net/mlx5: use coherent I/O memory barrier
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433         struct mlx5_rxq_data *rxq = rx_queue;
434         struct rxq_zip *zip = &rxq->zip;
435         volatile struct mlx5_cqe *cqe;
436         const unsigned int cqe_n = (1 << rxq->cqe_n);
437         const unsigned int cqe_cnt = cqe_n - 1;
438         unsigned int cq_ci;
439         unsigned int used;
440
441         /* if we are processing a compressed cqe */
442         if (zip->ai) {
443                 used = zip->cqe_cnt - zip->ca;
444                 cq_ci = zip->cq_ci;
445         } else {
446                 used = 0;
447                 cq_ci = rxq->cq_ci;
448         }
449         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451                 int8_t op_own;
452                 unsigned int n;
453
454                 op_own = cqe->op_own;
455                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456                         n = rte_be_to_cpu_32(cqe->byte_cnt);
457                 else
458                         n = 1;
459                 cq_ci += n;
460                 used += n;
461                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462         }
463         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464         if (offset < used)
465                 return RTE_ETH_RX_DESC_DONE;
466         return RTE_ETH_RX_DESC_AVAIL;
467 }
468
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486         uint16_t elts_head = txq->elts_head;
487         const uint16_t elts_n = 1 << txq->elts_n;
488         const uint16_t elts_m = elts_n - 1;
489         unsigned int i = 0;
490         unsigned int j = 0;
491         unsigned int k = 0;
492         uint16_t max_elts;
493         uint16_t max_wqe;
494         unsigned int comp;
495         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496         unsigned int segs_n = 0;
497         const unsigned int max_inline = txq->max_inline;
498
499         if (unlikely(!pkts_n))
500                 return 0;
501         /* Prefetch first packet cacheline. */
502         rte_prefetch0(*pkts);
503         /* Start processing. */
504         mlx5_tx_complete(txq);
505         max_elts = (elts_n - (elts_head - txq->elts_tail));
506         /* A CQE slot must always be available. */
507         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
508         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
509         if (unlikely(!max_wqe))
510                 return 0;
511         do {
512                 struct rte_mbuf *buf = *pkts; /* First_seg. */
513                 uint8_t *raw;
514                 volatile struct mlx5_wqe_v *wqe = NULL;
515                 volatile rte_v128u32_t *dseg = NULL;
516                 uint32_t length;
517                 unsigned int ds = 0;
518                 unsigned int sg = 0; /* counter of additional segs attached. */
519                 uintptr_t addr;
520                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
521                 uint16_t tso_header_sz = 0;
522                 uint16_t ehdr;
523                 uint8_t cs_flags;
524                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
525                 uint8_t is_vlan = !!(buf->ol_flags & PKT_TX_VLAN_PKT);
526                 uint32_t swp_offsets = 0;
527                 uint8_t swp_types = 0;
528                 uint16_t tso_segsz = 0;
529 #ifdef MLX5_PMD_SOFT_COUNTERS
530                 uint32_t total_length = 0;
531 #endif
532                 int ret;
533
534                 segs_n = buf->nb_segs;
535                 /*
536                  * Make sure there is enough room to store this packet and
537                  * that one ring entry remains unused.
538                  */
539                 assert(segs_n);
540                 if (max_elts < segs_n)
541                         break;
542                 max_elts -= segs_n;
543                 sg = --segs_n;
544                 if (unlikely(--max_wqe == 0))
545                         break;
546                 wqe = (volatile struct mlx5_wqe_v *)
547                         tx_mlx5_wqe(txq, txq->wqe_ci);
548                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
549                 if (pkts_n - i > 1)
550                         rte_prefetch0(*(pkts + 1));
551                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
552                 length = DATA_LEN(buf);
553                 ehdr = (((uint8_t *)addr)[1] << 8) |
554                        ((uint8_t *)addr)[0];
555 #ifdef MLX5_PMD_SOFT_COUNTERS
556                 total_length = length;
557 #endif
558                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
559                         txq->stats.oerrors++;
560                         break;
561                 }
562                 /* Update element. */
563                 (*txq->elts)[elts_head & elts_m] = buf;
564                 /* Prefetch next buffer data. */
565                 if (pkts_n - i > 1)
566                         rte_prefetch0(
567                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
568                 cs_flags = txq_ol_cksum_to_cs(buf);
569                 txq_mbuf_to_swp(txq, buf, tso, is_vlan,
570                                 (uint8_t *)&swp_offsets, &swp_types);
571                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
572                 /* Replace the Ethernet type by the VLAN if necessary. */
573                 if (is_vlan) {
574                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
575                                                          buf->vlan_tci);
576                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
577
578                         addr += 2;
579                         length -= 2;
580                         /* Copy Destination and source mac address. */
581                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
582                         /* Copy VLAN. */
583                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
584                         /* Copy missing two bytes to end the DSeg. */
585                         memcpy((uint8_t *)raw + len + sizeof(vlan),
586                                ((uint8_t *)addr) + len, 2);
587                         addr += len + 2;
588                         length -= (len + 2);
589                 } else {
590                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
591                                MLX5_WQE_DWORD_SIZE);
592                         length -= pkt_inline_sz;
593                         addr += pkt_inline_sz;
594                 }
595                 raw += MLX5_WQE_DWORD_SIZE;
596                 if (tso) {
597                         ret = inline_tso(txq, buf, &length,
598                                          &addr, &pkt_inline_sz,
599                                          &raw, &max_wqe,
600                                          &tso_segsz, &tso_header_sz);
601                         if (ret == -EINVAL) {
602                                 break;
603                         } else if (ret == -EAGAIN) {
604                                 /* NOP WQE. */
605                                 wqe->ctrl = (rte_v128u32_t){
606                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
607                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
608                                         0,
609                                         0,
610                                 };
611                                 ds = 1;
612 #ifdef MLX5_PMD_SOFT_COUNTERS
613                                 total_length = 0;
614 #endif
615                                 k++;
616                                 goto next_wqe;
617                         }
618                 }
619                 /* Inline if enough room. */
620                 if (max_inline || tso) {
621                         uint32_t inl = 0;
622                         uintptr_t end = (uintptr_t)
623                                 (((uintptr_t)txq->wqes) +
624                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
625                         unsigned int inline_room = max_inline *
626                                                    RTE_CACHE_LINE_SIZE -
627                                                    (pkt_inline_sz - 2) -
628                                                    !!tso * sizeof(inl);
629                         uintptr_t addr_end;
630                         unsigned int copy_b;
631
632 pkt_inline:
633                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
634                                                    RTE_CACHE_LINE_SIZE);
635                         copy_b = (addr_end > addr) ?
636                                  RTE_MIN((addr_end - addr), length) : 0;
637                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
638                                 /*
639                                  * One Dseg remains in the current WQE.  To
640                                  * keep the computation positive, it is
641                                  * removed after the bytes to Dseg conversion.
642                                  */
643                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
644
645                                 if (unlikely(max_wqe < n))
646                                         break;
647                                 max_wqe -= n;
648                                 if (tso) {
649                                         assert(inl == 0);
650                                         inl = rte_cpu_to_be_32(copy_b |
651                                                                MLX5_INLINE_SEG);
652                                         rte_memcpy((void *)raw,
653                                                    (void *)&inl, sizeof(inl));
654                                         raw += sizeof(inl);
655                                         pkt_inline_sz += sizeof(inl);
656                                 }
657                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
658                                 addr += copy_b;
659                                 length -= copy_b;
660                                 pkt_inline_sz += copy_b;
661                         }
662                         /*
663                          * 2 DWORDs consumed by the WQE header + ETH segment +
664                          * the size of the inline part of the packet.
