net: add rte prefix to ether defines
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * Internal function to compute the number of used descriptors in an RX queue
421  *
422  * @param rxq
423  *   The Rx queue.
424  *
425  * @return
426  *   The number of used rx descriptor.
427  */
428 static uint32_t
429 rx_queue_count(struct mlx5_rxq_data *rxq)
430 {
431         struct rxq_zip *zip = &rxq->zip;
432         volatile struct mlx5_cqe *cqe;
433         const unsigned int cqe_n = (1 << rxq->cqe_n);
434         const unsigned int cqe_cnt = cqe_n - 1;
435         unsigned int cq_ci;
436         unsigned int used;
437
438         /* if we are processing a compressed cqe */
439         if (zip->ai) {
440                 used = zip->cqe_cnt - zip->ca;
441                 cq_ci = zip->cq_ci;
442         } else {
443                 used = 0;
444                 cq_ci = rxq->cq_ci;
445         }
446         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
447         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
448                 int8_t op_own;
449                 unsigned int n;
450
451                 op_own = cqe->op_own;
452                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
453                         n = rte_be_to_cpu_32(cqe->byte_cnt);
454                 else
455                         n = 1;
456                 cq_ci += n;
457                 used += n;
458                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
459         }
460         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
461         return used;
462 }
463
464 /**
465  * DPDK callback to check the status of a rx descriptor.
466  *
467  * @param rx_queue
468  *   The Rx queue.
469  * @param[in] offset
470  *   The index of the descriptor in the ring.
471  *
472  * @return
473  *   The status of the tx descriptor.
474  */
475 int
476 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
477 {
478         struct mlx5_rxq_data *rxq = rx_queue;
479         struct mlx5_rxq_ctrl *rxq_ctrl =
480                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
481         struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
482
483         if (dev->rx_pkt_burst != mlx5_rx_burst) {
484                 rte_errno = ENOTSUP;
485                 return -rte_errno;
486         }
487         if (offset >= (1 << rxq->elts_n)) {
488                 rte_errno = EINVAL;
489                 return -rte_errno;
490         }
491         if (offset < rx_queue_count(rxq))
492                 return RTE_ETH_RX_DESC_DONE;
493         return RTE_ETH_RX_DESC_AVAIL;
494 }
495
496 /**
497  * DPDK callback to get the number of used descriptors in a RX queue
498  *
499  * @param dev
500  *   Pointer to the device structure.
501  *
502  * @param rx_queue_id
503  *   The Rx queue.
504  *
505  * @return
506  *   The number of used rx descriptor.
507  *   -EINVAL if the queue is invalid
508  */
509 uint32_t
510 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
511 {
512         struct mlx5_priv *priv = dev->data->dev_private;
513         struct mlx5_rxq_data *rxq;
514
515         if (dev->rx_pkt_burst != mlx5_rx_burst) {
516                 rte_errno = ENOTSUP;
517                 return -rte_errno;
518         }
519         rxq = (*priv->rxqs)[rx_queue_id];
520         if (!rxq) {
521                 rte_errno = EINVAL;
522                 return -rte_errno;
523         }
524         return rx_queue_count(rxq);
525 }
526
527 /**
528  * DPDK callback for TX.
529  *
530  * @param dpdk_txq
531  *   Generic pointer to TX queue structure.
532  * @param[in] pkts
533  *   Packets to transmit.
534  * @param pkts_n
535  *   Number of packets in array.
536  *
537  * @return
538  *   Number of packets successfully transmitted (<= pkts_n).
539  */
540 uint16_t
541 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
542 {
543         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
544         uint16_t elts_head = txq->elts_head;
545         const uint16_t elts_n = 1 << txq->elts_n;
546         const uint16_t elts_m = elts_n - 1;
547         unsigned int i = 0;
548         unsigned int j = 0;
549         unsigned int k = 0;
550         uint16_t max_elts;
551         uint16_t max_wqe;
552         unsigned int comp;
553         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
554         unsigned int segs_n = 0;
555         const unsigned int max_inline = txq->max_inline;
556         uint64_t addr_64;
557
558         if (unlikely(!pkts_n))
559                 return 0;
560         /* Prefetch first packet cacheline. */
561         rte_prefetch0(*pkts);
562         /* Start processing. */
563         mlx5_tx_complete(txq);
564         max_elts = (elts_n - (elts_head - txq->elts_tail));
565         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
566         if (unlikely(!max_wqe))
567                 return 0;
568         do {
569                 struct rte_mbuf *buf = *pkts; /* First_seg. */
570                 uint8_t *raw;
571                 volatile struct mlx5_wqe_v *wqe = NULL;
572                 volatile rte_v128u32_t *dseg = NULL;
573                 uint32_t length;
574                 unsigned int ds = 0;
575                 unsigned int sg = 0; /* counter of additional segs attached. */
576                 uintptr_t addr;
577                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
578                 uint16_t tso_header_sz = 0;
579                 uint16_t ehdr;
580                 uint8_t cs_flags;
581                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
582                 uint32_t swp_offsets = 0;
583                 uint8_t swp_types = 0;
584                 rte_be32_t metadata;
585                 uint16_t tso_segsz = 0;
586 #ifdef MLX5_PMD_SOFT_COUNTERS
587                 uint32_t total_length = 0;
588 #endif
589                 int ret;
590
591                 segs_n = buf->nb_segs;
592                 /*
593                  * Make sure there is enough room to store this packet and
594                  * that one ring entry remains unused.
595                  */
596                 assert(segs_n);
597                 if (max_elts < segs_n)
598                         break;
599                 max_elts -= segs_n;
600                 sg = --segs_n;
601                 if (unlikely(--max_wqe == 0))
602                         break;
603                 wqe = (volatile struct mlx5_wqe_v *)
604                         tx_mlx5_wqe(txq, txq->wqe_ci);
605                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
606                 if (pkts_n - i > 1)
607                         rte_prefetch0(*(pkts + 1));
608                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
609                 length = DATA_LEN(buf);
610                 ehdr = (((uint8_t *)addr)[1] << 8) |
611                        ((uint8_t *)addr)[0];
612 #ifdef MLX5_PMD_SOFT_COUNTERS
613                 total_length = length;
614 #endif
615                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
616                         txq->stats.oerrors++;
617                         break;
618                 }
619                 /* Update element. */
620                 (*txq->elts)[elts_head & elts_m] = buf;
621                 /* Prefetch next buffer data. */
622                 if (pkts_n - i > 1)
623                         rte_prefetch0(
624                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
625                 cs_flags = txq_ol_cksum_to_cs(buf);
626                 txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
627                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
628                 /* Copy metadata from mbuf if valid */
629                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
630                                                              0;
631                 /* Replace the Ethernet type by the VLAN if necessary. */
632                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
633                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
634                                                          buf->vlan_tci);
635                         unsigned int len = 2 * RTE_ETHER_ADDR_LEN - 2;
636
637                         addr += 2;
638                         length -= 2;
639                         /* Copy Destination and source mac address. */
640                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
641                         /* Copy VLAN. */
642                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
643                         /* Copy missing two bytes to end the DSeg. */
644                         memcpy((uint8_t *)raw + len + sizeof(vlan),
645                                ((uint8_t *)addr) + len, 2);
646                         addr += len + 2;
647                         length -= (len + 2);
648                 } else {
649                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
650                                MLX5_WQE_DWORD_SIZE);
651                         length -= pkt_inline_sz;
652                         addr += pkt_inline_sz;
653                 }
654                 raw += MLX5_WQE_DWORD_SIZE;
655                 if (tso) {
656                         ret = inline_tso(txq, buf, &length,
657                                          &addr, &pkt_inline_sz,
658                                          &raw, &max_wqe,
659                                          &tso_segsz, &tso_header_sz);
660                         if (ret == -EINVAL) {
661                                 break;
662                         } else if (ret == -EAGAIN) {
663                                 /* NOP WQE. */
664                                 wqe->ctrl = (rte_v128u32_t){
665                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
666                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
667                                         0,
668                                         0,
669                                 };
670                                 ds = 1;
671 #ifdef MLX5_PMD_SOFT_COUNTERS
672                                 total_length = 0;
673 #endif
674                                 k++;
675                                 goto next_wqe;
676                         }
677                 }
678                 /* Inline if enough room. */
679                 if (max_inline || tso) {
680                         uint32_t inl = 0;
681                         uintptr_t end = (uintptr_t)
682                                 (((uintptr_t)txq->wqes) +
683                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
684                         unsigned int inline_room = max_inline *
685                                                    RTE_CACHE_LINE_SIZE -
686                                                    (pkt_inline_sz - 2) -
687                                                    !!tso * sizeof(inl);
688                         uintptr_t addr_end;
689                         unsigned int copy_b;
690
691 pkt_inline:
692                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
693                                                    RTE_CACHE_LINE_SIZE);
694                         copy_b = (addr_end > addr) ?
