9658b37839945bbf952ca450d227fdb239868fa1
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         unsigned int max_inline = txq->max_inline;
348         const unsigned int inline_en = !!max_inline && txq->inline_en;
349         uint16_t max_wqe;
350         unsigned int comp;
351         volatile struct mlx5_wqe_v *wqe = NULL;
352         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
353         unsigned int segs_n = 0;
354         struct rte_mbuf *buf = NULL;
355         uint8_t *raw;
356
357         if (unlikely(!pkts_n))
358                 return 0;
359         /* Prefetch first packet cacheline. */
360         rte_prefetch0(*pkts);
361         /* Start processing. */
362         mlx5_tx_complete(txq);
363         max_elts = (elts_n - (elts_head - txq->elts_tail));
364         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
365         if (unlikely(!max_wqe))
366                 return 0;
367         do {
368                 volatile rte_v128u32_t *dseg = NULL;
369                 uint32_t length;
370                 unsigned int ds = 0;
371                 unsigned int sg = 0; /* counter of additional segs attached. */
372                 uintptr_t addr;
373                 uint64_t naddr;
374                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
375                 uint16_t tso_header_sz = 0;
376                 uint16_t ehdr;
377                 uint8_t cs_flags = 0;
378                 uint64_t tso = 0;
379                 uint16_t tso_segsz = 0;
380 #ifdef MLX5_PMD_SOFT_COUNTERS
381                 uint32_t total_length = 0;
382 #endif
383
384                 /* first_seg */
385                 buf = *pkts;
386                 segs_n = buf->nb_segs;
387                 /*
388                  * Make sure there is enough room to store this packet and
389                  * that one ring entry remains unused.
390                  */
391                 assert(segs_n);
392                 if (max_elts < segs_n)
393                         break;
394                 max_elts -= segs_n;
395                 --segs_n;
396                 if (unlikely(--max_wqe == 0))
397                         break;
398                 wqe = (volatile struct mlx5_wqe_v *)
399                         tx_mlx5_wqe(txq, txq->wqe_ci);
400                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
401                 if (pkts_n - i > 1)
402                         rte_prefetch0(*(pkts + 1));
403                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
404                 length = DATA_LEN(buf);
405                 ehdr = (((uint8_t *)addr)[1] << 8) |
406                        ((uint8_t *)addr)[0];
407 #ifdef MLX5_PMD_SOFT_COUNTERS
408                 total_length = length;
409 #endif
410                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
411                         txq->stats.oerrors++;
412                         break;
413                 }
414                 /* Update element. */
415                 (*txq->elts)[elts_head & elts_m] = buf;
416                 /* Prefetch next buffer data. */
417                 if (pkts_n - i > 1)
418                         rte_prefetch0(
419                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
420                 /* Should we enable HW CKSUM offload */
421                 if (buf->ol_flags &
422                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
423                         const uint64_t is_tunneled = buf->ol_flags &
424                                                      (PKT_TX_TUNNEL_GRE |
425                                                       PKT_TX_TUNNEL_VXLAN);
426
427                         if (is_tunneled && txq->tunnel_en) {
428                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
429                                            MLX5_ETH_WQE_L4_INNER_CSUM;
430                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
431                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
432                         } else {
433                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
434                                            MLX5_ETH_WQE_L4_CSUM;
435                         }
436                 }
437                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
438                 /* Replace the Ethernet type by the VLAN if necessary. */
439                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
440                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
441                                                          buf->vlan_tci);
442                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
443
444                         addr += 2;
445                         length -= 2;
446                         /* Copy Destination and source mac address. */
447                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
448                         /* Copy VLAN. */
449                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
450                         /* Copy missing two bytes to end the DSeg. */
451                         memcpy((uint8_t *)raw + len + sizeof(vlan),
452                                ((uint8_t *)addr) + len, 2);
453                         addr += len + 2;
454                         length -= (len + 2);
455                 } else {
456                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
457                                MLX5_WQE_DWORD_SIZE);
458                         length -= pkt_inline_sz;
459                         addr += pkt_inline_sz;
460                 }
461                 raw += MLX5_WQE_DWORD_SIZE;
462                 if (txq->tso_en) {
463                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
464                         if (tso) {
465                                 uintptr_t end = (uintptr_t)
466                                                 (((uintptr_t)txq->wqes) +
467                                                 (1 << txq->wqe_n) *
468                                                 MLX5_WQE_SIZE);
469                                 unsigned int copy_b;
470                                 uint8_t vlan_sz = (buf->ol_flags &
471                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
472                                 const uint64_t is_tunneled =
473                                                         buf->ol_flags &
474                                                         (PKT_TX_TUNNEL_GRE |
475                                                          PKT_TX_TUNNEL_VXLAN);
476
477                                 tso_header_sz = buf->l2_len + vlan_sz +
478                                                 buf->l3_len + buf->l4_len;
479                                 tso_segsz = buf->tso_segsz;
480                                 if (unlikely(tso_segsz == 0)) {
481                                         txq->stats.oerrors++;
482                                         break;
483                                 }
484                                 if (is_tunneled && txq->tunnel_en) {
485                                         tso_header_sz += buf->outer_l2_len +
486                                                          buf->outer_l3_len;
487                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
488                                 } else {
489                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
490                                 }
491                                 if (unlikely(tso_header_sz >
492                                              MLX5_MAX_TSO_HEADER)) {
493                                         txq->stats.oerrors++;
494                                         break;
495                                 }
496                                 copy_b = tso_header_sz - pkt_inline_sz;
497                                 /* First seg must contain all headers. */
498                                 assert(copy_b <= length);
499                                 if (copy_b &&
500                                    ((end - (uintptr_t)raw) > copy_b)) {
501                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
502                                                       1 + 3) / 4;
503
504                                         if (unlikely(max_wqe < n))
505                                                 break;
506                                         max_wqe -= n;
507                                         rte_memcpy((void *)raw,
508                                                    (void *)addr, copy_b);
509                                         addr += copy_b;
510                                         length -= copy_b;
511                                         /* Include padding for TSO header. */
512                                         copy_b = MLX5_WQE_DS(copy_b) *
513                                                  MLX5_WQE_DWORD_SIZE;
514                                         pkt_inline_sz += copy_b;
515                                         raw += copy_b;
516                                 } else {
517                                         /* NOP WQE. */
518                                         wqe->ctrl = (rte_v128u32_t){
519                                                      rte_cpu_to_be_32(
520                                                         txq->wqe_ci << 8),
521                                                      rte_cpu_to_be_32(
522                                                         txq->qp_num_8s | 1),
523                                                      0,
524                                                      0,
525                                         };
526                                         ds = 1;
527                                         total_length = 0;
528                                         k++;
529                                         goto next_wqe;
530                                 }
531                         }
532                 }
533                 /* Inline if enough room. */
534                 if (inline_en || tso) {
535                         uint32_t inl;
536                         uintptr_t end = (uintptr_t)
537                                 (((uintptr_t)txq->wqes) +
538                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
539                         unsigned int inline_room = max_inline *
540                                                    RTE_CACHE_LINE_SIZE -
541                                                    (pkt_inline_sz - 2) -
542                                                    !!tso * sizeof(inl);
543                         uintptr_t addr_end = (addr + inline_room) &
544                                              ~(RTE_CACHE_LINE_SIZE - 1);
545                         unsigned int copy_b = (addr_end > addr) ?
