net/mlx5: fix Tx stats error counter logic
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5_hw.h>
46 #include <infiniband/arch.h>
47 #ifdef PEDANTIC
48 #pragma GCC diagnostic error "-Wpedantic"
49 #endif
50
51 #include <rte_mbuf.h>
52 #include <rte_mempool.h>
53 #include <rte_prefetch.h>
54 #include <rte_common.h>
55 #include <rte_branch_prediction.h>
56 #include <rte_ether.h>
57
58 #include "mlx5.h"
59 #include "mlx5_utils.h"
60 #include "mlx5_rxtx.h"
61 #include "mlx5_autoconf.h"
62 #include "mlx5_defs.h"
63 #include "mlx5_prm.h"
64
65 static __rte_always_inline uint32_t
66 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
67
68 static __rte_always_inline int
69 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
70                  uint16_t cqe_cnt, uint32_t *rss_hash);
71
72 static __rte_always_inline uint32_t
73 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe);
74
75 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
76         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
77 };
78
79 /**
80  * Build a table to translate Rx completion flags to packet type.
81  *
82  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
83  */
84 void
85 mlx5_set_ptype_table(void)
86 {
87         unsigned int i;
88         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
89
90         /* Last entry must not be overwritten, reserved for errored packet. */
91         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
92                 (*p)[i] = RTE_PTYPE_UNKNOWN;
93         /*
94          * The index to the array should have:
95          * bit[1:0] = l3_hdr_type
96          * bit[4:2] = l4_hdr_type
97          * bit[5] = ip_frag
98          * bit[6] = tunneled
99          * bit[7] = outer_l3_type
100          */
101         /* L3 */
102         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_NONFRAG;
104         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_NONFRAG;
106         /* Fragmented */
107         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
108                      RTE_PTYPE_L4_FRAG;
109         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_FRAG;
111         /* TCP */
112         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_TCP;
114         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_TCP;
116         /* UDP */
117         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_UDP;
119         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_UDP;
121         /* Repeat with outer_l3_type being set. Just in case. */
122         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
123                      RTE_PTYPE_L4_NONFRAG;
124         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
125                      RTE_PTYPE_L4_NONFRAG;
126         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_L4_FRAG;
128         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
129                      RTE_PTYPE_L4_FRAG;
130         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
131                      RTE_PTYPE_L4_TCP;
132         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_L4_TCP;
134         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_L4_UDP;
136         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
137                      RTE_PTYPE_L4_UDP;
138         /* Tunneled - L3 */
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L4_NONFRAG;
148         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L4_NONFRAG;
151         /* Tunneled - Fragmented */
152         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L4_FRAG;
155         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L4_FRAG;
158         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L4_FRAG;
161         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L4_FRAG;
164         /* Tunneled - TCP */
165         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
167                      RTE_PTYPE_L4_TCP;
168         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_L4_TCP;
171         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_L4_TCP;
174         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_L4_TCP;
177         /* Tunneled - UDP */
178         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_L4_UDP;
181         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_L4_UDP;
184         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_L4_UDP;
187         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_L4_UDP;
190 }
191
192 /**
193  * Return the size of tailroom of WQ.
194  *
195  * @param txq
196  *   Pointer to TX queue structure.
197  * @param addr
198  *   Pointer to tail of WQ.
199  *
200  * @return
201  *   Size of tailroom.
202  */
203 static inline size_t
204 tx_mlx5_wq_tailroom(struct txq *txq, void *addr)
205 {
206         size_t tailroom;
207         tailroom = (uintptr_t)(txq->wqes) +
208                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
209                    (uintptr_t)addr;
210         return tailroom;
211 }
212
213 /**
214  * Copy data to tailroom of circular queue.
215  *
216  * @param dst
217  *   Pointer to destination.
218  * @param src
219  *   Pointer to source.
220  * @param n
221  *   Number of bytes to copy.
222  * @param base
223  *   Pointer to head of queue.
224  * @param tailroom
225  *   Size of tailroom from dst.
226  *
227  * @return
228  *   Pointer after copied data.
229  */
230 static inline void *
231 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
232                 void *base, size_t tailroom)
233 {
234         void *ret;
235
236         if (n > tailroom) {
237                 rte_memcpy(dst, src, tailroom);
238                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
239                            n - tailroom);
240                 ret = (uint8_t *)base + n - tailroom;
241         } else {
242                 rte_memcpy(dst, src, n);
243                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
244         }
245         return ret;
246 }
247
248 /**
249  * DPDK callback to check the status of a tx descriptor.
250  *
251  * @param tx_queue
252  *   The tx queue.
253  * @param[in] offset
254  *   The index of the descriptor in the ring.
255  *
256  * @return
257  *   The status of the tx descriptor.
258  */
259 int
260 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
261 {
262         struct txq *txq = tx_queue;
263         uint16_t used;
264
265         mlx5_tx_complete(txq);
266         used = txq->elts_head - txq->elts_tail;
267         if (offset < used)
268                 return RTE_ETH_TX_DESC_FULL;
269         return RTE_ETH_TX_DESC_DONE;
270 }
271
272 /**
273  * DPDK callback to check the status of a rx descriptor.
274  *
275  * @param rx_queue
276  *   The rx queue.
277  * @param[in] offset
278  *   The index of the descriptor in the ring.
279  *
280  * @return
281  *   The status of the tx descriptor.
282  */
283 int
284 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
285 {
286         struct rxq *rxq = rx_queue;
287         struct rxq_zip *zip = &rxq->zip;
288         volatile struct mlx5_cqe *cqe;
289         const unsigned int cqe_n = (1 << rxq->cqe_n);
290         const unsigned int cqe_cnt = cqe_n - 1;
291         unsigned int cq_ci;
292         unsigned int used;
293
294         /* if we are processing a compressed cqe */
295         if (zip->ai) {
296                 used = zip->cqe_cnt - zip->ca;
297                 cq_ci = zip->cq_ci;
298         } else {
299                 used = 0;
300                 cq_ci = rxq->cq_ci;
301         }
302         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
303         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
304                 int8_t op_own;
305                 unsigned int n;
306
307                 op_own = cqe->op_own;
308                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
309                         n = ntohl(cqe->byte_cnt);
310                 else
311                         n = 1;
312                 cq_ci += n;
313                 used += n;
314                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
315         }
316         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
317         if (offset < used)
318                 return RTE_ETH_RX_DESC_DONE;
319         return RTE_ETH_RX_DESC_AVAIL;
320 }
321
322 /**
323  * DPDK callback for TX.
324  *
325  * @param dpdk_txq
326  *   Generic pointer to TX queue structure.
327  * @param[in] pkts
328  *   Packets to transmit.
329  * @param pkts_n
330  *   Number of packets in array.
331  *
332  * @return
333  *   Number of packets successfully transmitted (<= pkts_n).
334  */
335 uint16_t
336 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
337 {
338         struct txq *txq = (struct txq *)dpdk_txq;
339         uint16_t elts_head = txq->elts_head;
340         const uint16_t elts_n = 1 << txq->elts_n;
341         const uint16_t elts_m = elts_n - 1;
342         unsigned int i = 0;
343         unsigned int j = 0;
344         unsigned int k = 0;
345         uint16_t max_elts;
346         unsigned int max_inline = txq->max_inline;
347         const unsigned int inline_en = !!max_inline && txq->inline_en;
348         uint16_t max_wqe;
349         unsigned int comp;
350         volatile struct mlx5_wqe_v *wqe = NULL;
351         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
352         unsigned int segs_n = 0;
353         struct rte_mbuf *buf = NULL;
354         uint8_t *raw;
355
356         if (unlikely(!pkts_n))
357                 return 0;
358         /* Prefetch first packet cacheline. */
359         rte_prefetch0(*pkts);
360         /* Start processing. */
361         mlx5_tx_complete(txq);
362         max_elts = (elts_n - (elts_head - txq->elts_tail));
363         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
364         if (unlikely(!max_wqe))
365                 return 0;
366         do {
367                 volatile rte_v128u32_t *dseg = NULL;
368                 uint32_t length;
369                 unsigned int ds = 0;
370                 unsigned int sg = 0; /* counter of additional segs attached. */
371                 uintptr_t addr;
372                 uint64_t naddr;
373                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
374                 uint16_t tso_header_sz = 0;
375                 uint16_t ehdr;
376                 uint8_t cs_flags = 0;
377                 uint64_t tso = 0;
378                 uint16_t tso_segsz = 0;
379 #ifdef MLX5_PMD_SOFT_COUNTERS
380                 uint32_t total_length = 0;
381 #endif
382
383                 /* first_seg */
384                 buf = *pkts;
385                 segs_n = buf->nb_segs;
386                 /*
387                  * Make sure there is enough room to store this packet and
388                  * that one ring entry remains unused.
