net/mlx5: consolidate condition checks for TSO
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         uint16_t max_wqe;
348         unsigned int comp;
349         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
350         unsigned int segs_n = 0;
351         const unsigned int max_inline = txq->max_inline;
352
353         if (unlikely(!pkts_n))
354                 return 0;
355         /* Prefetch first packet cacheline. */
356         rte_prefetch0(*pkts);
357         /* Start processing. */
358         mlx5_tx_complete(txq);
359         max_elts = (elts_n - (elts_head - txq->elts_tail));
360         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
361         if (unlikely(!max_wqe))
362                 return 0;
363         do {
364                 struct rte_mbuf *buf = NULL;
365                 uint8_t *raw;
366                 volatile struct mlx5_wqe_v *wqe = NULL;
367                 volatile rte_v128u32_t *dseg = NULL;
368                 uint32_t length;
369                 unsigned int ds = 0;
370                 unsigned int sg = 0; /* counter of additional segs attached. */
371                 uintptr_t addr;
372                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
373                 uint16_t tso_header_sz = 0;
374                 uint16_t ehdr;
375                 uint8_t cs_flags;
376                 uint64_t tso = 0;
377                 uint16_t tso_segsz = 0;
378 #ifdef MLX5_PMD_SOFT_COUNTERS
379                 uint32_t total_length = 0;
380 #endif
381
382                 /* first_seg */
383                 buf = *pkts;
384                 segs_n = buf->nb_segs;
385                 /*
386                  * Make sure there is enough room to store this packet and
387                  * that one ring entry remains unused.
388                  */
389                 assert(segs_n);
390                 if (max_elts < segs_n)
391                         break;
392                 max_elts -= segs_n;
393                 sg = --segs_n;
394                 if (unlikely(--max_wqe == 0))
395                         break;
396                 wqe = (volatile struct mlx5_wqe_v *)
397                         tx_mlx5_wqe(txq, txq->wqe_ci);
398                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
399                 if (pkts_n - i > 1)
400                         rte_prefetch0(*(pkts + 1));
401                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
402                 length = DATA_LEN(buf);
403                 ehdr = (((uint8_t *)addr)[1] << 8) |
404                        ((uint8_t *)addr)[0];
405 #ifdef MLX5_PMD_SOFT_COUNTERS
406                 total_length = length;
407 #endif
408                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
409                         txq->stats.oerrors++;
410                         break;
411                 }
412                 /* Update element. */
413                 (*txq->elts)[elts_head & elts_m] = buf;
414                 /* Prefetch next buffer data. */
415                 if (pkts_n - i > 1)
416                         rte_prefetch0(
417                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
418                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
419                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
420                 /* Replace the Ethernet type by the VLAN if necessary. */
421                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
422                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
423                                                          buf->vlan_tci);
424                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
425
426                         addr += 2;
427                         length -= 2;
428                         /* Copy Destination and source mac address. */
429                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
430                         /* Copy VLAN. */
431                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
432                         /* Copy missing two bytes to end the DSeg. */
433                         memcpy((uint8_t *)raw + len + sizeof(vlan),
434                                ((uint8_t *)addr) + len, 2);
435                         addr += len + 2;
436                         length -= (len + 2);
437                 } else {
438                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
439                                MLX5_WQE_DWORD_SIZE);
440                         length -= pkt_inline_sz;
441                         addr += pkt_inline_sz;
442                 }
443                 raw += MLX5_WQE_DWORD_SIZE;
444                 tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
445                 if (tso) {
446                         uintptr_t end =
447                                 (uintptr_t)(((uintptr_t)txq->wqes) +
448                                             (1 << txq->wqe_n) * MLX5_WQE_SIZE);
449                         unsigned int copy_b;
450                         uint8_t vlan_sz =
451                                 (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
452                         const uint64_t is_tunneled =
453                                 buf->ol_flags & (PKT_TX_TUNNEL_GRE |
454                                                  PKT_TX_TUNNEL_VXLAN);
455
456                         tso_header_sz = buf->l2_len + vlan_sz +
457                                         buf->l3_len + buf->l4_len;
458                         tso_segsz = buf->tso_segsz;
459                         if (unlikely(tso_segsz == 0)) {
460                                 txq->stats.oerrors++;
461                                 break;
462                         }
463                         if (is_tunneled && txq->tunnel_en) {
464                                 tso_header_sz += buf->outer_l2_len +
465                                                  buf->outer_l3_len;
466                                 cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
467                         } else {
468                                 cs_flags |= MLX5_ETH_WQE_L4_CSUM;
469                         }
470                         if (unlikely(tso_header_sz > MLX5_MAX_TSO_HEADER)) {
471                                 txq->stats.oerrors++;
472                                 break;
473                         }
474                         copy_b = tso_header_sz - pkt_inline_sz;
475                         /* First seg must contain all headers. */
476                         assert(copy_b <= length);
477                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
478                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
479
480                                 if (unlikely(max_wqe < n))
481                                         break;
482                                 max_wqe -= n;
483                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
484                                 addr += copy_b;
485                                 length -= copy_b;
486                                 /* Include padding for TSO header. */
487                                 copy_b = MLX5_WQE_DS(copy_b) *
488                                          MLX5_WQE_DWORD_SIZE;
489                                 pkt_inline_sz += copy_b;
490                                 raw += copy_b;
491                         } else {
492                                 /* NOP WQE. */
493                                 wqe->ctrl = (rte_v128u32_t){
494                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
495                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
496                                         0,
497                                         0,
498                                 };
499                                 ds = 1;
500 #ifdef MLX5_PMD_SOFT_COUNTERS
501                                 total_length = 0;
502 #endif
503                                 k++;
504                                 goto next_wqe;
505                         }
506                 }
507                 /* Inline if enough room. */
508                 if (max_inline || tso) {
509                         uint32_t inl = 0;
510                         uintptr_t end = (uintptr_t)
511                                 (((uintptr_t)txq->wqes) +
512                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
513                         unsigned int inline_room = max_inline *
514                                                    RTE_CACHE_LINE_SIZE -
515                                                    (pkt_inline_sz - 2) -
516                                                    !!tso * sizeof(inl);
517                         uintptr_t addr_end;
518                         unsigned int copy_b;
519
520 pkt_inline:
521                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
522                                                    RTE_CACHE_LINE_SIZE);
523                         copy_b = (addr_end > addr) ?
524                                  RTE_MIN((addr_end - addr), length) : 0;
525                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
526                                 /*
527                                  * One Dseg remains in the current WQE.  To
528                                  * keep the computation positive, it is
529                                  * removed after the bytes to Dseg conversion.
530                                  */
531                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
532
533                                 if (unlikely(max_wqe < n))
534                                         break;
535                                 max_wqe -= n;
536                                 if (tso && !inl) {
537                                         inl = rte_cpu_to_be_32(copy_b |
538                                                                MLX5_INLINE_SEG);
539                                         rte_memcpy((void *)raw,
540                                                    (void *)&inl, sizeof(inl));
541                                         raw += sizeof(inl);
542                                         pkt_inline_sz += sizeof(inl);
543                                 }
544                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
545                                 addr += copy_b;
546                                 length -= copy_b;
547                                 pkt_inline_sz += copy_b;
548                         }
549                         /*
550                          * 2 DWORDs consumed by the WQE header + ETH segment +
551                          * the size of the inline part of the packet.
