net/mlx5: fix packet type flags for Ethernet only frame
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         unsigned int max_inline = txq->max_inline;
348         const unsigned int inline_en = !!max_inline && txq->inline_en;
349         uint16_t max_wqe;
350         unsigned int comp;
351         volatile struct mlx5_wqe_v *wqe = NULL;
352         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
353         unsigned int segs_n = 0;
354         struct rte_mbuf *buf = NULL;
355         uint8_t *raw;
356
357         if (unlikely(!pkts_n))
358                 return 0;
359         /* Prefetch first packet cacheline. */
360         rte_prefetch0(*pkts);
361         /* Start processing. */
362         mlx5_tx_complete(txq);
363         max_elts = (elts_n - (elts_head - txq->elts_tail));
364         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
365         if (unlikely(!max_wqe))
366                 return 0;
367         do {
368                 volatile rte_v128u32_t *dseg = NULL;
369                 uint32_t length;
370                 unsigned int ds = 0;
371                 unsigned int sg = 0; /* counter of additional segs attached. */
372                 uintptr_t addr;
373                 uint64_t naddr;
374                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
375                 uint16_t tso_header_sz = 0;
376                 uint16_t ehdr;
377                 uint8_t cs_flags = 0;
378                 uint64_t tso = 0;
379                 uint16_t tso_segsz = 0;
380 #ifdef MLX5_PMD_SOFT_COUNTERS
381                 uint32_t total_length = 0;
382 #endif
383
384                 /* first_seg */
385                 buf = *pkts;
386                 segs_n = buf->nb_segs;
387                 /*
388                  * Make sure there is enough room to store this packet and
389                  * that one ring entry remains unused.
390                  */
391                 assert(segs_n);
392                 if (max_elts < segs_n)
393                         break;
394                 max_elts -= segs_n;
395                 --segs_n;
396                 if (unlikely(--max_wqe == 0))
397                         break;
398                 wqe = (volatile struct mlx5_wqe_v *)
399                         tx_mlx5_wqe(txq, txq->wqe_ci);
400                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
401                 if (pkts_n - i > 1)
402                         rte_prefetch0(*(pkts + 1));
403                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
404                 length = DATA_LEN(buf);
405                 ehdr = (((uint8_t *)addr)[1] << 8) |
406                        ((uint8_t *)addr)[0];
407 #ifdef MLX5_PMD_SOFT_COUNTERS
408                 total_length = length;
409 #endif
410                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
411                         txq->stats.oerrors++;
412                         break;
413                 }
414                 /* Update element. */
415                 (*txq->elts)[elts_head & elts_m] = buf;
416                 /* Prefetch next buffer data. */
417                 if (pkts_n - i > 1)
418                         rte_prefetch0(
419                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
420                 /* Should we enable HW CKSUM offload */
421                 if (buf->ol_flags &
422                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
423                         const uint64_t is_tunneled = buf->ol_flags &
424                                                      (PKT_TX_TUNNEL_GRE |
425                                                       PKT_TX_TUNNEL_VXLAN);
426
427                         if (is_tunneled && txq->tunnel_en) {
428                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
429                                            MLX5_ETH_WQE_L4_INNER_CSUM;
430                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
431                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
432                         } else {
433                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
434                                            MLX5_ETH_WQE_L4_CSUM;
435                         }
436                 }
437                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
438                 /* Replace the Ethernet type by the VLAN if necessary. */
439                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
440                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
441                                                          buf->vlan_tci);
442                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
443
444                         addr += 2;
445                         length -= 2;
446                         /* Copy Destination and source mac address. */
447                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
448                         /* Copy VLAN. */
449                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
450                         /* Copy missing two bytes to end the DSeg. */
451                         memcpy((uint8_t *)raw + len + sizeof(vlan),
452                                ((uint8_t *)addr) + len, 2);
453                         addr += len + 2;
454                         length -= (len + 2);
455                 } else {
456                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
457                                MLX5_WQE_DWORD_SIZE);
458                         length -= pkt_inline_sz;
459                         addr += pkt_inline_sz;
460                 }
461                 raw += MLX5_WQE_DWORD_SIZE;
462                 if (txq->tso_en) {
463                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
464                         if (tso) {
465                                 uintptr_t end = (uintptr_t)
466                                                 (((uintptr_t)txq->wqes) +
467                                                 (1 << txq->wqe_n) *
468                                                 MLX5_WQE_SIZE);
469                                 unsigned int copy_b;
470                                 uint8_t vlan_sz = (buf->ol_flags &
471                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
472                                 const uint64_t is_tunneled =
473                                                         buf->ol_flags &