389                  */
390                 assert(segs_n);
391                 if (max_elts < segs_n)
392                         break;
393                 max_elts -= segs_n;
394                 --segs_n;
395                 if (unlikely(--max_wqe == 0))
396                         break;
397                 wqe = (volatile struct mlx5_wqe_v *)
398                         tx_mlx5_wqe(txq, txq->wqe_ci);
399                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
400                 if (pkts_n - i > 1)
401                         rte_prefetch0(*(pkts + 1));
402                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
403                 length = DATA_LEN(buf);
404                 ehdr = (((uint8_t *)addr)[1] << 8) |
405                        ((uint8_t *)addr)[0];
406 #ifdef MLX5_PMD_SOFT_COUNTERS
407                 total_length = length;
408 #endif
409                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
410                         txq->stats.oerrors++;
411                         break;
412                 }
413                 /* Update element. */
414                 (*txq->elts)[elts_head & elts_m] = buf;
415                 /* Prefetch next buffer data. */
416                 if (pkts_n - i > 1)
417                         rte_prefetch0(
418                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
419                 /* Should we enable HW CKSUM offload */
420                 if (buf->ol_flags &
421                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
422                         const uint64_t is_tunneled = buf->ol_flags &
423                                                      (PKT_TX_TUNNEL_GRE |
424                                                       PKT_TX_TUNNEL_VXLAN);
425
426                         if (is_tunneled && txq->tunnel_en) {
427                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
428                                            MLX5_ETH_WQE_L4_INNER_CSUM;
429                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
430                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
431                         } else {
432                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
433                                            MLX5_ETH_WQE_L4_CSUM;
434                         }
435                 }
436                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
437                 /* Replace the Ethernet type by the VLAN if necessary. */
438                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
439                         uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
440                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
441
442                         addr += 2;
443                         length -= 2;
444                         /* Copy Destination and source mac address. */
445                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
446                         /* Copy VLAN. */
447                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
448                         /* Copy missing two bytes to end the DSeg. */
449                         memcpy((uint8_t *)raw + len + sizeof(vlan),
450                                ((uint8_t *)addr) + len, 2);
451                         addr += len + 2;
452                         length -= (len + 2);
453                 } else {
454                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
455                                MLX5_WQE_DWORD_SIZE);
456                         length -= pkt_inline_sz;
457                         addr += pkt_inline_sz;
458                 }
459                 raw += MLX5_WQE_DWORD_SIZE;
460                 if (txq->tso_en) {
461                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
462                         if (tso) {
463                                 uintptr_t end = (uintptr_t)
464                                                 (((uintptr_t)txq->wqes) +
465                                                 (1 << txq->wqe_n) *
466                                                 MLX5_WQE_SIZE);
467                                 unsigned int copy_b;
468                                 uint8_t vlan_sz = (buf->ol_flags &
469                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
470                                 const uint64_t is_tunneled =
471                                                         buf->ol_flags &
472                                                         (PKT_TX_TUNNEL_GRE |
473                                                          PKT_TX_TUNNEL_VXLAN);
474
475                                 tso_header_sz = buf->l2_len + vlan_sz +
476                                                 buf->l3_len + buf->l4_len;
477                                 tso_segsz = buf->tso_segsz;
478
479                                 if (is_tunneled && txq->tunnel_en) {
480                                         tso_header_sz += buf->outer_l2_len +
481                                                          buf->outer_l3_len;
482                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
483                                 } else {
484                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
485                                 }
486                                 if (unlikely(tso_header_sz >
487                                              MLX5_MAX_TSO_HEADER)) {
488                                         txq->stats.oerrors++;
489                                         break;
490                                 }
491                                 copy_b = tso_header_sz - pkt_inline_sz;
492                                 /* First seg must contain all headers. */
493                                 assert(copy_b <= length);
494                                 if (copy_b &&
495                                    ((end - (uintptr_t)raw) > copy_b)) {
496                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
497                                                       1 + 3) / 4;
498
499                                         if (unlikely(max_wqe < n))
500                                                 break;
501                                         max_wqe -= n;
502                                         rte_memcpy((void *)raw,
503                                                    (void *)addr, copy_b);
504                                         addr += copy_b;
505                                         length -= copy_b;
506                                         /* Include padding for TSO header. */
507                                         copy_b = MLX5_WQE_DS(copy_b) *
508                                                  MLX5_WQE_DWORD_SIZE;
509                                         pkt_inline_sz += copy_b;
510                                         raw += copy_b;
511                                 } else {
512                                         /* NOP WQE. */
513                                         wqe->ctrl = (rte_v128u32_t){
514                                                      htonl(txq->wqe_ci << 8),
515                                                      htonl(txq->qp_num_8s | 1),
516                                                      0,
517                                                      0,
518                                         };
519                                         ds = 1;
520                                         total_length = 0;
521                                         k++;
522                                         goto next_wqe;
523                                 }
524                         }
525                 }
526                 /* Inline if enough room. */
527                 if (inline_en || tso) {
528                         uint32_t inl;
529                         uintptr_t end = (uintptr_t)
530                                 (((uintptr_t)txq->wqes) +
531                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
532                         unsigned int inline_room = max_inline *
533                                                    RTE_CACHE_LINE_SIZE -
534                                                    (pkt_inline_sz - 2) -
535                                                    !!tso * sizeof(inl);
536                         uintptr_t addr_end = (addr + inline_room) &
537                                              ~(RTE_CACHE_LINE_SIZE - 1);
538                         unsigned int copy_b = (addr_end > addr) ?
539                                 RTE_MIN((addr_end - addr), length) :
540                                 0;
541
542                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
543                                 /*
544                                  * One Dseg remains in the current WQE.  To
545                                  * keep the computation positive, it is
546                                  * removed after the bytes to Dseg conversion.
547                                  */
548                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
549
550                                 if (unlikely(max_wqe < n))
551                                         break;
552                                 max_wqe -= n;
553                                 if (tso) {
554                                         inl = htonl(copy_b | MLX5_INLINE_SEG);
555                                         rte_memcpy((void *)raw,
556                                                    (void *)&inl, sizeof(inl));
557                                         raw += sizeof(inl);
558                                         pkt_inline_sz += sizeof(inl);
559                                 }
560                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
561                                 addr += copy_b;
562                                 length -= copy_b;
563                                 pkt_inline_sz += copy_b;
564                         }
565                         /*
566                          * 2 DWORDs consumed by the WQE header + ETH segment +
567                          * the size of the inline part of the packet.
568                          */
569                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
570                         if (length > 0) {
571                                 if (ds % (MLX5_WQE_SIZE /
572                                           MLX5_WQE_DWORD_SIZE) == 0) {
573                                         if (unlikely(--max_wqe == 0))
574                                                 break;
575                                         dseg = (volatile rte_v128u32_t *)
576                                                tx_mlx5_wqe(txq, txq->wqe_ci +
577                                                            ds / 4);
578                                 } else {
579                                         dseg = (volatile rte_v128u32_t *)
580                                                 ((uintptr_t)wqe +
581                                                  (ds * MLX5_WQE_DWORD_SIZE));
582                                 }
583                                 goto use_dseg;
584                         } else if (!segs_n) {
585                                 goto next_pkt;
586                         } else {
587                                 /* dseg will be advance as part of next_seg */
588                                 dseg = (volatile rte_v128u32_t *)
589                                         ((uintptr_t)wqe +
590                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
591                                 goto next_seg;
592                         }
593                 } else {
594                         /*
595                          * No inline has been done in the packet, only the
596                          * Ethernet Header as been stored.