695                                  RTE_MIN((addr_end - addr), length) : 0;
696                         if (copy_b && ((end - (uintptr_t)raw) >
697                                        (copy_b + sizeof(inl)))) {
698                                 /*
699                                  * One Dseg remains in the current WQE.  To
700                                  * keep the computation positive, it is
701                                  * removed after the bytes to Dseg conversion.
702                                  */
703                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
704
705                                 if (unlikely(max_wqe < n))
706                                         break;
707                                 max_wqe -= n;
708                                 if (tso) {
709                                         assert(inl == 0);
710                                         inl = rte_cpu_to_be_32(copy_b |
711                                                                MLX5_INLINE_SEG);
712                                         rte_memcpy((void *)raw,
713                                                    (void *)&inl, sizeof(inl));
714                                         raw += sizeof(inl);
715                                         pkt_inline_sz += sizeof(inl);
716                                 }
717                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
718                                 addr += copy_b;
719                                 length -= copy_b;
720                                 pkt_inline_sz += copy_b;
721                         }
722                         /*
723                          * 2 DWORDs consumed by the WQE header + ETH segment +
724                          * the size of the inline part of the packet.
725                          */
726                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
727                         if (length > 0) {
728                                 if (ds % (MLX5_WQE_SIZE /
729                                           MLX5_WQE_DWORD_SIZE) == 0) {
730                                         if (unlikely(--max_wqe == 0))
731                                                 break;
732                                         dseg = (volatile rte_v128u32_t *)
733                                                tx_mlx5_wqe(txq, txq->wqe_ci +
734                                                            ds / 4);
735                                 } else {
736                                         dseg = (volatile rte_v128u32_t *)
737                                                 ((uintptr_t)wqe +
738                                                  (ds * MLX5_WQE_DWORD_SIZE));
739                                 }
740                                 goto use_dseg;
741                         } else if (!segs_n) {
742                                 goto next_pkt;
743                         } else {
744                                 /*
745                                  * Further inline the next segment only for
746                                  * non-TSO packets.
747                                  */
748                                 if (!tso) {
749                                         raw += copy_b;
750                                         inline_room -= copy_b;
751                                 } else {
752                                         inline_room = 0;
753                                 }
754                                 /* Move to the next segment. */
755                                 --segs_n;
756                                 buf = buf->next;
757                                 assert(buf);
758                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
759                                 length = DATA_LEN(buf);
760 #ifdef MLX5_PMD_SOFT_COUNTERS
761                                 total_length += length;
762 #endif
763                                 (*txq->elts)[++elts_head & elts_m] = buf;
764                                 goto pkt_inline;
765                         }
766                 } else {
767                         /*
768                          * No inline has been done in the packet, only the
769                          * Ethernet Header as been stored.
770                          */
771                         dseg = (volatile rte_v128u32_t *)
772                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
773                         ds = 3;
774 use_dseg:
775                         /* Add the remaining packet as a simple ds. */
776                         addr_64 = rte_cpu_to_be_64(addr);
777                         *dseg = (rte_v128u32_t){
778                                 rte_cpu_to_be_32(length),
779                                 mlx5_tx_mb2mr(txq, buf),
780                                 addr_64,
781                                 addr_64 >> 32,
782                         };
783                         ++ds;
784                         if (!segs_n)
785                                 goto next_pkt;
786                 }
787 next_seg:
788                 assert(buf);
789                 assert(ds);
790                 assert(wqe);
791                 /*
792                  * Spill on next WQE when the current one does not have
793                  * enough room left. Size of WQE must a be a multiple
794                  * of data segment size.
795                  */
796                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
797                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
798                         if (unlikely(--max_wqe == 0))
799                                 break;
800                         dseg = (volatile rte_v128u32_t *)
801                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
802                         rte_prefetch0(tx_mlx5_wqe(txq,
803                                                   txq->wqe_ci + ds / 4 + 1));
804                 } else {
805                         ++dseg;
806                 }
807                 ++ds;
808                 buf = buf->next;
809                 assert(buf);
810                 length = DATA_LEN(buf);
811 #ifdef MLX5_PMD_SOFT_COUNTERS
812                 total_length += length;
813 #endif
814                 /* Store segment information. */
815                 addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
816                 *dseg = (rte_v128u32_t){
817                         rte_cpu_to_be_32(length),
818                         mlx5_tx_mb2mr(txq, buf),
819                         addr_64,
820                         addr_64 >> 32,
821                 };
822                 (*txq->elts)[++elts_head & elts_m] = buf;
823                 if (--segs_n)
824                         goto next_seg;
825 next_pkt:
826                 if (ds > MLX5_DSEG_MAX) {
827                         txq->stats.oerrors++;
828                         break;
829                 }
830                 ++elts_head;
831                 ++pkts;
832                 ++i;
833                 j += sg;
834                 /* Initialize known and common part of the WQE structure. */
835                 if (tso) {
836                         wqe->ctrl = (rte_v128u32_t){
837                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
838                                                  MLX5_OPCODE_TSO),
839                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
840                                 0,
841                                 0,
842                         };
843                         wqe->eseg = (rte_v128u32_t){
844                                 swp_offsets,
845                                 cs_flags | (swp_types << 8) |
846                                 (rte_cpu_to_be_16(tso_segsz) << 16),
847                                 metadata,
848                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
849                         };
850                 } else {
851                         wqe->ctrl = (rte_v128u32_t){
852                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
853                                                  MLX5_OPCODE_SEND),
854                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
855                                 0,
856                                 0,
857                         };
858                         wqe->eseg = (rte_v128u32_t){
859                                 swp_offsets,
860                                 cs_flags | (swp_types << 8),
861                                 metadata,
862                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
863                         };
864                 }
865 next_wqe:
866                 txq->wqe_ci += (ds + 3) / 4;
867                 /* Save the last successful WQE for completion request */
868                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
869 #ifdef MLX5_PMD_SOFT_COUNTERS
870                 /* Increment sent bytes counter. */
871                 txq->stats.obytes += total_length;
872 #endif
873         } while (i < pkts_n);
874         /* Take a shortcut if nothing must be sent. */
875         if (unlikely((i + k) == 0))
876                 return 0;
877         txq->elts_head += (i + j);
878         /* Check whether completion threshold has been reached. */
879         comp = txq->elts_comp + i + j + k;
880         if (comp >= MLX5_TX_COMP_THRESH) {
881                 /* A CQE slot must always be available. */
882                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
883                 /* Request completion on last WQE. */
884                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
885                 /* Save elts_head in unused "immediate" field of WQE. */
886                 last_wqe->ctrl3 = txq->elts_head;
887                 txq->elts_comp = 0;
888         } else {
889                 txq->elts_comp = comp;
890         }
891 #ifdef MLX5_PMD_SOFT_COUNTERS
892         /* Increment sent packets counter. */
893         txq->stats.opackets += i;
894 #endif
895         /* Ring QP doorbell. */
896         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
897         return i;
898 }
899
900 /**
901  * Open a MPW session.
902  *
903  * @param txq
904  *   Pointer to TX queue structure.
905  * @param mpw
906  *   Pointer to MPW session structure.
907  * @param length
908  *   Packet length.
909  */
910 static inline void
911 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
912 {
913         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
914         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
915                 (volatile struct mlx5_wqe_data_seg (*)[])
916                 tx_mlx5_wqe(txq, idx + 1);
917
918         mpw->state = MLX5_MPW_STATE_OPENED;
919         mpw->pkts_n = 0;
920         mpw->len = length;
921         mpw->total_len = 0;
922         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
923         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
924         mpw->wqe->eseg.inline_hdr_sz = 0;
925         mpw->wqe->eseg.rsvd0 = 0;
926         mpw->wqe->eseg.rsvd1 = 0;
927         mpw->wqe->eseg.flow_table_metadata = 0;
928         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
929                                              (txq->wqe_ci << 8) |
930                                              MLX5_OPCODE_TSO);
931         mpw->wqe->ctrl[2] = 0;
932         mpw->wqe->ctrl[3] = 0;
933         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
934                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
935         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
936                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
937         mpw->data.dseg[2] = &(*dseg)[0];
938         mpw->data.dseg[3] = &(*dseg)[1];
939         mpw->data.dseg[4] = &(*dseg)[2];
940 }
941
942 /**
943  * Close a MPW session.
