net/mlx5: fix build without soft counters
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         unsigned int max_inline = txq->max_inline;
348         const unsigned int inline_en = !!max_inline && txq->inline_en;
349         uint16_t max_wqe;
350         unsigned int comp;
351         volatile struct mlx5_wqe_v *wqe = NULL;
352         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
353         unsigned int segs_n = 0;
354         struct rte_mbuf *buf = NULL;
355         uint8_t *raw;
356
357         if (unlikely(!pkts_n))
358                 return 0;
359         /* Prefetch first packet cacheline. */
360         rte_prefetch0(*pkts);
361         /* Start processing. */
362         mlx5_tx_complete(txq);
363         max_elts = (elts_n - (elts_head - txq->elts_tail));
364         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
365         if (unlikely(!max_wqe))
366                 return 0;
367         do {
368                 volatile rte_v128u32_t *dseg = NULL;
369                 uint32_t length;
370                 unsigned int ds = 0;
371                 unsigned int sg = 0; /* counter of additional segs attached. */
372                 uintptr_t addr;
373                 uint64_t naddr;
374                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
375                 uint16_t tso_header_sz = 0;
376                 uint16_t ehdr;
377                 uint8_t cs_flags = 0;
378                 uint64_t tso = 0;
379                 uint16_t tso_segsz = 0;
380 #ifdef MLX5_PMD_SOFT_COUNTERS
381                 uint32_t total_length = 0;
382 #endif
383
384                 /* first_seg */
385                 buf = *pkts;
386                 segs_n = buf->nb_segs;
387                 /*
388                  * Make sure there is enough room to store this packet and
389                  * that one ring entry remains unused.
390                  */
391                 assert(segs_n);
392                 if (max_elts < segs_n)
393                         break;
394                 max_elts -= segs_n;
395                 --segs_n;
396                 if (unlikely(--max_wqe == 0))
397                         break;
398                 wqe = (volatile struct mlx5_wqe_v *)
399                         tx_mlx5_wqe(txq, txq->wqe_ci);
400                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
401                 if (pkts_n - i > 1)
402                         rte_prefetch0(*(pkts + 1));
403                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
404                 length = DATA_LEN(buf);
405                 ehdr = (((uint8_t *)addr)[1] << 8) |
406                        ((uint8_t *)addr)[0];
407 #ifdef MLX5_PMD_SOFT_COUNTERS
408                 total_length = length;
409 #endif
410                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
411                         txq->stats.oerrors++;
412                         break;
413                 }
414                 /* Update element. */
415                 (*txq->elts)[elts_head & elts_m] = buf;
416                 /* Prefetch next buffer data. */
417                 if (pkts_n - i > 1)
418                         rte_prefetch0(
419                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
420                 /* Should we enable HW CKSUM offload */
421                 if (buf->ol_flags &
422                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
423                         const uint64_t is_tunneled = buf->ol_flags &
424                                                      (PKT_TX_TUNNEL_GRE |
425                                                       PKT_TX_TUNNEL_VXLAN);
426
427                         if (is_tunneled && txq->tunnel_en) {
428                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
429                                            MLX5_ETH_WQE_L4_INNER_CSUM;
430                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
431                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
432                         } else {
433                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
434                                            MLX5_ETH_WQE_L4_CSUM;
435                         }
436                 }
437                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
438                 /* Replace the Ethernet type by the VLAN if necessary. */
439                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
440                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
441                                                          buf->vlan_tci);
442                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
443
444                         addr += 2;
445                         length -= 2;
446                         /* Copy Destination and source mac address. */
447                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
448                         /* Copy VLAN. */
449                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
450                         /* Copy missing two bytes to end the DSeg. */
451                         memcpy((uint8_t *)raw + len + sizeof(vlan),
452                                ((uint8_t *)addr) + len, 2);
453                         addr += len + 2;
454                         length -= (len + 2);
455                 } else {
456                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
457                                MLX5_WQE_DWORD_SIZE);
458                         length -= pkt_inline_sz;
459                         addr += pkt_inline_sz;
460                 }
461                 raw += MLX5_WQE_DWORD_SIZE;
462                 if (txq->tso_en) {
463                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
464                         if (tso) {
465                                 uintptr_t end = (uintptr_t)
466                                                 (((uintptr_t)txq->wqes) +
467                                                 (1 << txq->wqe_n) *
468                                                 MLX5_WQE_SIZE);
469                                 unsigned int copy_b;
470                                 uint8_t vlan_sz = (buf->ol_flags &
471                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
472                                 const uint64_t is_tunneled =
473                                                         buf->ol_flags &
474                                                         (PKT_TX_TUNNEL_GRE |
475                                                          PKT_TX_TUNNEL_VXLAN);
476
477                                 tso_header_sz = buf->l2_len + vlan_sz +
478                                                 buf->l3_len + buf->l4_len;
479                                 tso_segsz = buf->tso_segsz;
480                                 if (unlikely(tso_segsz == 0)) {
481                                         txq->stats.oerrors++;
482                                         break;
483                                 }
484                                 if (is_tunneled && txq->tunnel_en) {
485                                         tso_header_sz += buf->outer_l2_len +
486                                                          buf->outer_l3_len;
487                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
488                                 } else {
489                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
490                                 }
491                                 if (unlikely(tso_header_sz >
492                                              MLX5_MAX_TSO_HEADER)) {
493                                         txq->stats.oerrors++;
494                                         break;
495                                 }
496                                 copy_b = tso_header_sz - pkt_inline_sz;
497                                 /* First seg must contain all headers. */
498                                 assert(copy_b <= length);
499                                 if (copy_b &&
500                                    ((end - (uintptr_t)raw) > copy_b)) {
501                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
502                                                       1 + 3) / 4;
503
504                                         if (unlikely(max_wqe < n))
505                                                 break;
506                                         max_wqe -= n;
507                                         rte_memcpy((void *)raw,
508                                                    (void *)addr, copy_b);
509                                         addr += copy_b;
510                                         length -= copy_b;
511                                         /* Include padding for TSO header. */
512                                         copy_b = MLX5_WQE_DS(copy_b) *
513                                                  MLX5_WQE_DWORD_SIZE;
514                                         pkt_inline_sz += copy_b;
515                                         raw += copy_b;
516                                 } else {
517                                         /* NOP WQE. */
518                                         wqe->ctrl = (rte_v128u32_t){
519                                                      rte_cpu_to_be_32(
520                                                         txq->wqe_ci << 8),
521                                                      rte_cpu_to_be_32(
522                                                         txq->qp_num_8s | 1),
523                                                      0,
524                                                      0,
525                                         };
526                                         ds = 1;
527 #ifdef MLX5_PMD_SOFT_COUNTERS
528                                         total_length = 0;
529 #endif
530                                         k++;
531                                         goto next_wqe;
532                                 }
533                         }
534                 }
535                 /* Inline if enough room. */
536                 if (inline_en || tso) {
537                         uint32_t inl;
538                         uintptr_t end = (uintptr_t)
539                                 (((uintptr_t)txq->wqes) +
540                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
541                         unsigned int inline_room = max_inline *
542                                                    RTE_CACHE_LINE_SIZE -
543                                                    (pkt_inline_sz - 2) -
544                                                    !!tso * sizeof(inl);
545                         uintptr_t addr_end = (addr + inline_room) &
546                                              ~(RTE_CACHE_LINE_SIZE - 1);
547                         unsigned int copy_b = (addr_end > addr) ?