597                          */
598                         dseg = (volatile rte_v128u32_t *)
599                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
600                         ds = 3;
601 use_dseg:
602                         /* Add the remaining packet as a simple ds. */
603                         naddr = htonll(addr);
604                         *dseg = (rte_v128u32_t){
605                                 htonl(length),
606                                 mlx5_tx_mb2mr(txq, buf),
607                                 naddr,
608                                 naddr >> 32,
609                         };
610                         ++ds;
611                         if (!segs_n)
612                                 goto next_pkt;
613                 }
614 next_seg:
615                 assert(buf);
616                 assert(ds);
617                 assert(wqe);
618                 /*
619                  * Spill on next WQE when the current one does not have
620                  * enough room left. Size of WQE must a be a multiple
621                  * of data segment size.
622                  */
623                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
624                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
625                         if (unlikely(--max_wqe == 0))
626                                 break;
627                         dseg = (volatile rte_v128u32_t *)
628                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
629                         rte_prefetch0(tx_mlx5_wqe(txq,
630                                                   txq->wqe_ci + ds / 4 + 1));
631                 } else {
632                         ++dseg;
633                 }
634                 ++ds;
635                 buf = buf->next;
636                 assert(buf);
637                 length = DATA_LEN(buf);
638 #ifdef MLX5_PMD_SOFT_COUNTERS
639                 total_length += length;
640 #endif
641                 /* Store segment information. */
642                 naddr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
643                 *dseg = (rte_v128u32_t){
644                         htonl(length),
645                         mlx5_tx_mb2mr(txq, buf),
646                         naddr,
647                         naddr >> 32,
648                 };
649                 (*txq->elts)[++elts_head & elts_m] = buf;
650                 ++sg;
651                 /* Advance counter only if all segs are successfully posted. */
652                 if (sg < segs_n)
653                         goto next_seg;
654                 else
655                         j += sg;
656 next_pkt:
657                 ++elts_head;
658                 ++pkts;
659                 ++i;
660                 /* Initialize known and common part of the WQE structure. */
661                 if (tso) {
662                         wqe->ctrl = (rte_v128u32_t){
663                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_TSO),
664                                 htonl(txq->qp_num_8s | ds),
665                                 0,
666                                 0,
667                         };
668                         wqe->eseg = (rte_v128u32_t){
669                                 0,
670                                 cs_flags | (htons(tso_segsz) << 16),
671                                 0,
672                                 (ehdr << 16) | htons(tso_header_sz),
673                         };
674                 } else {
675                         wqe->ctrl = (rte_v128u32_t){
676                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
677                                 htonl(txq->qp_num_8s | ds),
678                                 0,
679                                 0,
680                         };
681                         wqe->eseg = (rte_v128u32_t){
682                                 0,
683                                 cs_flags,
684                                 0,
685                                 (ehdr << 16) | htons(pkt_inline_sz),
686                         };
687                 }
688 next_wqe:
689                 txq->wqe_ci += (ds + 3) / 4;
690                 /* Save the last successful WQE for completion request */
691                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
692 #ifdef MLX5_PMD_SOFT_COUNTERS
693                 /* Increment sent bytes counter. */
694                 txq->stats.obytes += total_length;
695 #endif
696         } while (i < pkts_n);
697         /* Take a shortcut if nothing must be sent. */
698         if (unlikely((i + k) == 0))
699                 return 0;
700         txq->elts_head += (i + j);
701         /* Check whether completion threshold has been reached. */
702         comp = txq->elts_comp + i + j + k;
703         if (comp >= MLX5_TX_COMP_THRESH) {
704                 /* Request completion on last WQE. */
705                 last_wqe->ctrl2 = htonl(8);
706                 /* Save elts_head in unused "immediate" field of WQE. */
707                 last_wqe->ctrl3 = txq->elts_head;
708                 txq->elts_comp = 0;
709         } else {
710                 txq->elts_comp = comp;
711         }
712 #ifdef MLX5_PMD_SOFT_COUNTERS
713         /* Increment sent packets counter. */
714         txq->stats.opackets += i;
715 #endif
716         /* Ring QP doorbell. */
717         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
718         return i;
719 }
720
721 /**
722  * Open a MPW session.
723  *
724  * @param txq
725  *   Pointer to TX queue structure.
726  * @param mpw
727  *   Pointer to MPW session structure.
728  * @param length
729  *   Packet length.
730  */
731 static inline void
732 mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
733 {
734         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
735         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
736                 (volatile struct mlx5_wqe_data_seg (*)[])
737                 tx_mlx5_wqe(txq, idx + 1);
738
739         mpw->state = MLX5_MPW_STATE_OPENED;
740         mpw->pkts_n = 0;
741         mpw->len = length;
742         mpw->total_len = 0;
743         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
744         mpw->wqe->eseg.mss = htons(length);
745         mpw->wqe->eseg.inline_hdr_sz = 0;
746         mpw->wqe->eseg.rsvd0 = 0;
747         mpw->wqe->eseg.rsvd1 = 0;
748         mpw->wqe->eseg.rsvd2 = 0;
749         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
750                                   (txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
751         mpw->wqe->ctrl[2] = 0;
752         mpw->wqe->ctrl[3] = 0;
753         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
754                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
755         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
756                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
757         mpw->data.dseg[2] = &(*dseg)[0];
758         mpw->data.dseg[3] = &(*dseg)[1];
759         mpw->data.dseg[4] = &(*dseg)[2];
760 }
761
762 /**
763  * Close a MPW session.
764  *
765  * @param txq
766  *   Pointer to TX queue structure.
767  * @param mpw
768  *   Pointer to MPW session structure.
769  */
770 static inline void
771 mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
772 {
773         unsigned int num = mpw->pkts_n;
774
775         /*
776          * Store size in multiple of 16 bytes. Control and Ethernet segments
777          * count as 2.
778          */
779         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
780         mpw->state = MLX5_MPW_STATE_CLOSED;
781         if (num < 3)
782                 ++txq->wqe_ci;
783         else
784                 txq->wqe_ci += 2;
785         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
786         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
787 }
788
789 /**
790  * DPDK callback for TX with MPW support.
791  *
792  * @param dpdk_txq
793  *   Generic pointer to TX queue structure.
794  * @param[in] pkts
795  *   Packets to transmit.
796  * @param pkts_n
797  *   Number of packets in array.
798  *
799  * @return
800  *   Number of packets successfully transmitted (<= pkts_n).
801  */
802 uint16_t
803 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
804 {
805         struct txq *txq = (struct txq *)dpdk_txq;
806         uint16_t elts_head = txq->elts_head;
807         const uint16_t elts_n = 1 << txq->elts_n;
808         const uint16_t elts_m = elts_n - 1;
809         unsigned int i = 0;
810         unsigned int j = 0;
811         uint16_t max_elts;
812         uint16_t max_wqe;
813         unsigned int comp;
814         struct mlx5_mpw mpw = {
815                 .state = MLX5_MPW_STATE_CLOSED,
816         };
817
818         if (unlikely(!pkts_n))
819                 return 0;
820         /* Prefetch first packet cacheline. */
821         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
822         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
823         /* Start processing. */
824         mlx5_tx_complete(txq);
825         max_elts = (elts_n - (elts_head - txq->elts_tail));
826         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
827         if (unlikely(!max_wqe))
828                 return 0;
829         do {
830                 struct rte_mbuf *buf = *(pkts++);
831                 uint32_t length;
832                 unsigned int segs_n = buf->nb_segs;
833                 uint32_t cs_flags = 0;
834
835                 /*
836                  * Make sure there is enough room to store this packet and
837                  * that one ring entry remains unused.
