad + sizeof(inl_hdr) + length >
1554                               mpw_room) ||
1555                             (mpw.wqe->eseg.cs_flags != cs_flags))
1556                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1557                 }
1558                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1559                         if (unlikely(segs_n != 1)) {
1560                                 /* Fall back to legacy MPW.
1561                                  * A MPW session consumes 2 WQEs at most to
1562                                  * include MLX5_MPW_DSEG_MAX pointers.
1563                                  */
1564                                 if (unlikely(max_wqe < 2))
1565                                         break;
1566                                 mlx5_mpw_new(txq, &mpw, length);
1567                         } else {
1568                                 /* In Enhanced MPW, inline as much as the budget
1569                                  * is allowed. The remaining space is to be
1570                                  * filled with dsegs. If the title WQEBB isn't
1571                                  * padded, it will have 2 dsegs there.
1572                                  */
1573                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1574                                             (max_inline ? max_inline :
1575                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1576                                             MLX5_WQE_SIZE);
1577                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1578                                               mpw_room))
1579                                         break;
1580                                 /* Don't pad the title WQEBB to not waste WQ. */
1581                                 mlx5_empw_new(txq, &mpw, 0);
1582                                 mpw_room -= mpw.total_len;
1583                                 inl_pad = 0;
1584                                 do_inline =
1585                                         length <= txq->inline_max_packet_sz &&
1586                                         sizeof(inl_hdr) + length <= mpw_room &&
1587                                         !txq->mpw_hdr_dseg;
1588                         }
1589                         mpw.wqe->eseg.cs_flags = cs_flags;
1590                 } else {
1591                         /* Evaluate whether the next packet can be inlined.
1592                          * Inlininig is possible when:
1593                          * - length is less than configured value
1594                          * - length fits for remaining space
1595                          * - not required to fill the title WQEBB with dsegs
1596                          */
1597                         do_inline =
1598                                 length <= txq->inline_max_packet_sz &&
1599                                 inl_pad + sizeof(inl_hdr) + length <=
1600                                  mpw_room &&
1601                                 (!txq->mpw_hdr_dseg ||
1602                                  mpw.total_len >= MLX5_WQE_SIZE);
1603                 }
1604                 /* Multi-segment packets must be alone in their MPW. */
1605                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1606                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1607 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1608                         length = 0;
1609 #endif
1610                         do {
1611                                 volatile struct mlx5_wqe_data_seg *dseg;
1612
1613                                 elts_head_next =
1614                                         (elts_head + 1) & (elts_n - 1);
1615                                 assert(buf);
1616                                 (*txq->elts)[elts_head] = buf;
1617                                 dseg = mpw.data.dseg[mpw.pkts_n];
1618                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1619                                 *dseg = (struct mlx5_wqe_data_seg){
1620                                         .byte_count = htonl(DATA_LEN(buf)),
1621                                         .lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
1622                                         .addr = htonll(addr),
1623                                 };
1624                                 elts_head = elts_head_next;
1625 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1626                                 length += DATA_LEN(buf);
1627 #endif
1628                                 buf = buf->next;
1629                                 ++j;
1630                                 ++mpw.pkts_n;
1631                         } while (--segs_n);
1632                         /* A multi-segmented packet takes one MPW session.
1633                          * TODO: Pack more multi-segmented packets if possible.
1634                          */
1635                         mlx5_mpw_close(txq, &mpw);
1636                         if (mpw.pkts_n < 3)
1637                                 max_wqe--;
1638                         else
1639                                 max_wqe -= 2;
1640                 } else if (do_inline) {
1641                         /* Inline packet into WQE. */
1642                         unsigned int max;
1643
1644                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1645                         assert(length == DATA_LEN(buf));
1646                         inl_hdr = htonl(length | MLX5_INLINE_SEG);
1647                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1648                         mpw.data.raw = (volatile void *)
1649                                 ((uintptr_t)mpw.data.raw + inl_pad);
1650                         max = tx_mlx5_wq_tailroom(txq,
1651                                         (void *)(uintptr_t)mpw.data.raw);
1652                         /* Copy inline header. */
1653                         mpw.data.raw = (volatile void *)
1654                                 mlx5_copy_to_wq(
1655                                           (void *)(uintptr_t)mpw.data.raw,
1656                                           &inl_hdr,
1657                                           sizeof(inl_hdr),
1658                                           (void *)(uintptr_t)txq->wqes,
1659                                           max);
1660                         max = tx_mlx5_wq_tailroom(txq,
1661                                         (void *)(uintptr_t)mpw.data.raw);
1662                         /* Copy packet data. */
1663                         mpw.data.raw = (volatile void *)
1664                                 mlx5_copy_to_wq(
1665                                           (void *)(uintptr_t)mpw.data.raw,
1666                                           (void *)addr,
1667                                           length,
1668                                           (void *)(uintptr_t)txq->wqes,
1669                                           max);
1670                         ++mpw.pkts_n;
1671                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1672                         /* No need to get completion as the entire packet is
1673                          * copied to WQ. Free the buf right away.