548                                 RTE_MIN((addr_end - addr), length) :
549                                 0;
550
551                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
552                                 /*
553                                  * One Dseg remains in the current WQE.  To
554                                  * keep the computation positive, it is
555                                  * removed after the bytes to Dseg conversion.
556                                  */
557                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
558
559                                 if (unlikely(max_wqe < n))
560                                         break;
561                                 max_wqe -= n;
562                                 if (tso) {
563                                         inl = rte_cpu_to_be_32(copy_b |
564                                                                MLX5_INLINE_SEG);
565                                         rte_memcpy((void *)raw,
566                                                    (void *)&inl, sizeof(inl));
567                                         raw += sizeof(inl);
568                                         pkt_inline_sz += sizeof(inl);
569                                 }
570                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
571                                 addr += copy_b;
572                                 length -= copy_b;
573                                 pkt_inline_sz += copy_b;
574                         }
575                         /*
576                          * 2 DWORDs consumed by the WQE header + ETH segment +
577                          * the size of the inline part of the packet.
578                          */
579                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
580                         if (length > 0) {
581                                 if (ds % (MLX5_WQE_SIZE /
582                                           MLX5_WQE_DWORD_SIZE) == 0) {
583                                         if (unlikely(--max_wqe == 0))
584                                                 break;
585                                         dseg = (volatile rte_v128u32_t *)
586                                                tx_mlx5_wqe(txq, txq->wqe_ci +
587                                                            ds / 4);
588                                 } else {
589                                         dseg = (volatile rte_v128u32_t *)
590                                                 ((uintptr_t)wqe +
591                                                  (ds * MLX5_WQE_DWORD_SIZE));
592                                 }
593                                 goto use_dseg;
594                         } else if (!segs_n) {
595                                 goto next_pkt;
596                         } else {
597                                 /* dseg will be advance as part of next_seg */
598                                 dseg = (volatile rte_v128u32_t *)
599                                         ((uintptr_t)wqe +
600                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
601                                 goto next_seg;
602                         }
603                 } else {
604                         /*
605                          * No inline has been done in the packet, only the
606                          * Ethernet Header as been stored.
607                          */
608                         dseg = (volatile rte_v128u32_t *)
609                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
610                         ds = 3;
611 use_dseg:
612                         /* Add the remaining packet as a simple ds. */
613                         naddr = rte_cpu_to_be_64(addr);
614                         *dseg = (rte_v128u32_t){
615                                 rte_cpu_to_be_32(length),
616                                 mlx5_tx_mb2mr(txq, buf),
617                                 naddr,
618                                 naddr >> 32,
619                         };
620                         ++ds;
621                         if (!segs_n)
622                                 goto next_pkt;
623                 }
624 next_seg:
625                 assert(buf);
626                 assert(ds);
627                 assert(wqe);
628                 /*
629                  * Spill on next WQE when the current one does not have
630                  * enough room left. Size of WQE must a be a multiple
631                  * of data segment size.
632                  */
633                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
634                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
635                         if (unlikely(--max_wqe == 0))
636                                 break;
637                         dseg = (volatile rte_v128u32_t *)
638                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
639                         rte_prefetch0(tx_mlx5_wqe(txq,
640                                                   txq->wqe_ci + ds / 4 + 1));
641                 } else {
642                         ++dseg;
643                 }
644                 ++ds;
645                 buf = buf->next;
646                 assert(buf);
647                 length = DATA_LEN(buf);
648 #ifdef MLX5_PMD_SOFT_COUNTERS
649                 total_length += length;
650 #endif
651                 /* Store segment information. */
652                 naddr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
653                 *dseg = (rte_v128u32_t){
654                         rte_cpu_to_be_32(length),
655                         mlx5_tx_mb2mr(txq, buf),
656                         naddr,
657                         naddr >> 32,
658                 };
659                 (*txq->elts)[++elts_head & elts_m] = buf;
660                 ++sg;
661                 /* Advance counter only if all segs are successfully posted. */
662                 if (sg < segs_n)
663                         goto next_seg;
664                 else
665                         j += sg;
666 next_pkt:
667                 if (ds > MLX5_DSEG_MAX) {
668                         txq->stats.oerrors++;
669                         break;
670                 }
671                 ++elts_head;
672                 ++pkts;
673                 ++i;
674                 /* Initialize known and common part of the WQE structure. */
675                 if (tso) {
676                         wqe->ctrl = (rte_v128u32_t){
677                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
678                                                  MLX5_OPCODE_TSO),
679                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
680                                 0,
681                                 0,
682                         };
683                         wqe->eseg = (rte_v128u32_t){
684                                 0,
685                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
686                                 0,
687                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
688                         };
689                 } else {
690                         wqe->ctrl = (rte_v128u32_t){
691                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
692                                                  MLX5_OPCODE_SEND),
693                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
694                                 0,
695                                 0,
696                         };
697                         wqe->eseg = (rte_v128u32_t){
698                                 0,
699                                 cs_flags,
700                                 0,
701                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
702                         };
703                 }
704 next_wqe:
705                 txq->wqe_ci += (ds + 3) / 4;
706                 /* Save the last successful WQE for completion request */
707                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
708 #ifdef MLX5_PMD_SOFT_COUNTERS
709                 /* Increment sent bytes counter. */
710                 txq->stats.obytes += total_length;
711 #endif
712         } while (i < pkts_n);
713         /* Take a shortcut if nothing must be sent. */
714         if (unlikely((i + k) == 0))
715                 return 0;
716         txq->elts_head += (i + j);
717         /* Check whether completion threshold has been reached. */
718         comp = txq->elts_comp + i + j + k;
719         if (comp >= MLX5_TX_COMP_THRESH) {
720                 /* Request completion on last WQE. */
721                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
722                 /* Save elts_head in unused "immediate" field of WQE. */
723                 last_wqe->ctrl3 = txq->elts_head;
724                 txq->elts_comp = 0;
725         } else {
726                 txq->elts_comp = comp;
727         }
728 #ifdef MLX5_PMD_SOFT_COUNTERS
729         /* Increment sent packets counter. */
730         txq->stats.opackets += i;
731 #endif
732         /* Ring QP doorbell. */
733         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
734         return i;
735 }
736
737 /**
738  * Open a MPW session.
739  *
740  * @param txq
741  *   Pointer to TX queue structure.
742  * @param mpw
743  *   Pointer to MPW session structure.
744  * @param length
745  *   Packet length.