546                                 RTE_MIN((addr_end - addr), length) :
547                                 0;
548
549                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
550                                 /*
551                                  * One Dseg remains in the current WQE.  To
552                                  * keep the computation positive, it is
553                                  * removed after the bytes to Dseg conversion.
554                                  */
555                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
556
557                                 if (unlikely(max_wqe < n))
558                                         break;
559                                 max_wqe -= n;
560                                 if (tso) {
561                                         inl = rte_cpu_to_be_32(copy_b |
562                                                                MLX5_INLINE_SEG);
563                                         rte_memcpy((void *)raw,
564                                                    (void *)&inl, sizeof(inl));
565                                         raw += sizeof(inl);
566                                         pkt_inline_sz += sizeof(inl);
567                                 }
568                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
569                                 addr += copy_b;
570                                 length -= copy_b;
571                                 pkt_inline_sz += copy_b;
572                         }
573                         /*
574                          * 2 DWORDs consumed by the WQE header + ETH segment +
575                          * the size of the inline part of the packet.
576                          */
577                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
578                         if (length > 0) {
579                                 if (ds % (MLX5_WQE_SIZE /
580                                           MLX5_WQE_DWORD_SIZE) == 0) {
581                                         if (unlikely(--max_wqe == 0))
582                                                 break;
583                                         dseg = (volatile rte_v128u32_t *)
584                                                tx_mlx5_wqe(txq, txq->wqe_ci +
585                                                            ds / 4);
586                                 } else {
587                                         dseg = (volatile rte_v128u32_t *)
588                                                 ((uintptr_t)wqe +
589                                                  (ds * MLX5_WQE_DWORD_SIZE));
590                                 }
591                                 goto use_dseg;
592                         } else if (!segs_n) {
593                                 goto next_pkt;
594                         } else {
595                                 /* dseg will be advance as part of next_seg */
596                                 dseg = (volatile rte_v128u32_t *)
597                                         ((uintptr_t)wqe +
598                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
599                                 goto next_seg;
600                         }
601                 } else {
602                         /*
603                          * No inline has been done in the packet, only the
604                          * Ethernet Header as been stored.
605                          */
606                         dseg = (volatile rte_v128u32_t *)
607                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
608                         ds = 3;
609 use_dseg:
610                         /* Add the remaining packet as a simple ds. */
611                         naddr = rte_cpu_to_be_64(addr);
612                         *dseg = (rte_v128u32_t){
613                                 rte_cpu_to_be_32(length),
614                                 mlx5_tx_mb2mr(txq, buf),
615                                 naddr,
616                                 naddr >> 32,
617                         };
618                         ++ds;
619                         if (!segs_n)
620                                 goto next_pkt;
621                 }
622 next_seg:
623                 assert(buf);
624                 assert(ds);
625                 assert(wqe);
626                 /*
627                  * Spill on next WQE when the current one does not have
628                  * enough room left. Size of WQE must a be a multiple
629                  * of data segment size.
630                  */
631                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
632                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
633                         if (unlikely(--max_wqe == 0))
634                                 break;
635                         dseg = (volatile rte_v128u32_t *)
636                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
637                         rte_prefetch0(tx_mlx5_wqe(txq,
638                                                   txq->wqe_ci + ds / 4 + 1));
639                 } else {
640                         ++dseg;
641                 }
642                 ++ds;
643                 buf = buf->next;
644                 assert(buf);
645                 length = DATA_LEN(buf);
646 #ifdef MLX5_PMD_SOFT_COUNTERS
647                 total_length += length;
648 #endif
649                 /* Store segment information. */
650                 naddr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
651                 *dseg = (rte_v128u32_t){
652                         rte_cpu_to_be_32(length),
653                         mlx5_tx_mb2mr(txq, buf),
654                         naddr,
655                         naddr >> 32,
656                 };
657                 (*txq->elts)[++elts_head & elts_m] = buf;
658                 ++sg;
659                 /* Advance counter only if all segs are successfully posted. */
660                 if (sg < segs_n)
661                         goto next_seg;
662                 else
663                         j += sg;
664 next_pkt:
665                 if (ds > MLX5_DSEG_MAX) {
666                         txq->stats.oerrors++;
667                         break;
668                 }
669                 ++elts_head;
670                 ++pkts;
671                 ++i;
672                 /* Initialize known and common part of the WQE structure. */
673                 if (tso) {
674                         wqe->ctrl = (rte_v128u32_t){
675                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
676                                                  MLX5_OPCODE_TSO),
677                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
678                                 0,
679                                 0,
680                         };
681                         wqe->eseg = (rte_v128u32_t){
682                                 0,
683                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
684                                 0,
685                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
686                         };
687                 } else {
688                         wqe->ctrl = (rte_v128u32_t){
689                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
690                                                  MLX5_OPCODE_SEND),
691                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
692                                 0,
693                                 0,
694                         };
695                         wqe->eseg = (rte_v128u32_t){
696                                 0,
697                                 cs_flags,
698                                 0,
699                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
700                         };
701                 }
702 next_wqe:
703                 txq->wqe_ci += (ds + 3) / 4;
704                 /* Save the last successful WQE for completion request */
705                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
706 #ifdef MLX5_PMD_SOFT_COUNTERS
707                 /* Increment sent bytes counter. */
708                 txq->stats.obytes += total_length;
709 #endif
710         } while (i < pkts_n);
711         /* Take a shortcut if nothing must be sent. */
712         if (unlikely((i + k) == 0))
713                 return 0;
714         txq->elts_head += (i + j);
715         /* Check whether completion threshold has been reached. */
716         comp = txq->elts_comp + i + j + k;
717         if (comp >= MLX5_TX_COMP_THRESH) {
718                 /* Request completion on last WQE. */
719                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
720                 /* Save elts_head in unused "immediate" field of WQE. */
721                 last_wqe->ctrl3 = txq->elts_head;
722                 txq->elts_comp = 0;
723         } else {
724                 txq->elts_comp = comp;
725         }
726 #ifdef MLX5_PMD_SOFT_COUNTERS
727         /* Increment sent packets counter. */
728         txq->stats.opackets += i;
729 #endif
730         /* Ring QP doorbell. */
731         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
732         return i;
733 }
734
735 /**
736  * Open a MPW session.
737  *
738  * @param txq
739  *   Pointer to TX queue structure.
740  * @param mpw
741  *   Pointer to MPW session structure.
742  * @param length
743  *   Packet length.