944  *
945  * @param txq
946  *   Pointer to TX queue structure.
947  * @param mpw
948  *   Pointer to MPW session structure.
949  */
950 static inline void
951 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
952 {
953         unsigned int num = mpw->pkts_n;
954
955         /*
956          * Store size in multiple of 16 bytes. Control and Ethernet segments
957          * count as 2.
958          */
959         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
960         mpw->state = MLX5_MPW_STATE_CLOSED;
961         if (num < 3)
962                 ++txq->wqe_ci;
963         else
964                 txq->wqe_ci += 2;
965         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
966         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
967 }
968
969 /**
970  * DPDK callback for TX with MPW support.
971  *
972  * @param dpdk_txq
973  *   Generic pointer to TX queue structure.
974  * @param[in] pkts
975  *   Packets to transmit.
976  * @param pkts_n
977  *   Number of packets in array.
978  *
979  * @return
980  *   Number of packets successfully transmitted (<= pkts_n).
981  */
982 uint16_t
983 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
984 {
985         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
986         uint16_t elts_head = txq->elts_head;
987         const uint16_t elts_n = 1 << txq->elts_n;
988         const uint16_t elts_m = elts_n - 1;
989         unsigned int i = 0;
990         unsigned int j = 0;
991         uint16_t max_elts;
992         uint16_t max_wqe;
993         unsigned int comp;
994         struct mlx5_mpw mpw = {
995                 .state = MLX5_MPW_STATE_CLOSED,
996         };
997
998         if (unlikely(!pkts_n))
999                 return 0;
1000         /* Prefetch first packet cacheline. */
1001         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1002         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1003         /* Start processing. */
1004         mlx5_tx_complete(txq);
1005         max_elts = (elts_n - (elts_head - txq->elts_tail));
1006         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1007         if (unlikely(!max_wqe))
1008                 return 0;
1009         do {
1010                 struct rte_mbuf *buf = *(pkts++);
1011                 uint32_t length;
1012                 unsigned int segs_n = buf->nb_segs;
1013                 uint32_t cs_flags;
1014                 rte_be32_t metadata;
1015
1016                 /*
1017                  * Make sure there is enough room to store this packet and
1018                  * that one ring entry remains unused.
1019                  */
1020                 assert(segs_n);
1021                 if (max_elts < segs_n)
1022                         break;
1023                 /* Do not bother with large packets MPW cannot handle. */
1024                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1025                         txq->stats.oerrors++;
1026                         break;
1027                 }
1028                 max_elts -= segs_n;
1029                 --pkts_n;
1030                 cs_flags = txq_ol_cksum_to_cs(buf);
1031                 /* Copy metadata from mbuf if valid */
1032                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1033                                                              0;
1034                 /* Retrieve packet information. */
1035                 length = PKT_LEN(buf);
1036                 assert(length);
1037                 /* Start new session if packet differs. */
1038                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
1039                     ((mpw.len != length) ||
1040                      (segs_n != 1) ||
1041                      (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1042                      (mpw.wqe->eseg.cs_flags != cs_flags)))
1043                         mlx5_mpw_close(txq, &mpw);
1044                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1045                         /*
1046                          * Multi-Packet WQE consumes at most two WQE.
1047                          * mlx5_mpw_new() expects to be able to use such
1048                          * resources.
1049                          */
1050                         if (unlikely(max_wqe < 2))
1051                                 break;
1052                         max_wqe -= 2;
1053                         mlx5_mpw_new(txq, &mpw, length);
1054                         mpw.wqe->eseg.cs_flags = cs_flags;
1055                         mpw.wqe->eseg.flow_table_metadata = metadata;
1056                 }
1057                 /* Multi-segment packets must be alone in their MPW. */
1058                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1059 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1060                 length = 0;
1061 #endif
1062                 do {
1063                         volatile struct mlx5_wqe_data_seg *dseg;
1064                         uintptr_t addr;
1065
1066                         assert(buf);
1067                         (*txq->elts)[elts_head++ & elts_m] = buf;
1068                         dseg = mpw.data.dseg[mpw.pkts_n];
1069                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1070                         *dseg = (struct mlx5_wqe_data_seg){
1071                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1072                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1073                                 .addr = rte_cpu_to_be_64(addr),
1074                         };
1075 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1076                         length += DATA_LEN(buf);
1077 #endif
1078                         buf = buf->next;
1079                         ++mpw.pkts_n;
1080                         ++j;
1081                 } while (--segs_n);
1082                 assert(length == mpw.len);
1083                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1084                         mlx5_mpw_close(txq, &mpw);
1085 #ifdef MLX5_PMD_SOFT_COUNTERS
1086                 /* Increment sent bytes counter. */
1087                 txq->stats.obytes += length;
1088 #endif
1089                 ++i;
1090         } while (pkts_n);
1091         /* Take a shortcut if nothing must be sent. */
1092         if (unlikely(i == 0))
1093                 return 0;
1094         /* Check whether completion threshold has been reached. */
1095         /* "j" includes both packets and segments. */
1096         comp = txq->elts_comp + j;
1097         if (comp >= MLX5_TX_COMP_THRESH) {
1098                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1099
1100                 /* A CQE slot must always be available. */
1101                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1102                 /* Request completion on last WQE. */
1103                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1104                 /* Save elts_head in unused "immediate" field of WQE. */
1105                 wqe->ctrl[3] = elts_head;
1106                 txq->elts_comp = 0;
1107         } else {
1108                 txq->elts_comp = comp;
1109         }
1110 #ifdef MLX5_PMD_SOFT_COUNTERS
1111         /* Increment sent packets counter. */
1112         txq->stats.opackets += i;
1113 #endif
1114         /* Ring QP doorbell. */
1115         if (mpw.state == MLX5_MPW_STATE_OPENED)
1116                 mlx5_mpw_close(txq, &mpw);
1117         mlx5_tx_dbrec(txq, mpw.wqe);
1118         txq->elts_head = elts_head;
1119         return i;
1120 }
1121
1122 /**
1123  * Open a MPW inline session.
1124  *
1125  * @param txq
1126  *   Pointer to TX queue structure.
1127  * @param mpw
1128  *   Pointer to MPW session structure.
1129  * @param length
1130  *   Packet length.
1131  */
1132 static inline void
1133 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1134                     uint32_t length)
1135 {
1136         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1137         struct mlx5_wqe_inl_small *inl;
1138
1139         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1140         mpw->pkts_n = 0;
1141         mpw->len = length;
1142         mpw->total_len = 0;
1143         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1144         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1145                                              (txq->wqe_ci << 8) |
1146                                              MLX5_OPCODE_TSO);
1147         mpw->wqe->ctrl[2] = 0;
1148         mpw->wqe->ctrl[3] = 0;
1149         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1150         mpw->wqe->eseg.inline_hdr_sz = 0;
1151         mpw->wqe->eseg.cs_flags = 0;
1152         mpw->wqe->eseg.rsvd0 = 0;
1153         mpw->wqe->eseg.rsvd1 = 0;
1154         mpw->wqe->eseg.flow_table_metadata = 0;
1155         inl = (struct mlx5_wqe_inl_small *)
1156                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1157         mpw->data.raw = (uint8_t *)&inl->raw;
1158 }
1159
1160 /**
1161  * Close a MPW inline session.
1162  *
1163  * @param txq
1164  *   Pointer to TX queue structure.
1165  * @param mpw
1166  *   Pointer to MPW session structure.
1167  */
1168 static inline void
1169 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1170 {
1171         unsigned int size;
1172         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1173                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1174
1175         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1176         /*
1177          * Store size in multiple of 16 bytes. Control and Ethernet segments
1178          * count as 2.