838                  */
839                 assert(segs_n);
840                 if (max_elts < segs_n)
841                         break;
842                 /* Do not bother with large packets MPW cannot handle. */
843                 if (segs_n > MLX5_MPW_DSEG_MAX) {
844                         txq->stats.oerrors++;
845                         break;
846                 }
847                 max_elts -= segs_n;
848                 --pkts_n;
849                 /* Should we enable HW CKSUM offload */
850                 if (buf->ol_flags &
851                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
852                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
853                 /* Retrieve packet information. */
854                 length = PKT_LEN(buf);
855                 assert(length);
856                 /* Start new session if packet differs. */
857                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
858                     ((mpw.len != length) ||
859                      (segs_n != 1) ||
860                      (mpw.wqe->eseg.cs_flags != cs_flags)))
861                         mlx5_mpw_close(txq, &mpw);
862                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
863                         /*
864                          * Multi-Packet WQE consumes at most two WQE.
865                          * mlx5_mpw_new() expects to be able to use such
866                          * resources.
867                          */
868                         if (unlikely(max_wqe < 2))
869                                 break;
870                         max_wqe -= 2;
871                         mlx5_mpw_new(txq, &mpw, length);
872                         mpw.wqe->eseg.cs_flags = cs_flags;
873                 }
874                 /* Multi-segment packets must be alone in their MPW. */
875                 assert((segs_n == 1) || (mpw.pkts_n == 0));
876 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
877                 length = 0;
878 #endif
879                 do {
880                         volatile struct mlx5_wqe_data_seg *dseg;
881                         uintptr_t addr;
882
883                         assert(buf);
884                         (*txq->elts)[elts_head++ & elts_m] = buf;
885                         dseg = mpw.data.dseg[mpw.pkts_n];
886                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
887                         *dseg = (struct mlx5_wqe_data_seg){
888                                 .byte_count = htonl(DATA_LEN(buf)),
889                                 .lkey = mlx5_tx_mb2mr(txq, buf),
890                                 .addr = htonll(addr),
891                         };
892 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
893                         length += DATA_LEN(buf);
894 #endif
895                         buf = buf->next;
896                         ++mpw.pkts_n;
897                         ++j;
898                 } while (--segs_n);
899                 assert(length == mpw.len);
900                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
901                         mlx5_mpw_close(txq, &mpw);
902 #ifdef MLX5_PMD_SOFT_COUNTERS
903                 /* Increment sent bytes counter. */
904                 txq->stats.obytes += length;
905 #endif
906                 ++i;
907         } while (pkts_n);
908         /* Take a shortcut if nothing must be sent. */
909         if (unlikely(i == 0))
910                 return 0;
911         /* Check whether completion threshold has been reached. */
912         /* "j" includes both packets and segments. */
913         comp = txq->elts_comp + j;
914         if (comp >= MLX5_TX_COMP_THRESH) {
915                 volatile struct mlx5_wqe *wqe = mpw.wqe;
916
917                 /* Request completion on last WQE. */
918                 wqe->ctrl[2] = htonl(8);
919                 /* Save elts_head in unused "immediate" field of WQE. */
920                 wqe->ctrl[3] = elts_head;
921                 txq->elts_comp = 0;
922         } else {
923                 txq->elts_comp = comp;
924         }
925 #ifdef MLX5_PMD_SOFT_COUNTERS
926         /* Increment sent packets counter. */
927         txq->stats.opackets += i;
928 #endif
929         /* Ring QP doorbell. */
930         if (mpw.state == MLX5_MPW_STATE_OPENED)
931                 mlx5_mpw_close(txq, &mpw);
932         mlx5_tx_dbrec(txq, mpw.wqe);
933         txq->elts_head = elts_head;
934         return i;
935 }
936
937 /**
938  * Open a MPW inline session.
939  *
940  * @param txq
941  *   Pointer to TX queue structure.
942  * @param mpw
943  *   Pointer to MPW session structure.
944  * @param length
945  *   Packet length.
946  */
947 static inline void
948 mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
949 {
950         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
951         struct mlx5_wqe_inl_small *inl;
952
953         mpw->state = MLX5_MPW_INL_STATE_OPENED;
954         mpw->pkts_n = 0;
955         mpw->len = length;
956         mpw->total_len = 0;
957         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
958         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
959                                   (txq->wqe_ci << 8) |
960                                   MLX5_OPCODE_TSO);
961         mpw->wqe->ctrl[2] = 0;
962         mpw->wqe->ctrl[3] = 0;
963         mpw->wqe->eseg.mss = htons(length);
964         mpw->wqe->eseg.inline_hdr_sz = 0;
965         mpw->wqe->eseg.cs_flags = 0;
966         mpw->wqe->eseg.rsvd0 = 0;
967         mpw->wqe->eseg.rsvd1 = 0;
968         mpw->wqe->eseg.rsvd2 = 0;
969         inl = (struct mlx5_wqe_inl_small *)
970                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
971         mpw->data.raw = (uint8_t *)&inl->raw;
972 }
973
974 /**
975  * Close a MPW inline session.
976  *
977  * @param txq
978  *   Pointer to TX queue structure.
979  * @param mpw
980  *   Pointer to MPW session structure.
981  */
982 static inline void
983 mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
984 {
985         unsigned int size;
986         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
987                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
988
989         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
990         /*
991          * Store size in multiple of 16 bytes. Control and Ethernet segments
992          * count as 2.
993          */
994         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
995         mpw->state = MLX5_MPW_STATE_CLOSED;
996         inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
997         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
998 }
999
1000 /**
1001  * DPDK callback for TX with MPW inline support.
1002  *
1003  * @param dpdk_txq
1004  *   Generic pointer to TX queue structure.
1005  * @param[in] pkts
1006  *   Packets to transmit.
1007  * @param pkts_n
1008  *   Number of packets in array.
1009  *
1010  * @return
1011  *   Number of packets successfully transmitted (<= pkts_n).
1012  */
1013 uint16_t
1014 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1015                          uint16_t pkts_n)
1016 {
1017         struct txq *txq = (struct txq *)dpdk_txq;
1018         uint16_t elts_head = txq->elts_head;
1019         const uint16_t elts_n = 1 << txq->elts_n;
1020         const uint16_t elts_m = elts_n - 1;
1021         unsigned int i = 0;
1022         unsigned int j = 0;
1023         uint16_t max_elts;
1024         uint16_t max_wqe;
1025         unsigned int comp;
1026         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1027         struct mlx5_mpw mpw = {
1028                 .state = MLX5_MPW_STATE_CLOSED,
1029         };
1030         /*
1031          * Compute the maximum number of WQE which can be consumed by inline
1032          * code.
1033          * - 2 DSEG for:
1034          *   - 1 control segment,
1035          *   - 1 Ethernet segment,
1036          * - N Dseg from the inline request.
1037          */
1038         const unsigned int wqe_inl_n =
1039                 ((2 * MLX5_WQE_DWORD_SIZE +
1040                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1041                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1042
1043         if (unlikely(!pkts_n))
1044                 return 0;
1045         /* Prefetch first packet cacheline. */
1046         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1047         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1048         /* Start processing. */
1049         mlx5_tx_complete(txq);
1050         max_elts = (elts_n - (elts_head - txq->elts_tail));
1051         do {
1052                 struct rte_mbuf *buf = *(pkts++);
1053                 uintptr_t addr;
1054                 uint32_t length;
1055                 unsigned int segs_n = buf->nb_segs;
1056                 uint32_t cs_flags = 0;
1057
1058                 /*
1059                  * Make sure there is enough room to store this packet and
1060                  * that one ring entry remains unused.
1061                  */
1062                 assert(segs_n);
1063                 if (max_elts < segs_n)
1064                         break;
1065                 /* Do not bother with large packets MPW cannot handle. */
1066                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1067                         txq->stats.oerrors++;
1068                         break;
1069                 }
1070                 max_elts -= segs_n;
1071                 --pkts_n;
1072                 /*
1073                  * Compute max_wqe in case less WQE were consumed in previous
1074                  * iteration.
1075                  */
1076                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1077                 /* Should we enable HW CKSUM offload */
1078                 if (buf->ol_flags &
1079                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1080                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1081                 /* Retrieve packet information. */
1082                 length = PKT_LEN(buf);
1083                 /* Start new session if packet differs. */
1084                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1085                         if ((mpw.len != length) ||
1086                             (segs_n != 1) ||
1087                             (mpw.wqe->eseg.cs_flags != cs_flags))
1088                                 mlx5_mpw_close(txq, &mpw);
1089                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1090                         if ((mpw.len != length) ||
1091                             (segs_n != 1) ||
1092                             (length > inline_room) ||
1093                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1094                                 mlx5_mpw_inline_close(txq, &mpw);
1095                                 inline_room =
1096                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1097                         }
1098                 }
1099                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1100                         if ((segs_n != 1) ||
1101                             (length > inline_room)) {
1102                                 /*
1103                                  * Multi-Packet WQE consumes at most two WQE.