744  */
745 static inline void
746 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
747 {
748         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
749         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
750                 (volatile struct mlx5_wqe_data_seg (*)[])
751                 tx_mlx5_wqe(txq, idx + 1);
752
753         mpw->state = MLX5_MPW_STATE_OPENED;
754         mpw->pkts_n = 0;
755         mpw->len = length;
756         mpw->total_len = 0;
757         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
758         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
759         mpw->wqe->eseg.inline_hdr_sz = 0;
760         mpw->wqe->eseg.rsvd0 = 0;
761         mpw->wqe->eseg.rsvd1 = 0;
762         mpw->wqe->eseg.rsvd2 = 0;
763         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
764                                              (txq->wqe_ci << 8) |
765                                              MLX5_OPCODE_TSO);
766         mpw->wqe->ctrl[2] = 0;
767         mpw->wqe->ctrl[3] = 0;
768         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
769                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
770         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
771                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
772         mpw->data.dseg[2] = &(*dseg)[0];
773         mpw->data.dseg[3] = &(*dseg)[1];
774         mpw->data.dseg[4] = &(*dseg)[2];
775 }
776
777 /**
778  * Close a MPW session.
779  *
780  * @param txq
781  *   Pointer to TX queue structure.
782  * @param mpw
783  *   Pointer to MPW session structure.
784  */
785 static inline void
786 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
787 {
788         unsigned int num = mpw->pkts_n;
789
790         /*
791          * Store size in multiple of 16 bytes. Control and Ethernet segments
792          * count as 2.
793          */
794         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
795         mpw->state = MLX5_MPW_STATE_CLOSED;
796         if (num < 3)
797                 ++txq->wqe_ci;
798         else
799                 txq->wqe_ci += 2;
800         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
801         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
802 }
803
804 /**
805  * DPDK callback for TX with MPW support.
806  *
807  * @param dpdk_txq
808  *   Generic pointer to TX queue structure.
809  * @param[in] pkts
810  *   Packets to transmit.
811  * @param pkts_n
812  *   Number of packets in array.
813  *
814  * @return
815  *   Number of packets successfully transmitted (<= pkts_n).
816  */
817 uint16_t
818 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
819 {
820         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
821         uint16_t elts_head = txq->elts_head;
822         const uint16_t elts_n = 1 << txq->elts_n;
823         const uint16_t elts_m = elts_n - 1;
824         unsigned int i = 0;
825         unsigned int j = 0;
826         uint16_t max_elts;
827         uint16_t max_wqe;
828         unsigned int comp;
829         struct mlx5_mpw mpw = {
830                 .state = MLX5_MPW_STATE_CLOSED,
831         };
832
833         if (unlikely(!pkts_n))
834                 return 0;
835         /* Prefetch first packet cacheline. */
836         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
837         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
838         /* Start processing. */
839         mlx5_tx_complete(txq);
840         max_elts = (elts_n - (elts_head - txq->elts_tail));
841         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
842         if (unlikely(!max_wqe))
843                 return 0;
844         do {
845                 struct rte_mbuf *buf = *(pkts++);
846                 uint32_t length;
847                 unsigned int segs_n = buf->nb_segs;
848                 uint32_t cs_flags = 0;
849
850                 /*
851                  * Make sure there is enough room to store this packet and
852                  * that one ring entry remains unused.
853                  */
854                 assert(segs_n);
855                 if (max_elts < segs_n)
856                         break;
857                 /* Do not bother with large packets MPW cannot handle. */
858                 if (segs_n > MLX5_MPW_DSEG_MAX) {
859                         txq->stats.oerrors++;
860                         break;
861                 }
862                 max_elts -= segs_n;
863                 --pkts_n;
864                 /* Should we enable HW CKSUM offload */
865                 if (buf->ol_flags &
866                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
867                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
868                 /* Retrieve packet information. */
869                 length = PKT_LEN(buf);
870                 assert(length);
871                 /* Start new session if packet differs. */
872                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
873                     ((mpw.len != length) ||
874                      (segs_n != 1) ||
875                      (mpw.wqe->eseg.cs_flags != cs_flags)))
876                         mlx5_mpw_close(txq, &mpw);
877                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
878                         /*
879                          * Multi-Packet WQE consumes at most two WQE.
880                          * mlx5_mpw_new() expects to be able to use such
881                          * resources.
882                          */
883                         if (unlikely(max_wqe < 2))
884                                 break;
885                         max_wqe -= 2;
886                         mlx5_mpw_new(txq, &mpw, length);
887                         mpw.wqe->eseg.cs_flags = cs_flags;
888                 }
889                 /* Multi-segment packets must be alone in their MPW. */
890                 assert((segs_n == 1) || (mpw.pkts_n == 0));
891 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
892                 length = 0;
893 #endif
894                 do {
895                         volatile struct mlx5_wqe_data_seg *dseg;
896                         uintptr_t addr;
897
898                         assert(buf);
899                         (*txq->elts)[elts_head++ & elts_m] = buf;
900                         dseg = mpw.data.dseg[mpw.pkts_n];
901                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
902                         *dseg = (struct mlx5_wqe_data_seg){
903                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
904                                 .lkey = mlx5_tx_mb2mr(txq, buf),
905                                 .addr = rte_cpu_to_be_64(addr),
906                         };
907 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
908                         length += DATA_LEN(buf);
909 #endif
910                         buf = buf->next;
911                         ++mpw.pkts_n;
912                         ++j;
913                 } while (--segs_n);
914                 assert(length == mpw.len);
915                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
916                         mlx5_mpw_close(txq, &mpw);
917 #ifdef MLX5_PMD_SOFT_COUNTERS
918                 /* Increment sent bytes counter. */
919                 txq->stats.obytes += length;
920 #endif
921                 ++i;
922         } while (pkts_n);
923         /* Take a shortcut if nothing must be sent. */
924         if (unlikely(i == 0))
925                 return 0;
926         /* Check whether completion threshold has been reached. */
927         /* "j" includes both packets and segments. */
928         comp = txq->elts_comp + j;
929         if (comp >= MLX5_TX_COMP_THRESH) {
930                 volatile struct mlx5_wqe *wqe = mpw.wqe;
931
932                 /* Request completion on last WQE. */
933                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
934                 /* Save elts_head in unused "immediate" field of WQE. */
935                 wqe->ctrl[3] = elts_head;
936                 txq->elts_comp = 0;
937         } else {
938                 txq->elts_comp = comp;
939         }
940 #ifdef MLX5_PMD_SOFT_COUNTERS
941         /* Increment sent packets counter. */
942         txq->stats.opackets += i;
943 #endif
944         /* Ring QP doorbell. */
945         if (mpw.state == MLX5_MPW_STATE_OPENED)
946                 mlx5_mpw_close(txq, &mpw);
947         mlx5_tx_dbrec(txq, mpw.wqe);
948         txq->elts_head = elts_head;
949         return i;
950 }
951
952 /**
953  * Open a MPW inline session.
954  *
955  * @param txq
956  *   Pointer to TX queue structure.
957  * @param mpw
958  *   Pointer to MPW session structure.
959  * @param length
960  *   Packet length.