1674                          */
1675                         elts_head_next = elts_head;
1676                         rte_pktmbuf_free_seg(buf);
1677                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1678                         /* Add pad in the next packet if any. */
1679                         inl_pad = (((uintptr_t)mpw.data.raw +
1680                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1681                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1682                                   (uintptr_t)mpw.data.raw;
1683                 } else {
1684                         /* No inline. Load a dseg of packet pointer. */
1685                         volatile rte_v128u32_t *dseg;
1686
1687                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1688                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1689                         assert(length == DATA_LEN(buf));
1690                         if (!tx_mlx5_wq_tailroom(txq,
1691                                         (void *)((uintptr_t)mpw.data.raw
1692                                                 + inl_pad)))
1693                                 dseg = (volatile void *)txq->wqes;
1694                         else
1695                                 dseg = (volatile void *)
1696                                         ((uintptr_t)mpw.data.raw +
1697                                          inl_pad);
1698                         elts_head_next = (elts_head + 1) & (elts_n - 1);
1699                         (*txq->elts)[elts_head] = buf;
1700                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1701                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1702                                 rte_prefetch2((void *)(addr +
1703                                                 n * RTE_CACHE_LINE_SIZE));
1704                         naddr = htonll(addr);
1705                         *dseg = (rte_v128u32_t) {
1706                                 htonl(length),
1707                                 txq_mp2mr(txq, txq_mb2mp(buf)),
1708                                 naddr,
1709                                 naddr >> 32,
1710                         };
1711                         mpw.data.raw = (volatile void *)(dseg + 1);
1712                         mpw.total_len += (inl_pad + sizeof(*dseg));
1713                         ++j;
1714                         ++mpw.pkts_n;
1715                         mpw_room -= (inl_pad + sizeof(*dseg));
1716                         inl_pad = 0;
1717                 }
1718                 elts_head = elts_head_next;
1719 #ifdef MLX5_PMD_SOFT_COUNTERS
1720                 /* Increment sent bytes counter. */
1721                 txq->stats.obytes += length;
1722 #endif
1723                 ++i;
1724         } while (i < pkts_n);
1725         /* Take a shortcut if nothing must be sent. */
1726         if (unlikely(i == 0))
1727                 return 0;
1728         /* Check whether completion threshold has been reached. */
1729         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1730                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1731                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1732                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1733
1734                 /* Request completion on last WQE. */
1735                 wqe->ctrl[2] = htonl(8);
1736                 /* Save elts_head in unused "immediate" field of WQE. */
1737                 wqe->ctrl[3] = elts_head;
1738                 txq->elts_comp = 0;
1739                 txq->mpw_comp = txq->wqe_ci;
1740                 txq->cq_pi++;
1741         } else {
1742                 txq->elts_comp += j;
1743         }
1744 #ifdef MLX5_PMD_SOFT_COUNTERS
1745         /* Increment sent packets counter. */
1746         txq->stats.opackets += i;
1747 #endif
1748         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1749                 mlx5_empw_close(txq, &mpw);
1750         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1751                 mlx5_mpw_close(txq, &mpw);
1752         /* Ring QP doorbell. */
1753         mlx5_tx_dbrec(txq, mpw.wqe);
1754         txq->elts_head = elts_head;
1755         return i;
1756 }
1757
1758 /**
1759  * Translate RX completion flags to packet type.
1760  *
1761  * @param[in] cqe
1762  *   Pointer to CQE.