552                          */
553                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
554                         if (length > 0) {
555                                 if (ds % (MLX5_WQE_SIZE /
556                                           MLX5_WQE_DWORD_SIZE) == 0) {
557                                         if (unlikely(--max_wqe == 0))
558                                                 break;
559                                         dseg = (volatile rte_v128u32_t *)
560                                                tx_mlx5_wqe(txq, txq->wqe_ci +
561                                                            ds / 4);
562                                 } else {
563                                         dseg = (volatile rte_v128u32_t *)
564                                                 ((uintptr_t)wqe +
565                                                  (ds * MLX5_WQE_DWORD_SIZE));
566                                 }
567                                 goto use_dseg;
568                         } else if (!segs_n) {
569                                 goto next_pkt;
570                         } else {
571                                 raw += copy_b;
572                                 inline_room -= copy_b;
573                                 --segs_n;
574                                 buf = buf->next;
575                                 assert(buf);
576                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
577                                 length = DATA_LEN(buf);
578 #ifdef MLX5_PMD_SOFT_COUNTERS
579                                 total_length += length;
580 #endif
581                                 (*txq->elts)[++elts_head & elts_m] = buf;
582                                 goto pkt_inline;
583                         }
584                 } else {
585                         /*
586                          * No inline has been done in the packet, only the
587                          * Ethernet Header as been stored.
588                          */
589                         dseg = (volatile rte_v128u32_t *)
590                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
591                         ds = 3;
592 use_dseg:
593                         /* Add the remaining packet as a simple ds. */
594                         addr = rte_cpu_to_be_64(addr);
595                         *dseg = (rte_v128u32_t){
596                                 rte_cpu_to_be_32(length),
597                                 mlx5_tx_mb2mr(txq, buf),
598                                 addr,
599                                 addr >> 32,
600                         };
601                         ++ds;
602                         if (!segs_n)
603                                 goto next_pkt;
604                 }
605 next_seg:
606                 assert(buf);
607                 assert(ds);
608                 assert(wqe);
609                 /*
610                  * Spill on next WQE when the current one does not have
611                  * enough room left. Size of WQE must a be a multiple
612                  * of data segment size.
613                  */
614                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
615                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
616                         if (unlikely(--max_wqe == 0))
617                                 break;
618                         dseg = (volatile rte_v128u32_t *)
619                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
620                         rte_prefetch0(tx_mlx5_wqe(txq,
621                                                   txq->wqe_ci + ds / 4 + 1));
622                 } else {
623                         ++dseg;
624                 }
625                 ++ds;
626                 buf = buf->next;
627                 assert(buf);
628                 length = DATA_LEN(buf);
629 #ifdef MLX5_PMD_SOFT_COUNTERS
630                 total_length += length;
631 #endif
632                 /* Store segment information. */
633                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
634                 *dseg = (rte_v128u32_t){
635                         rte_cpu_to_be_32(length),
636                         mlx5_tx_mb2mr(txq, buf),
637                         addr,
638                         addr >> 32,
639                 };
640                 (*txq->elts)[++elts_head & elts_m] = buf;
641                 if (--segs_n)
642                         goto next_seg;
643 next_pkt:
644                 if (ds > MLX5_DSEG_MAX) {
645                         txq->stats.oerrors++;
646                         break;
647                 }
648                 ++elts_head;
649                 ++pkts;
650                 ++i;
651                 j += sg;
652                 /* Initialize known and common part of the WQE structure. */
653                 if (tso) {
654                         wqe->ctrl = (rte_v128u32_t){
655                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
656                                                  MLX5_OPCODE_TSO),
657                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
658                                 0,
659                                 0,
660                         };
661                         wqe->eseg = (rte_v128u32_t){
662                                 0,
663                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
664                                 0,
665                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
666                         };
667                 } else {
668                         wqe->ctrl = (rte_v128u32_t){
669                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
670                                                  MLX5_OPCODE_SEND),
671                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
672                                 0,
673                                 0,
674                         };
675                         wqe->eseg = (rte_v128u32_t){
676                                 0,
677                                 cs_flags,
678                                 0,
679                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
680                         };
681                 }
682 next_wqe:
683                 txq->wqe_ci += (ds + 3) / 4;
684                 /* Save the last successful WQE for completion request */
685                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
686 #ifdef MLX5_PMD_SOFT_COUNTERS
687                 /* Increment sent bytes counter. */
688                 txq->stats.obytes += total_length;
689 #endif
690         } while (i < pkts_n);
691         /* Take a shortcut if nothing must be sent. */
692         if (unlikely((i + k) == 0))
693                 return 0;
694         txq->elts_head += (i + j);
695         /* Check whether completion threshold has been reached. */
696         comp = txq->elts_comp + i + j + k;
697         if (comp >= MLX5_TX_COMP_THRESH) {
698                 /* Request completion on last WQE. */
699                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
700                 /* Save elts_head in unused "immediate" field of WQE. */
701                 last_wqe->ctrl3 = txq->elts_head;
702                 txq->elts_comp = 0;
703         } else {
704                 txq->elts_comp = comp;
705         }
706 #ifdef MLX5_PMD_SOFT_COUNTERS
707         /* Increment sent packets counter. */
708         txq->stats.opackets += i;
709 #endif
710         /* Ring QP doorbell. */
711         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
712         return i;
713 }
714
715 /**
716  * Open a MPW session.
717  *
718  * @param txq
719  *   Pointer to TX queue structure.
720  * @param mpw
721  *   Pointer to MPW session structure.
722  * @param length
723  *   Packet length.
724  */
725 static inline void
726 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
727 {
728         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
729         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
730                 (volatile struct mlx5_wqe_data_seg (*)[])
731                 tx_mlx5_wqe(txq, idx + 1);
732
733         mpw->state = MLX5_MPW_STATE_OPENED;
734         mpw->pkts_n = 0;
735         mpw->len = length;
736         mpw->total_len = 0;
737         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
738         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
739         mpw->wqe->eseg.inline_hdr_sz = 0;
740         mpw->wqe->eseg.rsvd0 = 0;
741         mpw->wqe->eseg.rsvd1 = 0;
742         mpw->wqe->eseg.rsvd2 = 0;
743         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
744                                              (txq->wqe_ci << 8) |
745                                              MLX5_OPCODE_TSO);
746         mpw->wqe->ctrl[2] = 0;
747         mpw->wqe->ctrl[3] = 0;
748         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
749                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
750         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
751                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
752         mpw->data.dseg[2] = &(*dseg)[0];
753         mpw->data.dseg[3] = &(*dseg)[1];
754         mpw->data.dseg[4] = &(*dseg)[2];
755 }
756
757 /**
758  * Close a MPW session.