961  */
962 static inline void
963 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
964                     uint32_t length)
965 {
966         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
967         struct mlx5_wqe_inl_small *inl;
968
969         mpw->state = MLX5_MPW_INL_STATE_OPENED;
970         mpw->pkts_n = 0;
971         mpw->len = length;
972         mpw->total_len = 0;
973         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
974         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
975                                              (txq->wqe_ci << 8) |
976                                              MLX5_OPCODE_TSO);
977         mpw->wqe->ctrl[2] = 0;
978         mpw->wqe->ctrl[3] = 0;
979         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
980         mpw->wqe->eseg.inline_hdr_sz = 0;
981         mpw->wqe->eseg.cs_flags = 0;
982         mpw->wqe->eseg.rsvd0 = 0;
983         mpw->wqe->eseg.rsvd1 = 0;
984         mpw->wqe->eseg.rsvd2 = 0;
985         inl = (struct mlx5_wqe_inl_small *)
986                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
987         mpw->data.raw = (uint8_t *)&inl->raw;
988 }
989
990 /**
991  * Close a MPW inline session.
992  *
993  * @param txq
994  *   Pointer to TX queue structure.
995  * @param mpw
996  *   Pointer to MPW session structure.
997  */
998 static inline void
999 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1000 {
1001         unsigned int size;
1002         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1003                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1004
1005         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1006         /*
1007          * Store size in multiple of 16 bytes. Control and Ethernet segments
1008          * count as 2.
1009          */
1010         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1011                                              MLX5_WQE_DS(size));
1012         mpw->state = MLX5_MPW_STATE_CLOSED;
1013         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1014         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1015 }
1016
1017 /**
1018  * DPDK callback for TX with MPW inline support.
1019  *
1020  * @param dpdk_txq
1021  *   Generic pointer to TX queue structure.
1022  * @param[in] pkts
1023  *   Packets to transmit.
1024  * @param pkts_n
1025  *   Number of packets in array.
1026  *
1027  * @return
1028  *   Number of packets successfully transmitted (<= pkts_n).
1029  */
1030 uint16_t
1031 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1032                          uint16_t pkts_n)
1033 {
1034         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1035         uint16_t elts_head = txq->elts_head;
1036         const uint16_t elts_n = 1 << txq->elts_n;
1037         const uint16_t elts_m = elts_n - 1;
1038         unsigned int i = 0;
1039         unsigned int j = 0;
1040         uint16_t max_elts;
1041         uint16_t max_wqe;
1042         unsigned int comp;
1043         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1044         struct mlx5_mpw mpw = {
1045                 .state = MLX5_MPW_STATE_CLOSED,
1046         };
1047         /*
1048          * Compute the maximum number of WQE which can be consumed by inline
1049          * code.
1050          * - 2 DSEG for:
1051          *   - 1 control segment,
1052          *   - 1 Ethernet segment,
1053          * - N Dseg from the inline request.
1054          */
1055         const unsigned int wqe_inl_n =
1056                 ((2 * MLX5_WQE_DWORD_SIZE +
1057                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1058                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1059
1060         if (unlikely(!pkts_n))
1061                 return 0;
1062         /* Prefetch first packet cacheline. */
1063         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1064         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1065         /* Start processing. */
1066         mlx5_tx_complete(txq);
1067         max_elts = (elts_n - (elts_head - txq->elts_tail));
1068         do {
1069                 struct rte_mbuf *buf = *(pkts++);
1070                 uintptr_t addr;
1071                 uint32_t length;
1072                 unsigned int segs_n = buf->nb_segs;
1073                 uint32_t cs_flags = 0;
1074
1075                 /*
1076                  * Make sure there is enough room to store this packet and
1077                  * that one ring entry remains unused.
1078                  */
1079                 assert(segs_n);
1080                 if (max_elts < segs_n)
1081                         break;
1082                 /* Do not bother with large packets MPW cannot handle. */
1083                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1084                         txq->stats.oerrors++;
1085                         break;
1086                 }
1087                 max_elts -= segs_n;
1088                 --pkts_n;
1089                 /*
1090                  * Compute max_wqe in case less WQE were consumed in previous
1091                  * iteration.
1092                  */
1093                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1094                 /* Should we enable HW CKSUM offload */
1095                 if (buf->ol_flags &
1096                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1097                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1098                 /* Retrieve packet information. */
1099                 length = PKT_LEN(buf);
1100                 /* Start new session if packet differs. */
1101                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1102                         if ((mpw.len != length) ||
1103                             (segs_n != 1) ||
1104                             (mpw.wqe->eseg.cs_flags != cs_flags))
1105                                 mlx5_mpw_close(txq, &mpw);
1106                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1107                         if ((mpw.len != length) ||
1108                             (segs_n != 1) ||
1109                             (length > inline_room) ||
1110                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1111                                 mlx5_mpw_inline_close(txq, &mpw);
1112                                 inline_room =
1113                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1114                         }
1115                 }
1116                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1117                         if ((segs_n != 1) ||
1118                             (length > inline_room)) {
1119                                 /*
1120                                  * Multi-Packet WQE consumes at most two WQE.
1121                                  * mlx5_mpw_new() expects to be able to use
1122                                  * such resources.
1123                                  */
1124                                 if (unlikely(max_wqe < 2))
1125                                         break;
1126                                 max_wqe -= 2;
1127                                 mlx5_mpw_new(txq, &mpw, length);
1128                                 mpw.wqe->eseg.cs_flags = cs_flags;
1129                         } else {
1130                                 if (unlikely(max_wqe < wqe_inl_n))
1131                                         break;
1132                                 max_wqe -= wqe_inl_n;
1133                                 mlx5_mpw_inline_new(txq, &mpw, length);
1134                                 mpw.wqe->eseg.cs_flags = cs_flags;
1135                         }
1136                 }
1137                 /* Multi-segment packets must be alone in their MPW. */
1138                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1139                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1140                         assert(inline_room ==
1141                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1142 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1143                         length = 0;
1144 #endif
1145                         do {
1146                                 volatile struct mlx5_wqe_data_seg *dseg;
1147
1148                                 assert(buf);
1149                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1150                                 dseg = mpw.data.dseg[mpw.pkts_n];
1151                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1152                                 *dseg = (struct mlx5_wqe_data_seg){
1153                                         .byte_count =
1154                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1155                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1156                                         .addr = rte_cpu_to_be_64(addr),
1157                                 };
1158 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1159                                 length += DATA_LEN(buf);
1160 #endif
1161                                 buf = buf->next;
1162                                 ++mpw.pkts_n;
1163                                 ++j;
1164                         } while (--segs_n);
1165                         assert(length == mpw.len);
1166                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1167                                 mlx5_mpw_close(txq, &mpw);
1168                 } else {
1169                         unsigned int max;
1170
1171                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1172                         assert(length <= inline_room);
1173                         assert(length == DATA_LEN(buf));
1174                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1175                         (*txq->elts)[elts_head++ & elts_m] = buf;
1176                         /* Maximum number of bytes before wrapping. */
1177                         max = ((((uintptr_t)(txq->wqes)) +
1178                                 (1 << txq->wqe_n) *
1179                                 MLX5_WQE_SIZE) -
1180                                (uintptr_t)mpw.data.raw);
1181                         if (length > max) {
1182                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1183                                            (void *)addr,
1184                                            max);
1185                                 mpw.data.raw = (volatile void *)txq->wqes;
1186                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1187                                            (void *)(addr + max),
1188                                            length - max);
1189                                 mpw.data.raw += length - max;
1190                         } else {
1191                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1192                                            (void *)addr,
1193                                            length);
1194
1195                                 if (length == max)
1196                                         mpw.data.raw =
1197                                                 (volatile void *)txq->wqes;
1198                                 else
1199                                         mpw.data.raw += length;
1200                         }
1201                         ++mpw.pkts_n;
1202                         mpw.total_len += length;
1203                         ++j;
1204                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1205                                 mlx5_mpw_inline_close(txq, &mpw);
1206                                 inline_room =
1207                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1208                         } else {
1209                                 inline_room -= length;
1210                         }
1211                 }
1212 #ifdef MLX5_PMD_SOFT_COUNTERS
1213                 /* Increment sent bytes counter. */
1214                 txq->stats.obytes += length;
1215 #endif
1216                 ++i;
1217         } while (pkts_n);
1218         /* Take a shortcut if nothing must be sent. */
1219         if (unlikely(i == 0))
1220                 return 0;
1221         /* Check whether completion threshold has been reached. */
1222         /* "j" includes both packets and segments. */
1223         comp = txq->elts_comp + j;
1224         if (comp >= MLX5_TX_COMP_THRESH) {
1225                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1226
1227                 /* Request completion on last WQE. */
1228                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1229                 /* Save elts_head in unused "immediate" field of WQE. */
1230                 wqe->ctrl[3] = elts_head;
1231                 txq->elts_comp = 0;
1232         } else {
1233                 txq->elts_comp = comp;
1234         }
1235 #ifdef MLX5_PMD_SOFT_COUNTERS
1236         /* Increment sent packets counter. */
1237         txq->stats.opackets += i;
1238 #endif
1239         /* Ring QP doorbell. */
1240         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1241                 mlx5_mpw_inline_close(txq, &mpw);
1242         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1243                 mlx5_mpw_close(txq, &mpw);
1244         mlx5_tx_dbrec(txq, mpw.wqe);
1245         txq->elts_head = elts_head;
1246         return i;
1247 }
1248
1249 /**
1250  * Open an Enhanced MPW session.