1104                                  * mlx5_mpw_new() expects to be able to use
1105                                  * such resources.
1106                                  */
1107                                 if (unlikely(max_wqe < 2))
1108                                         break;
1109                                 max_wqe -= 2;
1110                                 mlx5_mpw_new(txq, &mpw, length);
1111                                 mpw.wqe->eseg.cs_flags = cs_flags;
1112                         } else {
1113                                 if (unlikely(max_wqe < wqe_inl_n))
1114                                         break;
1115                                 max_wqe -= wqe_inl_n;
1116                                 mlx5_mpw_inline_new(txq, &mpw, length);
1117                                 mpw.wqe->eseg.cs_flags = cs_flags;
1118                         }
1119                 }
1120                 /* Multi-segment packets must be alone in their MPW. */
1121                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1122                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1123                         assert(inline_room ==
1124                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1125 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1126                         length = 0;
1127 #endif
1128                         do {
1129                                 volatile struct mlx5_wqe_data_seg *dseg;
1130
1131                                 assert(buf);
1132                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1133                                 dseg = mpw.data.dseg[mpw.pkts_n];
1134                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1135                                 *dseg = (struct mlx5_wqe_data_seg){
1136                                         .byte_count = htonl(DATA_LEN(buf)),
1137                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1138                                         .addr = htonll(addr),
1139                                 };
1140 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1141                                 length += DATA_LEN(buf);
1142 #endif
1143                                 buf = buf->next;
1144                                 ++mpw.pkts_n;
1145                                 ++j;
1146                         } while (--segs_n);
1147                         assert(length == mpw.len);
1148                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1149                                 mlx5_mpw_close(txq, &mpw);
1150                 } else {
1151                         unsigned int max;
1152
1153                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1154                         assert(length <= inline_room);
1155                         assert(length == DATA_LEN(buf));
1156                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1157                         (*txq->elts)[elts_head++ & elts_m] = buf;
1158                         /* Maximum number of bytes before wrapping. */
1159                         max = ((((uintptr_t)(txq->wqes)) +
1160                                 (1 << txq->wqe_n) *
1161                                 MLX5_WQE_SIZE) -
1162                                (uintptr_t)mpw.data.raw);
1163                         if (length > max) {
1164                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1165                                            (void *)addr,
1166                                            max);
1167                                 mpw.data.raw = (volatile void *)txq->wqes;
1168                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1169                                            (void *)(addr + max),
1170                                            length - max);
1171                                 mpw.data.raw += length - max;
1172                         } else {
1173                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1174                                            (void *)addr,
1175                                            length);
1176
1177                                 if (length == max)
1178                                         mpw.data.raw =
1179                                                 (volatile void *)txq->wqes;
1180                                 else
1181                                         mpw.data.raw += length;
1182                         }
1183                         ++mpw.pkts_n;
1184                         mpw.total_len += length;
1185                         ++j;
1186                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1187                                 mlx5_mpw_inline_close(txq, &mpw);
1188                                 inline_room =
1189                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1190                         } else {
1191                                 inline_room -= length;
1192                         }
1193                 }
1194 #ifdef MLX5_PMD_SOFT_COUNTERS
1195                 /* Increment sent bytes counter. */
1196                 txq->stats.obytes += length;
1197 #endif
1198                 ++i;
1199         } while (pkts_n);
1200         /* Take a shortcut if nothing must be sent. */
1201         if (unlikely(i == 0))
1202                 return 0;
1203         /* Check whether completion threshold has been reached. */
1204         /* "j" includes both packets and segments. */
1205         comp = txq->elts_comp + j;
1206         if (comp >= MLX5_TX_COMP_THRESH) {
1207                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1208
1209                 /* Request completion on last WQE. */
1210                 wqe->ctrl[2] = htonl(8);
1211                 /* Save elts_head in unused "immediate" field of WQE. */
1212                 wqe->ctrl[3] = elts_head;
1213                 txq->elts_comp = 0;
1214         } else {
1215                 txq->elts_comp = comp;
1216         }
1217 #ifdef MLX5_PMD_SOFT_COUNTERS
1218         /* Increment sent packets counter. */
1219         txq->stats.opackets += i;
1220 #endif
1221         /* Ring QP doorbell. */
1222         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1223                 mlx5_mpw_inline_close(txq, &mpw);
1224         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1225                 mlx5_mpw_close(txq, &mpw);
1226         mlx5_tx_dbrec(txq, mpw.wqe);
1227         txq->elts_head = elts_head;
1228         return i;
1229 }
1230
1231 /**
1232  * Open an Enhanced MPW session.
1233  *
1234  * @param txq
1235  *   Pointer to TX queue structure.
1236  * @param mpw
1237  *   Pointer to MPW session structure.
1238  * @param length
1239  *   Packet length.
1240  */
1241 static inline void
1242 mlx5_empw_new(struct txq *txq, struct mlx5_mpw *mpw, int padding)
1243 {
1244         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1245
1246         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1247         mpw->pkts_n = 0;
1248         mpw->total_len = sizeof(struct mlx5_wqe);
1249         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1250         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1251                                   (txq->wqe_ci << 8) |
1252                                   MLX5_OPCODE_ENHANCED_MPSW);
1253         mpw->wqe->ctrl[2] = 0;
1254         mpw->wqe->ctrl[3] = 0;
1255         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1256         if (unlikely(padding)) {
1257                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1258
1259                 /* Pad the first 2 DWORDs with zero-length inline header. */
1260                 *(volatile uint32_t *)addr = htonl(MLX5_INLINE_SEG);
1261                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1262                         htonl(MLX5_INLINE_SEG);
1263                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1264                 /* Start from the next WQEBB. */
1265                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1266         } else {
1267                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1268         }
1269 }
1270
1271 /**
1272  * Close an Enhanced MPW session.
1273  *
1274  * @param txq
1275  *   Pointer to TX queue structure.
1276  * @param mpw
1277  *   Pointer to MPW session structure.
1278  *
1279  * @return
1280  *   Number of consumed WQEs.
1281  */
1282 static inline uint16_t
1283 mlx5_empw_close(struct txq *txq, struct mlx5_mpw *mpw)
1284 {
1285         uint16_t ret;
1286
1287         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1288          * count as 2.
1289          */
1290         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(mpw->total_len));
1291         mpw->state = MLX5_MPW_STATE_CLOSED;
1292         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1293         txq->wqe_ci += ret;
1294         return ret;
1295 }
1296
1297 /**
1298  * DPDK callback for TX with Enhanced MPW support.
1299  *
1300  * @param dpdk_txq
1301  *   Generic pointer to TX queue structure.
1302  * @param[in] pkts
1303  *   Packets to transmit.
1304  * @param pkts_n
1305  *   Number of packets in array.
1306  *
1307  * @return
1308  *   Number of packets successfully transmitted (<= pkts_n).
1309  */
1310 uint16_t
1311 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1312 {
1313         struct txq *txq = (struct txq *)dpdk_txq;
1314         uint16_t elts_head = txq->elts_head;
1315         const uint16_t elts_n = 1 << txq->elts_n;
1316         const uint16_t elts_m = elts_n - 1;
1317         unsigned int i = 0;
1318         unsigned int j = 0;
1319         uint16_t max_elts;
1320         uint16_t max_wqe;
1321         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1322         unsigned int mpw_room = 0;
1323         unsigned int inl_pad = 0;
1324         uint32_t inl_hdr;
1325         struct mlx5_mpw mpw = {
1326                 .state = MLX5_MPW_STATE_CLOSED,
1327         };
1328
1329         if (unlikely(!pkts_n))
1330                 return 0;
1331         /* Start processing. */
1332         mlx5_tx_complete(txq);
1333         max_elts = (elts_n - (elts_head - txq->elts_tail));
1334         /* A CQE slot must always be available. */
1335         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1336         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1337         if (unlikely(!max_wqe))
1338                 return 0;
1339         do {
1340                 struct rte_mbuf *buf = *(pkts++);
1341                 uintptr_t addr;
1342                 uint64_t naddr;
1343                 unsigned int n;
1344                 unsigned int do_inline = 0; /* Whether inline is possible. */
1345                 uint32_t length;
1346                 unsigned int segs_n = buf->nb_segs;
1347                 uint32_t cs_flags = 0;
1348
1349                 /*
1350                  * Make sure there is enough room to store this packet and
1351                  * that one ring entry remains unused.