474                                                         (PKT_TX_TUNNEL_GRE |
475                                                          PKT_TX_TUNNEL_VXLAN);
476
477                                 tso_header_sz = buf->l2_len + vlan_sz +
478                                                 buf->l3_len + buf->l4_len;
479                                 tso_segsz = buf->tso_segsz;
480                                 if (unlikely(tso_segsz == 0)) {
481                                         txq->stats.oerrors++;
482                                         break;
483                                 }
484                                 if (is_tunneled && txq->tunnel_en) {
485                                         tso_header_sz += buf->outer_l2_len +
486                                                          buf->outer_l3_len;
487                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
488                                 } else {
489                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
490                                 }
491                                 if (unlikely(tso_header_sz >
492                                              MLX5_MAX_TSO_HEADER)) {
493                                         txq->stats.oerrors++;
494                                         break;
495                                 }
496                                 copy_b = tso_header_sz - pkt_inline_sz;
497                                 /* First seg must contain all headers. */
498                                 assert(copy_b <= length);
499                                 if (copy_b &&
500                                    ((end - (uintptr_t)raw) > copy_b)) {
501                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
502                                                       1 + 3) / 4;
503
504                                         if (unlikely(max_wqe < n))
505                                                 break;
506                                         max_wqe -= n;
507                                         rte_memcpy((void *)raw,
508                                                    (void *)addr, copy_b);
509                                         addr += copy_b;
510                                         length -= copy_b;
511                                         /* Include padding for TSO header. */
512                                         copy_b = MLX5_WQE_DS(copy_b) *
513                                                  MLX5_WQE_DWORD_SIZE;
514                                         pkt_inline_sz += copy_b;
515                                         raw += copy_b;
516                                 } else {
517                                         /* NOP WQE. */
518                                         wqe->ctrl = (rte_v128u32_t){
519                                                      rte_cpu_to_be_32(
520                                                         txq->wqe_ci << 8),
521                                                      rte_cpu_to_be_32(
522                                                         txq->qp_num_8s | 1),
523                                                      0,
524                                                      0,
525                                         };
526                                         ds = 1;
527                                         total_length = 0;
528                                         k++;
529                                         goto next_wqe;
530                                 }
531                         }
532                 }
533                 /* Inline if enough room. */
534                 if (inline_en || tso) {
535                         uint32_t inl;
536                         uintptr_t end = (uintptr_t)
537                                 (((uintptr_t)txq->wqes) +
538                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
539                         unsigned int inline_room = max_inline *
540                                                    RTE_CACHE_LINE_SIZE -
541                                                    (pkt_inline_sz - 2) -
542                                                    !!tso * sizeof(inl);
543                         uintptr_t addr_end = (addr + inline_room) &
544                                              ~(RTE_CACHE_LINE_SIZE - 1);
545                         unsigned int copy_b = (addr_end > addr) ?
546                                 RTE_MIN((addr_end - addr), length) :
547                                 0;
548
549                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
550                                 /*
551                                  * One Dseg remains in the current WQE.  To
552                                  * keep the computation positive, it is
553                                  * removed after the bytes to Dseg conversion.
554                                  */
555                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
556
557                                 if (unlikely(max_wqe < n))
558                                         break;
559                                 max_wqe -= n;
560                                 if (tso) {
561                                         uint32_t inl =
562                                         rte_cpu_to_be_32(copy_b |
563                                                          MLX5_INLINE_SEG);
564
565                                         pkt_inline_sz =
566                                                 MLX5_WQE_DS(tso_header_sz) *
567                                                 MLX5_WQE_DWORD_SIZE;
568
569                                         rte_memcpy((void *)raw,
570                                                    (void *)&inl, sizeof(inl));
571                                         raw += sizeof(inl);
572                                         pkt_inline_sz += sizeof(inl);
573                                 }
574                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
575                                 addr += copy_b;
576                                 length -= copy_b;
577                                 pkt_inline_sz += copy_b;
578                         }
579                         /*
580                          * 2 DWORDs consumed by the WQE header + ETH segment +
581                          * the size of the inline part of the packet.