1251  *
1252  * @param txq
1253  *   Pointer to TX queue structure.
1254  * @param mpw
1255  *   Pointer to MPW session structure.
1256  * @param length
1257  *   Packet length.
1258  */
1259 static inline void
1260 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1261 {
1262         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1263
1264         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1265         mpw->pkts_n = 0;
1266         mpw->total_len = sizeof(struct mlx5_wqe);
1267         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1268         mpw->wqe->ctrl[0] =
1269                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1270                                  (txq->wqe_ci << 8) |
1271                                  MLX5_OPCODE_ENHANCED_MPSW);
1272         mpw->wqe->ctrl[2] = 0;
1273         mpw->wqe->ctrl[3] = 0;
1274         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1275         if (unlikely(padding)) {
1276                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1277
1278                 /* Pad the first 2 DWORDs with zero-length inline header. */
1279                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1280                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1281                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1282                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1283                 /* Start from the next WQEBB. */
1284                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1285         } else {
1286                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1287         }
1288 }
1289
1290 /**
1291  * Close an Enhanced MPW session.
1292  *
1293  * @param txq
1294  *   Pointer to TX queue structure.
1295  * @param mpw
1296  *   Pointer to MPW session structure.
1297  *
1298  * @return
1299  *   Number of consumed WQEs.
1300  */
1301 static inline uint16_t
1302 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1303 {
1304         uint16_t ret;
1305
1306         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1307          * count as 2.
1308          */
1309         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1310                                              MLX5_WQE_DS(mpw->total_len));
1311         mpw->state = MLX5_MPW_STATE_CLOSED;
1312         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1313         txq->wqe_ci += ret;
1314         return ret;
1315 }
1316
1317 /**
1318  * DPDK callback for TX with Enhanced MPW support.
1319  *
1320  * @param dpdk_txq
1321  *   Generic pointer to TX queue structure.
1322  * @param[in] pkts
1323  *   Packets to transmit.
1324  * @param pkts_n
1325  *   Number of packets in array.
1326  *
1327  * @return
1328  *   Number of packets successfully transmitted (<= pkts_n).
1329  */
1330 uint16_t
1331 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1332 {
1333         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1334         uint16_t elts_head = txq->elts_head;
1335         const uint16_t elts_n = 1 << txq->elts_n;
1336         const uint16_t elts_m = elts_n - 1;
1337         unsigned int i = 0;
1338         unsigned int j = 0;
1339         uint16_t max_elts;
1340         uint16_t max_wqe;
1341         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1342         unsigned int mpw_room = 0;
1343         unsigned int inl_pad = 0;
1344         uint32_t inl_hdr;
1345         struct mlx5_mpw mpw = {
1346                 .state = MLX5_MPW_STATE_CLOSED,
1347         };
1348
1349         if (unlikely(!pkts_n))
1350                 return 0;
1351         /* Start processing. */
1352         mlx5_tx_complete(txq);
1353         max_elts = (elts_n - (elts_head - txq->elts_tail));
1354         /* A CQE slot must always be available. */
1355         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1356         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1357         if (unlikely(!max_wqe))
1358                 return 0;
1359         do {
1360                 struct rte_mbuf *buf = *(pkts++);
1361                 uintptr_t addr;
1362                 uint64_t naddr;
1363                 unsigned int n;
1364                 unsigned int do_inline = 0; /* Whether inline is possible. */
1365                 uint32_t length;
1366                 unsigned int segs_n = buf->nb_segs;
1367                 uint32_t cs_flags = 0;
1368
1369                 /*
1370                  * Make sure there is enough room to store this packet and
1371                  * that one ring entry remains unused.
1372                  */
1373                 assert(segs_n);
1374                 if (max_elts - j < segs_n)
1375                         break;
1376                 /* Do not bother with large packets MPW cannot handle. */
1377                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1378                         txq->stats.oerrors++;
1379                         break;
1380                 }
1381                 /* Should we enable HW CKSUM offload. */
1382                 if (buf->ol_flags &
1383                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1384                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1385                 /* Retrieve packet information. */
1386                 length = PKT_LEN(buf);
1387                 /* Start new session if:
1388                  * - multi-segment packet
1389                  * - no space left even for a dseg
1390                  * - next packet can be inlined with a new WQE
1391                  * - cs_flag differs
1392                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1393                  * segmented packet.
1394                  */
1395                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1396                         if ((segs_n != 1) ||
1397                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1398                               mpw_room) ||
1399                             (length <= txq->inline_max_packet_sz &&
1400                              inl_pad + sizeof(inl_hdr) + length >
1401                               mpw_room) ||
1402                             (mpw.wqe->eseg.cs_flags != cs_flags))
1403                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1404                 }
1405                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1406                         if (unlikely(segs_n != 1)) {
1407                                 /* Fall back to legacy MPW.
1408                                  * A MPW session consumes 2 WQEs at most to
1409                                  * include MLX5_MPW_DSEG_MAX pointers.
1410                                  */
1411                                 if (unlikely(max_wqe < 2))
1412                                         break;
1413                                 mlx5_mpw_new(txq, &mpw, length);
1414                         } else {
1415                                 /* In Enhanced MPW, inline as much as the budget
1416                                  * is allowed. The remaining space is to be
1417                                  * filled with dsegs. If the title WQEBB isn't
1418                                  * padded, it will have 2 dsegs there.