1179          */
1180         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1181                                              MLX5_WQE_DS(size));
1182         mpw->state = MLX5_MPW_STATE_CLOSED;
1183         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1184         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1185 }
1186
1187 /**
1188  * DPDK callback for TX with MPW inline support.
1189  *
1190  * @param dpdk_txq
1191  *   Generic pointer to TX queue structure.
1192  * @param[in] pkts
1193  *   Packets to transmit.
1194  * @param pkts_n
1195  *   Number of packets in array.
1196  *
1197  * @return
1198  *   Number of packets successfully transmitted (<= pkts_n).
1199  */
1200 uint16_t
1201 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1202                          uint16_t pkts_n)
1203 {
1204         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1205         uint16_t elts_head = txq->elts_head;
1206         const uint16_t elts_n = 1 << txq->elts_n;
1207         const uint16_t elts_m = elts_n - 1;
1208         unsigned int i = 0;
1209         unsigned int j = 0;
1210         uint16_t max_elts;
1211         uint16_t max_wqe;
1212         unsigned int comp;
1213         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1214         struct mlx5_mpw mpw = {
1215                 .state = MLX5_MPW_STATE_CLOSED,
1216         };
1217         /*
1218          * Compute the maximum number of WQE which can be consumed by inline
1219          * code.
1220          * - 2 DSEG for:
1221          *   - 1 control segment,
1222          *   - 1 Ethernet segment,
1223          * - N Dseg from the inline request.
1224          */
1225         const unsigned int wqe_inl_n =
1226                 ((2 * MLX5_WQE_DWORD_SIZE +
1227                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1228                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1229
1230         if (unlikely(!pkts_n))
1231                 return 0;
1232         /* Prefetch first packet cacheline. */
1233         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1234         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1235         /* Start processing. */
1236         mlx5_tx_complete(txq);
1237         max_elts = (elts_n - (elts_head - txq->elts_tail));
1238         do {
1239                 struct rte_mbuf *buf = *(pkts++);
1240                 uintptr_t addr;
1241                 uint32_t length;
1242                 unsigned int segs_n = buf->nb_segs;
1243                 uint8_t cs_flags;
1244                 rte_be32_t metadata;
1245
1246                 /*
1247                  * Make sure there is enough room to store this packet and
1248                  * that one ring entry remains unused.
1249                  */
1250                 assert(segs_n);
1251                 if (max_elts < segs_n)
1252                         break;
1253                 /* Do not bother with large packets MPW cannot handle. */
1254                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1255                         txq->stats.oerrors++;
1256                         break;
1257                 }
1258                 max_elts -= segs_n;
1259                 --pkts_n;
1260                 /*
1261                  * Compute max_wqe in case less WQE were consumed in previous
1262                  * iteration.
1263                  */
1264                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1265                 cs_flags = txq_ol_cksum_to_cs(buf);
1266                 /* Copy metadata from mbuf if valid */
1267                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1268                                                              0;
1269                 /* Retrieve packet information. */
1270                 length = PKT_LEN(buf);
1271                 /* Start new session if packet differs. */
1272                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1273                         if ((mpw.len != length) ||
1274                             (segs_n != 1) ||
1275                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1276                             (mpw.wqe->eseg.cs_flags != cs_flags))
1277                                 mlx5_mpw_close(txq, &mpw);
1278                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1279                         if ((mpw.len != length) ||
1280                             (segs_n != 1) ||
1281                             (length > inline_room) ||
1282                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1283                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1284                                 mlx5_mpw_inline_close(txq, &mpw);
1285                                 inline_room =
1286                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1287                         }
1288                 }
1289                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1290                         if ((segs_n != 1) ||
1291                             (length > inline_room)) {
1292                                 /*
1293                                  * Multi-Packet WQE consumes at most two WQE.
1294                                  * mlx5_mpw_new() expects to be able to use
1295                                  * such resources.
1296                                  */
1297                                 if (unlikely(max_wqe < 2))
1298                                         break;
1299                                 max_wqe -= 2;
1300                                 mlx5_mpw_new(txq, &mpw, length);
1301                                 mpw.wqe->eseg.cs_flags = cs_flags;
1302                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1303                         } else {
1304                                 if (unlikely(max_wqe < wqe_inl_n))
1305                                         break;
1306                                 max_wqe -= wqe_inl_n;
1307                                 mlx5_mpw_inline_new(txq, &mpw, length);
1308                                 mpw.wqe->eseg.cs_flags = cs_flags;
1309                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1310                         }
1311                 }
1312                 /* Multi-segment packets must be alone in their MPW. */
1313                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1314                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1315                         assert(inline_room ==
1316                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1317 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1318                         length = 0;
1319 #endif
1320                         do {
1321                                 volatile struct mlx5_wqe_data_seg *dseg;
1322
1323                                 assert(buf);
1324                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1325                                 dseg = mpw.data.dseg[mpw.pkts_n];
1326                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1327                                 *dseg = (struct mlx5_wqe_data_seg){
1328                                         .byte_count =
1329                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1330                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1331                                         .addr = rte_cpu_to_be_64(addr),
1332                                 };
1333 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1334                                 length += DATA_LEN(buf);
1335 #endif
1336                                 buf = buf->next;
1337                                 ++mpw.pkts_n;
1338                                 ++j;
1339                         } while (--segs_n);
1340                         assert(length == mpw.len);
1341                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1342                                 mlx5_mpw_close(txq, &mpw);
1343                 } else {
1344                         unsigned int max;
1345
1346                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1347                         assert(length <= inline_room);
1348                         assert(length == DATA_LEN(buf));
1349                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1350                         (*txq->elts)[elts_head++ & elts_m] = buf;
1351                         /* Maximum number of bytes before wrapping. */
1352                         max = ((((uintptr_t)(txq->wqes)) +
1353                                 (1 << txq->wqe_n) *
1354                                 MLX5_WQE_SIZE) -
1355                                (uintptr_t)mpw.data.raw);
1356                         if (length > max) {
1357                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1358                                            (void *)addr,
1359                                            max);
1360                                 mpw.data.raw = (volatile void *)txq->wqes;
1361                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1362                                            (void *)(addr + max),
1363                                            length - max);
1364                                 mpw.data.raw += length - max;
1365                         } else {
1366                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1367                                            (void *)addr,
1368                                            length);
1369
1370                                 if (length == max)
1371                                         mpw.data.raw =
1372                                                 (volatile void *)txq->wqes;
1373                                 else
1374                                         mpw.data.raw += length;
1375                         }
1376                         ++mpw.pkts_n;
1377                         mpw.total_len += length;
1378                         ++j;
1379                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1380                                 mlx5_mpw_inline_close(txq, &mpw);
1381                                 inline_room =
1382                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1383                         } else {
1384                                 inline_room -= length;
1385                         }
1386                 }
1387 #ifdef MLX5_PMD_SOFT_COUNTERS
1388                 /* Increment sent bytes counter. */
1389                 txq->stats.obytes += length;
1390 #endif
1391                 ++i;
1392         } while (pkts_n);
1393         /* Take a shortcut if nothing must be sent. */
1394         if (unlikely(i == 0))
1395                 return 0;
1396         /* Check whether completion threshold has been reached. */
1397         /* "j" includes both packets and segments. */
1398         comp = txq->elts_comp + j;
1399         if (comp >= MLX5_TX_COMP_THRESH) {
1400                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1401
1402                 /* A CQE slot must always be available. */
1403                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1404                 /* Request completion on last WQE. */
1405                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1406                 /* Save elts_head in unused "immediate" field of WQE. */
1407                 wqe->ctrl[3] = elts_head;
1408                 txq->elts_comp = 0;
1409         } else {
1410                 txq->elts_comp = comp;
1411         }
1412 #ifdef MLX5_PMD_SOFT_COUNTERS
1413         /* Increment sent packets counter. */
1414         txq->stats.opackets += i;
1415 #endif
1416         /* Ring QP doorbell. */
1417         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1418                 mlx5_mpw_inline_close(txq, &mpw);
1419         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1420                 mlx5_mpw_close(txq, &mpw);
1421         mlx5_tx_dbrec(txq, mpw.wqe);
1422         txq->elts_head = elts_head;
1423         return i;
1424 }
1425
1426 /**
1427  * Open an Enhanced MPW session.
1428  *
1429  * @param txq
1430  *   Pointer to TX queue structure.
1431  * @param mpw
1432  *   Pointer to MPW session structure.