1763  *
1764  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1765  *
1766  * @return
1767  *   Packet type for struct rte_mbuf.
1768  */
1769 static inline uint32_t
1770 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1771 {
1772         uint32_t pkt_type;
1773         uint16_t flags = ntohs(cqe->hdr_type_etc);
1774
1775         if (cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) {
1776                 pkt_type =
1777                         TRANSPOSE(flags,
1778                                   MLX5_CQE_RX_IPV4_PACKET,
1779                                   RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) |
1780                         TRANSPOSE(flags,
1781                                   MLX5_CQE_RX_IPV6_PACKET,
1782                                   RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN);
1783                 pkt_type |= ((cqe->pkt_info & MLX5_CQE_RX_OUTER_PACKET) ?
1784                              RTE_PTYPE_L3_IPV6_EXT_UNKNOWN :
1785                              RTE_PTYPE_L3_IPV4_EXT_UNKNOWN);
1786         } else {
1787                 pkt_type =
1788                         TRANSPOSE(flags,
1789                                   MLX5_CQE_L3_HDR_TYPE_IPV6,
1790                                   RTE_PTYPE_L3_IPV6_EXT_UNKNOWN) |
1791                         TRANSPOSE(flags,
1792                                   MLX5_CQE_L3_HDR_TYPE_IPV4,
1793                                   RTE_PTYPE_L3_IPV4_EXT_UNKNOWN);
1794         }
1795         return pkt_type;
1796 }
1797
1798 /**
1799  * Get size of the next packet for a given CQE. For compressed CQEs, the
1800  * consumer index is updated only once all packets of the current one have
1801  * been processed.
1802  *
1803  * @param rxq
1804  *   Pointer to RX queue.
1805  * @param cqe
1806  *   CQE to process.
1807  * @param[out] rss_hash
1808  *   Packet RSS Hash result.
1809  *
1810  * @return
1811  *   Packet size in bytes (0 if there is none), -1 in case of completion
1812  *   with error.
1813  */
1814 static inline int
1815 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
1816                  uint16_t cqe_cnt, uint32_t *rss_hash)
1817 {
1818         struct rxq_zip *zip = &rxq->zip;
1819         uint16_t cqe_n = cqe_cnt + 1;
1820         int len = 0;
1821         uint16_t idx, end;
1822
1823         /* Process compressed data in the CQE and mini arrays. */
1824         if (zip->ai) {
1825                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1826                         (volatile struct mlx5_mini_cqe8 (*)[8])
1827                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt]);
1828
1829                 len = ntohl((*mc)[zip->ai & 7].byte_cnt);
1830                 *rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
1831                 if ((++zip->ai & 7) == 0) {
1832                         /* Invalidate consumed CQEs */
1833                         idx = zip->ca;
1834                         end = zip->na;
1835                         while (idx != end) {
1836                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1837                                         MLX5_CQE_INVALIDATE;
1838                                 ++idx;
1839                         }
1840                         /*
1841                          * Increment consumer index to skip the number of
1842                          * CQEs consumed. Hardware leaves holes in the CQ
1843                          * ring for software use.
1844                          */
1845                         zip->ca = zip->na;
1846                         zip->na += 8;
1847                 }
1848                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1849                         /* Invalidate the rest */
1850                         idx = zip->ca;
1851                         end = zip->cq_ci;
1852
1853                         while (idx != end) {
1854                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1855                                         MLX5_CQE_INVALIDATE;
1856                                 ++idx;
1857                         }
1858                         rxq->cq_ci = zip->cq_ci;
1859                         zip->ai = 0;
1860                 }
1861         /* No compressed data, get next CQE and verify if it is compressed. */
1862         } else {
1863                 int ret;
1864                 int8_t op_own;
1865
1866                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1867                 if (unlikely(ret == 1))
1868                         return 0;
1869                 ++rxq->cq_ci;
1870                 op_own = cqe->op_own;
1871                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1872                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1873                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1874                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1875                                                           cqe_cnt]);
1876
1877                         /* Fix endianness. */
1878                         zip->cqe_cnt = ntohl(cqe->byte_cnt);
1879                         /*
1880                          * Current mini array position is the one returned by
1881                          * check_cqe64().