1419                                  */
1420                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1421                                             (max_inline ? max_inline :
1422                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1423                                             MLX5_WQE_SIZE);
1424                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1425                                               mpw_room))
1426                                         break;
1427                                 /* Don't pad the title WQEBB to not waste WQ. */
1428                                 mlx5_empw_new(txq, &mpw, 0);
1429                                 mpw_room -= mpw.total_len;
1430                                 inl_pad = 0;
1431                                 do_inline =
1432                                         length <= txq->inline_max_packet_sz &&
1433                                         sizeof(inl_hdr) + length <= mpw_room &&
1434                                         !txq->mpw_hdr_dseg;
1435                         }
1436                         mpw.wqe->eseg.cs_flags = cs_flags;
1437                 } else {
1438                         /* Evaluate whether the next packet can be inlined.
1439                          * Inlininig is possible when:
1440                          * - length is less than configured value
1441                          * - length fits for remaining space
1442                          * - not required to fill the title WQEBB with dsegs
1443                          */
1444                         do_inline =
1445                                 length <= txq->inline_max_packet_sz &&
1446                                 inl_pad + sizeof(inl_hdr) + length <=
1447                                  mpw_room &&
1448                                 (!txq->mpw_hdr_dseg ||
1449                                  mpw.total_len >= MLX5_WQE_SIZE);
1450                 }
1451                 /* Multi-segment packets must be alone in their MPW. */
1452                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1453                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1454 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1455                         length = 0;
1456 #endif
1457                         do {
1458                                 volatile struct mlx5_wqe_data_seg *dseg;
1459
1460                                 assert(buf);
1461                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1462                                 dseg = mpw.data.dseg[mpw.pkts_n];
1463                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1464                                 *dseg = (struct mlx5_wqe_data_seg){
1465                                         .byte_count = rte_cpu_to_be_32(
1466                                                                 DATA_LEN(buf)),
1467                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1468                                         .addr = rte_cpu_to_be_64(addr),
1469                                 };
1470 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1471                                 length += DATA_LEN(buf);
1472 #endif
1473                                 buf = buf->next;
1474                                 ++j;
1475                                 ++mpw.pkts_n;
1476                         } while (--segs_n);
1477                         /* A multi-segmented packet takes one MPW session.
1478                          * TODO: Pack more multi-segmented packets if possible.
1479                          */
1480                         mlx5_mpw_close(txq, &mpw);
1481                         if (mpw.pkts_n < 3)
1482                                 max_wqe--;
1483                         else
1484                                 max_wqe -= 2;
1485                 } else if (do_inline) {
1486                         /* Inline packet into WQE. */
1487                         unsigned int max;
1488
1489                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1490                         assert(length == DATA_LEN(buf));
1491                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1492                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1493                         mpw.data.raw = (volatile void *)
1494                                 ((uintptr_t)mpw.data.raw + inl_pad);
1495                         max = tx_mlx5_wq_tailroom(txq,
1496                                         (void *)(uintptr_t)mpw.data.raw);
1497                         /* Copy inline header. */
1498                         mpw.data.raw = (volatile void *)
1499                                 mlx5_copy_to_wq(
1500                                           (void *)(uintptr_t)mpw.data.raw,
1501                                           &inl_hdr,
1502                                           sizeof(inl_hdr),
1503                                           (void *)(uintptr_t)txq->wqes,
1504                                           max);
1505                         max = tx_mlx5_wq_tailroom(txq,
1506                                         (void *)(uintptr_t)mpw.data.raw);
1507                         /* Copy packet data. */
1508                         mpw.data.raw = (volatile void *)
1509                                 mlx5_copy_to_wq(
1510                                           (void *)(uintptr_t)mpw.data.raw,
1511                                           (void *)addr,
1512                                           length,
1513                                           (void *)(uintptr_t)txq->wqes,
1514                                           max);
1515                         ++mpw.pkts_n;
1516                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1517                         /* No need to get completion as the entire packet is
1518                          * copied to WQ. Free the buf right away.
1519                          */
1520                         rte_pktmbuf_free_seg(buf);
1521                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1522                         /* Add pad in the next packet if any. */
1523                         inl_pad = (((uintptr_t)mpw.data.raw +
1524                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1525                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1526                                   (uintptr_t)mpw.data.raw;
1527                 } else {
1528                         /* No inline. Load a dseg of packet pointer. */
1529                         volatile rte_v128u32_t *dseg;
1530
1531                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1532                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1533                         assert(length == DATA_LEN(buf));
1534                         if (!tx_mlx5_wq_tailroom(txq,
1535                                         (void *)((uintptr_t)mpw.data.raw
1536                                                 + inl_pad)))
1537                                 dseg = (volatile void *)txq->wqes;
1538                         else
1539                                 dseg = (volatile void *)
1540                                         ((uintptr_t)mpw.data.raw +
1541                                          inl_pad);
1542                         (*txq->elts)[elts_head++ & elts_m] = buf;
1543                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1544                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1545                                 rte_prefetch2((void *)(addr +
1546                                                 n * RTE_CACHE_LINE_SIZE));
1547                         naddr = rte_cpu_to_be_64(addr);
1548                         *dseg = (rte_v128u32_t) {
1549                                 rte_cpu_to_be_32(length),
1550                                 mlx5_tx_mb2mr(txq, buf),
1551                                 naddr,
1552                                 naddr >> 32,
1553                         };
1554                         mpw.data.raw = (volatile void *)(dseg + 1);
1555                         mpw.total_len += (inl_pad + sizeof(*dseg));
1556                         ++j;
1557                         ++mpw.pkts_n;
1558                         mpw_room -= (inl_pad + sizeof(*dseg));
1559                         inl_pad = 0;
1560                 }
1561 #ifdef MLX5_PMD_SOFT_COUNTERS
1562                 /* Increment sent bytes counter. */
1563                 txq->stats.obytes += length;
1564 #endif
1565                 ++i;
1566         } while (i < pkts_n);
1567         /* Take a shortcut if nothing must be sent. */
1568         if (unlikely(i == 0))
1569                 return 0;
1570         /* Check whether completion threshold has been reached. */
1571         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1572                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1573                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1574                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1575
1576                 /* Request completion on last WQE. */
1577                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1578                 /* Save elts_head in unused "immediate" field of WQE. */
1579                 wqe->ctrl[3] = elts_head;
1580                 txq->elts_comp = 0;
1581                 txq->mpw_comp = txq->wqe_ci;
1582                 txq->cq_pi++;
1583         } else {
1584                 txq->elts_comp += j;
1585         }
1586 #ifdef MLX5_PMD_SOFT_COUNTERS
1587         /* Increment sent packets counter. */
1588         txq->stats.opackets += i;
1589 #endif
1590         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1591                 mlx5_empw_close(txq, &mpw);
1592         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1593                 mlx5_mpw_close(txq, &mpw);
1594         /* Ring QP doorbell. */
1595         mlx5_tx_dbrec(txq, mpw.wqe);
1596         txq->elts_head = elts_head;
1597         return i;
1598 }
1599
1600 /**
1601  * Translate RX completion flags to packet type.