1433  * @param length
1434  *   Packet length.
1435  */
1436 static inline void
1437 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1438 {
1439         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1440
1441         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1442         mpw->pkts_n = 0;
1443         mpw->total_len = sizeof(struct mlx5_wqe);
1444         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1445         mpw->wqe->ctrl[0] =
1446                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1447                                  (txq->wqe_ci << 8) |
1448                                  MLX5_OPCODE_ENHANCED_MPSW);
1449         mpw->wqe->ctrl[2] = 0;
1450         mpw->wqe->ctrl[3] = 0;
1451         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1452         if (unlikely(padding)) {
1453                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1454
1455                 /* Pad the first 2 DWORDs with zero-length inline header. */
1456                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1457                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1458                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1459                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1460                 /* Start from the next WQEBB. */
1461                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1462         } else {
1463                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1464         }
1465 }
1466
1467 /**
1468  * Close an Enhanced MPW session.
1469  *
1470  * @param txq
1471  *   Pointer to TX queue structure.
1472  * @param mpw
1473  *   Pointer to MPW session structure.
1474  *
1475  * @return
1476  *   Number of consumed WQEs.
1477  */
1478 static inline uint16_t
1479 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1480 {
1481         uint16_t ret;
1482
1483         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1484          * count as 2.
1485          */
1486         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1487                                              MLX5_WQE_DS(mpw->total_len));
1488         mpw->state = MLX5_MPW_STATE_CLOSED;
1489         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1490         txq->wqe_ci += ret;
1491         return ret;
1492 }
1493
1494 /**
1495  * TX with Enhanced MPW support.
1496  *
1497  * @param txq
1498  *   Pointer to TX queue structure.
1499  * @param[in] pkts
1500  *   Packets to transmit.
1501  * @param pkts_n
1502  *   Number of packets in array.
1503  *
1504  * @return
1505  *   Number of packets successfully transmitted (<= pkts_n).
1506  */
1507 static inline uint16_t
1508 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1509                uint16_t pkts_n)
1510 {
1511         uint16_t elts_head = txq->elts_head;
1512         const uint16_t elts_n = 1 << txq->elts_n;
1513         const uint16_t elts_m = elts_n - 1;
1514         unsigned int i = 0;
1515         unsigned int j = 0;
1516         uint16_t max_elts;
1517         uint16_t max_wqe;
1518         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1519         unsigned int mpw_room = 0;
1520         unsigned int inl_pad = 0;
1521         uint32_t inl_hdr;
1522         uint64_t addr_64;
1523         struct mlx5_mpw mpw = {
1524                 .state = MLX5_MPW_STATE_CLOSED,
1525         };
1526
1527         if (unlikely(!pkts_n))
1528                 return 0;
1529         /* Start processing. */
1530         mlx5_tx_complete(txq);
1531         max_elts = (elts_n - (elts_head - txq->elts_tail));
1532         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1533         if (unlikely(!max_wqe))
1534                 return 0;
1535         do {
1536                 struct rte_mbuf *buf = *(pkts++);
1537                 uintptr_t addr;
1538                 unsigned int do_inline = 0; /* Whether inline is possible. */
1539                 uint32_t length;
1540                 uint8_t cs_flags;
1541                 rte_be32_t metadata;
1542
1543                 /* Multi-segmented packet is handled in slow-path outside. */
1544                 assert(NB_SEGS(buf) == 1);
1545                 /* Make sure there is enough room to store this packet. */
1546                 if (max_elts - j == 0)
1547                         break;
1548                 cs_flags = txq_ol_cksum_to_cs(buf);
1549                 /* Copy metadata from mbuf if valid */
1550                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1551                                                              0;
1552                 /* Retrieve packet information. */
1553                 length = PKT_LEN(buf);
1554                 /* Start new session if:
1555                  * - multi-segment packet
1556                  * - no space left even for a dseg
1557                  * - next packet can be inlined with a new WQE
1558                  * - cs_flag differs
1559                  */
1560                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1561                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1562                              mpw_room) ||
1563                             (length <= txq->inline_max_packet_sz &&
1564                              inl_pad + sizeof(inl_hdr) + length >
1565                              mpw_room) ||
1566                              (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1567                             (mpw.wqe->eseg.cs_flags != cs_flags))
1568                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1569                 }
1570                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1571                         /* In Enhanced MPW, inline as much as the budget is
1572                          * allowed. The remaining space is to be filled with
1573                          * dsegs. If the title WQEBB isn't padded, it will have
1574                          * 2 dsegs there.
1575                          */
1576                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1577                                            (max_inline ? max_inline :
1578                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1579                                            MLX5_WQE_SIZE);
1580                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1581                                 break;
1582                         /* Don't pad the title WQEBB to not waste WQ. */
1583                         mlx5_empw_new(txq, &mpw, 0);
1584                         mpw_room -= mpw.total_len;
1585                         inl_pad = 0;
1586                         do_inline = length <= txq->inline_max_packet_sz &&
1587                                     sizeof(inl_hdr) + length <= mpw_room &&
1588                                     !txq->mpw_hdr_dseg;
1589                         mpw.wqe->eseg.cs_flags = cs_flags;
1590                         mpw.wqe->eseg.flow_table_metadata = metadata;
1591                 } else {
1592                         /* Evaluate whether the next packet can be inlined.
1593                          * Inlininig is possible when:
1594                          * - length is less than configured value
1595                          * - length fits for remaining space
1596                          * - not required to fill the title WQEBB with dsegs
1597                          */
1598                         do_inline =
1599                                 length <= txq->inline_max_packet_sz &&
1600                                 inl_pad + sizeof(inl_hdr) + length <=
1601                                  mpw_room &&
1602                                 (!txq->mpw_hdr_dseg ||
1603                                  mpw.total_len >= MLX5_WQE_SIZE);
1604                 }
1605                 if (max_inline && do_inline) {
1606                         /* Inline packet into WQE. */
1607                         unsigned int max;
1608
1609                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1610                         assert(length == DATA_LEN(buf));
1611                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1612                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1613                         mpw.data.raw = (volatile void *)
1614                                 ((uintptr_t)mpw.data.raw + inl_pad);
1615                         max = tx_mlx5_wq_tailroom(txq,
1616                                         (void *)(uintptr_t)mpw.data.raw);
1617                         /* Copy inline header. */
1618                         mpw.data.raw = (volatile void *)
1619                                 mlx5_copy_to_wq(
1620                                           (void *)(uintptr_t)mpw.data.raw,
1621                                           &inl_hdr,
1622                                           sizeof(inl_hdr),
1623                                           (void *)(uintptr_t)txq->wqes,
1624                                           max);
1625                         max = tx_mlx5_wq_tailroom(txq,
1626                                         (void *)(uintptr_t)mpw.data.raw);
1627                         /* Copy packet data. */
1628                         mpw.data.raw = (volatile void *)
1629                                 mlx5_copy_to_wq(
1630                                           (void *)(uintptr_t)mpw.data.raw,
1631                                           (void *)addr,
1632                                           length,
1633                                           (void *)(uintptr_t)txq->wqes,
1634                                           max);
1635                         ++mpw.pkts_n;
1636                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1637                         /* No need to get completion as the entire packet is
1638                          * copied to WQ. Free the buf right away.