582                          */
583                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
584                         if (length > 0) {
585                                 if (ds % (MLX5_WQE_SIZE /
586                                           MLX5_WQE_DWORD_SIZE) == 0) {
587                                         if (unlikely(--max_wqe == 0))
588                                                 break;
589                                         dseg = (volatile rte_v128u32_t *)
590                                                tx_mlx5_wqe(txq, txq->wqe_ci +
591                                                            ds / 4);
592                                 } else {
593                                         dseg = (volatile rte_v128u32_t *)
594                                                 ((uintptr_t)wqe +
595                                                  (ds * MLX5_WQE_DWORD_SIZE));
596                                 }
597                                 goto use_dseg;
598                         } else if (!segs_n) {
599                                 goto next_pkt;
600                         } else {
601                                 /* dseg will be advance as part of next_seg */
602                                 dseg = (volatile rte_v128u32_t *)
603                                         ((uintptr_t)wqe +
604                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
605                                 goto next_seg;
606                         }
607                 } else {
608                         /*
609                          * No inline has been done in the packet, only the
610                          * Ethernet Header as been stored.
611                          */
612                         dseg = (volatile rte_v128u32_t *)
613                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
614                         ds = 3;
615 use_dseg:
616                         /* Add the remaining packet as a simple ds. */
617                         naddr = rte_cpu_to_be_64(addr);
618                         *dseg = (rte_v128u32_t){
619                                 rte_cpu_to_be_32(length),
620                                 mlx5_tx_mb2mr(txq, buf),
621                                 naddr,
622                                 naddr >> 32,
623                         };
624                         ++ds;
625                         if (!segs_n)
626                                 goto next_pkt;
627                 }
628 next_seg:
629                 assert(buf);
630                 assert(ds);
631                 assert(wqe);
632                 /*
633                  * Spill on next WQE when the current one does not have
634                  * enough room left. Size of WQE must a be a multiple
635                  * of data segment size.
636                  */
637                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
638                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
639                         if (unlikely(--max_wqe == 0))
640                                 break;
641                         dseg = (volatile rte_v128u32_t *)
642                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
643                         rte_prefetch0(tx_mlx5_wqe(txq,
644                                                   txq->wqe_ci + ds / 4 + 1));
645                 } else {
646                         ++dseg;
647                 }
648                 ++ds;
649                 buf = buf->next;
650                 assert(buf);
651                 length = DATA_LEN(buf);
652 #ifdef MLX5_PMD_SOFT_COUNTERS
653                 total_length += length;
654 #endif
655                 /* Store segment information. */
656                 naddr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
657                 *dseg = (rte_v128u32_t){
658                         rte_cpu_to_be_32(length),
659                         mlx5_tx_mb2mr(txq, buf),
660                         naddr,
661                         naddr >> 32,
662                 };
663                 (*txq->elts)[++elts_head & elts_m] = buf;
664                 ++sg;
665                 /* Advance counter only if all segs are successfully posted. */
666                 if (sg < segs_n)
667                         goto next_seg;
668                 else
669                         j += sg;
670 next_pkt:
671                 if (ds > MLX5_DSEG_MAX) {
672                         txq->stats.oerrors++;
673                         break;
674                 }
675                 ++elts_head;
676                 ++pkts;
677                 ++i;
678                 /* Initialize known and common part of the WQE structure. */
679                 if (tso) {
680                         wqe->ctrl = (rte_v128u32_t){
681                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
682                                                  MLX5_OPCODE_TSO),
683                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
684                                 0,
685                                 0,
686                         };
687                         wqe->eseg = (rte_v128u32_t){
688                                 0,
689                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
690                                 0,
691                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
692                         };
693                 } else {
694                         wqe->ctrl = (rte_v128u32_t){
695                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
696                                                  MLX5_OPCODE_SEND),
697                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
698                                 0,
699                                 0,
700                         };
701                         wqe->eseg = (rte_v128u32_t){
702                                 0,
703                                 cs_flags,
704                                 0,
705                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
706                         };
707                 }
708 next_wqe:
709                 txq->wqe_ci += (ds + 3) / 4;
710                 /* Save the last successful WQE for completion request */
711                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
712 #ifdef MLX5_PMD_SOFT_COUNTERS
713                 /* Increment sent bytes counter. */
714                 txq->stats.obytes += total_length;
715 #endif
716         } while (i < pkts_n);
717         /* Take a shortcut if nothing must be sent. */
718         if (unlikely((i + k) == 0))
719                 return 0;
720         txq->elts_head += (i + j);
721         /* Check whether completion threshold has been reached. */
722         comp = txq->elts_comp + i + j + k;
723         if (comp >= MLX5_TX_COMP_THRESH) {
724                 /* Request completion on last WQE. */
725                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
726                 /* Save elts_head in unused "immediate" field of WQE. */
727                 last_wqe->ctrl3 = txq->elts_head;
728                 txq->elts_comp = 0;
729         } else {
730                 txq->elts_comp = comp;
731         }
732 #ifdef MLX5_PMD_SOFT_COUNTERS
733         /* Increment sent packets counter. */
734         txq->stats.opackets += i;
735 #endif
736         /* Ring QP doorbell. */
737         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
738         return i;
739 }
740
741 /**
742  * Open a MPW session.