1602  *
1603  * @param[in] cqe
1604  *   Pointer to CQE.
1605  *
1606  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1607  *
1608  * @return
1609  *   Packet type for struct rte_mbuf.
1610  */
1611 static inline uint32_t
1612 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1613 {
1614         uint8_t idx;
1615         uint8_t pinfo = cqe->pkt_info;
1616         uint16_t ptype = cqe->hdr_type_etc;
1617
1618         /*
1619          * The index to the array should have:
1620          * bit[1:0] = l3_hdr_type
1621          * bit[4:2] = l4_hdr_type
1622          * bit[5] = ip_frag
1623          * bit[6] = tunneled
1624          * bit[7] = outer_l3_type
1625          */
1626         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1627         return mlx5_ptype_table[idx];
1628 }
1629
1630 /**
1631  * Get size of the next packet for a given CQE. For compressed CQEs, the
1632  * consumer index is updated only once all packets of the current one have
1633  * been processed.
1634  *
1635  * @param rxq
1636  *   Pointer to RX queue.
1637  * @param cqe
1638  *   CQE to process.
1639  * @param[out] rss_hash
1640  *   Packet RSS Hash result.
1641  *
1642  * @return
1643  *   Packet size in bytes (0 if there is none), -1 in case of completion
1644  *   with error.
1645  */
1646 static inline int
1647 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1648                  uint16_t cqe_cnt, uint32_t *rss_hash)
1649 {
1650         struct rxq_zip *zip = &rxq->zip;
1651         uint16_t cqe_n = cqe_cnt + 1;
1652         int len = 0;
1653         uint16_t idx, end;
1654
1655         /* Process compressed data in the CQE and mini arrays. */
1656         if (zip->ai) {
1657                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1658                         (volatile struct mlx5_mini_cqe8 (*)[8])
1659                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1660
1661                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1662                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1663                 if ((++zip->ai & 7) == 0) {
1664                         /* Invalidate consumed CQEs */
1665                         idx = zip->ca;
1666                         end = zip->na;
1667                         while (idx != end) {
1668                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1669                                         MLX5_CQE_INVALIDATE;
1670                                 ++idx;
1671                         }
1672                         /*
1673                          * Increment consumer index to skip the number of
1674                          * CQEs consumed. Hardware leaves holes in the CQ
1675                          * ring for software use.
1676                          */
1677                         zip->ca = zip->na;
1678                         zip->na += 8;
1679                 }
1680                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1681                         /* Invalidate the rest */
1682                         idx = zip->ca;
1683                         end = zip->cq_ci;
1684
1685                         while (idx != end) {
1686                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1687                                         MLX5_CQE_INVALIDATE;
1688                                 ++idx;
1689                         }
1690                         rxq->cq_ci = zip->cq_ci;
1691                         zip->ai = 0;
1692                 }
1693         /* No compressed data, get next CQE and verify if it is compressed. */
1694         } else {
1695                 int ret;
1696                 int8_t op_own;
1697
1698                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1699                 if (unlikely(ret == 1))
1700                         return 0;
1701                 ++rxq->cq_ci;
1702                 op_own = cqe->op_own;
1703                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1704                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1705                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1706                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1707                                                           cqe_cnt].pkt_info);
1708
1709                         /* Fix endianness. */
1710                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1711                         /*
1712                          * Current mini array position is the one returned by
1713                          * check_cqe64().
1714                          *
1715                          * If completion comprises several mini arrays, as a
1716                          * special case the second one is located 7 CQEs after
1717                          * the initial CQE instead of 8 for subsequent ones.
1718                          */
1719                         zip->ca = rxq->cq_ci;
1720                         zip->na = zip->ca + 7;
1721                         /* Compute the next non compressed CQE. */
1722                         --rxq->cq_ci;
1723                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1724                         /* Get packet size to return. */
1725                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1726                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1727                         zip->ai = 1;
1728                         /* Prefetch all the entries to be invalidated */
1729                         idx = zip->ca;
1730                         end = zip->cq_ci;
1731                         while (idx != end) {
1732                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1733                                 ++idx;
1734                         }
1735                 } else {
1736                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1737                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1738                 }
1739                 /* Error while receiving packet. */
1740                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1741                         return -1;
1742         }
1743         return len;
1744 }
1745
1746 /**
1747  * Translate RX completion flags to offload flags.
1748  *
1749  * @param[in] rxq
1750  *   Pointer to RX queue structure.
1751  * @param[in] cqe
1752  *   Pointer to CQE.
1753  *
1754  * @return
1755  *   Offload flags (ol_flags) for struct rte_mbuf.
1756  */
1757 static inline uint32_t
1758 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1759 {
1760         uint32_t ol_flags = 0;
1761         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1762
1763         ol_flags =
1764                 TRANSPOSE(flags,
1765                           MLX5_CQE_RX_L3_HDR_VALID,
1766                           PKT_RX_IP_CKSUM_GOOD) |
1767                 TRANSPOSE(flags,
1768                           MLX5_CQE_RX_L4_HDR_VALID,
1769                           PKT_RX_L4_CKSUM_GOOD);
1770         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1771                 ol_flags |=
1772                         TRANSPOSE(flags,
1773                                   MLX5_CQE_RX_L3_HDR_VALID,
1774                                   PKT_RX_IP_CKSUM_GOOD) |
1775                         TRANSPOSE(flags,
1776                                   MLX5_CQE_RX_L4_HDR_VALID,
1777                                   PKT_RX_L4_CKSUM_GOOD);
1778         return ol_flags;
1779 }
1780
1781 /**
1782  * DPDK callback for RX.
1783  *
1784  * @param dpdk_rxq
1785  *   Generic pointer to RX queue structure.
1786  * @param[out] pkts
1787  *   Array to store received packets.
1788  * @param pkts_n
1789  *   Maximum number of packets in array.
1790  *
1791  * @return
1792  *   Number of packets successfully received (<= pkts_n).
1793  */
1794 uint16_t
1795 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1796 {
1797         struct mlx5_rxq_data *rxq = dpdk_rxq;
1798         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1799         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1800         const unsigned int sges_n = rxq->sges_n;
1801         struct rte_mbuf *pkt = NULL;
1802         struct rte_mbuf *seg = NULL;
1803         volatile struct mlx5_cqe *cqe =
1804                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1805         unsigned int i = 0;
1806         unsigned int rq_ci = rxq->rq_ci << sges_n;
1807         int len = 0; /* keep its value across iterations. */
1808
1809         while (pkts_n) {
1810                 unsigned int idx = rq_ci & wqe_cnt;
1811                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1812                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1813                 uint32_t rss_hash_res = 0;
1814
1815                 if (pkt)
1816                         NEXT(seg) = rep;
1817                 seg = rep;
1818                 rte_prefetch0(seg);
1819                 rte_prefetch0(cqe);
1820                 rte_prefetch0(wqe);
1821                 rep = rte_mbuf_raw_alloc(rxq->mp);
1822                 if (unlikely(rep == NULL)) {
1823                         ++rxq->stats.rx_nombuf;
1824                         if (!pkt) {
1825                                 /*
1826                                  * no buffers before we even started,
1827                                  * bail out silently.