1639                          */
1640                         rte_pktmbuf_free_seg(buf);
1641                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1642                         /* Add pad in the next packet if any. */
1643                         inl_pad = (((uintptr_t)mpw.data.raw +
1644                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1645                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1646                                   (uintptr_t)mpw.data.raw;
1647                 } else {
1648                         /* No inline. Load a dseg of packet pointer. */
1649                         volatile rte_v128u32_t *dseg;
1650
1651                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1652                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1653                         assert(length == DATA_LEN(buf));
1654                         if (!tx_mlx5_wq_tailroom(txq,
1655                                         (void *)((uintptr_t)mpw.data.raw
1656                                                 + inl_pad)))
1657                                 dseg = (volatile void *)txq->wqes;
1658                         else
1659                                 dseg = (volatile void *)
1660                                         ((uintptr_t)mpw.data.raw +
1661                                          inl_pad);
1662                         (*txq->elts)[elts_head++ & elts_m] = buf;
1663                         addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1664                                                                     uintptr_t));
1665                         *dseg = (rte_v128u32_t) {
1666                                 rte_cpu_to_be_32(length),
1667                                 mlx5_tx_mb2mr(txq, buf),
1668                                 addr_64,
1669                                 addr_64 >> 32,
1670                         };
1671                         mpw.data.raw = (volatile void *)(dseg + 1);
1672                         mpw.total_len += (inl_pad + sizeof(*dseg));
1673                         ++j;
1674                         ++mpw.pkts_n;
1675                         mpw_room -= (inl_pad + sizeof(*dseg));
1676                         inl_pad = 0;
1677                 }
1678 #ifdef MLX5_PMD_SOFT_COUNTERS
1679                 /* Increment sent bytes counter. */
1680                 txq->stats.obytes += length;
1681 #endif
1682                 ++i;
1683         } while (i < pkts_n);
1684         /* Take a shortcut if nothing must be sent. */
1685         if (unlikely(i == 0))
1686                 return 0;
1687         /* Check whether completion threshold has been reached. */
1688         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1689                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1690                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1691                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1692
1693                 /* A CQE slot must always be available. */
1694                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1695                 /* Request completion on last WQE. */
1696                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1697                 /* Save elts_head in unused "immediate" field of WQE. */
1698                 wqe->ctrl[3] = elts_head;
1699                 txq->elts_comp = 0;
1700                 txq->mpw_comp = txq->wqe_ci;
1701         } else {
1702                 txq->elts_comp += j;
1703         }
1704 #ifdef MLX5_PMD_SOFT_COUNTERS
1705         /* Increment sent packets counter. */
1706         txq->stats.opackets += i;
1707 #endif
1708         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1709                 mlx5_empw_close(txq, &mpw);
1710         /* Ring QP doorbell. */
1711         mlx5_tx_dbrec(txq, mpw.wqe);
1712         txq->elts_head = elts_head;
1713         return i;
1714 }
1715
1716 /**
1717  * DPDK callback for TX with Enhanced MPW support.
1718  *
1719  * @param dpdk_txq
1720  *   Generic pointer to TX queue structure.
1721  * @param[in] pkts
1722  *   Packets to transmit.
1723  * @param pkts_n
1724  *   Number of packets in array.
1725  *
1726  * @return
1727  *   Number of packets successfully transmitted (<= pkts_n).
1728  */
1729 uint16_t
1730 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1731 {
1732         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1733         uint16_t nb_tx = 0;
1734
1735         while (pkts_n > nb_tx) {
1736                 uint16_t n;
1737                 uint16_t ret;
1738
1739                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1740                 if (n) {
1741                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1742                         if (!ret)
1743                                 break;
1744                         nb_tx += ret;
1745                 }
1746                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1747                 if (n) {
1748                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1749                         if (!ret)
1750                                 break;
1751                         nb_tx += ret;
1752                 }
1753         }
1754         return nb_tx;
1755 }
1756
1757 /**
1758  * Translate RX completion flags to packet type.
1759  *
1760  * @param[in] rxq
1761  *   Pointer to RX queue structure.
1762  * @param[in] cqe
1763  *   Pointer to CQE.
1764  *
1765  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1766  *
1767  * @return
1768  *   Packet type for struct rte_mbuf.
1769  */
1770 static inline uint32_t
1771 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1772 {
1773         uint8_t idx;
1774         uint8_t pinfo = cqe->pkt_info;
1775         uint16_t ptype = cqe->hdr_type_etc;
1776
1777         /*
1778          * The index to the array should have:
1779          * bit[1:0] = l3_hdr_type
1780          * bit[4:2] = l4_hdr_type
1781          * bit[5] = ip_frag
1782          * bit[6] = tunneled
1783          * bit[7] = outer_l3_type
1784          */
1785         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1786         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1787 }
1788
1789 /**
1790  * Get size of the next packet for a given CQE. For compressed CQEs, the
1791  * consumer index is updated only once all packets of the current one have
1792  * been processed.
1793  *
1794  * @param rxq
1795  *   Pointer to RX queue.
1796  * @param cqe
1797  *   CQE to process.
1798  * @param[out] mcqe
1799  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1800  *   written.
1801  *
1802  * @return
1803  *   Packet size in bytes (0 if there is none), -1 in case of completion
1804  *   with error.
1805  */
1806 static inline int
1807 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1808                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1809 {
1810         struct rxq_zip *zip = &rxq->zip;
1811         uint16_t cqe_n = cqe_cnt + 1;
1812         int len = 0;
1813         uint16_t idx, end;
1814
1815         /* Process compressed data in the CQE and mini arrays. */
1816         if (zip->ai) {
1817                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1818                         (volatile struct mlx5_mini_cqe8 (*)[8])
1819                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1820
1821                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1822                 *mcqe = &(*mc)[zip->ai & 7];
1823                 if ((++zip->ai & 7) == 0) {
1824                         /* Invalidate consumed CQEs */
1825                         idx = zip->ca;
1826                         end = zip->na;
1827                         while (idx != end) {
1828                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1829                                         MLX5_CQE_INVALIDATE;
1830                                 ++idx;
1831                         }
1832                         /*
1833                          * Increment consumer index to skip the number of
1834                          * CQEs consumed. Hardware leaves holes in the CQ
1835                          * ring for software use.
1836                          */
1837                         zip->ca = zip->na;
1838                         zip->na += 8;
1839                 }
1840                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1841                         /* Invalidate the rest */
1842                         idx = zip->ca;
1843                         end = zip->cq_ci;
1844
1845                         while (idx != end) {
1846                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1847                                         MLX5_CQE_INVALIDATE;
1848                                 ++idx;
1849                         }
1850                         rxq->cq_ci = zip->cq_ci;
1851                         zip->ai = 0;
1852                 }
1853         /* No compressed data, get next CQE and verify if it is compressed. */
1854         } else {
1855                 int ret;
1856                 int8_t op_own;
1857
1858                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1859                 if (unlikely(ret == 1))
1860                         return 0;
1861                 ++rxq->cq_ci;
1862                 op_own = cqe->op_own;
1863                 rte_cio_rmb();
1864                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1865                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1866                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1867                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1868                                                           cqe_cnt].pkt_info);
1869
1870                         /* Fix endianness. */
1871                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1872                         /*
1873                          * Current mini array position is the one returned by
1874                          * check_cqe64().
1875                          *
1876                          * If completion comprises several mini arrays, as a
1877                          * special case the second one is located 7 CQEs after
1878                          * the initial CQE instead of 8 for subsequent ones.
1879                          */
1880                         zip->ca = rxq->cq_ci;
1881                         zip->na = zip->ca + 7;
1882                         /* Compute the next non compressed CQE. */
1883                         --rxq->cq_ci;
1884                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1885                         /* Get packet size to return. */
1886                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1887                         *mcqe = &(*mc)[0];
1888                         zip->ai = 1;
1889                         /* Prefetch all the entries to be invalidated */
1890                         idx = zip->ca;
1891                         end = zip->cq_ci;
1892                         while (idx != end) {
1893                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1894                                 ++idx;
1895                         }
1896                 } else {
1897                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1898                 }
1899                 /* Error while receiving packet. */
1900                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1901                         return -1;
1902         }
1903         return len;
1904 }
1905
1906 /**
1907  * Translate RX completion flags to offload flags.
1908  *
1909  * @param[in] cqe
1910  *   Pointer to CQE.
1911  *
1912  * @return
1913  *   Offload flags (ol_flags) for struct rte_mbuf.
1914  */
1915 static inline uint32_t
1916 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1917 {
1918         uint32_t ol_flags = 0;
1919         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1920
1921         ol_flags =
1922                 TRANSPOSE(flags,
1923                           MLX5_CQE_RX_L3_HDR_VALID,
1924                           PKT_RX_IP_CKSUM_GOOD) |
1925                 TRANSPOSE(flags,
1926                           MLX5_CQE_RX_L4_HDR_VALID,
1927                           PKT_RX_L4_CKSUM_GOOD);
1928         return ol_flags;
1929 }
1930
1931 /**
1932  * Fill in mbuf fields from RX completion flags.
1933  * Note that pkt->ol_flags should be initialized outside of this function.
1934  *
1935  * @param rxq
1936  *   Pointer to RX queue.
1937  * @param pkt
1938  *   mbuf to fill.
1939  * @param cqe
1940  *   CQE to process.