665                          */
666                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
667                         if (length > 0) {
668                                 if (ds % (MLX5_WQE_SIZE /
669                                           MLX5_WQE_DWORD_SIZE) == 0) {
670                                         if (unlikely(--max_wqe == 0))
671                                                 break;
672                                         dseg = (volatile rte_v128u32_t *)
673                                                tx_mlx5_wqe(txq, txq->wqe_ci +
674                                                            ds / 4);
675                                 } else {
676                                         dseg = (volatile rte_v128u32_t *)
677                                                 ((uintptr_t)wqe +
678                                                  (ds * MLX5_WQE_DWORD_SIZE));
679                                 }
680                                 goto use_dseg;
681                         } else if (!segs_n) {
682                                 goto next_pkt;
683                         } else {
684                                 /*
685                                  * Further inline the next segment only for
686                                  * non-TSO packets.
687                                  */
688                                 if (!tso) {
689                                         raw += copy_b;
690                                         inline_room -= copy_b;
691                                 } else {
692                                         inline_room = 0;
693                                 }
694                                 /* Move to the next segment. */
695                                 --segs_n;
696                                 buf = buf->next;
697                                 assert(buf);
698                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
699                                 length = DATA_LEN(buf);
700 #ifdef MLX5_PMD_SOFT_COUNTERS
701                                 total_length += length;
702 #endif
703                                 (*txq->elts)[++elts_head & elts_m] = buf;
704                                 goto pkt_inline;
705                         }
706                 } else {
707                         /*
708                          * No inline has been done in the packet, only the
709                          * Ethernet Header as been stored.
710                          */
711                         dseg = (volatile rte_v128u32_t *)
712                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
713                         ds = 3;
714 use_dseg:
715                         /* Add the remaining packet as a simple ds. */
716                         addr = rte_cpu_to_be_64(addr);
717                         *dseg = (rte_v128u32_t){
718                                 rte_cpu_to_be_32(length),
719                                 mlx5_tx_mb2mr(txq, buf),
720                                 addr,
721                                 addr >> 32,
722                         };
723                         ++ds;
724                         if (!segs_n)
725                                 goto next_pkt;
726                 }
727 next_seg:
728                 assert(buf);
729                 assert(ds);
730                 assert(wqe);
731                 /*
732                  * Spill on next WQE when the current one does not have
733                  * enough room left. Size of WQE must a be a multiple
734                  * of data segment size.
735                  */
736                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
737                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
738                         if (unlikely(--max_wqe == 0))
739                                 break;
740                         dseg = (volatile rte_v128u32_t *)
741                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
742                         rte_prefetch0(tx_mlx5_wqe(txq,
743                                                   txq->wqe_ci + ds / 4 + 1));
744                 } else {
745                         ++dseg;
746                 }
747                 ++ds;
748                 buf = buf->next;
749                 assert(buf);
750                 length = DATA_LEN(buf);
751 #ifdef MLX5_PMD_SOFT_COUNTERS
752                 total_length += length;
753 #endif
754                 /* Store segment information. */
755                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
756                 *dseg = (rte_v128u32_t){
757                         rte_cpu_to_be_32(length),
758                         mlx5_tx_mb2mr(txq, buf),
759                         addr,
760                         addr >> 32,
761                 };
762                 (*txq->elts)[++elts_head & elts_m] = buf;
763                 if (--segs_n)
764                         goto next_seg;
765 next_pkt:
766                 if (ds > MLX5_DSEG_MAX) {
767                         txq->stats.oerrors++;
768                         break;
769                 }
770                 ++elts_head;
771                 ++pkts;
772                 ++i;
773                 j += sg;
774                 /* Initialize known and common part of the WQE structure. */
775                 if (tso) {
776                         wqe->ctrl = (rte_v128u32_t){
777                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
778                                                  MLX5_OPCODE_TSO),
779                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
780                                 0,
781                                 0,
782                         };
783                         wqe->eseg = (rte_v128u32_t){
784                                 swp_offsets,
785                                 cs_flags | (swp_types << 8) |
786                                 (rte_cpu_to_be_16(tso_segsz) << 16),
787                                 0,
788                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
789                         };
790                 } else {
791                         wqe->ctrl = (rte_v128u32_t){
792                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
793                                                  MLX5_OPCODE_SEND),
794                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
795                                 0,
796                                 0,
797                         };
798                         wqe->eseg = (rte_v128u32_t){
799                                 swp_offsets,
800                                 cs_flags | (swp_types << 8),
801                                 0,
802                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
803                         };
804                 }
805 next_wqe:
806                 txq->wqe_ci += (ds + 3) / 4;
807                 /* Save the last successful WQE for completion request */
808                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
809 #ifdef MLX5_PMD_SOFT_COUNTERS
810                 /* Increment sent bytes counter. */
811                 txq->stats.obytes += total_length;
812 #endif
813         } while (i < pkts_n);
814         /* Take a shortcut if nothing must be sent. */
815         if (unlikely((i + k) == 0))
816                 return 0;
817         txq->elts_head += (i + j);
818         /* Check whether completion threshold has been reached. */
819         comp = txq->elts_comp + i + j + k;
820         if (comp >= MLX5_TX_COMP_THRESH) {
821                 /* Request completion on last WQE. */
822                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
823                 /* Save elts_head in unused "immediate" field of WQE. */
824                 last_wqe->ctrl3 = txq->elts_head;
825                 txq->elts_comp = 0;
826 #ifndef NDEBUG
827                 ++txq->cq_pi;
828 #endif
829         } else {
830                 txq->elts_comp = comp;
831         }
832 #ifdef MLX5_PMD_SOFT_COUNTERS
833         /* Increment sent packets counter. */
834         txq->stats.opackets += i;
835 #endif
836         /* Ring QP doorbell. */
837         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
838         return i;
839 }
840
841 /**
842  * Open a MPW session.
843  *
844  * @param txq
845  *   Pointer to TX queue structure.
846  * @param mpw
847  *   Pointer to MPW session structure.
848  * @param length
849  *   Packet length.
850  */
851 static inline void
852 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
853 {
854         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
855         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
856                 (volatile struct mlx5_wqe_data_seg (*)[])
857                 tx_mlx5_wqe(txq, idx + 1);
858
859         mpw->state = MLX5_MPW_STATE_OPENED;
860         mpw->pkts_n = 0;
861         mpw->len = length;
862         mpw->total_len = 0;
863         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
864         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
865         mpw->wqe->eseg.inline_hdr_sz = 0;
866         mpw->wqe->eseg.rsvd0 = 0;
867         mpw->wqe->eseg.rsvd1 = 0;
868         mpw->wqe->eseg.rsvd2 = 0;
869         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
870                                              (txq->wqe_ci << 8) |
871                                              MLX5_OPCODE_TSO);
872         mpw->wqe->ctrl[2] = 0;
873         mpw->wqe->ctrl[3] = 0;
874         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
875                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
876         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
877                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
878         mpw->data.dseg[2] = &(*dseg)[0];
879         mpw->data.dseg[3] = &(*dseg)[1];
880         mpw->data.dseg[4] = &(*dseg)[2];
881 }
882
883 /**
884  * Close a MPW session.
885  *
886  * @param txq
887  *   Pointer to TX queue structure.
888  * @param mpw
889  *   Pointer to MPW session structure.
890  */
891 static inline void
892 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
893 {
894         unsigned int num = mpw->pkts_n;
895
896         /*
897          * Store size in multiple of 16 bytes. Control and Ethernet segments
898          * count as 2.
899          */
900         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
901         mpw->state = MLX5_MPW_STATE_CLOSED;
902         if (num < 3)
903                 ++txq->wqe_ci;
904         else
905                 txq->wqe_ci += 2;
906         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
907         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
908 }
909
910 /**
911  * DPDK callback for TX with MPW support.
912  *
913  * @param dpdk_txq
914  *   Generic pointer to TX queue structure.
915  * @param[in] pkts
916  *   Packets to transmit.
917  * @param pkts_n
918  *   Number of packets in array.
919  *
920  * @return
921  *   Number of packets successfully transmitted (<= pkts_n).