1882                          *
1883                          * If completion comprises several mini arrays, as a
1884                          * special case the second one is located 7 CQEs after
1885                          * the initial CQE instead of 8 for subsequent ones.
1886                          */
1887                         zip->ca = rxq->cq_ci;
1888                         zip->na = zip->ca + 7;
1889                         /* Compute the next non compressed CQE. */
1890                         --rxq->cq_ci;
1891                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1892                         /* Get packet size to return. */
1893                         len = ntohl((*mc)[0].byte_cnt);
1894                         *rss_hash = ntohl((*mc)[0].rx_hash_result);
1895                         zip->ai = 1;
1896                         /* Prefetch all the entries to be invalidated */
1897                         idx = zip->ca;
1898                         end = zip->cq_ci;
1899                         while (idx != end) {
1900                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1901                                 ++idx;
1902                         }
1903                 } else {
1904                         len = ntohl(cqe->byte_cnt);
1905                         *rss_hash = ntohl(cqe->rx_hash_res);
1906                 }
1907                 /* Error while receiving packet. */
1908                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1909                         return -1;
1910         }
1911         return len;
1912 }
1913
1914 /**
1915  * Translate RX completion flags to offload flags.
1916  *
1917  * @param[in] rxq
1918  *   Pointer to RX queue structure.
1919  * @param[in] cqe
1920  *   Pointer to CQE.
1921  *
1922  * @return
1923  *   Offload flags (ol_flags) for struct rte_mbuf.
1924  */
1925 static inline uint32_t
1926 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
1927 {
1928         uint32_t ol_flags = 0;
1929         uint16_t flags = ntohs(cqe->hdr_type_etc);
1930
1931         ol_flags =
1932                 TRANSPOSE(flags,
1933                           MLX5_CQE_RX_L3_HDR_VALID,
1934                           PKT_RX_IP_CKSUM_GOOD) |
1935                 TRANSPOSE(flags,
1936                           MLX5_CQE_RX_L4_HDR_VALID,
1937                           PKT_RX_L4_CKSUM_GOOD);
1938         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1939                 ol_flags |=
1940                         TRANSPOSE(flags,
1941                                   MLX5_CQE_RX_L3_HDR_VALID,
1942                                   PKT_RX_IP_CKSUM_GOOD) |
1943                         TRANSPOSE(flags,
1944                                   MLX5_CQE_RX_L4_HDR_VALID,
1945                                   PKT_RX_L4_CKSUM_GOOD);
1946         return ol_flags;
1947 }
1948
1949 /**
1950  * DPDK callback for RX.
1951  *
1952  * @param dpdk_rxq
1953  *   Generic pointer to RX queue structure.
1954  * @param[out] pkts
1955  *   Array to store received packets.
1956  * @param pkts_n
1957  *   Maximum number of packets in array.
1958  *
1959  * @return
1960  *   Number of packets successfully received (<= pkts_n).
1961  */
1962 uint16_t
1963 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1964 {
1965         struct rxq *rxq = dpdk_rxq;
1966         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1967         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1968         const unsigned int sges_n = rxq->sges_n;
1969         struct rte_mbuf *pkt = NULL;
1970         struct rte_mbuf *seg = NULL;
1971         volatile struct mlx5_cqe *cqe =
1972                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1973         unsigned int i = 0;
1974         unsigned int rq_ci = rxq->rq_ci << sges_n;
1975         int len; /* keep its value across iterations. */
1976
1977         while (pkts_n) {
1978                 unsigned int idx = rq_ci & wqe_cnt;
1979                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1980                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1981                 uint32_t rss_hash_res = 0;
1982
1983                 if (pkt)
1984                         NEXT(seg) = rep;
1985                 seg = rep;
1986                 rte_prefetch0(seg);
1987                 rte_prefetch0(cqe);
1988                 rte_prefetch0(wqe);
1989                 rep = rte_mbuf_raw_alloc(rxq->mp);
1990                 if (unlikely(rep == NULL)) {
1991                         ++rxq->stats.rx_nombuf;
1992                         if (!pkt) {
1993                                 /*
1994                                  * no buffers before we even started,
1995                                  * bail out silently.