1941  * @param rss_hash_res
1942  *   Packet RSS Hash result.
1943  */
1944 static inline void
1945 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1946                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1947 {
1948         /* Update packet information. */
1949         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1950         if (rss_hash_res && rxq->rss_hash) {
1951                 pkt->hash.rss = rss_hash_res;
1952                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1953         }
1954         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1955                 pkt->ol_flags |= PKT_RX_FDIR;
1956                 if (cqe->sop_drop_qpn !=
1957                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1958                         uint32_t mark = cqe->sop_drop_qpn;
1959
1960                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1961                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1962                 }
1963         }
1964         if (rxq->csum)
1965                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1966         if (rxq->vlan_strip &&
1967             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1968                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1969                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1970         }
1971         if (rxq->hw_timestamp) {
1972                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1973                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1974         }
1975 }
1976
1977 /**
1978  * DPDK callback for RX.
1979  *
1980  * @param dpdk_rxq
1981  *   Generic pointer to RX queue structure.
1982  * @param[out] pkts
1983  *   Array to store received packets.
1984  * @param pkts_n
1985  *   Maximum number of packets in array.
1986  *
1987  * @return
1988  *   Number of packets successfully received (<= pkts_n).
1989  */
1990 uint16_t
1991 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1992 {
1993         struct mlx5_rxq_data *rxq = dpdk_rxq;
1994         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1995         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1996         const unsigned int sges_n = rxq->sges_n;
1997         struct rte_mbuf *pkt = NULL;
1998         struct rte_mbuf *seg = NULL;
1999         volatile struct mlx5_cqe *cqe =
2000                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2001         unsigned int i = 0;
2002         unsigned int rq_ci = rxq->rq_ci << sges_n;
2003         int len = 0; /* keep its value across iterations. */
2004
2005         while (pkts_n) {
2006                 unsigned int idx = rq_ci & wqe_cnt;
2007                 volatile struct mlx5_wqe_data_seg *wqe =
2008                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
2009                 struct rte_mbuf *rep = (*rxq->elts)[idx];
2010                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2011                 uint32_t rss_hash_res;
2012
2013                 if (pkt)
2014                         NEXT(seg) = rep;
2015                 seg = rep;
2016                 rte_prefetch0(seg);
2017                 rte_prefetch0(cqe);
2018                 rte_prefetch0(wqe);
2019                 rep = rte_mbuf_raw_alloc(rxq->mp);
2020                 if (unlikely(rep == NULL)) {
2021                         ++rxq->stats.rx_nombuf;
2022                         if (!pkt) {
2023                                 /*
2024                                  * no buffers before we even started,
2025                                  * bail out silently.
2026                                  */
2027                                 break;
2028                         }
2029                         while (pkt != seg) {
2030                                 assert(pkt != (*rxq->elts)[idx]);
2031                                 rep = NEXT(pkt);
2032                                 NEXT(pkt) = NULL;
2033                                 NB_SEGS(pkt) = 1;
2034                                 rte_mbuf_raw_free(pkt);
2035                                 pkt = rep;
2036                         }
2037                         break;
2038                 }
2039                 if (!pkt) {
2040                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2041                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
2042                         if (!len) {
2043                                 rte_mbuf_raw_free(rep);
2044                                 break;
2045                         }
2046                         if (unlikely(len == -1)) {
2047                                 /* RX error, packet is likely too large. */
2048                                 rte_mbuf_raw_free(rep);
2049                                 ++rxq->stats.idropped;
2050                                 goto skip;
2051                         }
2052                         pkt = seg;
2053                         assert(len >= (rxq->crc_present << 2));
2054                         pkt->ol_flags = 0;
2055                         /* If compressed, take hash result from mini-CQE. */
2056                         rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
2057                                                         cqe->rx_hash_res :
2058                                                         mcqe->rx_hash_result);
2059                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2060                         if (rxq->crc_present)
2061                                 len -= RTE_ETHER_CRC_LEN;
2062                         PKT_LEN(pkt) = len;
2063                 }
2064                 DATA_LEN(rep) = DATA_LEN(seg);
2065                 PKT_LEN(rep) = PKT_LEN(seg);
2066                 SET_DATA_OFF(rep, DATA_OFF(seg));
2067                 PORT(rep) = PORT(seg);
2068                 (*rxq->elts)[idx] = rep;
2069                 /*
2070                  * Fill NIC descriptor with the new buffer.  The lkey and size
2071                  * of the buffers are already known, only the buffer address
2072                  * changes.
2073                  */
2074                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2075                 /* If there's only one MR, no need to replace LKey in WQE. */
2076                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2077                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2078                 if (len > DATA_LEN(seg)) {
2079                         len -= DATA_LEN(seg);
2080                         ++NB_SEGS(pkt);
2081                         ++rq_ci;
2082                         continue;
2083                 }
2084                 DATA_LEN(seg) = len;
2085 #ifdef MLX5_PMD_SOFT_COUNTERS
2086                 /* Increment bytes counter. */
2087                 rxq->stats.ibytes += PKT_LEN(pkt);
2088 #endif
2089                 /* Return packet. */
2090                 *(pkts++) = pkt;
2091                 pkt = NULL;
2092                 --pkts_n;
2093                 ++i;
2094 skip:
2095                 /* Align consumer index to the next stride. */
2096                 rq_ci >>= sges_n;
2097                 ++rq_ci;
2098                 rq_ci <<= sges_n;
2099         }
2100         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2101                 return 0;
2102         /* Update the consumer index. */
2103         rxq->rq_ci = rq_ci >> sges_n;
2104         rte_cio_wmb();
2105         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2106         rte_cio_wmb();
2107         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2108 #ifdef MLX5_PMD_SOFT_COUNTERS
2109         /* Increment packets counter. */
2110         rxq->stats.ipackets += i;
2111 #endif
2112         return i;
2113 }
2114
2115 void
2116 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2117 {
2118         struct mlx5_mprq_buf *buf = opaque;
2119
2120         if (rte_atomic16_read(&buf->refcnt) == 1) {
2121                 rte_mempool_put(buf->mp, buf);
2122         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2123                 rte_atomic16_set(&buf->refcnt, 1);
2124                 rte_mempool_put(buf->mp, buf);
2125         }
2126 }
2127
2128 void
2129 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2130 {
2131         mlx5_mprq_buf_free_cb(NULL, buf);
2132 }
2133
2134 static inline void
2135 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2136 {
2137         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2138         volatile struct mlx5_wqe_data_seg *wqe =
2139                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2140         void *addr;
2141
2142         assert(rep != NULL);
2143         /* Replace MPRQ buf. */
2144         (*rxq->mprq_bufs)[rq_idx] = rep;
2145         /* Replace WQE. */
2146         addr = mlx5_mprq_buf_addr(rep);
2147         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2148         /* If there's only one MR, no need to replace LKey in WQE. */
2149         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2150                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2151         /* Stash a mbuf for next replacement. */
2152         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2153                 rxq->mprq_repl = rep;
2154         else
2155                 rxq->mprq_repl = NULL;
2156 }
2157
2158 /**
2159  * DPDK callback for RX with Multi-Packet RQ support.
2160  *
2161  * @param dpdk_rxq
2162  *   Generic pointer to RX queue structure.
2163  * @param[out] pkts
2164  *   Array to store received packets.
2165  * @param pkts_n
2166  *   Maximum number of packets in array.
2167  *
2168  * @return
2169  *   Number of packets successfully received (<= pkts_n).
2170  */
2171 uint16_t
2172 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2173 {
2174         struct mlx5_rxq_data *rxq = dpdk_rxq;
2175         const unsigned int strd_n = 1 << rxq->strd_num_n;
2176         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2177         const unsigned int strd_shift =
2178                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2179         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2180         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2181         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2182         unsigned int i = 0;
2183         uint32_t rq_ci = rxq->rq_ci;
2184         uint16_t consumed_strd = rxq->consumed_strd;
2185         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2186
2187         while (i < pkts_n) {
2188                 struct rte_mbuf *pkt;
2189                 void *addr;
2190                 int ret;
2191                 unsigned int len;
2192                 uint16_t strd_cnt;
2193                 uint16_t strd_idx;
2194                 uint32_t offset;
2195                 uint32_t byte_cnt;
2196                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2197                 uint32_t rss_hash_res = 0;
2198
2199                 if (consumed_strd == strd_n) {
2200                         /* Replace WQE only if the buffer is still in use. */
2201                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2202                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2203                                 /* Release the old buffer. */
2204                                 mlx5_mprq_buf_free(buf);
2205                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2206                                 struct mlx5_mprq_buf *rep;
2207
2208                                 /*
2209                                  * Currently, the MPRQ mempool is out of buffer
2210                                  * and doing memcpy regardless of the size of Rx
2211                                  * packet. Retry allocation to get back to
2212                                  * normal.