759  *
760  * @param txq
761  *   Pointer to TX queue structure.
762  * @param mpw
763  *   Pointer to MPW session structure.
764  */
765 static inline void
766 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
767 {
768         unsigned int num = mpw->pkts_n;
769
770         /*
771          * Store size in multiple of 16 bytes. Control and Ethernet segments
772          * count as 2.
773          */
774         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
775         mpw->state = MLX5_MPW_STATE_CLOSED;
776         if (num < 3)
777                 ++txq->wqe_ci;
778         else
779                 txq->wqe_ci += 2;
780         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
781         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
782 }
783
784 /**
785  * DPDK callback for TX with MPW support.
786  *
787  * @param dpdk_txq
788  *   Generic pointer to TX queue structure.
789  * @param[in] pkts
790  *   Packets to transmit.
791  * @param pkts_n
792  *   Number of packets in array.
793  *
794  * @return
795  *   Number of packets successfully transmitted (<= pkts_n).
796  */
797 uint16_t
798 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
799 {
800         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
801         uint16_t elts_head = txq->elts_head;
802         const uint16_t elts_n = 1 << txq->elts_n;
803         const uint16_t elts_m = elts_n - 1;
804         unsigned int i = 0;
805         unsigned int j = 0;
806         uint16_t max_elts;
807         uint16_t max_wqe;
808         unsigned int comp;
809         struct mlx5_mpw mpw = {
810                 .state = MLX5_MPW_STATE_CLOSED,
811         };
812
813         if (unlikely(!pkts_n))
814                 return 0;
815         /* Prefetch first packet cacheline. */
816         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
817         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
818         /* Start processing. */
819         mlx5_tx_complete(txq);
820         max_elts = (elts_n - (elts_head - txq->elts_tail));
821         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
822         if (unlikely(!max_wqe))
823                 return 0;
824         do {
825                 struct rte_mbuf *buf = *(pkts++);
826                 uint32_t length;
827                 unsigned int segs_n = buf->nb_segs;
828                 uint32_t cs_flags;
829
830                 /*
831                  * Make sure there is enough room to store this packet and
832                  * that one ring entry remains unused.
833                  */
834                 assert(segs_n);
835                 if (max_elts < segs_n)
836                         break;
837                 /* Do not bother with large packets MPW cannot handle. */
838                 if (segs_n > MLX5_MPW_DSEG_MAX) {
839                         txq->stats.oerrors++;
840                         break;
841                 }
842                 max_elts -= segs_n;
843                 --pkts_n;
844                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
845                 /* Retrieve packet information. */
846                 length = PKT_LEN(buf);
847                 assert(length);
848                 /* Start new session if packet differs. */
849                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
850                     ((mpw.len != length) ||
851                      (segs_n != 1) ||
852                      (mpw.wqe->eseg.cs_flags != cs_flags)))
853                         mlx5_mpw_close(txq, &mpw);
854                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
855                         /*
856                          * Multi-Packet WQE consumes at most two WQE.
857                          * mlx5_mpw_new() expects to be able to use such
858                          * resources.
859                          */
860                         if (unlikely(max_wqe < 2))
861                                 break;
862                         max_wqe -= 2;
863                         mlx5_mpw_new(txq, &mpw, length);
864                         mpw.wqe->eseg.cs_flags = cs_flags;
865                 }
866                 /* Multi-segment packets must be alone in their MPW. */
867                 assert((segs_n == 1) || (mpw.pkts_n == 0));
868 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
869                 length = 0;
870 #endif
871                 do {
872                         volatile struct mlx5_wqe_data_seg *dseg;
873                         uintptr_t addr;
874
875                         assert(buf);
876                         (*txq->elts)[elts_head++ & elts_m] = buf;
877                         dseg = mpw.data.dseg[mpw.pkts_n];
878                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
879                         *dseg = (struct mlx5_wqe_data_seg){
880                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
881                                 .lkey = mlx5_tx_mb2mr(txq, buf),
882                                 .addr = rte_cpu_to_be_64(addr),
883                         };
884 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
885                         length += DATA_LEN(buf);
886 #endif
887                         buf = buf->next;
888                         ++mpw.pkts_n;
889                         ++j;
890                 } while (--segs_n);
891                 assert(length == mpw.len);
892                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
893                         mlx5_mpw_close(txq, &mpw);
894 #ifdef MLX5_PMD_SOFT_COUNTERS
895                 /* Increment sent bytes counter. */
896                 txq->stats.obytes += length;
897 #endif
898                 ++i;
899         } while (pkts_n);
900         /* Take a shortcut if nothing must be sent. */
901         if (unlikely(i == 0))
902                 return 0;
903         /* Check whether completion threshold has been reached. */
904         /* "j" includes both packets and segments. */
905         comp = txq->elts_comp + j;
906         if (comp >= MLX5_TX_COMP_THRESH) {
907                 volatile struct mlx5_wqe *wqe = mpw.wqe;
908
909                 /* Request completion on last WQE. */
910                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
911                 /* Save elts_head in unused "immediate" field of WQE. */
912                 wqe->ctrl[3] = elts_head;
913                 txq->elts_comp = 0;
914         } else {
915                 txq->elts_comp = comp;
916         }
917 #ifdef MLX5_PMD_SOFT_COUNTERS
918         /* Increment sent packets counter. */
919         txq->stats.opackets += i;
920 #endif
921         /* Ring QP doorbell. */
922         if (mpw.state == MLX5_MPW_STATE_OPENED)
923                 mlx5_mpw_close(txq, &mpw);
924         mlx5_tx_dbrec(txq, mpw.wqe);
925         txq->elts_head = elts_head;
926         return i;
927 }
928
929 /**
930  * Open a MPW inline session.
931  *
932  * @param txq
933  *   Pointer to TX queue structure.
934  * @param mpw
935  *   Pointer to MPW session structure.
936  * @param length
937  *   Packet length.
938  */
939 static inline void
940 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
941                     uint32_t length)
942 {
943         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
944         struct mlx5_wqe_inl_small *inl;
945
946         mpw->state = MLX5_MPW_INL_STATE_OPENED;
947         mpw->pkts_n = 0;
948         mpw->len = length;
949         mpw->total_len = 0;
950         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
951         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
952                                              (txq->wqe_ci << 8) |
953                                              MLX5_OPCODE_TSO);
954         mpw->wqe->ctrl[2] = 0;
955         mpw->wqe->ctrl[3] = 0;
956         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
957         mpw->wqe->eseg.inline_hdr_sz = 0;
958         mpw->wqe->eseg.cs_flags = 0;
959         mpw->wqe->eseg.rsvd0 = 0;
960         mpw->wqe->eseg.rsvd1 = 0;
961         mpw->wqe->eseg.rsvd2 = 0;
962         inl = (struct mlx5_wqe_inl_small *)
963                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
964         mpw->data.raw = (uint8_t *)&inl->raw;
965 }
966
967 /**
968  * Close a MPW inline session.