1996                                  */
1997                                 break;
1998                         }
1999                         while (pkt != seg) {
2000                                 assert(pkt != (*rxq->elts)[idx]);
2001                                 rep = NEXT(pkt);
2002                                 NEXT(pkt) = NULL;
2003                                 NB_SEGS(pkt) = 1;
2004                                 rte_mbuf_raw_free(pkt);
2005                                 pkt = rep;
2006                         }
2007                         break;
2008                 }
2009                 if (!pkt) {
2010                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2011                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
2012                                                &rss_hash_res);
2013                         if (!len) {
2014                                 rte_mbuf_raw_free(rep);
2015                                 break;
2016                         }
2017                         if (unlikely(len == -1)) {
2018                                 /* RX error, packet is likely too large. */
2019                                 rte_mbuf_raw_free(rep);
2020                                 ++rxq->stats.idropped;
2021                                 goto skip;
2022                         }
2023                         pkt = seg;
2024                         assert(len >= (rxq->crc_present << 2));
2025                         /* Update packet information. */
2026                         pkt->packet_type = 0;
2027                         pkt->ol_flags = 0;
2028                         if (rss_hash_res && rxq->rss_hash) {
2029                                 pkt->hash.rss = rss_hash_res;
2030                                 pkt->ol_flags = PKT_RX_RSS_HASH;
2031                         }
2032                         if (rxq->mark &&
2033                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
2034                                 pkt->ol_flags |= PKT_RX_FDIR;
2035                                 if (cqe->sop_drop_qpn !=
2036                                     htonl(MLX5_FLOW_MARK_DEFAULT)) {
2037                                         uint32_t mark = cqe->sop_drop_qpn;
2038
2039                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
2040                                         pkt->hash.fdir.hi =
2041                                                 mlx5_flow_mark_get(mark);
2042                                 }
2043                         }
2044                         if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip |
2045                             rxq->crc_present) {
2046                                 if (rxq->csum) {
2047                                         pkt->packet_type =
2048                                                 rxq_cq_to_pkt_type(cqe);
2049                                         pkt->ol_flags |=
2050                                                 rxq_cq_to_ol_flags(rxq, cqe);
2051                                 }
2052                                 if (ntohs(cqe->hdr_type_etc) &
2053                                     MLX5_CQE_VLAN_STRIPPED) {
2054                                         pkt->ol_flags |= PKT_RX_VLAN_PKT |
2055                                                 PKT_RX_VLAN_STRIPPED;
2056                                         pkt->vlan_tci = ntohs(cqe->vlan_info);
2057                                 }
2058                                 if (rxq->crc_present)
2059                                         len -= ETHER_CRC_LEN;
2060                         }
2061                         PKT_LEN(pkt) = len;
2062                 }
2063                 DATA_LEN(rep) = DATA_LEN(seg);
2064                 PKT_LEN(rep) = PKT_LEN(seg);
2065                 SET_DATA_OFF(rep, DATA_OFF(seg));
2066                 NB_SEGS(rep) = NB_SEGS(seg);
2067                 PORT(rep) = PORT(seg);
2068                 NEXT(rep) = NULL;
2069                 (*rxq->elts)[idx] = rep;
2070                 /*
2071                  * Fill NIC descriptor with the new buffer.  The lkey and size
2072                  * of the buffers are already known, only the buffer address
2073                  * changes.
2074                  */
2075                 wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
2076                 if (len > DATA_LEN(seg)) {
2077                         len -= DATA_LEN(seg);
2078                         ++NB_SEGS(pkt);
2079                         ++rq_ci;
2080                         continue;
2081                 }
2082                 DATA_LEN(seg) = len;
2083 #ifdef MLX5_PMD_SOFT_COUNTERS
2084                 /* Increment bytes counter. */
2085                 rxq->stats.ibytes += PKT_LEN(pkt);
2086 #endif
2087                 /* Return packet. */
2088                 *(pkts++) = pkt;
2089                 pkt = NULL;
2090                 --pkts_n;
2091                 ++i;
2092 skip:
2093                 /* Align consumer index to the next stride. */
2094                 rq_ci >>= sges_n;
2095                 ++rq_ci;
2096                 rq_ci <<= sges_n;
2097         }
2098         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2099                 return 0;
2100         /* Update the consumer index. */
2101         rxq->rq_ci = rq_ci >> sges_n;
2102         rte_wmb();
2103         *rxq->cq_db = htonl(rxq->cq_ci);
2104         rte_wmb();
2105         *rxq->rq_db = htonl(rxq->rq_ci);
2106 #ifdef MLX5_PMD_SOFT_COUNTERS
2107         /* Increment packets counter. */
2108         rxq->stats.ipackets += i;
2109 #endif
2110         return i;
2111 }
2112
2113 /**
2114  * Dummy DPDK callback for TX.