1352                  */
1353                 assert(segs_n);
1354                 if (max_elts - j < segs_n)
1355                         break;
1356                 /* Do not bother with large packets MPW cannot handle. */
1357                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1358                         txq->stats.oerrors++;
1359                         break;
1360                 }
1361                 /* Should we enable HW CKSUM offload. */
1362                 if (buf->ol_flags &
1363                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1364                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1365                 /* Retrieve packet information. */
1366                 length = PKT_LEN(buf);
1367                 /* Start new session if:
1368                  * - multi-segment packet
1369                  * - no space left even for a dseg
1370                  * - next packet can be inlined with a new WQE
1371                  * - cs_flag differs
1372                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1373                  * segmented packet.
1374                  */
1375                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1376                         if ((segs_n != 1) ||
1377                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1378                               mpw_room) ||
1379                             (length <= txq->inline_max_packet_sz &&
1380                              inl_pad + sizeof(inl_hdr) + length >
1381                               mpw_room) ||
1382                             (mpw.wqe->eseg.cs_flags != cs_flags))
1383                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1384                 }
1385                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1386                         if (unlikely(segs_n != 1)) {
1387                                 /* Fall back to legacy MPW.
1388                                  * A MPW session consumes 2 WQEs at most to
1389                                  * include MLX5_MPW_DSEG_MAX pointers.
1390                                  */
1391                                 if (unlikely(max_wqe < 2))
1392                                         break;
1393                                 mlx5_mpw_new(txq, &mpw, length);
1394                         } else {
1395                                 /* In Enhanced MPW, inline as much as the budget
1396                                  * is allowed. The remaining space is to be
1397                                  * filled with dsegs. If the title WQEBB isn't
1398                                  * padded, it will have 2 dsegs there.
1399                                  */
1400                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1401                                             (max_inline ? max_inline :
1402                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1403                                             MLX5_WQE_SIZE);
1404                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1405                                               mpw_room))
1406                                         break;
1407                                 /* Don't pad the title WQEBB to not waste WQ. */
1408                                 mlx5_empw_new(txq, &mpw, 0);
1409                                 mpw_room -= mpw.total_len;
1410                                 inl_pad = 0;
1411                                 do_inline =
1412                                         length <= txq->inline_max_packet_sz &&
1413                                         sizeof(inl_hdr) + length <= mpw_room &&
1414                                         !txq->mpw_hdr_dseg;
1415                         }
1416                         mpw.wqe->eseg.cs_flags = cs_flags;
1417                 } else {
1418                         /* Evaluate whether the next packet can be inlined.
1419                          * Inlininig is possible when:
1420                          * - length is less than configured value
1421                          * - length fits for remaining space
1422                          * - not required to fill the title WQEBB with dsegs
1423                          */
1424                         do_inline =
1425                                 length <= txq->inline_max_packet_sz &&
1426                                 inl_pad + sizeof(inl_hdr) + length <=
1427                                  mpw_room &&
1428                                 (!txq->mpw_hdr_dseg ||
1429                                  mpw.total_len >= MLX5_WQE_SIZE);
1430                 }
1431                 /* Multi-segment packets must be alone in their MPW. */
1432                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1433                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1434 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1435                         length = 0;
1436 #endif
1437                         do {
1438                                 volatile struct mlx5_wqe_data_seg *dseg;
1439
1440                                 assert(buf);
1441                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1442                                 dseg = mpw.data.dseg[mpw.pkts_n];
1443                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1444                                 *dseg = (struct mlx5_wqe_data_seg){
1445                                         .byte_count = htonl(DATA_LEN(buf)),
1446                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1447                                         .addr = htonll(addr),
1448                                 };
1449 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1450                                 length += DATA_LEN(buf);
1451 #endif
1452                                 buf = buf->next;
1453                                 ++j;
1454                                 ++mpw.pkts_n;
1455                         } while (--segs_n);
1456                         /* A multi-segmented packet takes one MPW session.
1457                          * TODO: Pack more multi-segmented packets if possible.
1458                          */
1459                         mlx5_mpw_close(txq, &mpw);
1460                         if (mpw.pkts_n < 3)
1461                                 max_wqe--;
1462                         else
1463                                 max_wqe -= 2;
1464                 } else if (do_inline) {
1465                         /* Inline packet into WQE. */
1466                         unsigned int max;
1467
1468                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1469                         assert(length == DATA_LEN(buf));
1470                         inl_hdr = htonl(length | MLX5_INLINE_SEG);
1471                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1472                         mpw.data.raw = (volatile void *)
1473                                 ((uintptr_t)mpw.data.raw + inl_pad);
1474                         max = tx_mlx5_wq_tailroom(txq,
1475                                         (void *)(uintptr_t)mpw.data.raw);
1476                         /* Copy inline header. */
1477                         mpw.data.raw = (volatile void *)
1478                                 mlx5_copy_to_wq(
1479                                           (void *)(uintptr_t)mpw.data.raw,
1480                                           &inl_hdr,
1481                                           sizeof(inl_hdr),
1482                                           (void *)(uintptr_t)txq->wqes,
1483                                           max);
1484                         max = tx_mlx5_wq_tailroom(txq,
1485                                         (void *)(uintptr_t)mpw.data.raw);
1486                         /* Copy packet data. */
1487                         mpw.data.raw = (volatile void *)
1488                                 mlx5_copy_to_wq(
1489                                           (void *)(uintptr_t)mpw.data.raw,
1490                                           (void *)addr,
1491                                           length,
1492                                           (void *)(uintptr_t)txq->wqes,
1493                                           max);
1494                         ++mpw.pkts_n;
1495                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1496                         /* No need to get completion as the entire packet is
1497                          * copied to WQ. Free the buf right away.
1498                          */
1499                         rte_pktmbuf_free_seg(buf);
1500                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1501                         /* Add pad in the next packet if any. */
1502                         inl_pad = (((uintptr_t)mpw.data.raw +
1503                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1504                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1505                                   (uintptr_t)mpw.data.raw;
1506                 } else {
1507                         /* No inline. Load a dseg of packet pointer. */
1508                         volatile rte_v128u32_t *dseg;
1509
1510                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1511                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1512                         assert(length == DATA_LEN(buf));
1513                         if (!tx_mlx5_wq_tailroom(txq,
1514                                         (void *)((uintptr_t)mpw.data.raw
1515                                                 + inl_pad)))
1516                                 dseg = (volatile void *)txq->wqes;
1517                         else
1518                                 dseg = (volatile void *)
1519                                         ((uintptr_t)mpw.data.raw +
1520                                          inl_pad);
1521                         (*txq->elts)[elts_head++ & elts_m] = buf;
1522                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1523                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1524                                 rte_prefetch2((void *)(addr +
1525                                                 n * RTE_CACHE_LINE_SIZE));
1526                         naddr = htonll(addr);
1527                         *dseg = (rte_v128u32_t) {
1528                                 htonl(length),
1529                                 mlx5_tx_mb2mr(txq, buf),
1530                                 naddr,
1531                                 naddr >> 32,
1532                         };
1533                         mpw.data.raw = (volatile void *)(dseg + 1);
1534                         mpw.total_len += (inl_pad + sizeof(*dseg));
1535                         ++j;
1536                         ++mpw.pkts_n;
1537                         mpw_room -= (inl_pad + sizeof(*dseg));
1538                         inl_pad = 0;
1539                 }
1540 #ifdef MLX5_PMD_SOFT_COUNTERS
1541                 /* Increment sent bytes counter. */
1542                 txq->stats.obytes += length;
1543 #endif
1544                 ++i;
1545         } while (i < pkts_n);
1546         /* Take a shortcut if nothing must be sent. */
1547         if (unlikely(i == 0))
1548                 return 0;
1549         /* Check whether completion threshold has been reached. */
1550         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1551                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1552                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1553                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1554
1555                 /* Request completion on last WQE. */
1556                 wqe->ctrl[2] = htonl(8);
1557                 /* Save elts_head in unused "immediate" field of WQE. */
1558                 wqe->ctrl[3] = elts_head;
1559                 txq->elts_comp = 0;
1560                 txq->mpw_comp = txq->wqe_ci;
1561                 txq->cq_pi++;
1562         } else {
1563                 txq->elts_comp += j;
1564         }
1565 #ifdef MLX5_PMD_SOFT_COUNTERS
1566         /* Increment sent packets counter. */
1567         txq->stats.opackets += i;
1568 #endif
1569         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1570                 mlx5_empw_close(txq, &mpw);
1571         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1572                 mlx5_mpw_close(txq, &mpw);
1573         /* Ring QP doorbell. */
1574         mlx5_tx_dbrec(txq, mpw.wqe);
1575         txq->elts_head = elts_head;
1576         return i;
1577 }
1578
1579 /**
1580  * Translate RX completion flags to packet type.