969  *
970  * @param txq
971  *   Pointer to TX queue structure.
972  * @param mpw
973  *   Pointer to MPW session structure.
974  */
975 static inline void
976 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
977 {
978         unsigned int size;
979         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
980                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
981
982         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
983         /*
984          * Store size in multiple of 16 bytes. Control and Ethernet segments
985          * count as 2.
986          */
987         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
988                                              MLX5_WQE_DS(size));
989         mpw->state = MLX5_MPW_STATE_CLOSED;
990         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
991         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
992 }
993
994 /**
995  * DPDK callback for TX with MPW inline support.
996  *
997  * @param dpdk_txq
998  *   Generic pointer to TX queue structure.
999  * @param[in] pkts
1000  *   Packets to transmit.
1001  * @param pkts_n
1002  *   Number of packets in array.
1003  *
1004  * @return
1005  *   Number of packets successfully transmitted (<= pkts_n).
1006  */
1007 uint16_t
1008 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1009                          uint16_t pkts_n)
1010 {
1011         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1012         uint16_t elts_head = txq->elts_head;
1013         const uint16_t elts_n = 1 << txq->elts_n;
1014         const uint16_t elts_m = elts_n - 1;
1015         unsigned int i = 0;
1016         unsigned int j = 0;
1017         uint16_t max_elts;
1018         uint16_t max_wqe;
1019         unsigned int comp;
1020         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1021         struct mlx5_mpw mpw = {
1022                 .state = MLX5_MPW_STATE_CLOSED,
1023         };
1024         /*
1025          * Compute the maximum number of WQE which can be consumed by inline
1026          * code.
1027          * - 2 DSEG for:
1028          *   - 1 control segment,
1029          *   - 1 Ethernet segment,
1030          * - N Dseg from the inline request.
1031          */
1032         const unsigned int wqe_inl_n =
1033                 ((2 * MLX5_WQE_DWORD_SIZE +
1034                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1035                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1036
1037         if (unlikely(!pkts_n))
1038                 return 0;
1039         /* Prefetch first packet cacheline. */
1040         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1041         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1042         /* Start processing. */
1043         mlx5_tx_complete(txq);
1044         max_elts = (elts_n - (elts_head - txq->elts_tail));
1045         do {
1046                 struct rte_mbuf *buf = *(pkts++);
1047                 uintptr_t addr;
1048                 uint32_t length;
1049                 unsigned int segs_n = buf->nb_segs;
1050                 uint8_t cs_flags;
1051
1052                 /*
1053                  * Make sure there is enough room to store this packet and
1054                  * that one ring entry remains unused.
1055                  */
1056                 assert(segs_n);
1057                 if (max_elts < segs_n)
1058                         break;
1059                 /* Do not bother with large packets MPW cannot handle. */
1060                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1061                         txq->stats.oerrors++;
1062                         break;
1063                 }
1064                 max_elts -= segs_n;
1065                 --pkts_n;
1066                 /*
1067                  * Compute max_wqe in case less WQE were consumed in previous
1068                  * iteration.
1069                  */
1070                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1071                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1072                 /* Retrieve packet information. */
1073                 length = PKT_LEN(buf);
1074                 /* Start new session if packet differs. */
1075                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1076                         if ((mpw.len != length) ||
1077                             (segs_n != 1) ||
1078                             (mpw.wqe->eseg.cs_flags != cs_flags))
1079                                 mlx5_mpw_close(txq, &mpw);
1080                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1081                         if ((mpw.len != length) ||
1082                             (segs_n != 1) ||
1083                             (length > inline_room) ||
1084                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1085                                 mlx5_mpw_inline_close(txq, &mpw);
1086                                 inline_room =
1087                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1088                         }
1089                 }
1090                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1091                         if ((segs_n != 1) ||
1092                             (length > inline_room)) {
1093                                 /*
1094                                  * Multi-Packet WQE consumes at most two WQE.
1095                                  * mlx5_mpw_new() expects to be able to use
1096                                  * such resources.
1097                                  */
1098                                 if (unlikely(max_wqe < 2))
1099                                         break;
1100                                 max_wqe -= 2;
1101                                 mlx5_mpw_new(txq, &mpw, length);
1102                                 mpw.wqe->eseg.cs_flags = cs_flags;
1103                         } else {
1104                                 if (unlikely(max_wqe < wqe_inl_n))
1105                                         break;
1106                                 max_wqe -= wqe_inl_n;
1107                                 mlx5_mpw_inline_new(txq, &mpw, length);
1108                                 mpw.wqe->eseg.cs_flags = cs_flags;
1109                         }
1110                 }
1111                 /* Multi-segment packets must be alone in their MPW. */
1112                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1113                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1114                         assert(inline_room ==
1115                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1116 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1117                         length = 0;
1118 #endif
1119                         do {
1120                                 volatile struct mlx5_wqe_data_seg *dseg;
1121
1122                                 assert(buf);
1123                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1124                                 dseg = mpw.data.dseg[mpw.pkts_n];
1125                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1126                                 *dseg = (struct mlx5_wqe_data_seg){
1127                                         .byte_count =
1128                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1129                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1130                                         .addr = rte_cpu_to_be_64(addr),
1131                                 };
1132 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1133                                 length += DATA_LEN(buf);
1134 #endif
1135                                 buf = buf->next;
1136                                 ++mpw.pkts_n;
1137                                 ++j;
1138                         } while (--segs_n);
1139                         assert(length == mpw.len);
1140                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1141                                 mlx5_mpw_close(txq, &mpw);
1142                 } else {
1143                         unsigned int max;
1144
1145                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1146                         assert(length <= inline_room);
1147                         assert(length == DATA_LEN(buf));
1148                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1149                         (*txq->elts)[elts_head++ & elts_m] = buf;
1150                         /* Maximum number of bytes before wrapping. */
1151                         max = ((((uintptr_t)(txq->wqes)) +
1152                                 (1 << txq->wqe_n) *
1153                                 MLX5_WQE_SIZE) -
1154                                (uintptr_t)mpw.data.raw);
1155                         if (length > max) {
1156                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1157                                            (void *)addr,
1158                                            max);
1159                                 mpw.data.raw = (volatile void *)txq->wqes;
1160                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1161                                            (void *)(addr + max),
1162                                            length - max);
1163                                 mpw.data.raw += length - max;
1164                         } else {
1165                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1166                                            (void *)addr,
1167                                            length);
1168
1169                                 if (length == max)
1170                                         mpw.data.raw =
1171                                                 (volatile void *)txq->wqes;
1172                                 else
1173                                         mpw.data.raw += length;
1174                         }
1175                         ++mpw.pkts_n;
1176                         mpw.total_len += length;
1177                         ++j;
1178                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1179                                 mlx5_mpw_inline_close(txq, &mpw);
1180                                 inline_room =
1181                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1182                         } else {
1183                                 inline_room -= length;
1184                         }
1185                 }
1186 #ifdef MLX5_PMD_SOFT_COUNTERS
1187                 /* Increment sent bytes counter. */
1188                 txq->stats.obytes += length;
1189 #endif
1190                 ++i;
1191         } while (pkts_n);
1192         /* Take a shortcut if nothing must be sent. */
1193         if (unlikely(i == 0))
1194                 return 0;
1195         /* Check whether completion threshold has been reached. */
1196         /* "j" includes both packets and segments. */
1197         comp = txq->elts_comp + j;
1198         if (comp >= MLX5_TX_COMP_THRESH) {
1199                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1200
1201                 /* Request completion on last WQE. */
1202                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1203                 /* Save elts_head in unused "immediate" field of WQE. */
1204                 wqe->ctrl[3] = elts_head;
1205                 txq->elts_comp = 0;
1206         } else {
1207                 txq->elts_comp = comp;
1208         }
1209 #ifdef MLX5_PMD_SOFT_COUNTERS
1210         /* Increment sent packets counter. */
1211         txq->stats.opackets += i;
1212 #endif
1213         /* Ring QP doorbell. */
1214         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1215                 mlx5_mpw_inline_close(txq, &mpw);
1216         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1217                 mlx5_mpw_close(txq, &mpw);
1218         mlx5_tx_dbrec(txq, mpw.wqe);
1219         txq->elts_head = elts_head;
1220         return i;
1221 }
1222
1223 /**
1224  * Open an Enhanced MPW session.