743  *
744  * @param txq
745  *   Pointer to TX queue structure.
746  * @param mpw
747  *   Pointer to MPW session structure.
748  * @param length
749  *   Packet length.
750  */
751 static inline void
752 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
753 {
754         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
755         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
756                 (volatile struct mlx5_wqe_data_seg (*)[])
757                 tx_mlx5_wqe(txq, idx + 1);
758
759         mpw->state = MLX5_MPW_STATE_OPENED;
760         mpw->pkts_n = 0;
761         mpw->len = length;
762         mpw->total_len = 0;
763         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
764         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
765         mpw->wqe->eseg.inline_hdr_sz = 0;
766         mpw->wqe->eseg.rsvd0 = 0;
767         mpw->wqe->eseg.rsvd1 = 0;
768         mpw->wqe->eseg.rsvd2 = 0;
769         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
770                                              (txq->wqe_ci << 8) |
771                                              MLX5_OPCODE_TSO);
772         mpw->wqe->ctrl[2] = 0;
773         mpw->wqe->ctrl[3] = 0;
774         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
775                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
776         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
777                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
778         mpw->data.dseg[2] = &(*dseg)[0];
779         mpw->data.dseg[3] = &(*dseg)[1];
780         mpw->data.dseg[4] = &(*dseg)[2];
781 }
782
783 /**
784  * Close a MPW session.
785  *
786  * @param txq
787  *   Pointer to TX queue structure.
788  * @param mpw
789  *   Pointer to MPW session structure.
790  */
791 static inline void
792 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
793 {
794         unsigned int num = mpw->pkts_n;
795
796         /*
797          * Store size in multiple of 16 bytes. Control and Ethernet segments
798          * count as 2.
799          */
800         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
801         mpw->state = MLX5_MPW_STATE_CLOSED;
802         if (num < 3)
803                 ++txq->wqe_ci;
804         else
805                 txq->wqe_ci += 2;
806         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
807         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
808 }
809
810 /**
811  * DPDK callback for TX with MPW support.
812  *
813  * @param dpdk_txq
814  *   Generic pointer to TX queue structure.
815  * @param[in] pkts
816  *   Packets to transmit.
817  * @param pkts_n
818  *   Number of packets in array.
819  *
820  * @return
821  *   Number of packets successfully transmitted (<= pkts_n).
822  */
823 uint16_t
824 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
825 {
826         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
827         uint16_t elts_head = txq->elts_head;
828         const uint16_t elts_n = 1 << txq->elts_n;
829         const uint16_t elts_m = elts_n - 1;
830         unsigned int i = 0;
831         unsigned int j = 0;
832         uint16_t max_elts;
833         uint16_t max_wqe;
834         unsigned int comp;
835         struct mlx5_mpw mpw = {
836                 .state = MLX5_MPW_STATE_CLOSED,
837         };
838
839         if (unlikely(!pkts_n))
840                 return 0;
841         /* Prefetch first packet cacheline. */
842         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
843         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
844         /* Start processing. */
845         mlx5_tx_complete(txq);
846         max_elts = (elts_n - (elts_head - txq->elts_tail));
847         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
848         if (unlikely(!max_wqe))
849                 return 0;
850         do {
851                 struct rte_mbuf *buf = *(pkts++);
852                 uint32_t length;
853                 unsigned int segs_n = buf->nb_segs;
854                 uint32_t cs_flags = 0;
855
856                 /*
857                  * Make sure there is enough room to store this packet and
858                  * that one ring entry remains unused.