2115  *
2116  * This function is used to temporarily replace the real callback during
2117  * unsafe control operations on the queue, or in case of error.
2118  *
2119  * @param dpdk_txq
2120  *   Generic pointer to TX queue structure.
2121  * @param[in] pkts
2122  *   Packets to transmit.
2123  * @param pkts_n
2124  *   Number of packets in array.
2125  *
2126  * @return
2127  *   Number of packets successfully transmitted (<= pkts_n).
2128  */
2129 uint16_t
2130 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2131 {
2132         (void)dpdk_txq;
2133         (void)pkts;
2134         (void)pkts_n;
2135         return 0;
2136 }
2137
2138 /**
2139  * Dummy DPDK callback for RX.
2140  *
2141  * This function is used to temporarily replace the real callback during
2142  * unsafe control operations on the queue, or in case of error.
2143  *
2144  * @param dpdk_rxq
2145  *   Generic pointer to RX queue structure.
2146  * @param[out] pkts
2147  *   Array to store received packets.
2148  * @param pkts_n
2149  *   Maximum number of packets in array.
2150  *
2151  * @return
2152  *   Number of packets successfully received (<= pkts_n).
2153  */
2154 uint16_t
2155 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2156 {
2157         (void)dpdk_rxq;
2158         (void)pkts;
2159         (void)pkts_n;
2160         return 0;
2161 }
2162
2163 /**
2164  * DPDK callback for rx queue interrupt enable.
2165  *
2166  * @param dev
2167  *   Pointer to Ethernet device structure.
2168  * @param rx_queue_id
2169  *   RX queue number
2170  *
2171  * @return
2172  *   0 on success, negative on failure.
2173  */
2174 int
2175 mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2176 {
2177 #ifdef HAVE_UPDATE_CQ_CI
2178         struct priv *priv = mlx5_get_priv(dev);
2179         struct rxq *rxq = (*priv->rxqs)[rx_queue_id];
2180         struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
2181         struct ibv_cq *cq = rxq_ctrl->cq;
2182         uint16_t ci = rxq->cq_ci;
2183         int ret = 0;
2184
2185         ibv_mlx5_exp_update_cq_ci(cq, ci);
2186         ret = ibv_req_notify_cq(cq, 0);
2187 #else
2188         int ret = -1;
2189         (void)dev;
2190         (void)rx_queue_id;
2191 #endif
2192         if (ret)
2193                 WARN("unable to arm interrupt on rx queue %d", rx_queue_id);
2194         return ret;
2195 }
2196
2197 /**
2198  * DPDK callback for rx queue interrupt disable.
2199  *
2200  * @param dev
2201  *   Pointer to Ethernet device structure.
2202  * @param rx_queue_id
2203  *   RX queue number
2204  *
2205  * @return
2206  *   0 on success, negative on failure.
2207  */
2208 int
2209 mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2210 {
2211 #ifdef HAVE_UPDATE_CQ_CI
2212         struct priv *priv = mlx5_get_priv(dev);
2213         struct rxq *rxq = (*priv->rxqs)[rx_queue_id];
2214         struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
2215         struct ibv_cq *cq = rxq_ctrl->cq;
2216         struct ibv_cq *ev_cq;
2217         void *ev_ctx;
2218         int ret = 0;
2219
2220         ret = ibv_get_cq_event(cq->channel, &ev_cq, &ev_ctx);
2221         if (ret || ev_cq != cq)
2222                 ret = -1;
2223         else
2224                 ibv_ack_cq_events(cq, 1);
2225 #else
2226         int ret = -1;
2227         (void)dev;
2228         (void)rx_queue_id;
2229 #endif
2230         if (ret)
2231                 WARN("unable to disable interrupt on rx queue %d",
2232                      rx_queue_id);
2233         return ret;
2234 }