922  */
923 uint16_t
924 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
925 {
926         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
927         uint16_t elts_head = txq->elts_head;
928         const uint16_t elts_n = 1 << txq->elts_n;
929         const uint16_t elts_m = elts_n - 1;
930         unsigned int i = 0;
931         unsigned int j = 0;
932         uint16_t max_elts;
933         uint16_t max_wqe;
934         unsigned int comp;
935         struct mlx5_mpw mpw = {
936                 .state = MLX5_MPW_STATE_CLOSED,
937         };
938
939         if (unlikely(!pkts_n))
940                 return 0;
941         /* Prefetch first packet cacheline. */
942         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
943         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
944         /* Start processing. */
945         mlx5_tx_complete(txq);
946         max_elts = (elts_n - (elts_head - txq->elts_tail));
947         /* A CQE slot must always be available. */
948         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
949         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
950         if (unlikely(!max_wqe))
951                 return 0;
952         do {
953                 struct rte_mbuf *buf = *(pkts++);
954                 uint32_t length;
955                 unsigned int segs_n = buf->nb_segs;
956                 uint32_t cs_flags;
957
958                 /*
959                  * Make sure there is enough room to store this packet and
960                  * that one ring entry remains unused.
961                  */
962                 assert(segs_n);
963                 if (max_elts < segs_n)
964                         break;
965                 /* Do not bother with large packets MPW cannot handle. */
966                 if (segs_n > MLX5_MPW_DSEG_MAX) {
967                         txq->stats.oerrors++;
968                         break;
969                 }
970                 max_elts -= segs_n;
971                 --pkts_n;
972                 cs_flags = txq_ol_cksum_to_cs(buf);
973                 /* Retrieve packet information. */
974                 length = PKT_LEN(buf);
975                 assert(length);
976                 /* Start new session if packet differs. */
977                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
978                     ((mpw.len != length) ||
979                      (segs_n != 1) ||
980                      (mpw.wqe->eseg.cs_flags != cs_flags)))
981                         mlx5_mpw_close(txq, &mpw);
982                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
983                         /*
984                          * Multi-Packet WQE consumes at most two WQE.
985                          * mlx5_mpw_new() expects to be able to use such
986                          * resources.
987                          */
988                         if (unlikely(max_wqe < 2))
989                                 break;
990                         max_wqe -= 2;
991                         mlx5_mpw_new(txq, &mpw, length);
992                         mpw.wqe->eseg.cs_flags = cs_flags;
993                 }
994                 /* Multi-segment packets must be alone in their MPW. */
995                 assert((segs_n == 1) || (mpw.pkts_n == 0));
996 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
997                 length = 0;
998 #endif
999                 do {
1000                         volatile struct mlx5_wqe_data_seg *dseg;
1001                         uintptr_t addr;
1002
1003                         assert(buf);
1004                         (*txq->elts)[elts_head++ & elts_m] = buf;
1005                         dseg = mpw.data.dseg[mpw.pkts_n];
1006                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1007                         *dseg = (struct mlx5_wqe_data_seg){
1008                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1009                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1010                                 .addr = rte_cpu_to_be_64(addr),
1011                         };
1012 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1013                         length += DATA_LEN(buf);
1014 #endif
1015                         buf = buf->next;
1016                         ++mpw.pkts_n;
1017                         ++j;
1018                 } while (--segs_n);
1019                 assert(length == mpw.len);
1020                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1021                         mlx5_mpw_close(txq, &mpw);
1022 #ifdef MLX5_PMD_SOFT_COUNTERS
1023                 /* Increment sent bytes counter. */
1024                 txq->stats.obytes += length;
1025 #endif
1026                 ++i;
1027         } while (pkts_n);
1028         /* Take a shortcut if nothing must be sent. */
1029         if (unlikely(i == 0))
1030                 return 0;
1031         /* Check whether completion threshold has been reached. */
1032         /* "j" includes both packets and segments. */
1033         comp = txq->elts_comp + j;
1034         if (comp >= MLX5_TX_COMP_THRESH) {
1035                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1036
1037                 /* Request completion on last WQE. */
1038                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1039                 /* Save elts_head in unused "immediate" field of WQE. */
1040                 wqe->ctrl[3] = elts_head;
1041                 txq->elts_comp = 0;
1042 #ifndef NDEBUG
1043                 ++txq->cq_pi;
1044 #endif
1045         } else {
1046                 txq->elts_comp = comp;
1047         }
1048 #ifdef MLX5_PMD_SOFT_COUNTERS
1049         /* Increment sent packets counter. */
1050         txq->stats.opackets += i;
1051 #endif
1052         /* Ring QP doorbell. */
1053         if (mpw.state == MLX5_MPW_STATE_OPENED)
1054                 mlx5_mpw_close(txq, &mpw);
1055         mlx5_tx_dbrec(txq, mpw.wqe);
1056         txq->elts_head = elts_head;
1057         return i;
1058 }
1059
1060 /**
1061  * Open a MPW inline session.
1062  *
1063  * @param txq
1064  *   Pointer to TX queue structure.
1065  * @param mpw
1066  *   Pointer to MPW session structure.
1067  * @param length
1068  *   Packet length.
1069  */
1070 static inline void
1071 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1072                     uint32_t length)
1073 {
1074         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1075         struct mlx5_wqe_inl_small *inl;
1076
1077         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1078         mpw->pkts_n = 0;
1079         mpw->len = length;
1080         mpw->total_len = 0;
1081         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1082         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1083                                              (txq->wqe_ci << 8) |
1084                                              MLX5_OPCODE_TSO);
1085         mpw->wqe->ctrl[2] = 0;
1086         mpw->wqe->ctrl[3] = 0;
1087         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1088         mpw->wqe->eseg.inline_hdr_sz = 0;
1089         mpw->wqe->eseg.cs_flags = 0;
1090         mpw->wqe->eseg.rsvd0 = 0;
1091         mpw->wqe->eseg.rsvd1 = 0;
1092         mpw->wqe->eseg.rsvd2 = 0;
1093         inl = (struct mlx5_wqe_inl_small *)
1094                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1095         mpw->data.raw = (uint8_t *)&inl->raw;
1096 }
1097
1098 /**
1099  * Close a MPW inline session.
1100  *
1101  * @param txq
1102  *   Pointer to TX queue structure.
1103  * @param mpw
1104  *   Pointer to MPW session structure.
1105  */
1106 static inline void
1107 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1108 {
1109         unsigned int size;
1110         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1111                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1112
1113         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1114         /*
1115          * Store size in multiple of 16 bytes. Control and Ethernet segments
1116          * count as 2.
1117          */
1118         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1119                                              MLX5_WQE_DS(size));
1120         mpw->state = MLX5_MPW_STATE_CLOSED;
1121         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1122         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1123 }
1124
1125 /**
1126  * DPDK callback for TX with MPW inline support.
1127  *
1128  * @param dpdk_txq
1129  *   Generic pointer to TX queue structure.
1130  * @param[in] pkts
1131  *   Packets to transmit.
1132  * @param pkts_n
1133  *   Number of packets in array.
1134  *
1135  * @return
1136  *   Number of packets successfully transmitted (<= pkts_n).
1137  */
1138 uint16_t
1139 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1140                          uint16_t pkts_n)
1141 {
1142         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1143         uint16_t elts_head = txq->elts_head;
1144         const uint16_t elts_n = 1 << txq->elts_n;
1145         const uint16_t elts_m = elts_n - 1;
1146         unsigned int i = 0;
1147         unsigned int j = 0;
1148         uint16_t max_elts;
1149         uint16_t max_wqe;
1150         unsigned int comp;
1151         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1152         struct mlx5_mpw mpw = {
1153                 .state = MLX5_MPW_STATE_CLOSED,
1154         };
1155         /*
1156          * Compute the maximum number of WQE which can be consumed by inline
1157          * code.
1158          * - 2 DSEG for:
1159          *   - 1 control segment,
1160          *   - 1 Ethernet segment,
1161          * - N Dseg from the inline request.