1581  *
1582  * @param[in] cqe
1583  *   Pointer to CQE.
1584  *
1585  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1586  *
1587  * @return
1588  *   Packet type for struct rte_mbuf.
1589  */
1590 static inline uint32_t
1591 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1592 {
1593         uint8_t idx;
1594         uint8_t pinfo = cqe->pkt_info;
1595         uint16_t ptype = cqe->hdr_type_etc;
1596
1597         /*
1598          * The index to the array should have:
1599          * bit[1:0] = l3_hdr_type
1600          * bit[4:2] = l4_hdr_type
1601          * bit[5] = ip_frag
1602          * bit[6] = tunneled
1603          * bit[7] = outer_l3_type
1604          */
1605         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1606         return mlx5_ptype_table[idx];
1607 }
1608
1609 /**
1610  * Get size of the next packet for a given CQE. For compressed CQEs, the
1611  * consumer index is updated only once all packets of the current one have
1612  * been processed.
1613  *
1614  * @param rxq
1615  *   Pointer to RX queue.
1616  * @param cqe
1617  *   CQE to process.
1618  * @param[out] rss_hash
1619  *   Packet RSS Hash result.
1620  *
1621  * @return
1622  *   Packet size in bytes (0 if there is none), -1 in case of completion
1623  *   with error.
1624  */
1625 static inline int
1626 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
1627                  uint16_t cqe_cnt, uint32_t *rss_hash)
1628 {
1629         struct rxq_zip *zip = &rxq->zip;
1630         uint16_t cqe_n = cqe_cnt + 1;
1631         int len = 0;
1632         uint16_t idx, end;
1633
1634         /* Process compressed data in the CQE and mini arrays. */
1635         if (zip->ai) {
1636                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1637                         (volatile struct mlx5_mini_cqe8 (*)[8])
1638                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1639
1640                 len = ntohl((*mc)[zip->ai & 7].byte_cnt);
1641                 *rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
1642                 if ((++zip->ai & 7) == 0) {
1643                         /* Invalidate consumed CQEs */
1644                         idx = zip->ca;
1645                         end = zip->na;
1646                         while (idx != end) {
1647                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1648                                         MLX5_CQE_INVALIDATE;
1649                                 ++idx;
1650                         }
1651                         /*
1652                          * Increment consumer index to skip the number of
1653                          * CQEs consumed. Hardware leaves holes in the CQ
1654                          * ring for software use.
1655                          */
1656                         zip->ca = zip->na;
1657                         zip->na += 8;
1658                 }
1659                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1660                         /* Invalidate the rest */
1661                         idx = zip->ca;
1662                         end = zip->cq_ci;
1663
1664                         while (idx != end) {
1665                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1666                                         MLX5_CQE_INVALIDATE;
1667                                 ++idx;
1668                         }
1669                         rxq->cq_ci = zip->cq_ci;
1670                         zip->ai = 0;
1671                 }
1672         /* No compressed data, get next CQE and verify if it is compressed. */
1673         } else {
1674                 int ret;
1675                 int8_t op_own;
1676
1677                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1678                 if (unlikely(ret == 1))
1679                         return 0;
1680                 ++rxq->cq_ci;
1681                 op_own = cqe->op_own;
1682                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1683                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1684                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1685                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1686                                                           cqe_cnt].pkt_info);
1687
1688                         /* Fix endianness. */
1689                         zip->cqe_cnt = ntohl(cqe->byte_cnt);
1690                         /*
1691                          * Current mini array position is the one returned by
1692                          * check_cqe64().
1693                          *
1694                          * If completion comprises several mini arrays, as a
1695                          * special case the second one is located 7 CQEs after
1696                          * the initial CQE instead of 8 for subsequent ones.
1697                          */
1698                         zip->ca = rxq->cq_ci;
1699                         zip->na = zip->ca + 7;
1700                         /* Compute the next non compressed CQE. */
1701                         --rxq->cq_ci;
1702                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1703                         /* Get packet size to return. */
1704                         len = ntohl((*mc)[0].byte_cnt);
1705                         *rss_hash = ntohl((*mc)[0].rx_hash_result);
1706                         zip->ai = 1;
1707                         /* Prefetch all the entries to be invalidated */
1708                         idx = zip->ca;
1709                         end = zip->cq_ci;
1710                         while (idx != end) {
1711                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1712                                 ++idx;
1713                         }
1714                 } else {
1715                         len = ntohl(cqe->byte_cnt);
1716                         *rss_hash = ntohl(cqe->rx_hash_res);
1717                 }
1718                 /* Error while receiving packet. */
1719                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1720                         return -1;
1721         }
1722         return len;
1723 }
1724
1725 /**
1726  * Translate RX completion flags to offload flags.
1727  *
1728  * @param[in] rxq
1729  *   Pointer to RX queue structure.
1730  * @param[in] cqe
1731  *   Pointer to CQE.
1732  *
1733  * @return
1734  *   Offload flags (ol_flags) for struct rte_mbuf.
1735  */
1736 static inline uint32_t
1737 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
1738 {
1739         uint32_t ol_flags = 0;
1740         uint16_t flags = ntohs(cqe->hdr_type_etc);
1741
1742         ol_flags =
1743                 TRANSPOSE(flags,
1744                           MLX5_CQE_RX_L3_HDR_VALID,
1745                           PKT_RX_IP_CKSUM_GOOD) |
1746                 TRANSPOSE(flags,
1747                           MLX5_CQE_RX_L4_HDR_VALID,
1748                           PKT_RX_L4_CKSUM_GOOD);
1749         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1750                 ol_flags |=
1751                         TRANSPOSE(flags,
1752                                   MLX5_CQE_RX_L3_HDR_VALID,
1753                                   PKT_RX_IP_CKSUM_GOOD) |
1754                         TRANSPOSE(flags,
1755                                   MLX5_CQE_RX_L4_HDR_VALID,
1756                                   PKT_RX_L4_CKSUM_GOOD);
1757         return ol_flags;
1758 }
1759
1760 /**
1761  * DPDK callback for RX.
1762  *
1763  * @param dpdk_rxq
1764  *   Generic pointer to RX queue structure.
1765  * @param[out] pkts
1766  *   Array to store received packets.
1767  * @param pkts_n
1768  *   Maximum number of packets in array.
1769  *
1770  * @return
1771  *   Number of packets successfully received (<= pkts_n).