746  */
747 static inline void
748 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
749 {
750         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
751         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
752                 (volatile struct mlx5_wqe_data_seg (*)[])
753                 tx_mlx5_wqe(txq, idx + 1);
754
755         mpw->state = MLX5_MPW_STATE_OPENED;
756         mpw->pkts_n = 0;
757         mpw->len = length;
758         mpw->total_len = 0;
759         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
760         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
761         mpw->wqe->eseg.inline_hdr_sz = 0;
762         mpw->wqe->eseg.rsvd0 = 0;
763         mpw->wqe->eseg.rsvd1 = 0;
764         mpw->wqe->eseg.rsvd2 = 0;
765         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
766                                              (txq->wqe_ci << 8) |
767                                              MLX5_OPCODE_TSO);
768         mpw->wqe->ctrl[2] = 0;
769         mpw->wqe->ctrl[3] = 0;
770         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
771                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
772         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
773                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
774         mpw->data.dseg[2] = &(*dseg)[0];
775         mpw->data.dseg[3] = &(*dseg)[1];
776         mpw->data.dseg[4] = &(*dseg)[2];
777 }
778
779 /**
780  * Close a MPW session.
781  *
782  * @param txq
783  *   Pointer to TX queue structure.
784  * @param mpw
785  *   Pointer to MPW session structure.
786  */
787 static inline void
788 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
789 {
790         unsigned int num = mpw->pkts_n;
791
792         /*
793          * Store size in multiple of 16 bytes. Control and Ethernet segments
794          * count as 2.
795          */
796         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
797         mpw->state = MLX5_MPW_STATE_CLOSED;
798         if (num < 3)
799                 ++txq->wqe_ci;
800         else
801                 txq->wqe_ci += 2;
802         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
803         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
804 }
805
806 /**
807  * DPDK callback for TX with MPW support.
808  *
809  * @param dpdk_txq
810  *   Generic pointer to TX queue structure.
811  * @param[in] pkts
812  *   Packets to transmit.
813  * @param pkts_n
814  *   Number of packets in array.
815  *
816  * @return
817  *   Number of packets successfully transmitted (<= pkts_n).
818  */
819 uint16_t
820 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
821 {
822         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
823         uint16_t elts_head = txq->elts_head;
824         const uint16_t elts_n = 1 << txq->elts_n;
825         const uint16_t elts_m = elts_n - 1;
826         unsigned int i = 0;
827         unsigned int j = 0;
828         uint16_t max_elts;
829         uint16_t max_wqe;
830         unsigned int comp;
831         struct mlx5_mpw mpw = {
832                 .state = MLX5_MPW_STATE_CLOSED,
833         };
834
835         if (unlikely(!pkts_n))
836                 return 0;
837         /* Prefetch first packet cacheline. */
838         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
839         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
840         /* Start processing. */
841         mlx5_tx_complete(txq);
842         max_elts = (elts_n - (elts_head - txq->elts_tail));
843         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
844         if (unlikely(!max_wqe))
845                 return 0;
846         do {
847                 struct rte_mbuf *buf = *(pkts++);
848                 uint32_t length;
849                 unsigned int segs_n = buf->nb_segs;
850                 uint32_t cs_flags = 0;
851
852                 /*
853                  * Make sure there is enough room to store this packet and
854                  * that one ring entry remains unused.
855                  */
856                 assert(segs_n);
857                 if (max_elts < segs_n)
858                         break;
859                 /* Do not bother with large packets MPW cannot handle. */
860                 if (segs_n > MLX5_MPW_DSEG_MAX) {
861                         txq->stats.oerrors++;
862                         break;
863                 }
864                 max_elts -= segs_n;
865                 --pkts_n;
866                 /* Should we enable HW CKSUM offload */
867                 if (buf->ol_flags &
868                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
869                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
870                 /* Retrieve packet information. */
871                 length = PKT_LEN(buf);
872                 assert(length);
873                 /* Start new session if packet differs. */
874                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
875                     ((mpw.len != length) ||
876                      (segs_n != 1) ||
877                      (mpw.wqe->eseg.cs_flags != cs_flags)))
878                         mlx5_mpw_close(txq, &mpw);
879                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
880                         /*
881                          * Multi-Packet WQE consumes at most two WQE.
882                          * mlx5_mpw_new() expects to be able to use such
883                          * resources.
884                          */
885                         if (unlikely(max_wqe < 2))
886                                 break;
887                         max_wqe -= 2;
888                         mlx5_mpw_new(txq, &mpw, length);
889                         mpw.wqe->eseg.cs_flags = cs_flags;
890                 }
891                 /* Multi-segment packets must be alone in their MPW. */
892                 assert((segs_n == 1) || (mpw.pkts_n == 0));
893 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
894                 length = 0;
895 #endif
896                 do {
897                         volatile struct mlx5_wqe_data_seg *dseg;
898                         uintptr_t addr;
899
900                         assert(buf);
901                         (*txq->elts)[elts_head++ & elts_m] = buf;
902                         dseg = mpw.data.dseg[mpw.pkts_n];
903                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
904                         *dseg = (struct mlx5_wqe_data_seg){
905                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
906                                 .lkey = mlx5_tx_mb2mr(txq, buf),
907                                 .addr = rte_cpu_to_be_64(addr),
908                         };
909 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
910                         length += DATA_LEN(buf);
911 #endif
912                         buf = buf->next;
913                         ++mpw.pkts_n;
914                         ++j;
915                 } while (--segs_n);
916                 assert(length == mpw.len);
917                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
918                         mlx5_mpw_close(txq, &mpw);
919 #ifdef MLX5_PMD_SOFT_COUNTERS
920                 /* Increment sent bytes counter. */
921                 txq->stats.obytes += length;
922 #endif
923                 ++i;
924         } while (pkts_n);
925         /* Take a shortcut if nothing must be sent. */
926         if (unlikely(i == 0))
927                 return 0;
928         /* Check whether completion threshold has been reached. */
929         /* "j" includes both packets and segments. */
930         comp = txq->elts_comp + j;
931         if (comp >= MLX5_TX_COMP_THRESH) {
932                 volatile struct mlx5_wqe *wqe = mpw.wqe;
933
934                 /* Request completion on last WQE. */
935                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
936                 /* Save elts_head in unused "immediate" field of WQE. */
937                 wqe->ctrl[3] = elts_head;
938                 txq->elts_comp = 0;
939         } else {
940                 txq->elts_comp = comp;
941         }
942 #ifdef MLX5_PMD_SOFT_COUNTERS
943         /* Increment sent packets counter. */
944         txq->stats.opackets += i;
945 #endif
946         /* Ring QP doorbell. */
947         if (mpw.state == MLX5_MPW_STATE_OPENED)
948                 mlx5_mpw_close(txq, &mpw);
949         mlx5_tx_dbrec(txq, mpw.wqe);
950         txq->elts_head = elts_head;
951         return i;
952 }
953
954 /**
955  * Open a MPW inline session.
956  *
957  * @param txq
958  *   Pointer to TX queue structure.
959  * @param mpw
960  *   Pointer to MPW session structure.
961  * @param length
962  *   Packet length.