1162          */
1163         const unsigned int wqe_inl_n =
1164                 ((2 * MLX5_WQE_DWORD_SIZE +
1165                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1166                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1167
1168         if (unlikely(!pkts_n))
1169                 return 0;
1170         /* Prefetch first packet cacheline. */
1171         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1172         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1173         /* Start processing. */
1174         mlx5_tx_complete(txq);
1175         max_elts = (elts_n - (elts_head - txq->elts_tail));
1176         /* A CQE slot must always be available. */
1177         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1178         do {
1179                 struct rte_mbuf *buf = *(pkts++);
1180                 uintptr_t addr;
1181                 uint32_t length;
1182                 unsigned int segs_n = buf->nb_segs;
1183                 uint8_t cs_flags;
1184
1185                 /*
1186                  * Make sure there is enough room to store this packet and
1187                  * that one ring entry remains unused.
1188                  */
1189                 assert(segs_n);
1190                 if (max_elts < segs_n)
1191                         break;
1192                 /* Do not bother with large packets MPW cannot handle. */
1193                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1194                         txq->stats.oerrors++;
1195                         break;
1196                 }
1197                 max_elts -= segs_n;
1198                 --pkts_n;
1199                 /*
1200                  * Compute max_wqe in case less WQE were consumed in previous
1201                  * iteration.
1202                  */
1203                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1204                 cs_flags = txq_ol_cksum_to_cs(buf);
1205                 /* Retrieve packet information. */
1206                 length = PKT_LEN(buf);
1207                 /* Start new session if packet differs. */
1208                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1209                         if ((mpw.len != length) ||
1210                             (segs_n != 1) ||
1211                             (mpw.wqe->eseg.cs_flags != cs_flags))
1212                                 mlx5_mpw_close(txq, &mpw);
1213                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1214                         if ((mpw.len != length) ||
1215                             (segs_n != 1) ||
1216                             (length > inline_room) ||
1217                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1218                                 mlx5_mpw_inline_close(txq, &mpw);
1219                                 inline_room =
1220                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1221                         }
1222                 }
1223                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1224                         if ((segs_n != 1) ||
1225                             (length > inline_room)) {
1226                                 /*
1227                                  * Multi-Packet WQE consumes at most two WQE.
1228                                  * mlx5_mpw_new() expects to be able to use
1229                                  * such resources.
1230                                  */
1231                                 if (unlikely(max_wqe < 2))
1232                                         break;
1233                                 max_wqe -= 2;
1234                                 mlx5_mpw_new(txq, &mpw, length);
1235                                 mpw.wqe->eseg.cs_flags = cs_flags;
1236                         } else {
1237                                 if (unlikely(max_wqe < wqe_inl_n))
1238                                         break;
1239                                 max_wqe -= wqe_inl_n;
1240                                 mlx5_mpw_inline_new(txq, &mpw, length);
1241                                 mpw.wqe->eseg.cs_flags = cs_flags;
1242                         }
1243                 }
1244                 /* Multi-segment packets must be alone in their MPW. */
1245                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1246                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1247                         assert(inline_room ==
1248                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1249 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1250                         length = 0;
1251 #endif
1252                         do {
1253                                 volatile struct mlx5_wqe_data_seg *dseg;
1254
1255                                 assert(buf);
1256                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1257                                 dseg = mpw.data.dseg[mpw.pkts_n];
1258                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1259                                 *dseg = (struct mlx5_wqe_data_seg){
1260                                         .byte_count =
1261                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1262                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1263                                         .addr = rte_cpu_to_be_64(addr),
1264                                 };
1265 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1266                                 length += DATA_LEN(buf);
1267 #endif
1268                                 buf = buf->next;
1269                                 ++mpw.pkts_n;
1270                                 ++j;
1271                         } while (--segs_n);
1272                         assert(length == mpw.len);
1273                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1274                                 mlx5_mpw_close(txq, &mpw);
1275                 } else {
1276                         unsigned int max;
1277
1278                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1279                         assert(length <= inline_room);
1280                         assert(length == DATA_LEN(buf));
1281                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1282                         (*txq->elts)[elts_head++ & elts_m] = buf;
1283                         /* Maximum number of bytes before wrapping. */
1284                         max = ((((uintptr_t)(txq->wqes)) +
1285                                 (1 << txq->wqe_n) *
1286                                 MLX5_WQE_SIZE) -
1287                                (uintptr_t)mpw.data.raw);
1288                         if (length > max) {
1289                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1290                                            (void *)addr,
1291                                            max);
1292                                 mpw.data.raw = (volatile void *)txq->wqes;
1293                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1294                                            (void *)(addr + max),
1295                                            length - max);
1296                                 mpw.data.raw += length - max;
1297                         } else {
1298                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1299                                            (void *)addr,
1300                                            length);
1301
1302                                 if (length == max)
1303                                         mpw.data.raw =
1304                                                 (volatile void *)txq->wqes;
1305                                 else
1306                                         mpw.data.raw += length;
1307                         }
1308                         ++mpw.pkts_n;
1309                         mpw.total_len += length;
1310                         ++j;
1311                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1312                                 mlx5_mpw_inline_close(txq, &mpw);
1313                                 inline_room =
1314                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1315                         } else {
1316                                 inline_room -= length;
1317                         }
1318                 }
1319 #ifdef MLX5_PMD_SOFT_COUNTERS
1320                 /* Increment sent bytes counter. */
1321                 txq->stats.obytes += length;
1322 #endif
1323                 ++i;
1324         } while (pkts_n);
1325         /* Take a shortcut if nothing must be sent. */
1326         if (unlikely(i == 0))
1327                 return 0;
1328         /* Check whether completion threshold has been reached. */
1329         /* "j" includes both packets and segments. */
1330         comp = txq->elts_comp + j;
1331         if (comp >= MLX5_TX_COMP_THRESH) {
1332                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1333
1334                 /* Request completion on last WQE. */
1335                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1336                 /* Save elts_head in unused "immediate" field of WQE. */
1337                 wqe->ctrl[3] = elts_head;
1338                 txq->elts_comp = 0;
1339 #ifndef NDEBUG
1340                 ++txq->cq_pi;
1341 #endif
1342         } else {
1343                 txq->elts_comp = comp;
1344         }
1345 #ifdef MLX5_PMD_SOFT_COUNTERS
1346         /* Increment sent packets counter. */
1347         txq->stats.opackets += i;
1348 #endif
1349         /* Ring QP doorbell. */
1350         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1351                 mlx5_mpw_inline_close(txq, &mpw);
1352         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1353                 mlx5_mpw_close(txq, &mpw);
1354         mlx5_tx_dbrec(txq, mpw.wqe);
1355         txq->elts_head = elts_head;
1356         return i;
1357 }
1358
1359 /**
1360  * Open an Enhanced MPW session.
1361  *
1362  * @param txq
1363  *   Pointer to TX queue structure.
1364  * @param mpw
1365  *   Pointer to MPW session structure.
1366  * @param length
1367  *   Packet length.
1368  */
1369 static inline void
1370 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1371 {
1372         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1373
1374         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1375         mpw->pkts_n = 0;
1376         mpw->total_len = sizeof(struct mlx5_wqe);
1377         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1378         mpw->wqe->ctrl[0] =
1379                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1380                                  (txq->wqe_ci << 8) |
1381                                  MLX5_OPCODE_ENHANCED_MPSW);
1382         mpw->wqe->ctrl[2] = 0;
1383         mpw->wqe->ctrl[3] = 0;
1384         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1385         if (unlikely(padding)) {
1386                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1387
1388                 /* Pad the first 2 DWORDs with zero-length inline header. */
1389                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1390                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1391                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1392                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1393                 /* Start from the next WQEBB. */
1394                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1395         } else {
1396                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1397         }
1398 }
1399
1400 /**
1401  * Close an Enhanced MPW session.
1402  *
1403  * @param txq
1404  *   Pointer to TX queue structure.