1828                                  */
1829                                 break;
1830                         }
1831                         while (pkt != seg) {
1832                                 assert(pkt != (*rxq->elts)[idx]);
1833                                 rep = NEXT(pkt);
1834                                 NEXT(pkt) = NULL;
1835                                 NB_SEGS(pkt) = 1;
1836                                 rte_mbuf_raw_free(pkt);
1837                                 pkt = rep;
1838                         }
1839                         break;
1840                 }
1841                 if (!pkt) {
1842                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1843                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1844                                                &rss_hash_res);
1845                         if (!len) {
1846                                 rte_mbuf_raw_free(rep);
1847                                 break;
1848                         }
1849                         if (unlikely(len == -1)) {
1850                                 /* RX error, packet is likely too large. */
1851                                 rte_mbuf_raw_free(rep);
1852                                 ++rxq->stats.idropped;
1853                                 goto skip;
1854                         }
1855                         pkt = seg;
1856                         assert(len >= (rxq->crc_present << 2));
1857                         /* Update packet information. */
1858                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1859                         pkt->ol_flags = 0;
1860                         if (rss_hash_res && rxq->rss_hash) {
1861                                 pkt->hash.rss = rss_hash_res;
1862                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1863                         }
1864                         if (rxq->mark &&
1865                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1866                                 pkt->ol_flags |= PKT_RX_FDIR;
1867                                 if (cqe->sop_drop_qpn !=
1868                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1869                                         uint32_t mark = cqe->sop_drop_qpn;
1870
1871                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1872                                         pkt->hash.fdir.hi =
1873                                                 mlx5_flow_mark_get(mark);
1874                                 }
1875                         }
1876                         if (rxq->csum | rxq->csum_l2tun)
1877                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1878                         if (rxq->vlan_strip &&
1879                             (cqe->hdr_type_etc &
1880                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1881                                 pkt->ol_flags |= PKT_RX_VLAN |
1882                                         PKT_RX_VLAN_STRIPPED;
1883                                 pkt->vlan_tci =
1884                                         rte_be_to_cpu_16(cqe->vlan_info);
1885                         }
1886                         if (rxq->hw_timestamp) {
1887                                 pkt->timestamp =
1888                                         rte_be_to_cpu_64(cqe->timestamp);
1889                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1890                         }
1891                         if (rxq->crc_present)
1892                                 len -= ETHER_CRC_LEN;
1893                         PKT_LEN(pkt) = len;
1894                 }
1895                 DATA_LEN(rep) = DATA_LEN(seg);
1896                 PKT_LEN(rep) = PKT_LEN(seg);
1897                 SET_DATA_OFF(rep, DATA_OFF(seg));
1898                 PORT(rep) = PORT(seg);
1899                 (*rxq->elts)[idx] = rep;
1900                 /*
1901                  * Fill NIC descriptor with the new buffer.  The lkey and size
1902                  * of the buffers are already known, only the buffer address
1903                  * changes.
1904                  */
1905                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1906                 if (len > DATA_LEN(seg)) {
1907                         len -= DATA_LEN(seg);
1908                         ++NB_SEGS(pkt);
1909                         ++rq_ci;
1910                         continue;
1911                 }
1912                 DATA_LEN(seg) = len;
1913 #ifdef MLX5_PMD_SOFT_COUNTERS
1914                 /* Increment bytes counter. */
1915                 rxq->stats.ibytes += PKT_LEN(pkt);
1916 #endif
1917                 /* Return packet. */
1918                 *(pkts++) = pkt;
1919                 pkt = NULL;
1920                 --pkts_n;
1921                 ++i;
1922 skip:
1923                 /* Align consumer index to the next stride. */
1924                 rq_ci >>= sges_n;
1925                 ++rq_ci;
1926                 rq_ci <<= sges_n;
1927         }
1928         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1929                 return 0;
1930         /* Update the consumer index. */
1931         rxq->rq_ci = rq_ci >> sges_n;
1932         rte_io_wmb();
1933         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1934         rte_io_wmb();
1935         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1936 #ifdef MLX5_PMD_SOFT_COUNTERS
1937         /* Increment packets counter. */
1938         rxq->stats.ipackets += i;
1939 #endif
1940         return i;
1941 }
1942
1943 /**
1944  * Dummy DPDK callback for TX.
1945  *
1946  * This function is used to temporarily replace the real callback during
1947  * unsafe control operations on the queue, or in case of error.
1948  *
1949  * @param dpdk_txq
1950  *   Generic pointer to TX queue structure.
1951  * @param[in] pkts
1952  *   Packets to transmit.
1953  * @param pkts_n
1954  *   Number of packets in array.
1955  *
1956  * @return
1957  *   Number of packets successfully transmitted (<= pkts_n).
1958  */
1959 uint16_t
1960 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1961 {
1962         (void)dpdk_txq;
1963         (void)pkts;
1964         (void)pkts_n;
1965         return 0;
1966 }
1967
1968 /**
1969  * Dummy DPDK callback for RX.
1970  *
1971  * This function is used to temporarily replace the real callback during
1972  * unsafe control operations on the queue, or in case of error.
1973  *
1974  * @param dpdk_rxq
1975  *   Generic pointer to RX queue structure.
1976  * @param[out] pkts
1977  *   Array to store received packets.
1978  * @param pkts_n
1979  *   Maximum number of packets in array.
1980  *
1981  * @return
1982  *   Number of packets successfully received (<= pkts_n).
1983  */
1984 uint16_t
1985 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1986 {
1987         (void)dpdk_rxq;
1988         (void)pkts;
1989         (void)pkts_n;
1990         return 0;
1991 }
1992
1993 /*
1994  * Vectorized Rx/Tx routines are not compiled in when required vector
1995  * instructions are not supported on a target architecture. The following null
1996  * stubs are needed for linkage when those are not included outside of this file
1997  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1998  */
1999
2000 uint16_t __attribute__((weak))
2001 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2002 {
2003         (void)dpdk_txq;
2004         (void)pkts;
2005         (void)pkts_n;
2006         return 0;
2007 }
2008
2009 uint16_t __attribute__((weak))
2010 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2011 {
2012         (void)dpdk_txq;
2013         (void)pkts;
2014         (void)pkts_n;
2015         return 0;
2016 }
2017
2018 uint16_t __attribute__((weak))
2019 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2020 {
2021         (void)dpdk_rxq;
2022         (void)pkts;
2023         (void)pkts_n;
2024         return 0;
2025 }
2026
2027 int __attribute__((weak))
2028 priv_check_raw_vec_tx_support(struct priv *priv)
2029 {
2030         (void)priv;
2031         return -ENOTSUP;
2032 }
2033
2034 int __attribute__((weak))
2035 priv_check_vec_tx_support(struct priv *priv)
2036 {
2037         (void)priv;
2038         return -ENOTSUP;
2039 }
2040
2041 int __attribute__((weak))
2042 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2043 {
2044         (void)rxq;
2045         return -ENOTSUP;
2046 }
2047
2048 int __attribute__((weak))
2049 priv_check_vec_rx_support(struct priv *priv)
2050 {
2051         (void)priv;
2052         return -ENOTSUP;
2053 }