963  */
964 static inline void
965 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
966                     uint32_t length)
967 {
968         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
969         struct mlx5_wqe_inl_small *inl;
970
971         mpw->state = MLX5_MPW_INL_STATE_OPENED;
972         mpw->pkts_n = 0;
973         mpw->len = length;
974         mpw->total_len = 0;
975         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
976         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
977                                              (txq->wqe_ci << 8) |
978                                              MLX5_OPCODE_TSO);
979         mpw->wqe->ctrl[2] = 0;
980         mpw->wqe->ctrl[3] = 0;
981         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
982         mpw->wqe->eseg.inline_hdr_sz = 0;
983         mpw->wqe->eseg.cs_flags = 0;
984         mpw->wqe->eseg.rsvd0 = 0;
985         mpw->wqe->eseg.rsvd1 = 0;
986         mpw->wqe->eseg.rsvd2 = 0;
987         inl = (struct mlx5_wqe_inl_small *)
988                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
989         mpw->data.raw = (uint8_t *)&inl->raw;
990 }
991
992 /**
993  * Close a MPW inline session.
994  *
995  * @param txq
996  *   Pointer to TX queue structure.
997  * @param mpw
998  *   Pointer to MPW session structure.
999  */
1000 static inline void
1001 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1002 {
1003         unsigned int size;
1004         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1005                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1006
1007         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1008         /*
1009          * Store size in multiple of 16 bytes. Control and Ethernet segments
1010          * count as 2.
1011          */
1012         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1013                                              MLX5_WQE_DS(size));
1014         mpw->state = MLX5_MPW_STATE_CLOSED;
1015         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1016         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1017 }
1018
1019 /**
1020  * DPDK callback for TX with MPW inline support.
1021  *
1022  * @param dpdk_txq
1023  *   Generic pointer to TX queue structure.
1024  * @param[in] pkts
1025  *   Packets to transmit.
1026  * @param pkts_n
1027  *   Number of packets in array.
1028  *
1029  * @return
1030  *   Number of packets successfully transmitted (<= pkts_n).
1031  */
1032 uint16_t
1033 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1034                          uint16_t pkts_n)
1035 {
1036         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1037         uint16_t elts_head = txq->elts_head;
1038         const uint16_t elts_n = 1 << txq->elts_n;
1039         const uint16_t elts_m = elts_n - 1;
1040         unsigned int i = 0;
1041         unsigned int j = 0;
1042         uint16_t max_elts;
1043         uint16_t max_wqe;
1044         unsigned int comp;
1045         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1046         struct mlx5_mpw mpw = {
1047                 .state = MLX5_MPW_STATE_CLOSED,
1048         };
1049         /*
1050          * Compute the maximum number of WQE which can be consumed by inline
1051          * code.
1052          * - 2 DSEG for:
1053          *   - 1 control segment,
1054          *   - 1 Ethernet segment,
1055          * - N Dseg from the inline request.
1056          */
1057         const unsigned int wqe_inl_n =
1058                 ((2 * MLX5_WQE_DWORD_SIZE +
1059                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1060                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1061
1062         if (unlikely(!pkts_n))
1063                 return 0;
1064         /* Prefetch first packet cacheline. */
1065         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1066         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1067         /* Start processing. */
1068         mlx5_tx_complete(txq);
1069         max_elts = (elts_n - (elts_head - txq->elts_tail));
1070         do {
1071                 struct rte_mbuf *buf = *(pkts++);
1072                 uintptr_t addr;
1073                 uint32_t length;
1074                 unsigned int segs_n = buf->nb_segs;
1075                 uint32_t cs_flags = 0;
1076
1077                 /*
1078                  * Make sure there is enough room to store this packet and
1079                  * that one ring entry remains unused.
1080                  */
1081                 assert(segs_n);
1082                 if (max_elts < segs_n)
1083                         break;
1084                 /* Do not bother with large packets MPW cannot handle. */
1085                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1086                         txq->stats.oerrors++;
1087                         break;
1088                 }
1089                 max_elts -= segs_n;
1090                 --pkts_n;
1091                 /*
1092                  * Compute max_wqe in case less WQE were consumed in previous
1093                  * iteration.
1094                  */
1095                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1096                 /* Should we enable HW CKSUM offload */
1097                 if (buf->ol_flags &
1098                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1099                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1100                 /* Retrieve packet information. */
1101                 length = PKT_LEN(buf);
1102                 /* Start new session if packet differs. */
1103                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1104                         if ((mpw.len != length) ||
1105                             (segs_n != 1) ||
1106                             (mpw.wqe->eseg.cs_flags != cs_flags))
1107                                 mlx5_mpw_close(txq, &mpw);
1108                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1109                         if ((mpw.len != length) ||
1110                             (segs_n != 1) ||
1111                             (length > inline_room) ||
1112                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1113                                 mlx5_mpw_inline_close(txq, &mpw);
1114                                 inline_room =
1115                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1116                         }
1117                 }
1118                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1119                         if ((segs_n != 1) ||
1120                             (length > inline_room)) {
1121                                 /*
1122                                  * Multi-Packet WQE consumes at most two WQE.
1123                                  * mlx5_mpw_new() expects to be able to use
1124                                  * such resources.
1125                                  */
1126                                 if (unlikely(max_wqe < 2))
1127                                         break;
1128                                 max_wqe -= 2;
1129                                 mlx5_mpw_new(txq, &mpw, length);
1130                                 mpw.wqe->eseg.cs_flags = cs_flags;
1131                         } else {
1132                                 if (unlikely(max_wqe < wqe_inl_n))
1133                                         break;
1134                                 max_wqe -= wqe_inl_n;
1135                                 mlx5_mpw_inline_new(txq, &mpw, length);
1136                                 mpw.wqe->eseg.cs_flags = cs_flags;
1137                         }
1138                 }
1139                 /* Multi-segment packets must be alone in their MPW. */
1140                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1141                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1142                         assert(inline_room ==
1143                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1144 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1145                         length = 0;
1146 #endif
1147                         do {
1148                                 volatile struct mlx5_wqe_data_seg *dseg;
1149
1150                                 assert(buf);
1151                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1152                                 dseg = mpw.data.dseg[mpw.pkts_n];
1153                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1154                                 *dseg = (struct mlx5_wqe_data_seg){
1155                                         .byte_count =
1156                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1157                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1158                                         .addr = rte_cpu_to_be_64(addr),
1159                                 };
1160 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1161                                 length += DATA_LEN(buf);
1162 #endif
1163                                 buf = buf->next;
1164                                 ++mpw.pkts_n;
1165                                 ++j;
1166                         } while (--segs_n);
1167                         assert(length == mpw.len);
1168                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1169                                 mlx5_mpw_close(txq, &mpw);
1170                 } else {
1171                         unsigned int max;
1172
1173                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1174                         assert(length <= inline_room);
1175                         assert(length == DATA_LEN(buf));
1176                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1177                         (*txq->elts)[elts_head++ & elts_m] = buf;
1178                         /* Maximum number of bytes before wrapping. */
1179                         max = ((((uintptr_t)(txq->wqes)) +
1180                                 (1 << txq->wqe_n) *
1181                                 MLX5_WQE_SIZE) -
1182                                (uintptr_t)mpw.data.raw);
1183                         if (length > max) {
1184                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1185                                            (void *)addr,
1186                                            max);
1187                                 mpw.data.raw = (volatile void *)txq->wqes;
1188                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1189                                            (void *)(addr + max),
1190                                            length - max);
1191                                 mpw.data.raw += length - max;
1192                         } else {
1193                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1194                                            (void *)addr,
1195                                            length);
1196
1197                                 if (length == max)
1198                                         mpw.data.raw =
1199                                                 (volatile void *)txq->wqes;
1200                                 else
1201                                         mpw.data.raw += length;
1202                         }
1203                         ++mpw.pkts_n;
1204                         mpw.total_len += length;
1205                         ++j;
1206                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1207                                 mlx5_mpw_inline_close(txq, &mpw);
1208                                 inline_room =
1209                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1210                         } else {
1211                                 inline_room -= length;
1212                         }
1213                 }
1214 #ifdef MLX5_PMD_SOFT_COUNTERS
1215                 /* Increment sent bytes counter. */
1216                 txq->stats.obytes += length;
1217 #endif
1218                 ++i;
1219         } while (pkts_n);
1220         /* Take a shortcut if nothing must be sent. */
1221         if (unlikely(i == 0))
1222                 return 0;
1223         /* Check whether completion threshold has been reached. */
1224         /* "j" includes both packets and segments. */
1225         comp = txq->elts_comp + j;
1226         if (comp >= MLX5_TX_COMP_THRESH) {
1227                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1228
1229                 /* Request completion on last WQE. */
1230                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1231                 /* Save elts_head in unused "immediate" field of WQE. */
1232                 wqe->ctrl[3] = elts_head;
1233                 txq->elts_comp = 0;
1234         } else {
1235                 txq->elts_comp = comp;
1236         }
1237 #ifdef MLX5_PMD_SOFT_COUNTERS
1238         /* Increment sent packets counter. */
1239         txq->stats.opackets += i;
1240 #endif
1241         /* Ring QP doorbell. */
1242         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1243                 mlx5_mpw_inline_close(txq, &mpw);
1244         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1245                 mlx5_mpw_close(txq, &mpw);
1246         mlx5_tx_dbrec(txq, mpw.wqe);
1247         txq->elts_head = elts_head;
1248         return i;
1249 }
1250
1251 /**
1252  * Open an Enhanced MPW session.