1405  * @param mpw
1406  *   Pointer to MPW session structure.
1407  *
1408  * @return
1409  *   Number of consumed WQEs.
1410  */
1411 static inline uint16_t
1412 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1413 {
1414         uint16_t ret;
1415
1416         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1417          * count as 2.
1418          */
1419         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1420                                              MLX5_WQE_DS(mpw->total_len));
1421         mpw->state = MLX5_MPW_STATE_CLOSED;
1422         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1423         txq->wqe_ci += ret;
1424         return ret;
1425 }
1426
1427 /**
1428  * TX with Enhanced MPW support.
1429  *
1430  * @param txq
1431  *   Pointer to TX queue structure.
1432  * @param[in] pkts
1433  *   Packets to transmit.
1434  * @param pkts_n
1435  *   Number of packets in array.
1436  *
1437  * @return
1438  *   Number of packets successfully transmitted (<= pkts_n).
1439  */
1440 static inline uint16_t
1441 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1442                uint16_t pkts_n)
1443 {
1444         uint16_t elts_head = txq->elts_head;
1445         const uint16_t elts_n = 1 << txq->elts_n;
1446         const uint16_t elts_m = elts_n - 1;
1447         unsigned int i = 0;
1448         unsigned int j = 0;
1449         uint16_t max_elts;
1450         uint16_t max_wqe;
1451         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1452         unsigned int mpw_room = 0;
1453         unsigned int inl_pad = 0;
1454         uint32_t inl_hdr;
1455         struct mlx5_mpw mpw = {
1456                 .state = MLX5_MPW_STATE_CLOSED,
1457         };
1458
1459         if (unlikely(!pkts_n))
1460                 return 0;
1461         /* Start processing. */
1462         mlx5_tx_complete(txq);
1463         max_elts = (elts_n - (elts_head - txq->elts_tail));
1464         /* A CQE slot must always be available. */
1465         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1466         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1467         if (unlikely(!max_wqe))
1468                 return 0;
1469         do {
1470                 struct rte_mbuf *buf = *(pkts++);
1471                 uintptr_t addr;
1472                 unsigned int do_inline = 0; /* Whether inline is possible. */
1473                 uint32_t length;
1474                 uint8_t cs_flags;
1475
1476                 /* Multi-segmented packet is handled in slow-path outside. */
1477                 assert(NB_SEGS(buf) == 1);
1478                 /* Make sure there is enough room to store this packet. */
1479                 if (max_elts - j == 0)
1480                         break;
1481                 cs_flags = txq_ol_cksum_to_cs(buf);
1482                 /* Retrieve packet information. */
1483                 length = PKT_LEN(buf);
1484                 /* Start new session if:
1485                  * - multi-segment packet
1486                  * - no space left even for a dseg
1487                  * - next packet can be inlined with a new WQE
1488                  * - cs_flag differs
1489                  */
1490                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1491                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1492                              mpw_room) ||
1493                             (length <= txq->inline_max_packet_sz &&
1494                              inl_pad + sizeof(inl_hdr) + length >
1495                              mpw_room) ||
1496                             (mpw.wqe->eseg.cs_flags != cs_flags))
1497                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1498                 }
1499                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1500                         /* In Enhanced MPW, inline as much as the budget is
1501                          * allowed. The remaining space is to be filled with
1502                          * dsegs. If the title WQEBB isn't padded, it will have
1503                          * 2 dsegs there.
1504                          */
1505                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1506                                            (max_inline ? max_inline :
1507                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1508                                            MLX5_WQE_SIZE);
1509                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1510                                 break;
1511                         /* Don't pad the title WQEBB to not waste WQ. */
1512                         mlx5_empw_new(txq, &mpw, 0);
1513                         mpw_room -= mpw.total_len;
1514                         inl_pad = 0;
1515                         do_inline = length <= txq->inline_max_packet_sz &&
1516                                     sizeof(inl_hdr) + length <= mpw_room &&
1517                                     !txq->mpw_hdr_dseg;
1518                         mpw.wqe->eseg.cs_flags = cs_flags;
1519                 } else {
1520                         /* Evaluate whether the next packet can be inlined.
1521                          * Inlininig is possible when:
1522                          * - length is less than configured value
1523                          * - length fits for remaining space
1524                          * - not required to fill the title WQEBB with dsegs
1525                          */
1526                         do_inline =
1527                                 length <= txq->inline_max_packet_sz &&
1528                                 inl_pad + sizeof(inl_hdr) + length <=
1529                                  mpw_room &&
1530                                 (!txq->mpw_hdr_dseg ||
1531                                  mpw.total_len >= MLX5_WQE_SIZE);
1532                 }
1533                 if (max_inline && do_inline) {
1534                         /* Inline packet into WQE. */
1535                         unsigned int max;
1536
1537                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1538                         assert(length == DATA_LEN(buf));
1539                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1540                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1541                         mpw.data.raw = (volatile void *)
1542                                 ((uintptr_t)mpw.data.raw + inl_pad);
1543                         max = tx_mlx5_wq_tailroom(txq,
1544                                         (void *)(uintptr_t)mpw.data.raw);
1545                         /* Copy inline header. */
1546                         mpw.data.raw = (volatile void *)
1547                                 mlx5_copy_to_wq(
1548                                           (void *)(uintptr_t)mpw.data.raw,
1549                                           &inl_hdr,
1550                                           sizeof(inl_hdr),
1551                                           (void *)(uintptr_t)txq->wqes,
1552                                           max);
1553                         max = tx_mlx5_wq_tailroom(txq,
1554                                         (void *)(uintptr_t)mpw.data.raw);
1555                         /* Copy packet data. */
1556                         mpw.data.raw = (volatile void *)
1557                                 mlx5_copy_to_wq(
1558                                           (void *)(uintptr_t)mpw.data.raw,
1559                                           (void *)addr,
1560                                           length,
1561                                           (void *)(uintptr_t)txq->wqes,
1562                                           max);
1563                         ++mpw.pkts_n;
1564                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1565                         /* No need to get completion as the entire packet is
1566                          * copied to WQ. Free the buf right away.
1567                          */
1568                         rte_pktmbuf_free_seg(buf);
1569                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1570                         /* Add pad in the next packet if any. */
1571                         inl_pad = (((uintptr_t)mpw.data.raw +
1572                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1573                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1574                                   (uintptr_t)mpw.data.raw;
1575                 } else {
1576                         /* No inline. Load a dseg of packet pointer. */
1577                         volatile rte_v128u32_t *dseg;
1578
1579                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1580                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1581                         assert(length == DATA_LEN(buf));
1582                         if (!tx_mlx5_wq_tailroom(txq,
1583                                         (void *)((uintptr_t)mpw.data.raw
1584                                                 + inl_pad)))
1585                                 dseg = (volatile void *)txq->wqes;
1586                         else
1587                                 dseg = (volatile void *)
1588                                         ((uintptr_t)mpw.data.raw +
1589                                          inl_pad);
1590                         (*txq->elts)[elts_head++ & elts_m] = buf;
1591                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1592                                                                  uintptr_t));
1593                         *dseg = (rte_v128u32_t) {
1594                                 rte_cpu_to_be_32(length),
1595                                 mlx5_tx_mb2mr(txq, buf),
1596                                 addr,
1597                                 addr >> 32,
1598                         };
1599                         mpw.data.raw = (volatile void *)(dseg + 1);
1600                         mpw.total_len += (inl_pad + sizeof(*dseg));
1601                         ++j;
1602                         ++mpw.pkts_n;
1603                         mpw_room -= (inl_pad + sizeof(*dseg));
1604                         inl_pad = 0;
1605                 }
1606 #ifdef MLX5_PMD_SOFT_COUNTERS
1607                 /* Increment sent bytes counter. */
1608                 txq->stats.obytes += length;
1609 #endif
1610                 ++i;
1611         } while (i < pkts_n);
1612         /* Take a shortcut if nothing must be sent. */
1613         if (unlikely(i == 0))
1614                 return 0;
1615         /* Check whether completion threshold has been reached. */
1616         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1617                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1618                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1619                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1620
1621                 /* Request completion on last WQE. */
1622                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1623                 /* Save elts_head in unused "immediate" field of WQE. */
1624                 wqe->ctrl[3] = elts_head;
1625                 txq->elts_comp = 0;
1626                 txq->mpw_comp = txq->wqe_ci;
1627 #ifndef NDEBUG
1628                 ++txq->cq_pi;
1629 #endif
1630         } else {
1631                 txq->elts_comp += j;
1632         }
1633 #ifdef MLX5_PMD_SOFT_COUNTERS
1634         /* Increment sent packets counter. */
1635         txq->stats.opackets += i;
1636 #endif
1637         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1638                 mlx5_empw_close(txq, &mpw);
1639         /* Ring QP doorbell. */
1640         mlx5_tx_dbrec(txq, mpw.wqe);
1641         txq->elts_head = elts_head;
1642         return i;
1643 }
1644
1645 /**
1646  * DPDK callback for TX with Enhanced MPW support.