859                  */
860                 assert(segs_n);
861                 if (max_elts < segs_n)
862                         break;
863                 /* Do not bother with large packets MPW cannot handle. */
864                 if (segs_n > MLX5_MPW_DSEG_MAX) {
865                         txq->stats.oerrors++;
866                         break;
867                 }
868                 max_elts -= segs_n;
869                 --pkts_n;
870                 /* Should we enable HW CKSUM offload */
871                 if (buf->ol_flags &
872                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
873                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
874                 /* Retrieve packet information. */
875                 length = PKT_LEN(buf);
876                 assert(length);
877                 /* Start new session if packet differs. */
878                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
879                     ((mpw.len != length) ||
880                      (segs_n != 1) ||
881                      (mpw.wqe->eseg.cs_flags != cs_flags)))
882                         mlx5_mpw_close(txq, &mpw);
883                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
884                         /*
885                          * Multi-Packet WQE consumes at most two WQE.
886                          * mlx5_mpw_new() expects to be able to use such
887                          * resources.
888                          */
889                         if (unlikely(max_wqe < 2))
890                                 break;
891                         max_wqe -= 2;
892                         mlx5_mpw_new(txq, &mpw, length);
893                         mpw.wqe->eseg.cs_flags = cs_flags;
894                 }
895                 /* Multi-segment packets must be alone in their MPW. */
896                 assert((segs_n == 1) || (mpw.pkts_n == 0));
897 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
898                 length = 0;
899 #endif
900                 do {
901                         volatile struct mlx5_wqe_data_seg *dseg;
902                         uintptr_t addr;
903
904                         assert(buf);
905                         (*txq->elts)[elts_head++ & elts_m] = buf;
906                         dseg = mpw.data.dseg[mpw.pkts_n];
907                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
908                         *dseg = (struct mlx5_wqe_data_seg){
909                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
910                                 .lkey = mlx5_tx_mb2mr(txq, buf),
911                                 .addr = rte_cpu_to_be_64(addr),
912                         };
913 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
914                         length += DATA_LEN(buf);
915 #endif
916                         buf = buf->next;
917                         ++mpw.pkts_n;
918                         ++j;
919                 } while (--segs_n);
920                 assert(length == mpw.len);
921                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
922                         mlx5_mpw_close(txq, &mpw);
923 #ifdef MLX5_PMD_SOFT_COUNTERS
924                 /* Increment sent bytes counter. */
925                 txq->stats.obytes += length;
926 #endif
927                 ++i;
928         } while (pkts_n);
929         /* Take a shortcut if nothing must be sent. */
930         if (unlikely(i == 0))
931                 return 0;
932         /* Check whether completion threshold has been reached. */
933         /* "j" includes both packets and segments. */
934         comp = txq->elts_comp + j;
935         if (comp >= MLX5_TX_COMP_THRESH) {
936                 volatile struct mlx5_wqe *wqe = mpw.wqe;
937
938                 /* Request completion on last WQE. */
939                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
940                 /* Save elts_head in unused "immediate" field of WQE. */
941                 wqe->ctrl[3] = elts_head;
942                 txq->elts_comp = 0;
943         } else {
944                 txq->elts_comp = comp;
945         }
946 #ifdef MLX5_PMD_SOFT_COUNTERS
947         /* Increment sent packets counter. */
948         txq->stats.opackets += i;
949 #endif
950         /* Ring QP doorbell. */
951         if (mpw.state == MLX5_MPW_STATE_OPENED)
952                 mlx5_mpw_close(txq, &mpw);
953         mlx5_tx_dbrec(txq, mpw.wqe);
954         txq->elts_head = elts_head;
955         return i;
956 }
957
958 /**
959  * Open a MPW inline session.
960  *
961  * @param txq
962  *   Pointer to TX queue structure.
963  * @param mpw
964  *   Pointer to MPW session structure.
965  * @param length
966  *   Packet length.
967  */
968 static inline void
969 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
970                     uint32_t length)
971 {
972         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
973         struct mlx5_wqe_inl_small *inl;
974
975         mpw->state = MLX5_MPW_INL_STATE_OPENED;
976         mpw->pkts_n = 0;
977         mpw->len = length;
978         mpw->total_len = 0;
979         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
980         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
981                                              (txq->wqe_ci << 8) |
982                                              MLX5_OPCODE_TSO);
983         mpw->wqe->ctrl[2] = 0;
984         mpw->wqe->ctrl[3] = 0;
985         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
986         mpw->wqe->eseg.inline_hdr_sz = 0;
987         mpw->wqe->eseg.cs_flags = 0;
988         mpw->wqe->eseg.rsvd0 = 0;
989         mpw->wqe->eseg.rsvd1 = 0;
990         mpw->wqe->eseg.rsvd2 = 0;
991         inl = (struct mlx5_wqe_inl_small *)
992                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
993         mpw->data.raw = (uint8_t *)&inl->raw;
994 }
995
996 /**
997  * Close a MPW inline session.