1253  *
1254  * @param txq
1255  *   Pointer to TX queue structure.
1256  * @param mpw
1257  *   Pointer to MPW session structure.
1258  * @param length
1259  *   Packet length.
1260  */
1261 static inline void
1262 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1263 {
1264         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1265
1266         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1267         mpw->pkts_n = 0;
1268         mpw->total_len = sizeof(struct mlx5_wqe);
1269         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1270         mpw->wqe->ctrl[0] =
1271                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1272                                  (txq->wqe_ci << 8) |
1273                                  MLX5_OPCODE_ENHANCED_MPSW);
1274         mpw->wqe->ctrl[2] = 0;
1275         mpw->wqe->ctrl[3] = 0;
1276         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1277         if (unlikely(padding)) {
1278                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1279
1280                 /* Pad the first 2 DWORDs with zero-length inline header. */
1281                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1282                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1283                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1284                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1285                 /* Start from the next WQEBB. */
1286                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1287         } else {
1288                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1289         }
1290 }
1291
1292 /**
1293  * Close an Enhanced MPW session.
1294  *
1295  * @param txq
1296  *   Pointer to TX queue structure.
1297  * @param mpw
1298  *   Pointer to MPW session structure.
1299  *
1300  * @return
1301  *   Number of consumed WQEs.
1302  */
1303 static inline uint16_t
1304 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1305 {
1306         uint16_t ret;
1307
1308         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1309          * count as 2.
1310          */
1311         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1312                                              MLX5_WQE_DS(mpw->total_len));
1313         mpw->state = MLX5_MPW_STATE_CLOSED;
1314         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1315         txq->wqe_ci += ret;
1316         return ret;
1317 }
1318
1319 /**
1320  * DPDK callback for TX with Enhanced MPW support.
1321  *
1322  * @param dpdk_txq
1323  *   Generic pointer to TX queue structure.
1324  * @param[in] pkts
1325  *   Packets to transmit.
1326  * @param pkts_n
1327  *   Number of packets in array.
1328  *
1329  * @return
1330  *   Number of packets successfully transmitted (<= pkts_n).
1331  */
1332 uint16_t
1333 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1334 {
1335         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1336         uint16_t elts_head = txq->elts_head;
1337         const uint16_t elts_n = 1 << txq->elts_n;
1338         const uint16_t elts_m = elts_n - 1;
1339         unsigned int i = 0;
1340         unsigned int j = 0;
1341         uint16_t max_elts;
1342         uint16_t max_wqe;
1343         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1344         unsigned int mpw_room = 0;
1345         unsigned int inl_pad = 0;
1346         uint32_t inl_hdr;
1347         struct mlx5_mpw mpw = {
1348                 .state = MLX5_MPW_STATE_CLOSED,
1349         };
1350
1351         if (unlikely(!pkts_n))
1352                 return 0;
1353         /* Start processing. */
1354         mlx5_tx_complete(txq);
1355         max_elts = (elts_n - (elts_head - txq->elts_tail));
1356         /* A CQE slot must always be available. */
1357         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1358         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1359         if (unlikely(!max_wqe))
1360                 return 0;
1361         do {
1362                 struct rte_mbuf *buf = *(pkts++);
1363                 uintptr_t addr;
1364                 uint64_t naddr;
1365                 unsigned int n;
1366                 unsigned int do_inline = 0; /* Whether inline is possible. */
1367                 uint32_t length;
1368                 unsigned int segs_n = buf->nb_segs;
1369                 uint32_t cs_flags = 0;
1370
1371                 /*
1372                  * Make sure there is enough room to store this packet and
1373                  * that one ring entry remains unused.
1374                  */
1375                 assert(segs_n);
1376                 if (max_elts - j < segs_n)
1377                         break;
1378                 /* Do not bother with large packets MPW cannot handle. */
1379                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1380                         txq->stats.oerrors++;
1381                         break;
1382                 }
1383                 /* Should we enable HW CKSUM offload. */
1384                 if (buf->ol_flags &
1385                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1386                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1387                 /* Retrieve packet information. */
1388                 length = PKT_LEN(buf);
1389                 /* Start new session if:
1390                  * - multi-segment packet
1391                  * - no space left even for a dseg
1392                  * - next packet can be inlined with a new WQE
1393                  * - cs_flag differs
1394                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1395                  * segmented packet.
1396                  */
1397                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1398                         if ((segs_n != 1) ||
1399                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1400                               mpw_room) ||
1401                             (length <= txq->inline_max_packet_sz &&
1402                              inl_pad + sizeof(inl_hdr) + length >
1403                               mpw_room) ||
1404                             (mpw.wqe->eseg.cs_flags != cs_flags))
1405                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1406                 }
1407                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1408                         if (unlikely(segs_n != 1)) {
1409                                 /* Fall back to legacy MPW.
1410                                  * A MPW session consumes 2 WQEs at most to
1411                                  * include MLX5_MPW_DSEG_MAX pointers.
1412                                  */
1413                                 if (unlikely(max_wqe < 2))
1414                                         break;
1415                                 mlx5_mpw_new(txq, &mpw, length);
1416                         } else {
1417                                 /* In Enhanced MPW, inline as much as the budget
1418                                  * is allowed. The remaining space is to be
1419                                  * filled with dsegs. If the title WQEBB isn't
1420                                  * padded, it will have 2 dsegs there.