1225  *
1226  * @param txq
1227  *   Pointer to TX queue structure.
1228  * @param mpw
1229  *   Pointer to MPW session structure.
1230  * @param length
1231  *   Packet length.
1232  */
1233 static inline void
1234 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1235 {
1236         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1237
1238         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1239         mpw->pkts_n = 0;
1240         mpw->total_len = sizeof(struct mlx5_wqe);
1241         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1242         mpw->wqe->ctrl[0] =
1243                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1244                                  (txq->wqe_ci << 8) |
1245                                  MLX5_OPCODE_ENHANCED_MPSW);
1246         mpw->wqe->ctrl[2] = 0;
1247         mpw->wqe->ctrl[3] = 0;
1248         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1249         if (unlikely(padding)) {
1250                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1251
1252                 /* Pad the first 2 DWORDs with zero-length inline header. */
1253                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1254                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1255                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1256                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1257                 /* Start from the next WQEBB. */
1258                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1259         } else {
1260                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1261         }
1262 }
1263
1264 /**
1265  * Close an Enhanced MPW session.
1266  *
1267  * @param txq
1268  *   Pointer to TX queue structure.
1269  * @param mpw
1270  *   Pointer to MPW session structure.
1271  *
1272  * @return
1273  *   Number of consumed WQEs.
1274  */
1275 static inline uint16_t
1276 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1277 {
1278         uint16_t ret;
1279
1280         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1281          * count as 2.
1282          */
1283         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1284                                              MLX5_WQE_DS(mpw->total_len));
1285         mpw->state = MLX5_MPW_STATE_CLOSED;
1286         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1287         txq->wqe_ci += ret;
1288         return ret;
1289 }
1290
1291 /**
1292  * DPDK callback for TX with Enhanced MPW support.
1293  *
1294  * @param dpdk_txq
1295  *   Generic pointer to TX queue structure.
1296  * @param[in] pkts
1297  *   Packets to transmit.
1298  * @param pkts_n
1299  *   Number of packets in array.
1300  *
1301  * @return
1302  *   Number of packets successfully transmitted (<= pkts_n).
1303  */
1304 uint16_t
1305 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1306 {
1307         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1308         uint16_t elts_head = txq->elts_head;
1309         const uint16_t elts_n = 1 << txq->elts_n;
1310         const uint16_t elts_m = elts_n - 1;
1311         unsigned int i = 0;
1312         unsigned int j = 0;
1313         uint16_t max_elts;
1314         uint16_t max_wqe;
1315         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1316         unsigned int mpw_room = 0;
1317         unsigned int inl_pad = 0;
1318         uint32_t inl_hdr;
1319         struct mlx5_mpw mpw = {
1320                 .state = MLX5_MPW_STATE_CLOSED,
1321         };
1322
1323         if (unlikely(!pkts_n))
1324                 return 0;
1325         /* Start processing. */
1326         mlx5_tx_complete(txq);
1327         max_elts = (elts_n - (elts_head - txq->elts_tail));
1328         /* A CQE slot must always be available. */
1329         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1330         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1331         if (unlikely(!max_wqe))
1332                 return 0;
1333         do {
1334                 struct rte_mbuf *buf = *(pkts++);
1335                 uintptr_t addr;
1336                 unsigned int n;
1337                 unsigned int do_inline = 0; /* Whether inline is possible. */
1338                 uint32_t length;
1339                 unsigned int segs_n = buf->nb_segs;
1340                 uint8_t cs_flags;
1341
1342                 /*
1343                  * Make sure there is enough room to store this packet and
1344                  * that one ring entry remains unused.
1345                  */
1346                 assert(segs_n);
1347                 if (max_elts - j < segs_n)
1348                         break;
1349                 /* Do not bother with large packets MPW cannot handle. */
1350                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1351                         txq->stats.oerrors++;
1352                         break;
1353                 }
1354                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1355                 /* Retrieve packet information. */
1356                 length = PKT_LEN(buf);
1357                 /* Start new session if:
1358                  * - multi-segment packet
1359                  * - no space left even for a dseg
1360                  * - next packet can be inlined with a new WQE
1361                  * - cs_flag differs
1362                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1363                  * segmented packet.
1364                  */
1365                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1366                         if ((segs_n != 1) ||
1367                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1368                               mpw_room) ||
1369                             (length <= txq->inline_max_packet_sz &&
1370                              inl_pad + sizeof(inl_hdr) + length >
1371                               mpw_room) ||
1372                             (mpw.wqe->eseg.cs_flags != cs_flags))
1373                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1374                 }
1375                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1376                         if (unlikely(segs_n != 1)) {
1377                                 /* Fall back to legacy MPW.
1378                                  * A MPW session consumes 2 WQEs at most to
1379                                  * include MLX5_MPW_DSEG_MAX pointers.
1380                                  */
1381                                 if (unlikely(max_wqe < 2))
1382                                         break;
1383                                 mlx5_mpw_new(txq, &mpw, length);
1384                         } else {
1385                                 /* In Enhanced MPW, inline as much as the budget
1386                                  * is allowed. The remaining space is to be
1387                                  * filled with dsegs. If the title WQEBB isn't
1388                                  * padded, it will have 2 dsegs there.
1389                                  */
1390                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1391                                             (max_inline ? max_inline :
1392                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1393                                             MLX5_WQE_SIZE);
1394                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1395                                               mpw_room))
1396                                         break;
1397                                 /* Don't pad the title WQEBB to not waste WQ. */
1398                                 mlx5_empw_new(txq, &mpw, 0);
1399                                 mpw_room -= mpw.total_len;
1400                                 inl_pad = 0;
1401                                 do_inline =
1402                                         length <= txq->inline_max_packet_sz &&
1403                                         sizeof(inl_hdr) + length <= mpw_room &&
1404                                         !txq->mpw_hdr_dseg;
1405                         }
1406                         mpw.wqe->eseg.cs_flags = cs_flags;
1407                 } else {
1408                         /* Evaluate whether the next packet can be inlined.