1647  *
1648  * @param dpdk_txq
1649  *   Generic pointer to TX queue structure.
1650  * @param[in] pkts
1651  *   Packets to transmit.
1652  * @param pkts_n
1653  *   Number of packets in array.
1654  *
1655  * @return
1656  *   Number of packets successfully transmitted (<= pkts_n).
1657  */
1658 uint16_t
1659 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1660 {
1661         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1662         uint16_t nb_tx = 0;
1663
1664         while (pkts_n > nb_tx) {
1665                 uint16_t n;
1666                 uint16_t ret;
1667
1668                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1669                 if (n) {
1670                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1671                         if (!ret)
1672                                 break;
1673                         nb_tx += ret;
1674                 }
1675                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1676                 if (n) {
1677                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1678                         if (!ret)
1679                                 break;
1680                         nb_tx += ret;
1681                 }
1682         }
1683         return nb_tx;
1684 }
1685
1686 /**
1687  * Translate RX completion flags to packet type.
1688  *
1689  * @param[in] rxq
1690  *   Pointer to RX queue structure.
1691  * @param[in] cqe
1692  *   Pointer to CQE.
1693  *
1694  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1695  *
1696  * @return
1697  *   Packet type for struct rte_mbuf.
1698  */
1699 static inline uint32_t
1700 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1701 {
1702         uint8_t idx;
1703         uint8_t pinfo = cqe->pkt_info;
1704         uint16_t ptype = cqe->hdr_type_etc;
1705
1706         /*
1707          * The index to the array should have:
1708          * bit[1:0] = l3_hdr_type
1709          * bit[4:2] = l4_hdr_type
1710          * bit[5] = ip_frag
1711          * bit[6] = tunneled
1712          * bit[7] = outer_l3_type
1713          */
1714         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1715         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1716 }
1717
1718 /**
1719  * Get size of the next packet for a given CQE. For compressed CQEs, the
1720  * consumer index is updated only once all packets of the current one have
1721  * been processed.
1722  *
1723  * @param rxq
1724  *   Pointer to RX queue.
1725  * @param cqe
1726  *   CQE to process.
1727  * @param[out] rss_hash
1728  *   Packet RSS Hash result.
1729  *
1730  * @return
1731  *   Packet size in bytes (0 if there is none), -1 in case of completion
1732  *   with error.
1733  */
1734 static inline int
1735 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1736                  uint16_t cqe_cnt, uint32_t *rss_hash)
1737 {
1738         struct rxq_zip *zip = &rxq->zip;
1739         uint16_t cqe_n = cqe_cnt + 1;
1740         int len = 0;
1741         uint16_t idx, end;
1742
1743         /* Process compressed data in the CQE and mini arrays. */
1744         if (zip->ai) {
1745                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1746                         (volatile struct mlx5_mini_cqe8 (*)[8])
1747                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1748
1749                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1750                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1751                 if ((++zip->ai & 7) == 0) {
1752                         /* Invalidate consumed CQEs */
1753                         idx = zip->ca;
1754                         end = zip->na;
1755                         while (idx != end) {
1756                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1757                                         MLX5_CQE_INVALIDATE;
1758                                 ++idx;
1759                         }
1760                         /*
1761                          * Increment consumer index to skip the number of
1762                          * CQEs consumed. Hardware leaves holes in the CQ
1763                          * ring for software use.
1764                          */
1765                         zip->ca = zip->na;
1766                         zip->na += 8;
1767                 }
1768                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1769                         /* Invalidate the rest */
1770                         idx = zip->ca;
1771                         end = zip->cq_ci;
1772
1773                         while (idx != end) {
1774                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1775                                         MLX5_CQE_INVALIDATE;
1776                                 ++idx;
1777                         }
1778                         rxq->cq_ci = zip->cq_ci;
1779                         zip->ai = 0;
1780                 }
1781         /* No compressed data, get next CQE and verify if it is compressed. */
1782         } else {
1783                 int ret;
1784                 int8_t op_own;
1785
1786                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1787                 if (unlikely(ret == 1))
1788                         return 0;
1789                 ++rxq->cq_ci;
1790                 op_own = cqe->op_own;
1791                 rte_cio_rmb();
1792                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1793                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1794                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1795                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1796                                                           cqe_cnt].pkt_info);
1797
1798                         /* Fix endianness. */
1799                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1800                         /*
1801                          * Current mini array position is the one returned by
1802                          * check_cqe64().
1803                          *
1804                          * If completion comprises several mini arrays, as a
1805                          * special case the second one is located 7 CQEs after
1806                          * the initial CQE instead of 8 for subsequent ones.
1807                          */
1808                         zip->ca = rxq->cq_ci;
1809                         zip->na = zip->ca + 7;
1810                         /* Compute the next non compressed CQE. */
1811                         --rxq->cq_ci;
1812                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1813                         /* Get packet size to return. */
1814                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1815                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1816                         zip->ai = 1;
1817                         /* Prefetch all the entries to be invalidated */
1818                         idx = zip->ca;
1819                         end = zip->cq_ci;
1820                         while (idx != end) {
1821                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1822                                 ++idx;
1823                         }
1824                 } else {
1825                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1826                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1827                 }
1828                 /* Error while receiving packet. */
1829                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1830                         return -1;
1831         }
1832         return len;
1833 }
1834
1835 /**
1836  * Translate RX completion flags to offload flags.
1837  *
1838  * @param[in] cqe
1839  *   Pointer to CQE.
1840  *
1841  * @return
1842  *   Offload flags (ol_flags) for struct rte_mbuf.
1843  */
1844 static inline uint32_t
1845 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1846 {
1847         uint32_t ol_flags = 0;
1848         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1849
1850         ol_flags =
1851                 TRANSPOSE(flags,
1852                           MLX5_CQE_RX_L3_HDR_VALID,
1853                           PKT_RX_IP_CKSUM_GOOD) |
1854                 TRANSPOSE(flags,
1855                           MLX5_CQE_RX_L4_HDR_VALID,
1856                           PKT_RX_L4_CKSUM_GOOD);
1857         return ol_flags;
1858 }
1859
1860 /**
1861  * Fill in mbuf fields from RX completion flags.
1862  * Note that pkt->ol_flags should be initialized outside of this function.
1863  *
1864  * @param rxq
1865  *   Pointer to RX queue.
1866  * @param pkt
1867  *   mbuf to fill.
1868  * @param cqe
1869  *   CQE to process.
1870  * @param rss_hash_res
1871  *   Packet RSS Hash result.