1421                                  */
1422                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1423                                             (max_inline ? max_inline :
1424                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1425                                             MLX5_WQE_SIZE);
1426                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1427                                               mpw_room))
1428                                         break;
1429                                 /* Don't pad the title WQEBB to not waste WQ. */
1430                                 mlx5_empw_new(txq, &mpw, 0);
1431                                 mpw_room -= mpw.total_len;
1432                                 inl_pad = 0;
1433                                 do_inline =
1434                                         length <= txq->inline_max_packet_sz &&
1435                                         sizeof(inl_hdr) + length <= mpw_room &&
1436                                         !txq->mpw_hdr_dseg;
1437                         }
1438                         mpw.wqe->eseg.cs_flags = cs_flags;
1439                 } else {
1440                         /* Evaluate whether the next packet can be inlined.
1441                          * Inlininig is possible when:
1442                          * - length is less than configured value
1443                          * - length fits for remaining space
1444                          * - not required to fill the title WQEBB with dsegs
1445                          */
1446                         do_inline =
1447                                 length <= txq->inline_max_packet_sz &&
1448                                 inl_pad + sizeof(inl_hdr) + length <=
1449                                  mpw_room &&
1450                                 (!txq->mpw_hdr_dseg ||
1451                                  mpw.total_len >= MLX5_WQE_SIZE);
1452                 }
1453                 /* Multi-segment packets must be alone in their MPW. */
1454                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1455                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1456 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1457                         length = 0;
1458 #endif
1459                         do {
1460                                 volatile struct mlx5_wqe_data_seg *dseg;
1461
1462                                 assert(buf);
1463                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1464                                 dseg = mpw.data.dseg[mpw.pkts_n];
1465                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1466                                 *dseg = (struct mlx5_wqe_data_seg){
1467                                         .byte_count = rte_cpu_to_be_32(
1468                                                                 DATA_LEN(buf)),
1469                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1470                                         .addr = rte_cpu_to_be_64(addr),
1471                                 };
1472 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1473                                 length += DATA_LEN(buf);
1474 #endif
1475                                 buf = buf->next;
1476                                 ++j;
1477                                 ++mpw.pkts_n;
1478                         } while (--segs_n);
1479                         /* A multi-segmented packet takes one MPW session.
1480                          * TODO: Pack more multi-segmented packets if possible.
1481                          */
1482                         mlx5_mpw_close(txq, &mpw);
1483                         if (mpw.pkts_n < 3)
1484                                 max_wqe--;
1485                         else
1486                                 max_wqe -= 2;
1487                 } else if (do_inline) {
1488                         /* Inline packet into WQE. */
1489                         unsigned int max;
1490
1491                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1492                         assert(length == DATA_LEN(buf));
1493                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1494                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1495                         mpw.data.raw = (volatile void *)
1496                                 ((uintptr_t)mpw.data.raw + inl_pad);
1497                         max = tx_mlx5_wq_tailroom(txq,
1498                                         (void *)(uintptr_t)mpw.data.raw);
1499                         /* Copy inline header. */
1500                         mpw.data.raw = (volatile void *)
1501                                 mlx5_copy_to_wq(
1502                                           (void *)(uintptr_t)mpw.data.raw,
1503                                           &inl_hdr,
1504                                           sizeof(inl_hdr),
1505                                           (void *)(uintptr_t)txq->wqes,
1506                                           max);
1507                         max = tx_mlx5_wq_tailroom(txq,
1508                                         (void *)(uintptr_t)mpw.data.raw);
1509                         /* Copy packet data. */
1510                         mpw.data.raw = (volatile void *)
1511                                 mlx5_copy_to_wq(
1512                                           (void *)(uintptr_t)mpw.data.raw,
1513                                           (void *)addr,
1514                                           length,
1515                                           (void *)(uintptr_t)txq->wqes,
1516                                           max);
1517                         ++mpw.pkts_n;
1518                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1519                         /* No need to get completion as the entire packet is
1520                          * copied to WQ. Free the buf right away.
1521                          */
1522                         rte_pktmbuf_free_seg(buf);
1523                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1524                         /* Add pad in the next packet if any. */
1525                         inl_pad = (((uintptr_t)mpw.data.raw +
1526                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1527                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1528                                   (uintptr_t)mpw.data.raw;
1529                 } else {
1530                         /* No inline. Load a dseg of packet pointer. */
1531                         volatile rte_v128u32_t *dseg;
1532
1533                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1534                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1535                         assert(length == DATA_LEN(buf));
1536                         if (!tx_mlx5_wq_tailroom(txq,
1537                                         (void *)((uintptr_t)mpw.data.raw
1538                                                 + inl_pad)))
1539                                 dseg = (volatile void *)txq->wqes;
1540                         else
1541                                 dseg = (volatile void *)
1542                                         ((uintptr_t)mpw.data.raw +
1543                                          inl_pad);
1544                         (*txq->elts)[elts_head++ & elts_m] = buf;
1545                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1546                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1547                                 rte_prefetch2((void *)(addr +
1548                                                 n * RTE_CACHE_LINE_SIZE));
1549                         naddr = rte_cpu_to_be_64(addr);
1550                         *dseg = (rte_v128u32_t) {
1551                                 rte_cpu_to_be_32(length),
1552                                 mlx5_tx_mb2mr(txq, buf),
1553                                 naddr,
1554                                 naddr >> 32,
1555                         };
1556                         mpw.data.raw = (volatile void *)(dseg + 1);
1557                         mpw.total_len += (inl_pad + sizeof(*dseg));
1558                         ++j;
1559                         ++mpw.pkts_n;
1560                         mpw_room -= (inl_pad + sizeof(*dseg));
1561                         inl_pad = 0;
1562                 }
1563 #ifdef MLX5_PMD_SOFT_COUNTERS
1564                 /* Increment sent bytes counter. */
1565                 txq->stats.obytes += length;
1566 #endif
1567                 ++i;
1568         } while (i < pkts_n);
1569         /* Take a shortcut if nothing must be sent. */
1570         if (unlikely(i == 0))
1571                 return 0;
1572         /* Check whether completion threshold has been reached. */
1573         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1574                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1575                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1576                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1577
1578                 /* Request completion on last WQE. */
1579                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1580                 /* Save elts_head in unused "immediate" field of WQE. */
1581                 wqe->ctrl[3] = elts_head;
1582                 txq->elts_comp = 0;
1583                 txq->mpw_comp = txq->wqe_ci;
1584                 txq->cq_pi++;
1585         } else {
1586                 txq->elts_comp += j;
1587         }
1588 #ifdef MLX5_PMD_SOFT_COUNTERS
1589         /* Increment sent packets counter. */
1590         txq->stats.opackets += i;
1591 #endif
1592         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1593                 mlx5_empw_close(txq, &mpw);
1594         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1595                 mlx5_mpw_close(txq, &mpw);
1596         /* Ring QP doorbell. */
1597         mlx5_tx_dbrec(txq, mpw.wqe);
1598         txq->elts_head = elts_head;
1599         return i;
1600 }
1601
1602 /**
1603  * Translate RX completion flags to packet type.