2213                                  */
2214                                 if (!rte_mempool_get(rxq->mprq_mp,
2215                                                      (void **)&rep))
2216                                         rxq->mprq_repl = rep;
2217                         }
2218                         /* Advance to the next WQE. */
2219                         consumed_strd = 0;
2220                         ++rq_ci;
2221                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2222                 }
2223                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2224                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2225                 if (!ret)
2226                         break;
2227                 if (unlikely(ret == -1)) {
2228                         /* RX error, packet is likely too large. */
2229                         ++rxq->stats.idropped;
2230                         continue;
2231                 }
2232                 byte_cnt = ret;
2233                 strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2234                            MLX5_MPRQ_STRIDE_NUM_SHIFT;
2235                 assert(strd_cnt);
2236                 consumed_strd += strd_cnt;
2237                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2238                         continue;
2239                 if (mcqe == NULL) {
2240                         rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2241                         strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2242                 } else {
2243                         /* mini-CQE for MPRQ doesn't have hash result. */
2244                         strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2245                 }
2246                 assert(strd_idx < strd_n);
2247                 assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2248                 /*
2249                  * Currently configured to receive a packet per a stride. But if
2250                  * MTU is adjusted through kernel interface, device could
2251                  * consume multiple strides without raising an error. In this
2252                  * case, the packet should be dropped because it is bigger than
2253                  * the max_rx_pkt_len.
2254                  */
2255                 if (unlikely(strd_cnt > 1)) {
2256                         ++rxq->stats.idropped;
2257                         continue;
2258                 }
2259                 pkt = rte_pktmbuf_alloc(rxq->mp);
2260                 if (unlikely(pkt == NULL)) {
2261                         ++rxq->stats.rx_nombuf;
2262                         break;
2263                 }
2264                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2265                 assert((int)len >= (rxq->crc_present << 2));
2266                 if (rxq->crc_present)
2267                         len -= RTE_ETHER_CRC_LEN;
2268                 offset = strd_idx * strd_sz + strd_shift;
2269                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2270                 /* Initialize the offload flag. */
2271                 pkt->ol_flags = 0;
2272                 /*
2273                  * Memcpy packets to the target mbuf if:
2274                  * - The size of packet is smaller than mprq_max_memcpy_len.
2275                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2276                  */
2277                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2278                         /*
2279                          * When memcpy'ing packet due to out-of-buffer, the
2280                          * packet must be smaller than the target mbuf.
2281                          */
2282                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2283                                 rte_pktmbuf_free_seg(pkt);
2284                                 ++rxq->stats.idropped;
2285                                 continue;
2286                         }
2287                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2288                 } else {
2289                         rte_iova_t buf_iova;
2290                         struct rte_mbuf_ext_shared_info *shinfo;
2291                         uint16_t buf_len = strd_cnt * strd_sz;
2292
2293                         /* Increment the refcnt of the whole chunk. */
2294                         rte_atomic16_add_return(&buf->refcnt, 1);
2295                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2296                                strd_n + 1);
2297                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2298                         /*
2299                          * MLX5 device doesn't use iova but it is necessary in a
2300                          * case where the Rx packet is transmitted via a
2301                          * different PMD.
2302                          */
2303                         buf_iova = rte_mempool_virt2iova(buf) +
2304                                    RTE_PTR_DIFF(addr, buf);
2305                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2306                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2307                         /*
2308                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2309                          * attaching the stride to mbuf and more offload flags
2310                          * will be added below by calling rxq_cq_to_mbuf().
2311                          * Other fields will be overwritten.
2312                          */
2313                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2314                                                   shinfo);
2315                         rte_pktmbuf_reset_headroom(pkt);
2316                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2317                         /*
2318                          * Prevent potential overflow due to MTU change through
2319                          * kernel interface.
2320                          */
2321                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2322                                 rte_pktmbuf_free_seg(pkt);
2323                                 ++rxq->stats.idropped;
2324                                 continue;
2325                         }
2326                 }
2327                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2328                 PKT_LEN(pkt) = len;
2329                 DATA_LEN(pkt) = len;
2330                 PORT(pkt) = rxq->port_id;
2331 #ifdef MLX5_PMD_SOFT_COUNTERS
2332                 /* Increment bytes counter. */
2333                 rxq->stats.ibytes += PKT_LEN(pkt);
2334 #endif
2335                 /* Return packet. */
2336                 *(pkts++) = pkt;
2337                 ++i;
2338         }
2339         /* Update the consumer indexes. */
2340         rxq->consumed_strd = consumed_strd;
2341         rte_cio_wmb();
2342         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2343         if (rq_ci != rxq->rq_ci) {
2344                 rxq->rq_ci = rq_ci;
2345                 rte_cio_wmb();
2346                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2347         }
2348 #ifdef MLX5_PMD_SOFT_COUNTERS
2349         /* Increment packets counter. */
2350         rxq->stats.ipackets += i;
2351 #endif
2352         return i;
2353 }
2354
2355 /**
2356  * Dummy DPDK callback for TX.
2357  *
2358  * This function is used to temporarily replace the real callback during
2359  * unsafe control operations on the queue, or in case of error.
2360  *
2361  * @param dpdk_txq
2362  *   Generic pointer to TX queue structure.
2363  * @param[in] pkts
2364  *   Packets to transmit.
2365  * @param pkts_n
2366  *   Number of packets in array.
2367  *
2368  * @return
2369  *   Number of packets successfully transmitted (<= pkts_n).
2370  */
2371 uint16_t
2372 removed_tx_burst(void *dpdk_txq __rte_unused,
2373                  struct rte_mbuf **pkts __rte_unused,
2374                  uint16_t pkts_n __rte_unused)
2375 {
2376         rte_mb();
2377         return 0;
2378 }
2379
2380 /**
2381  * Dummy DPDK callback for RX.
2382  *
2383  * This function is used to temporarily replace the real callback during
2384  * unsafe control operations on the queue, or in case of error.
2385  *
2386  * @param dpdk_rxq
2387  *   Generic pointer to RX queue structure.
2388  * @param[out] pkts
2389  *   Array to store received packets.
2390  * @param pkts_n
2391  *   Maximum number of packets in array.
2392  *
2393  * @return
2394  *   Number of packets successfully received (<= pkts_n).
2395  */
2396 uint16_t
2397 removed_rx_burst(void *dpdk_txq __rte_unused,
2398                  struct rte_mbuf **pkts __rte_unused,
2399                  uint16_t pkts_n __rte_unused)
2400 {
2401         rte_mb();
2402         return 0;
2403 }
2404
2405 /*
2406  * Vectorized Rx/Tx routines are not compiled in when required vector
2407  * instructions are not supported on a target architecture. The following null
2408  * stubs are needed for linkage when those are not included outside of this file
2409  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2410  */
2411
2412 __rte_weak uint16_t
2413 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2414                       struct rte_mbuf **pkts __rte_unused,
2415                       uint16_t pkts_n __rte_unused)
2416 {
2417         return 0;
2418 }
2419
2420 __rte_weak uint16_t
2421 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2422                   struct rte_mbuf **pkts __rte_unused,
2423                   uint16_t pkts_n __rte_unused)
2424 {
2425         return 0;
2426 }
2427
2428 __rte_weak uint16_t
2429 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2430                   struct rte_mbuf **pkts __rte_unused,
2431                   uint16_t pkts_n __rte_unused)
2432 {
2433         return 0;
2434 }
2435
2436 __rte_weak int
2437 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2438 {
2439         return -ENOTSUP;
2440 }
2441
2442 __rte_weak int
2443 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2444 {
2445         return -ENOTSUP;
2446 }
2447
2448 __rte_weak int
2449 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2450 {
2451         return -ENOTSUP;
2452 }
2453
2454 __rte_weak int
2455 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2456 {
2457         return -ENOTSUP;
2458 }