1409                          * Inlininig is possible when:
1410                          * - length is less than configured value
1411                          * - length fits for remaining space
1412                          * - not required to fill the title WQEBB with dsegs
1413                          */
1414                         do_inline =
1415                                 length <= txq->inline_max_packet_sz &&
1416                                 inl_pad + sizeof(inl_hdr) + length <=
1417                                  mpw_room &&
1418                                 (!txq->mpw_hdr_dseg ||
1419                                  mpw.total_len >= MLX5_WQE_SIZE);
1420                 }
1421                 /* Multi-segment packets must be alone in their MPW. */
1422                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1423                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1424 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1425                         length = 0;
1426 #endif
1427                         do {
1428                                 volatile struct mlx5_wqe_data_seg *dseg;
1429
1430                                 assert(buf);
1431                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1432                                 dseg = mpw.data.dseg[mpw.pkts_n];
1433                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1434                                 *dseg = (struct mlx5_wqe_data_seg){
1435                                         .byte_count = rte_cpu_to_be_32(
1436                                                                 DATA_LEN(buf)),
1437                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1438                                         .addr = rte_cpu_to_be_64(addr),
1439                                 };
1440 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1441                                 length += DATA_LEN(buf);
1442 #endif
1443                                 buf = buf->next;
1444                                 ++j;
1445                                 ++mpw.pkts_n;
1446                         } while (--segs_n);
1447                         /* A multi-segmented packet takes one MPW session.
1448                          * TODO: Pack more multi-segmented packets if possible.
1449                          */
1450                         mlx5_mpw_close(txq, &mpw);
1451                         if (mpw.pkts_n < 3)
1452                                 max_wqe--;
1453                         else
1454                                 max_wqe -= 2;
1455                 } else if (do_inline) {
1456                         /* Inline packet into WQE. */
1457                         unsigned int max;
1458
1459                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1460                         assert(length == DATA_LEN(buf));
1461                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1462                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1463                         mpw.data.raw = (volatile void *)
1464                                 ((uintptr_t)mpw.data.raw + inl_pad);
1465                         max = tx_mlx5_wq_tailroom(txq,
1466                                         (void *)(uintptr_t)mpw.data.raw);
1467                         /* Copy inline header. */
1468                         mpw.data.raw = (volatile void *)
1469                                 mlx5_copy_to_wq(
1470                                           (void *)(uintptr_t)mpw.data.raw,
1471                                           &inl_hdr,
1472                                           sizeof(inl_hdr),
1473                                           (void *)(uintptr_t)txq->wqes,
1474                                           max);
1475                         max = tx_mlx5_wq_tailroom(txq,
1476                                         (void *)(uintptr_t)mpw.data.raw);
1477                         /* Copy packet data. */
1478                         mpw.data.raw = (volatile void *)
1479                                 mlx5_copy_to_wq(
1480                                           (void *)(uintptr_t)mpw.data.raw,
1481                                           (void *)addr,
1482                                           length,
1483                                           (void *)(uintptr_t)txq->wqes,
1484                                           max);
1485                         ++mpw.pkts_n;
1486                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1487                         /* No need to get completion as the entire packet is
1488                          * copied to WQ. Free the buf right away.
1489                          */
1490                         rte_pktmbuf_free_seg(buf);
1491                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1492                         /* Add pad in the next packet if any. */
1493                         inl_pad = (((uintptr_t)mpw.data.raw +
1494                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1495                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1496                                   (uintptr_t)mpw.data.raw;
1497                 } else {
1498                         /* No inline. Load a dseg of packet pointer. */
1499                         volatile rte_v128u32_t *dseg;
1500
1501                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1502                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1503                         assert(length == DATA_LEN(buf));
1504                         if (!tx_mlx5_wq_tailroom(txq,
1505                                         (void *)((uintptr_t)mpw.data.raw
1506                                                 + inl_pad)))
1507                                 dseg = (volatile void *)txq->wqes;
1508                         else
1509                                 dseg = (volatile void *)
1510                                         ((uintptr_t)mpw.data.raw +
1511                                          inl_pad);
1512                         (*txq->elts)[elts_head++ & elts_m] = buf;
1513                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1514                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1515                                 rte_prefetch2((void *)(addr +
1516                                                 n * RTE_CACHE_LINE_SIZE));
1517                         addr = rte_cpu_to_be_64(addr);
1518                         *dseg = (rte_v128u32_t) {
1519                                 rte_cpu_to_be_32(length),
1520                                 mlx5_tx_mb2mr(txq, buf),
1521                                 addr,
1522                                 addr >> 32,
1523                         };
1524                         mpw.data.raw = (volatile void *)(dseg + 1);
1525                         mpw.total_len += (inl_pad + sizeof(*dseg));
1526                         ++j;
1527                         ++mpw.pkts_n;
1528                         mpw_room -= (inl_pad + sizeof(*dseg));
1529                         inl_pad = 0;
1530                 }
1531 #ifdef MLX5_PMD_SOFT_COUNTERS
1532                 /* Increment sent bytes counter. */
1533                 txq->stats.obytes += length;
1534 #endif
1535                 ++i;
1536         } while (i < pkts_n);
1537         /* Take a shortcut if nothing must be sent. */
1538         if (unlikely(i == 0))
1539                 return 0;
1540         /* Check whether completion threshold has been reached. */
1541         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1542                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1543                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1544                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1545
1546                 /* Request completion on last WQE. */
1547                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1548                 /* Save elts_head in unused "immediate" field of WQE. */
1549                 wqe->ctrl[3] = elts_head;
1550                 txq->elts_comp = 0;
1551                 txq->mpw_comp = txq->wqe_ci;
1552                 txq->cq_pi++;
1553         } else {
1554                 txq->elts_comp += j;
1555         }
1556 #ifdef MLX5_PMD_SOFT_COUNTERS
1557         /* Increment sent packets counter. */
1558         txq->stats.opackets += i;
1559 #endif
1560         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1561                 mlx5_empw_close(txq, &mpw);
1562         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1563                 mlx5_mpw_close(txq, &mpw);
1564         /* Ring QP doorbell. */
1565         mlx5_tx_dbrec(txq, mpw.wqe);
1566         txq->elts_head = elts_head;
1567         return i;
1568 }
1569
1570 /**
1571  * Translate RX completion flags to packet type.
1572  *
1573  * @param[in] cqe
1574  *   Pointer to CQE.
1575  *
1576  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1577  *
1578  * @return
1579  *   Packet type for struct rte_mbuf.