1604  *
1605  * @param[in] cqe
1606  *   Pointer to CQE.
1607  *
1608  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1609  *
1610  * @return
1611  *   Packet type for struct rte_mbuf.
1612  */
1613 static inline uint32_t
1614 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1615 {
1616         uint8_t idx;
1617         uint8_t pinfo = cqe->pkt_info;
1618         uint16_t ptype = cqe->hdr_type_etc;
1619
1620         /*
1621          * The index to the array should have:
1622          * bit[1:0] = l3_hdr_type
1623          * bit[4:2] = l4_hdr_type
1624          * bit[5] = ip_frag
1625          * bit[6] = tunneled
1626          * bit[7] = outer_l3_type
1627          */
1628         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1629         return mlx5_ptype_table[idx];
1630 }
1631
1632 /**
1633  * Get size of the next packet for a given CQE. For compressed CQEs, the
1634  * consumer index is updated only once all packets of the current one have
1635  * been processed.
1636  *
1637  * @param rxq
1638  *   Pointer to RX queue.
1639  * @param cqe
1640  *   CQE to process.
1641  * @param[out] rss_hash
1642  *   Packet RSS Hash result.
1643  *
1644  * @return
1645  *   Packet size in bytes (0 if there is none), -1 in case of completion
1646  *   with error.
1647  */
1648 static inline int
1649 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1650                  uint16_t cqe_cnt, uint32_t *rss_hash)
1651 {
1652         struct rxq_zip *zip = &rxq->zip;
1653         uint16_t cqe_n = cqe_cnt + 1;
1654         int len = 0;
1655         uint16_t idx, end;
1656
1657         /* Process compressed data in the CQE and mini arrays. */
1658         if (zip->ai) {
1659                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1660                         (volatile struct mlx5_mini_cqe8 (*)[8])
1661                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1662
1663                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1664                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1665                 if ((++zip->ai & 7) == 0) {
1666                         /* Invalidate consumed CQEs */
1667                         idx = zip->ca;
1668                         end = zip->na;
1669                         while (idx != end) {
1670                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1671                                         MLX5_CQE_INVALIDATE;
1672                                 ++idx;
1673                         }
1674                         /*
1675                          * Increment consumer index to skip the number of
1676                          * CQEs consumed. Hardware leaves holes in the CQ
1677                          * ring for software use.
1678                          */
1679                         zip->ca = zip->na;
1680                         zip->na += 8;
1681                 }
1682                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1683                         /* Invalidate the rest */
1684                         idx = zip->ca;
1685                         end = zip->cq_ci;
1686
1687                         while (idx != end) {
1688                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1689                                         MLX5_CQE_INVALIDATE;
1690                                 ++idx;
1691                         }
1692                         rxq->cq_ci = zip->cq_ci;
1693                         zip->ai = 0;
1694                 }
1695         /* No compressed data, get next CQE and verify if it is compressed. */
1696         } else {
1697                 int ret;
1698                 int8_t op_own;
1699
1700                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1701                 if (unlikely(ret == 1))
1702                         return 0;
1703                 ++rxq->cq_ci;
1704                 op_own = cqe->op_own;
1705                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1706                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1707                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1708                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1709                                                           cqe_cnt].pkt_info);
1710
1711                         /* Fix endianness. */
1712                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1713                         /*
1714                          * Current mini array position is the one returned by
1715                          * check_cqe64().
1716                          *
1717                          * If completion comprises several mini arrays, as a
1718                          * special case the second one is located 7 CQEs after
1719                          * the initial CQE instead of 8 for subsequent ones.
1720                          */
1721                         zip->ca = rxq->cq_ci;
1722                         zip->na = zip->ca + 7;
1723                         /* Compute the next non compressed CQE. */
1724                         --rxq->cq_ci;
1725                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1726                         /* Get packet size to return. */
1727                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1728                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1729                         zip->ai = 1;
1730                         /* Prefetch all the entries to be invalidated */
1731                         idx = zip->ca;
1732                         end = zip->cq_ci;
1733                         while (idx != end) {
1734                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1735                                 ++idx;
1736                         }
1737                 } else {
1738                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1739                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1740                 }
1741                 /* Error while receiving packet. */
1742                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1743                         return -1;
1744         }
1745         return len;
1746 }
1747
1748 /**
1749  * Translate RX completion flags to offload flags.
1750  *
1751  * @param[in] rxq
1752  *   Pointer to RX queue structure.
1753  * @param[in] cqe
1754  *   Pointer to CQE.
1755  *
1756  * @return
1757  *   Offload flags (ol_flags) for struct rte_mbuf.
1758  */
1759 static inline uint32_t
1760 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1761 {
1762         uint32_t ol_flags = 0;
1763         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1764
1765         ol_flags =
1766                 TRANSPOSE(flags,
1767                           MLX5_CQE_RX_L3_HDR_VALID,
1768                           PKT_RX_IP_CKSUM_GOOD) |
1769                 TRANSPOSE(flags,
1770                           MLX5_CQE_RX_L4_HDR_VALID,
1771                           PKT_RX_L4_CKSUM_GOOD);
1772         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1773                 ol_flags |=
1774                         TRANSPOSE(flags,
1775                                   MLX5_CQE_RX_L3_HDR_VALID,
1776                                   PKT_RX_IP_CKSUM_GOOD) |
1777                         TRANSPOSE(flags,
1778                                   MLX5_CQE_RX_L4_HDR_VALID,
1779                                   PKT_RX_L4_CKSUM_GOOD);
1780         return ol_flags;
1781 }
1782
1783 /**
1784  * DPDK callback for RX.
1785  *
1786  * @param dpdk_rxq
1787  *   Generic pointer to RX queue structure.
1788  * @param[out] pkts
1789  *   Array to store received packets.
1790  * @param pkts_n
1791  *   Maximum number of packets in array.
1792  *
1793  * @return
1794  *   Number of packets successfully received (<= pkts_n).
1795  */
1796 uint16_t
1797 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1798 {
1799         struct mlx5_rxq_data *rxq = dpdk_rxq;
1800         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1801         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1802         const unsigned int sges_n = rxq->sges_n;
1803         struct rte_mbuf *pkt = NULL;
1804         struct rte_mbuf *seg = NULL;
1805         volatile struct mlx5_cqe *cqe =
1806                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1807         unsigned int i = 0;
1808         unsigned int rq_ci = rxq->rq_ci << sges_n;
1809         int len = 0; /* keep its value across iterations. */
1810
1811         while (pkts_n) {
1812                 unsigned int idx = rq_ci & wqe_cnt;
1813                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1814                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1815                 uint32_t rss_hash_res = 0;
1816
1817                 if (pkt)
1818                         NEXT(seg) = rep;
1819                 seg = rep;
1820                 rte_prefetch0(seg);
1821                 rte_prefetch0(cqe);
1822                 rte_prefetch0(wqe);
1823                 rep = rte_mbuf_raw_alloc(rxq->mp);
1824                 if (unlikely(rep == NULL)) {
1825                         ++rxq->stats.rx_nombuf;
1826                         if (!pkt) {
1827                                 /*
1828                                  * no buffers before we even started,
1829                                  * bail out silently.