1772  */
1773 uint16_t
1774 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1775 {
1776         struct rxq *rxq = dpdk_rxq;
1777         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1778         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1779         const unsigned int sges_n = rxq->sges_n;
1780         struct rte_mbuf *pkt = NULL;
1781         struct rte_mbuf *seg = NULL;
1782         volatile struct mlx5_cqe *cqe =
1783                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1784         unsigned int i = 0;
1785         unsigned int rq_ci = rxq->rq_ci << sges_n;
1786         int len = 0; /* keep its value across iterations. */
1787
1788         while (pkts_n) {
1789                 unsigned int idx = rq_ci & wqe_cnt;
1790                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1791                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1792                 uint32_t rss_hash_res = 0;
1793
1794                 if (pkt)
1795                         NEXT(seg) = rep;
1796                 seg = rep;
1797                 rte_prefetch0(seg);
1798                 rte_prefetch0(cqe);
1799                 rte_prefetch0(wqe);
1800                 rep = rte_mbuf_raw_alloc(rxq->mp);
1801                 if (unlikely(rep == NULL)) {
1802                         ++rxq->stats.rx_nombuf;
1803                         if (!pkt) {
1804                                 /*
1805                                  * no buffers before we even started,
1806                                  * bail out silently.
1807                                  */
1808                                 break;
1809                         }
1810                         while (pkt != seg) {
1811                                 assert(pkt != (*rxq->elts)[idx]);
1812                                 rep = NEXT(pkt);
1813                                 NEXT(pkt) = NULL;
1814                                 NB_SEGS(pkt) = 1;
1815                                 rte_mbuf_raw_free(pkt);
1816                                 pkt = rep;
1817                         }
1818                         break;
1819                 }
1820                 if (!pkt) {
1821                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1822                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1823                                                &rss_hash_res);
1824                         if (!len) {
1825                                 rte_mbuf_raw_free(rep);
1826                                 break;
1827                         }
1828                         if (unlikely(len == -1)) {
1829                                 /* RX error, packet is likely too large. */
1830                                 rte_mbuf_raw_free(rep);
1831                                 ++rxq->stats.idropped;
1832                                 goto skip;
1833                         }
1834                         pkt = seg;
1835                         assert(len >= (rxq->crc_present << 2));
1836                         /* Update packet information. */
1837                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1838                         pkt->ol_flags = 0;
1839                         if (rss_hash_res && rxq->rss_hash) {
1840                                 pkt->hash.rss = rss_hash_res;
1841                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1842                         }
1843                         if (rxq->mark &&
1844                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1845                                 pkt->ol_flags |= PKT_RX_FDIR;
1846                                 if (cqe->sop_drop_qpn !=
1847                                     htonl(MLX5_FLOW_MARK_DEFAULT)) {
1848                                         uint32_t mark = cqe->sop_drop_qpn;
1849
1850                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1851                                         pkt->hash.fdir.hi =
1852                                                 mlx5_flow_mark_get(mark);
1853                                 }
1854                         }
1855                         if (rxq->csum | rxq->csum_l2tun)
1856                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1857                         if (rxq->vlan_strip &&
1858                             (cqe->hdr_type_etc &
1859                              htons(MLX5_CQE_VLAN_STRIPPED))) {
1860                                 pkt->ol_flags |= PKT_RX_VLAN_PKT |
1861                                         PKT_RX_VLAN_STRIPPED;
1862                                 pkt->vlan_tci = ntohs(cqe->vlan_info);
1863                         }
1864                         if (rxq->crc_present)
1865                                 len -= ETHER_CRC_LEN;
1866                         PKT_LEN(pkt) = len;
1867                 }
1868                 DATA_LEN(rep) = DATA_LEN(seg);
1869                 PKT_LEN(rep) = PKT_LEN(seg);
1870                 SET_DATA_OFF(rep, DATA_OFF(seg));
1871                 PORT(rep) = PORT(seg);
1872                 (*rxq->elts)[idx] = rep;
1873                 /*
1874                  * Fill NIC descriptor with the new buffer.  The lkey and size
1875                  * of the buffers are already known, only the buffer address
1876                  * changes.
1877                  */
1878                 wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
1879                 if (len > DATA_LEN(seg)) {
1880                         len -= DATA_LEN(seg);
1881                         ++NB_SEGS(pkt);
1882                         ++rq_ci;
1883                         continue;
1884                 }
1885                 DATA_LEN(seg) = len;
1886 #ifdef MLX5_PMD_SOFT_COUNTERS
1887                 /* Increment bytes counter. */
1888                 rxq->stats.ibytes += PKT_LEN(pkt);
1889 #endif
1890                 /* Return packet. */
1891                 *(pkts++) = pkt;
1892                 pkt = NULL;
1893                 --pkts_n;
1894                 ++i;
1895 skip:
1896                 /* Align consumer index to the next stride. */
1897                 rq_ci >>= sges_n;
1898                 ++rq_ci;
1899                 rq_ci <<= sges_n;
1900         }
1901         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1902                 return 0;
1903         /* Update the consumer index. */
1904         rxq->rq_ci = rq_ci >> sges_n;
1905         rte_wmb();
1906         *rxq->cq_db = htonl(rxq->cq_ci);
1907         rte_wmb();
1908         *rxq->rq_db = htonl(rxq->rq_ci);
1909 #ifdef MLX5_PMD_SOFT_COUNTERS
1910         /* Increment packets counter. */
1911         rxq->stats.ipackets += i;
1912 #endif
1913         return i;
1914 }
1915
1916 /**
1917  * Dummy DPDK callback for TX.
1918  *
1919  * This function is used to temporarily replace the real callback during
1920  * unsafe control operations on the queue, or in case of error.
1921  *
1922  * @param dpdk_txq
1923  *   Generic pointer to TX queue structure.
1924  * @param[in] pkts
1925  *   Packets to transmit.
1926  * @param pkts_n
1927  *   Number of packets in array.
1928  *
1929  * @return
1930  *   Number of packets successfully transmitted (<= pkts_n).
1931  */
1932 uint16_t
1933 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1934 {
1935         (void)dpdk_txq;
1936         (void)pkts;
1937         (void)pkts_n;
1938         return 0;
1939 }
1940
1941 /**
1942  * Dummy DPDK callback for RX.
1943  *
1944  * This function is used to temporarily replace the real callback during
1945  * unsafe control operations on the queue, or in case of error.
1946  *
1947  * @param dpdk_rxq
1948  *   Generic pointer to RX queue structure.
1949  * @param[out] pkts
1950  *   Array to store received packets.
1951  * @param pkts_n
1952  *   Maximum number of packets in array.
1953  *
1954  * @return
1955  *   Number of packets successfully received (<= pkts_n).
1956  */
1957 uint16_t
1958 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1959 {
1960         (void)dpdk_rxq;
1961         (void)pkts;
1962         (void)pkts_n;
1963         return 0;
1964 }
1965
1966 /*
1967  * Vectorized Rx/Tx routines are not compiled in when required vector
1968  * instructions are not supported on a target architecture. The following null
1969  * stubs are needed for linkage when those are not included outside of this file
1970  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1971  */
1972
1973 uint16_t __attribute__((weak))
1974 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1975 {
1976         (void)dpdk_txq;
1977         (void)pkts;
1978         (void)pkts_n;
1979         return 0;
1980 }
1981
1982 uint16_t __attribute__((weak))
1983 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1984 {
1985         (void)dpdk_txq;
1986         (void)pkts;
1987         (void)pkts_n;
1988         return 0;
1989 }
1990
1991 uint16_t __attribute__((weak))
1992 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1993 {
1994         (void)dpdk_rxq;
1995         (void)pkts;
1996         (void)pkts_n;
1997         return 0;
1998 }
1999
2000 int __attribute__((weak))
2001 priv_check_raw_vec_tx_support(struct priv *priv)
2002 {
2003         (void)priv;
2004         return -ENOTSUP;
2005 }
2006
2007 int __attribute__((weak))
2008 priv_check_vec_tx_support(struct priv *priv)
2009 {
2010         (void)priv;
2011         return -ENOTSUP;
2012 }
2013
2014 int __attribute__((weak))
2015 rxq_check_vec_support(struct rxq *rxq)
2016 {
2017         (void)rxq;
2018         return -ENOTSUP;
2019 }
2020
2021 int __attribute__((weak))
2022 priv_check_vec_rx_support(struct priv *priv)
2023 {
2024         (void)priv;
2025         return -ENOTSUP;
2026 }