1580  */
1581 static inline uint32_t
1582 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1583 {
1584         uint8_t idx;
1585         uint8_t pinfo = cqe->pkt_info;
1586         uint16_t ptype = cqe->hdr_type_etc;
1587
1588         /*
1589          * The index to the array should have:
1590          * bit[1:0] = l3_hdr_type
1591          * bit[4:2] = l4_hdr_type
1592          * bit[5] = ip_frag
1593          * bit[6] = tunneled
1594          * bit[7] = outer_l3_type
1595          */
1596         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1597         return mlx5_ptype_table[idx];
1598 }
1599
1600 /**
1601  * Get size of the next packet for a given CQE. For compressed CQEs, the
1602  * consumer index is updated only once all packets of the current one have
1603  * been processed.
1604  *
1605  * @param rxq
1606  *   Pointer to RX queue.
1607  * @param cqe
1608  *   CQE to process.
1609  * @param[out] rss_hash
1610  *   Packet RSS Hash result.
1611  *
1612  * @return
1613  *   Packet size in bytes (0 if there is none), -1 in case of completion
1614  *   with error.
1615  */
1616 static inline int
1617 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1618                  uint16_t cqe_cnt, uint32_t *rss_hash)
1619 {
1620         struct rxq_zip *zip = &rxq->zip;
1621         uint16_t cqe_n = cqe_cnt + 1;
1622         int len = 0;
1623         uint16_t idx, end;
1624
1625         /* Process compressed data in the CQE and mini arrays. */
1626         if (zip->ai) {
1627                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1628                         (volatile struct mlx5_mini_cqe8 (*)[8])
1629                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1630
1631                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1632                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1633                 if ((++zip->ai & 7) == 0) {
1634                         /* Invalidate consumed CQEs */
1635                         idx = zip->ca;
1636                         end = zip->na;
1637                         while (idx != end) {
1638                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1639                                         MLX5_CQE_INVALIDATE;
1640                                 ++idx;
1641                         }
1642                         /*
1643                          * Increment consumer index to skip the number of
1644                          * CQEs consumed. Hardware leaves holes in the CQ
1645                          * ring for software use.
1646                          */
1647                         zip->ca = zip->na;
1648                         zip->na += 8;
1649                 }
1650                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1651                         /* Invalidate the rest */
1652                         idx = zip->ca;
1653                         end = zip->cq_ci;
1654
1655                         while (idx != end) {
1656                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1657                                         MLX5_CQE_INVALIDATE;
1658                                 ++idx;
1659                         }
1660                         rxq->cq_ci = zip->cq_ci;
1661                         zip->ai = 0;
1662                 }
1663         /* No compressed data, get next CQE and verify if it is compressed. */
1664         } else {
1665                 int ret;
1666                 int8_t op_own;
1667
1668                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1669                 if (unlikely(ret == 1))
1670                         return 0;
1671                 ++rxq->cq_ci;
1672                 op_own = cqe->op_own;
1673                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1674                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1675                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1676                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1677                                                           cqe_cnt].pkt_info);
1678
1679                         /* Fix endianness. */
1680                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1681                         /*
1682                          * Current mini array position is the one returned by
1683                          * check_cqe64().
1684                          *
1685                          * If completion comprises several mini arrays, as a
1686                          * special case the second one is located 7 CQEs after
1687                          * the initial CQE instead of 8 for subsequent ones.
1688                          */
1689                         zip->ca = rxq->cq_ci;
1690                         zip->na = zip->ca + 7;
1691                         /* Compute the next non compressed CQE. */
1692                         --rxq->cq_ci;
1693                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1694                         /* Get packet size to return. */
1695                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1696                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1697                         zip->ai = 1;
1698                         /* Prefetch all the entries to be invalidated */
1699                         idx = zip->ca;
1700                         end = zip->cq_ci;
1701                         while (idx != end) {
1702                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1703                                 ++idx;
1704                         }
1705                 } else {
1706                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1707                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1708                 }
1709                 /* Error while receiving packet. */
1710                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1711                         return -1;
1712         }
1713         return len;
1714 }
1715
1716 /**
1717  * Translate RX completion flags to offload flags.
1718  *
1719  * @param[in] rxq
1720  *   Pointer to RX queue structure.
1721  * @param[in] cqe
1722  *   Pointer to CQE.
1723  *
1724  * @return
1725  *   Offload flags (ol_flags) for struct rte_mbuf.
1726  */
1727 static inline uint32_t
1728 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1729 {
1730         uint32_t ol_flags = 0;
1731         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1732
1733         ol_flags =
1734                 TRANSPOSE(flags,
1735                           MLX5_CQE_RX_L3_HDR_VALID,
1736                           PKT_RX_IP_CKSUM_GOOD) |
1737                 TRANSPOSE(flags,
1738                           MLX5_CQE_RX_L4_HDR_VALID,
1739                           PKT_RX_L4_CKSUM_GOOD);
1740         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1741                 ol_flags |=
1742                         TRANSPOSE(flags,
1743                                   MLX5_CQE_RX_L3_HDR_VALID,
1744                                   PKT_RX_IP_CKSUM_GOOD) |
1745                         TRANSPOSE(flags,
1746                                   MLX5_CQE_RX_L4_HDR_VALID,
1747                                   PKT_RX_L4_CKSUM_GOOD);
1748         return ol_flags;
1749 }
1750
1751 /**
1752  * DPDK callback for RX.
1753  *
1754  * @param dpdk_rxq
1755  *   Generic pointer to RX queue structure.
1756  * @param[out] pkts
1757  *   Array to store received packets.
1758  * @param pkts_n
1759  *   Maximum number of packets in array.
1760  *
1761  * @return
1762  *   Number of packets successfully received (<= pkts_n).
1763  */
1764 uint16_t
1765 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1766 {
1767         struct mlx5_rxq_data *rxq = dpdk_rxq;
1768         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1769         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1770         const unsigned int sges_n = rxq->sges_n;
1771         struct rte_mbuf *pkt = NULL;
1772         struct rte_mbuf *seg = NULL;
1773         volatile struct mlx5_cqe *cqe =
1774                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1775         unsigned int i = 0;
1776         unsigned int rq_ci = rxq->rq_ci << sges_n;
1777         int len = 0; /* keep its value across iterations. */
1778
1779         while (pkts_n) {
1780                 unsigned int idx = rq_ci & wqe_cnt;
1781                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1782                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1783                 uint32_t rss_hash_res = 0;
1784
1785                 if (pkt)
1786                         NEXT(seg) = rep;
1787                 seg = rep;
1788                 rte_prefetch0(seg);
1789                 rte_prefetch0(cqe);
1790                 rte_prefetch0(wqe);
1791                 rep = rte_mbuf_raw_alloc(rxq->mp);
1792                 if (unlikely(rep == NULL)) {
1793                         ++rxq->stats.rx_nombuf;
1794                         if (!pkt) {
1795                                 /*
1796                                  * no buffers before we even started,
1797                                  * bail out silently.