1830                                  */
1831                                 break;
1832                         }
1833                         while (pkt != seg) {
1834                                 assert(pkt != (*rxq->elts)[idx]);
1835                                 rep = NEXT(pkt);
1836                                 NEXT(pkt) = NULL;
1837                                 NB_SEGS(pkt) = 1;
1838                                 rte_mbuf_raw_free(pkt);
1839                                 pkt = rep;
1840                         }
1841                         break;
1842                 }
1843                 if (!pkt) {
1844                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1845                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1846                                                &rss_hash_res);
1847                         if (!len) {
1848                                 rte_mbuf_raw_free(rep);
1849                                 break;
1850                         }
1851                         if (unlikely(len == -1)) {
1852                                 /* RX error, packet is likely too large. */
1853                                 rte_mbuf_raw_free(rep);
1854                                 ++rxq->stats.idropped;
1855                                 goto skip;
1856                         }
1857                         pkt = seg;
1858                         assert(len >= (rxq->crc_present << 2));
1859                         /* Update packet information. */
1860                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1861                         pkt->ol_flags = 0;
1862                         if (rss_hash_res && rxq->rss_hash) {
1863                                 pkt->hash.rss = rss_hash_res;
1864                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1865                         }
1866                         if (rxq->mark &&
1867                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1868                                 pkt->ol_flags |= PKT_RX_FDIR;
1869                                 if (cqe->sop_drop_qpn !=
1870                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1871                                         uint32_t mark = cqe->sop_drop_qpn;
1872
1873                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1874                                         pkt->hash.fdir.hi =
1875                                                 mlx5_flow_mark_get(mark);
1876                                 }
1877                         }
1878                         if (rxq->csum | rxq->csum_l2tun)
1879                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1880                         if (rxq->vlan_strip &&
1881                             (cqe->hdr_type_etc &
1882                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1883                                 pkt->ol_flags |= PKT_RX_VLAN |
1884                                         PKT_RX_VLAN_STRIPPED;
1885                                 pkt->vlan_tci =
1886                                         rte_be_to_cpu_16(cqe->vlan_info);
1887                         }
1888                         if (rxq->hw_timestamp) {
1889                                 pkt->timestamp =
1890                                         rte_be_to_cpu_64(cqe->timestamp);
1891                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1892                         }
1893                         if (rxq->crc_present)
1894                                 len -= ETHER_CRC_LEN;
1895                         PKT_LEN(pkt) = len;
1896                 }
1897                 DATA_LEN(rep) = DATA_LEN(seg);
1898                 PKT_LEN(rep) = PKT_LEN(seg);
1899                 SET_DATA_OFF(rep, DATA_OFF(seg));
1900                 PORT(rep) = PORT(seg);
1901                 (*rxq->elts)[idx] = rep;
1902                 /*
1903                  * Fill NIC descriptor with the new buffer.  The lkey and size
1904                  * of the buffers are already known, only the buffer address
1905                  * changes.
1906                  */
1907                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1908                 if (len > DATA_LEN(seg)) {
1909                         len -= DATA_LEN(seg);
1910                         ++NB_SEGS(pkt);
1911                         ++rq_ci;
1912                         continue;
1913                 }
1914                 DATA_LEN(seg) = len;
1915 #ifdef MLX5_PMD_SOFT_COUNTERS
1916                 /* Increment bytes counter. */
1917                 rxq->stats.ibytes += PKT_LEN(pkt);
1918 #endif
1919                 /* Return packet. */
1920                 *(pkts++) = pkt;
1921                 pkt = NULL;
1922                 --pkts_n;
1923                 ++i;
1924 skip:
1925                 /* Align consumer index to the next stride. */
1926                 rq_ci >>= sges_n;
1927                 ++rq_ci;
1928                 rq_ci <<= sges_n;
1929         }
1930         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1931                 return 0;
1932         /* Update the consumer index. */
1933         rxq->rq_ci = rq_ci >> sges_n;
1934         rte_io_wmb();
1935         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1936         rte_io_wmb();
1937         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1938 #ifdef MLX5_PMD_SOFT_COUNTERS
1939         /* Increment packets counter. */
1940         rxq->stats.ipackets += i;
1941 #endif
1942         return i;
1943 }
1944
1945 /**
1946  * Dummy DPDK callback for TX.
1947  *
1948  * This function is used to temporarily replace the real callback during
1949  * unsafe control operations on the queue, or in case of error.
1950  *
1951  * @param dpdk_txq
1952  *   Generic pointer to TX queue structure.
1953  * @param[in] pkts
1954  *   Packets to transmit.
1955  * @param pkts_n
1956  *   Number of packets in array.
1957  *
1958  * @return
1959  *   Number of packets successfully transmitted (<= pkts_n).
1960  */
1961 uint16_t
1962 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1963 {
1964         (void)dpdk_txq;
1965         (void)pkts;
1966         (void)pkts_n;
1967         return 0;
1968 }
1969
1970 /**
1971  * Dummy DPDK callback for RX.
1972  *
1973  * This function is used to temporarily replace the real callback during
1974  * unsafe control operations on the queue, or in case of error.
1975  *
1976  * @param dpdk_rxq
1977  *   Generic pointer to RX queue structure.
1978  * @param[out] pkts
1979  *   Array to store received packets.
1980  * @param pkts_n
1981  *   Maximum number of packets in array.
1982  *
1983  * @return
1984  *   Number of packets successfully received (<= pkts_n).
1985  */
1986 uint16_t
1987 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1988 {
1989         (void)dpdk_rxq;
1990         (void)pkts;
1991         (void)pkts_n;
1992         return 0;
1993 }
1994
1995 /*
1996  * Vectorized Rx/Tx routines are not compiled in when required vector
1997  * instructions are not supported on a target architecture. The following null
1998  * stubs are needed for linkage when those are not included outside of this file
1999  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2000  */
2001
2002 uint16_t __attribute__((weak))
2003 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2004 {
2005         (void)dpdk_txq;
2006         (void)pkts;
2007         (void)pkts_n;
2008         return 0;
2009 }
2010
2011 uint16_t __attribute__((weak))
2012 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2013 {
2014         (void)dpdk_txq;
2015         (void)pkts;
2016         (void)pkts_n;
2017         return 0;
2018 }
2019
2020 uint16_t __attribute__((weak))
2021 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2022 {
2023         (void)dpdk_rxq;
2024         (void)pkts;
2025         (void)pkts_n;
2026         return 0;
2027 }
2028
2029 int __attribute__((weak))
2030 priv_check_raw_vec_tx_support(struct priv *priv)
2031 {
2032         (void)priv;
2033         return -ENOTSUP;
2034 }
2035
2036 int __attribute__((weak))
2037 priv_check_vec_tx_support(struct priv *priv)
2038 {
2039         (void)priv;
2040         return -ENOTSUP;
2041 }
2042
2043 int __attribute__((weak))
2044 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2045 {
2046         (void)rxq;
2047         return -ENOTSUP;
2048 }
2049
2050 int __attribute__((weak))
2051 priv_check_vec_rx_support(struct priv *priv)
2052 {
2053         (void)priv;
2054         return -ENOTSUP;
2055 }