1872  */
1873 static inline void
1874 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1875                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1876 {
1877         /* Update packet information. */
1878         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1879         if (rss_hash_res && rxq->rss_hash) {
1880                 pkt->hash.rss = rss_hash_res;
1881                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1882         }
1883         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1884                 pkt->ol_flags |= PKT_RX_FDIR;
1885                 if (cqe->sop_drop_qpn !=
1886                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1887                         uint32_t mark = cqe->sop_drop_qpn;
1888
1889                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1890                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1891                 }
1892         }
1893         if (rxq->csum)
1894                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1895         if (rxq->vlan_strip &&
1896             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1897                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1898                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1899         }
1900         if (rxq->hw_timestamp) {
1901                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1902                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1903         }
1904 }
1905
1906 /**
1907  * DPDK callback for RX.
1908  *
1909  * @param dpdk_rxq
1910  *   Generic pointer to RX queue structure.
1911  * @param[out] pkts
1912  *   Array to store received packets.
1913  * @param pkts_n
1914  *   Maximum number of packets in array.
1915  *
1916  * @return
1917  *   Number of packets successfully received (<= pkts_n).
1918  */
1919 uint16_t
1920 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1921 {
1922         struct mlx5_rxq_data *rxq = dpdk_rxq;
1923         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1924         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1925         const unsigned int sges_n = rxq->sges_n;
1926         struct rte_mbuf *pkt = NULL;
1927         struct rte_mbuf *seg = NULL;
1928         volatile struct mlx5_cqe *cqe =
1929                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1930         unsigned int i = 0;
1931         unsigned int rq_ci = rxq->rq_ci << sges_n;
1932         int len = 0; /* keep its value across iterations. */
1933
1934         while (pkts_n) {
1935                 unsigned int idx = rq_ci & wqe_cnt;
1936                 volatile struct mlx5_wqe_data_seg *wqe =
1937                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1938                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1939                 uint32_t rss_hash_res = 0;
1940
1941                 if (pkt)
1942                         NEXT(seg) = rep;
1943                 seg = rep;
1944                 rte_prefetch0(seg);
1945                 rte_prefetch0(cqe);
1946                 rte_prefetch0(wqe);
1947                 rep = rte_mbuf_raw_alloc(rxq->mp);
1948                 if (unlikely(rep == NULL)) {
1949                         ++rxq->stats.rx_nombuf;
1950                         if (!pkt) {
1951                                 /*
1952                                  * no buffers before we even started,
1953                                  * bail out silently.
1954                                  */
1955                                 break;
1956                         }
1957                         while (pkt != seg) {
1958                                 assert(pkt != (*rxq->elts)[idx]);
1959                                 rep = NEXT(pkt);
1960                                 NEXT(pkt) = NULL;
1961                                 NB_SEGS(pkt) = 1;
1962                                 rte_mbuf_raw_free(pkt);
1963                                 pkt = rep;
1964                         }
1965                         break;
1966                 }
1967                 if (!pkt) {
1968                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1969                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1970                                                &rss_hash_res);
1971                         if (!len) {
1972                                 rte_mbuf_raw_free(rep);
1973                                 break;
1974                         }
1975                         if (unlikely(len == -1)) {
1976                                 /* RX error, packet is likely too large. */
1977                                 rte_mbuf_raw_free(rep);
1978                                 ++rxq->stats.idropped;
1979                                 goto skip;
1980                         }
1981                         pkt = seg;
1982                         assert(len >= (rxq->crc_present << 2));
1983                         pkt->ol_flags = 0;
1984                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1985                         if (rxq->crc_present)
1986                                 len -= ETHER_CRC_LEN;
1987                         PKT_LEN(pkt) = len;
1988                 }
1989                 DATA_LEN(rep) = DATA_LEN(seg);
1990                 PKT_LEN(rep) = PKT_LEN(seg);
1991                 SET_DATA_OFF(rep, DATA_OFF(seg));
1992                 PORT(rep) = PORT(seg);
1993                 (*rxq->elts)[idx] = rep;
1994                 /*
1995                  * Fill NIC descriptor with the new buffer.  The lkey and size
1996                  * of the buffers are already known, only the buffer address
1997                  * changes.
1998                  */
1999                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2000                 /* If there's only one MR, no need to replace LKey in WQE. */
2001                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2002                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2003                 if (len > DATA_LEN(seg)) {
2004                         len -= DATA_LEN(seg);
2005                         ++NB_SEGS(pkt);
2006                         ++rq_ci;
2007                         continue;
2008                 }
2009                 DATA_LEN(seg) = len;
2010 #ifdef MLX5_PMD_SOFT_COUNTERS
2011                 /* Increment bytes counter. */
2012                 rxq->stats.ibytes += PKT_LEN(pkt);
2013 #endif
2014                 /* Return packet. */
2015                 *(pkts++) = pkt;
2016                 pkt = NULL;
2017                 --pkts_n;
2018                 ++i;
2019 skip:
2020                 /* Align consumer index to the next stride. */
2021                 rq_ci >>= sges_n;
2022                 ++rq_ci;
2023                 rq_ci <<= sges_n;
2024         }
2025         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2026                 return 0;
2027         /* Update the consumer index. */
2028         rxq->rq_ci = rq_ci >> sges_n;
2029         rte_cio_wmb();
2030         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2031         rte_cio_wmb();
2032         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2033 #ifdef MLX5_PMD_SOFT_COUNTERS
2034         /* Increment packets counter. */
2035         rxq->stats.ipackets += i;
2036 #endif
2037         return i;
2038 }
2039
2040 void
2041 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2042 {
2043         struct mlx5_mprq_buf *buf = opaque;
2044
2045         if (rte_atomic16_read(&buf->refcnt) == 1) {
2046                 rte_mempool_put(buf->mp, buf);
2047         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2048                 rte_atomic16_set(&buf->refcnt, 1);
2049                 rte_mempool_put(buf->mp, buf);
2050         }
2051 }
2052
2053 void
2054 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2055 {
2056         mlx5_mprq_buf_free_cb(NULL, buf);
2057 }
2058
2059 static inline void
2060 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2061 {
2062         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2063         volatile struct mlx5_wqe_data_seg *wqe =
2064                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2065         void *addr;
2066
2067         assert(rep != NULL);
2068         /* Replace MPRQ buf. */
2069         (*rxq->mprq_bufs)[rq_idx] = rep;
2070         /* Replace WQE. */
2071         addr = mlx5_mprq_buf_addr(rep);
2072         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2073         /* If there's only one MR, no need to replace LKey in WQE. */
2074         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2075                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2076         /* Stash a mbuf for next replacement. */
2077         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2078                 rxq->mprq_repl = rep;
2079         else
2080                 rxq->mprq_repl = NULL;
2081 }
2082
2083 /**
2084  * DPDK callback for RX with Multi-Packet RQ support.
2085  *
2086  * @param dpdk_rxq
2087  *   Generic pointer to RX queue structure.
2088  * @param[out] pkts
2089  *   Array to store received packets.
2090  * @param pkts_n
2091  *   Maximum number of packets in array.
2092  *
2093  * @return
2094  *   Number of packets successfully received (<= pkts_n).
2095  */
2096 uint16_t
2097 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2098 {
2099         struct mlx5_rxq_data *rxq = dpdk_rxq;
2100         const unsigned int strd_n = 1 << rxq->strd_num_n;
2101         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2102         const unsigned int strd_shift =
2103                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2104         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2105         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2106         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2107         unsigned int i = 0;
2108         uint16_t rq_ci = rxq->rq_ci;
2109         uint16_t strd_idx = rxq->strd_ci;
2110         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2111
2112         while (i < pkts_n) {
2113                 struct rte_mbuf *pkt;
2114                 void *addr;
2115                 int ret;
2116                 unsigned int len;
2117                 uint16_t consumed_strd;
2118                 uint32_t offset;
2119                 uint32_t byte_cnt;
2120                 uint32_t rss_hash_res = 0;
2121
2122                 if (strd_idx == strd_n) {
2123                         /* Replace WQE only if the buffer is still in use. */
2124                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2125                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2126                                 /* Release the old buffer. */
2127                                 mlx5_mprq_buf_free(buf);
2128                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2129                                 struct mlx5_mprq_buf *rep;
2130
2131                                 /*
2132                                  * Currently, the MPRQ mempool is out of buffer
2133                                  * and doing memcpy regardless of the size of Rx
2134                                  * packet. Retry allocation to get back to
2135                                  * normal.