1798                                  */
1799                                 break;
1800                         }
1801                         while (pkt != seg) {
1802                                 assert(pkt != (*rxq->elts)[idx]);
1803                                 rep = NEXT(pkt);
1804                                 NEXT(pkt) = NULL;
1805                                 NB_SEGS(pkt) = 1;
1806                                 rte_mbuf_raw_free(pkt);
1807                                 pkt = rep;
1808                         }
1809                         break;
1810                 }
1811                 if (!pkt) {
1812                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1813                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1814                                                &rss_hash_res);
1815                         if (!len) {
1816                                 rte_mbuf_raw_free(rep);
1817                                 break;
1818                         }
1819                         if (unlikely(len == -1)) {
1820                                 /* RX error, packet is likely too large. */
1821                                 rte_mbuf_raw_free(rep);
1822                                 ++rxq->stats.idropped;
1823                                 goto skip;
1824                         }
1825                         pkt = seg;
1826                         assert(len >= (rxq->crc_present << 2));
1827                         /* Update packet information. */
1828                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1829                         pkt->ol_flags = 0;
1830                         if (rss_hash_res && rxq->rss_hash) {
1831                                 pkt->hash.rss = rss_hash_res;
1832                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1833                         }
1834                         if (rxq->mark &&
1835                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1836                                 pkt->ol_flags |= PKT_RX_FDIR;
1837                                 if (cqe->sop_drop_qpn !=
1838                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1839                                         uint32_t mark = cqe->sop_drop_qpn;
1840
1841                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1842                                         pkt->hash.fdir.hi =
1843                                                 mlx5_flow_mark_get(mark);
1844                                 }
1845                         }
1846                         if (rxq->csum | rxq->csum_l2tun)
1847                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1848                         if (rxq->vlan_strip &&
1849                             (cqe->hdr_type_etc &
1850                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1851                                 pkt->ol_flags |= PKT_RX_VLAN |
1852                                         PKT_RX_VLAN_STRIPPED;
1853                                 pkt->vlan_tci =
1854                                         rte_be_to_cpu_16(cqe->vlan_info);
1855                         }
1856                         if (rxq->hw_timestamp) {
1857                                 pkt->timestamp =
1858                                         rte_be_to_cpu_64(cqe->timestamp);
1859                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1860                         }
1861                         if (rxq->crc_present)
1862                                 len -= ETHER_CRC_LEN;
1863                         PKT_LEN(pkt) = len;
1864                 }
1865                 DATA_LEN(rep) = DATA_LEN(seg);
1866                 PKT_LEN(rep) = PKT_LEN(seg);
1867                 SET_DATA_OFF(rep, DATA_OFF(seg));
1868                 PORT(rep) = PORT(seg);
1869                 (*rxq->elts)[idx] = rep;
1870                 /*
1871                  * Fill NIC descriptor with the new buffer.  The lkey and size
1872                  * of the buffers are already known, only the buffer address
1873                  * changes.
1874                  */
1875                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1876                 if (len > DATA_LEN(seg)) {
1877                         len -= DATA_LEN(seg);
1878                         ++NB_SEGS(pkt);
1879                         ++rq_ci;
1880                         continue;
1881                 }
1882                 DATA_LEN(seg) = len;
1883 #ifdef MLX5_PMD_SOFT_COUNTERS
1884                 /* Increment bytes counter. */
1885                 rxq->stats.ibytes += PKT_LEN(pkt);
1886 #endif
1887                 /* Return packet. */
1888                 *(pkts++) = pkt;
1889                 pkt = NULL;
1890                 --pkts_n;
1891                 ++i;
1892 skip:
1893                 /* Align consumer index to the next stride. */
1894                 rq_ci >>= sges_n;
1895                 ++rq_ci;
1896                 rq_ci <<= sges_n;
1897         }
1898         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1899                 return 0;
1900         /* Update the consumer index. */
1901         rxq->rq_ci = rq_ci >> sges_n;
1902         rte_io_wmb();
1903         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1904         rte_io_wmb();
1905         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1906 #ifdef MLX5_PMD_SOFT_COUNTERS
1907         /* Increment packets counter. */
1908         rxq->stats.ipackets += i;
1909 #endif
1910         return i;
1911 }
1912
1913 /**
1914  * Dummy DPDK callback for TX.
1915  *
1916  * This function is used to temporarily replace the real callback during
1917  * unsafe control operations on the queue, or in case of error.
1918  *
1919  * @param dpdk_txq
1920  *   Generic pointer to TX queue structure.
1921  * @param[in] pkts
1922  *   Packets to transmit.
1923  * @param pkts_n
1924  *   Number of packets in array.
1925  *
1926  * @return
1927  *   Number of packets successfully transmitted (<= pkts_n).
1928  */
1929 uint16_t
1930 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1931 {
1932         (void)dpdk_txq;
1933         (void)pkts;
1934         (void)pkts_n;
1935         return 0;
1936 }
1937
1938 /**
1939  * Dummy DPDK callback for RX.
1940  *
1941  * This function is used to temporarily replace the real callback during
1942  * unsafe control operations on the queue, or in case of error.
1943  *
1944  * @param dpdk_rxq
1945  *   Generic pointer to RX queue structure.
1946  * @param[out] pkts
1947  *   Array to store received packets.
1948  * @param pkts_n
1949  *   Maximum number of packets in array.
1950  *
1951  * @return
1952  *   Number of packets successfully received (<= pkts_n).
1953  */
1954 uint16_t
1955 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1956 {
1957         (void)dpdk_rxq;
1958         (void)pkts;
1959         (void)pkts_n;
1960         return 0;
1961 }
1962
1963 /*
1964  * Vectorized Rx/Tx routines are not compiled in when required vector
1965  * instructions are not supported on a target architecture. The following null
1966  * stubs are needed for linkage when those are not included outside of this file
1967  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1968  */
1969
1970 uint16_t __attribute__((weak))
1971 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1972 {
1973         (void)dpdk_txq;
1974         (void)pkts;
1975         (void)pkts_n;
1976         return 0;
1977 }
1978
1979 uint16_t __attribute__((weak))
1980 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1981 {
1982         (void)dpdk_txq;
1983         (void)pkts;
1984         (void)pkts_n;
1985         return 0;
1986 }
1987
1988 uint16_t __attribute__((weak))
1989 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1990 {
1991         (void)dpdk_rxq;
1992         (void)pkts;
1993         (void)pkts_n;
1994         return 0;
1995 }
1996
1997 int __attribute__((weak))
1998 priv_check_raw_vec_tx_support(struct priv *priv)
1999 {
2000         (void)priv;
2001         return -ENOTSUP;
2002 }
2003
2004 int __attribute__((weak))
2005 priv_check_vec_tx_support(struct priv *priv)
2006 {
2007         (void)priv;
2008         return -ENOTSUP;
2009 }
2010
2011 int __attribute__((weak))
2012 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2013 {
2014         (void)rxq;
2015         return -ENOTSUP;
2016 }
2017
2018 int __attribute__((weak))
2019 priv_check_vec_rx_support(struct priv *priv)
2020 {
2021         (void)priv;
2022         return -ENOTSUP;
2023 }