2136                                  */
2137                                 if (!rte_mempool_get(rxq->mprq_mp,
2138                                                      (void **)&rep))
2139                                         rxq->mprq_repl = rep;
2140                         }
2141                         /* Advance to the next WQE. */
2142                         strd_idx = 0;
2143                         ++rq_ci;
2144                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2145                 }
2146                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2147                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &rss_hash_res);
2148                 if (!ret)
2149                         break;
2150                 if (unlikely(ret == -1)) {
2151                         /* RX error, packet is likely too large. */
2152                         ++rxq->stats.idropped;
2153                         continue;
2154                 }
2155                 byte_cnt = ret;
2156                 consumed_strd = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2157                                 MLX5_MPRQ_STRIDE_NUM_SHIFT;
2158                 assert(consumed_strd);
2159                 /* Calculate offset before adding up stride index. */
2160                 offset = strd_idx * strd_sz + strd_shift;
2161                 strd_idx += consumed_strd;
2162                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2163                         continue;
2164                 /*
2165                  * Currently configured to receive a packet per a stride. But if
2166                  * MTU is adjusted through kernel interface, device could
2167                  * consume multiple strides without raising an error. In this
2168                  * case, the packet should be dropped because it is bigger than
2169                  * the max_rx_pkt_len.
2170                  */
2171                 if (unlikely(consumed_strd > 1)) {
2172                         ++rxq->stats.idropped;
2173                         continue;
2174                 }
2175                 pkt = rte_pktmbuf_alloc(rxq->mp);
2176                 if (unlikely(pkt == NULL)) {
2177                         ++rxq->stats.rx_nombuf;
2178                         break;
2179                 }
2180                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2181                 assert((int)len >= (rxq->crc_present << 2));
2182                 if (rxq->crc_present)
2183                         len -= ETHER_CRC_LEN;
2184                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2185                 /* Initialize the offload flag. */
2186                 pkt->ol_flags = 0;
2187                 /*
2188                  * Memcpy packets to the target mbuf if:
2189                  * - The size of packet is smaller than mprq_max_memcpy_len.
2190                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2191                  */
2192                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2193                         /*
2194                          * When memcpy'ing packet due to out-of-buffer, the
2195                          * packet must be smaller than the target mbuf.
2196                          */
2197                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2198                                 rte_pktmbuf_free_seg(pkt);
2199                                 ++rxq->stats.idropped;
2200                                 continue;
2201                         }
2202                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2203                 } else {
2204                         rte_iova_t buf_iova;
2205                         struct rte_mbuf_ext_shared_info *shinfo;
2206                         uint16_t buf_len = consumed_strd * strd_sz;
2207
2208                         /* Increment the refcnt of the whole chunk. */
2209                         rte_atomic16_add_return(&buf->refcnt, 1);
2210                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2211                                strd_n + 1);
2212                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2213                         /*
2214                          * MLX5 device doesn't use iova but it is necessary in a
2215                          * case where the Rx packet is transmitted via a
2216                          * different PMD.
2217                          */
2218                         buf_iova = rte_mempool_virt2iova(buf) +
2219                                    RTE_PTR_DIFF(addr, buf);
2220                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2221                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2222                         /*
2223                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2224                          * attaching the stride to mbuf and more offload flags
2225                          * will be added below by calling rxq_cq_to_mbuf().
2226                          * Other fields will be overwritten.
2227                          */
2228                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2229                                                   shinfo);
2230                         rte_pktmbuf_reset_headroom(pkt);
2231                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2232                         /*
2233                          * Prevent potential overflow due to MTU change through
2234                          * kernel interface.
2235                          */
2236                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2237                                 rte_pktmbuf_free_seg(pkt);
2238                                 ++rxq->stats.idropped;
2239                                 continue;
2240                         }
2241                 }
2242                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2243                 PKT_LEN(pkt) = len;
2244                 DATA_LEN(pkt) = len;
2245                 PORT(pkt) = rxq->port_id;
2246 #ifdef MLX5_PMD_SOFT_COUNTERS
2247                 /* Increment bytes counter. */
2248                 rxq->stats.ibytes += PKT_LEN(pkt);
2249 #endif
2250                 /* Return packet. */
2251                 *(pkts++) = pkt;
2252                 ++i;
2253         }
2254         /* Update the consumer indexes. */
2255         rxq->strd_ci = strd_idx;
2256         rte_cio_wmb();
2257         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2258         if (rq_ci != rxq->rq_ci) {
2259                 rxq->rq_ci = rq_ci;
2260                 rte_cio_wmb();
2261                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2262         }
2263 #ifdef MLX5_PMD_SOFT_COUNTERS
2264         /* Increment packets counter. */
2265         rxq->stats.ipackets += i;
2266 #endif
2267         return i;
2268 }
2269
2270 /**
2271  * Dummy DPDK callback for TX.
2272  *
2273  * This function is used to temporarily replace the real callback during
2274  * unsafe control operations on the queue, or in case of error.
2275  *
2276  * @param dpdk_txq
2277  *   Generic pointer to TX queue structure.
2278  * @param[in] pkts
2279  *   Packets to transmit.
2280  * @param pkts_n
2281  *   Number of packets in array.
2282  *
2283  * @return
2284  *   Number of packets successfully transmitted (<= pkts_n).
2285  */
2286 uint16_t
2287 removed_tx_burst(void *dpdk_txq __rte_unused,
2288                  struct rte_mbuf **pkts __rte_unused,
2289                  uint16_t pkts_n __rte_unused)
2290 {
2291         return 0;
2292 }
2293
2294 /**
2295  * Dummy DPDK callback for RX.
2296  *
2297  * This function is used to temporarily replace the real callback during
2298  * unsafe control operations on the queue, or in case of error.
2299  *
2300  * @param dpdk_rxq
2301  *   Generic pointer to RX queue structure.
2302  * @param[out] pkts
2303  *   Array to store received packets.
2304  * @param pkts_n
2305  *   Maximum number of packets in array.
2306  *
2307  * @return
2308  *   Number of packets successfully received (<= pkts_n).
2309  */
2310 uint16_t
2311 removed_rx_burst(void *dpdk_txq __rte_unused,
2312                  struct rte_mbuf **pkts __rte_unused,
2313                  uint16_t pkts_n __rte_unused)
2314 {
2315         return 0;
2316 }
2317
2318 /*
2319  * Vectorized Rx/Tx routines are not compiled in when required vector
2320  * instructions are not supported on a target architecture. The following null
2321  * stubs are needed for linkage when those are not included outside of this file
2322  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2323  */
2324
2325 uint16_t __attribute__((weak))
2326 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2327                       struct rte_mbuf **pkts __rte_unused,
2328                       uint16_t pkts_n __rte_unused)
2329 {
2330         return 0;
2331 }
2332
2333 uint16_t __attribute__((weak))
2334 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2335                   struct rte_mbuf **pkts __rte_unused,
2336                   uint16_t pkts_n __rte_unused)
2337 {
2338         return 0;
2339 }
2340
2341 uint16_t __attribute__((weak))
2342 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2343                   struct rte_mbuf **pkts __rte_unused,
2344                   uint16_t pkts_n __rte_unused)
2345 {
2346         return 0;
2347 }
2348
2349 int __attribute__((weak))
2350 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2351 {
2352         return -ENOTSUP;
2353 }
2354
2355 int __attribute__((weak))
2356 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2357 {
2358         return -ENOTSUP;
2359 }
2360
2361 int __attribute__((weak))
2362 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2363 {
2364         return -ENOTSUP;
2365 }
2366
2367 int __attribute__((weak))
2368 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2369 {
2370         return -ENOTSUP;
2371 }