998  *
999  * @param txq
1000  *   Pointer to TX queue structure.
1001  * @param mpw
1002  *   Pointer to MPW session structure.
1003  */
1004 static inline void
1005 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1006 {
1007         unsigned int size;
1008         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1009                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1010
1011         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1012         /*
1013          * Store size in multiple of 16 bytes. Control and Ethernet segments
1014          * count as 2.
1015          */
1016         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1017                                              MLX5_WQE_DS(size));
1018         mpw->state = MLX5_MPW_STATE_CLOSED;
1019         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1020         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1021 }
1022
1023 /**
1024  * DPDK callback for TX with MPW inline support.
1025  *
1026  * @param dpdk_txq
1027  *   Generic pointer to TX queue structure.
1028  * @param[in] pkts
1029  *   Packets to transmit.
1030  * @param pkts_n
1031  *   Number of packets in array.
1032  *
1033  * @return
1034  *   Number of packets successfully transmitted (<= pkts_n).
1035  */
1036 uint16_t
1037 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1038                          uint16_t pkts_n)
1039 {
1040         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1041         uint16_t elts_head = txq->elts_head;
1042         const uint16_t elts_n = 1 << txq->elts_n;
1043         const uint16_t elts_m = elts_n - 1;
1044         unsigned int i = 0;
1045         unsigned int j = 0;
1046         uint16_t max_elts;
1047         uint16_t max_wqe;
1048         unsigned int comp;
1049         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1050         struct mlx5_mpw mpw = {
1051                 .state = MLX5_MPW_STATE_CLOSED,
1052         };
1053         /*
1054          * Compute the maximum number of WQE which can be consumed by inline
1055          * code.
1056          * - 2 DSEG for:
1057          *   - 1 control segment,
1058          *   - 1 Ethernet segment,
1059          * - N Dseg from the inline request.
1060          */
1061         const unsigned int wqe_inl_n =
1062                 ((2 * MLX5_WQE_DWORD_SIZE +
1063                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1064                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1065
1066         if (unlikely(!pkts_n))
1067                 return 0;
1068         /* Prefetch first packet cacheline. */
1069         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1070         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1071         /* Start processing. */
1072         mlx5_tx_complete(txq);
1073         max_elts = (elts_n - (elts_head - txq->elts_tail));
1074         do {
1075                 struct rte_mbuf *buf = *(pkts++);
1076                 uintptr_t addr;
1077                 uint32_t length;
1078                 unsigned int segs_n = buf->nb_segs;
1079                 uint32_t cs_flags = 0;
1080
1081                 /*
1082                  * Make sure there is enough room to store this packet and
1083                  * that one ring entry remains unused.
1084                  */
1085                 assert(segs_n);
1086                 if (max_elts < segs_n)
1087                         break;
1088                 /* Do not bother with large packets MPW cannot handle. */
1089                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1090                         txq->stats.oerrors++;
1091                         break;
1092                 }
1093                 max_elts -= segs_n;
1094                 --pkts_n;
1095                 /*
1096                  * Compute max_wqe in case less WQE were consumed in previous
1097                  * iteration.
1098                  */
1099                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1100                 /* Should we enable HW CKSUM offload */
1101                 if (buf->ol_flags &
1102                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1103                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1104                 /* Retrieve packet information. */
1105                 length = PKT_LEN(buf);
1106                 /* Start new session if packet differs. */
1107                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1108                         if ((mpw.len != length) ||
1109                             (segs_n != 1) ||
1110                             (mpw.wqe->eseg.cs_flags != cs_flags))
1111                                 mlx5_mpw_close(txq, &mpw);
1112                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1113                         if ((mpw.len != length) ||
1114                             (segs_n != 1) ||
1115                             (length > inline_room) ||
1116                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1117                                 mlx5_mpw_inline_close(txq, &mpw);
1118                                 inline_room =
1119                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1120                         }
1121                 }
1122                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1123                         if ((segs_n != 1) ||
1124                             (length > inline_room)) {
1125                                 /*
1126                                  * Multi-Packet WQE consumes at most two WQE.
1127                                  * mlx5_mpw_new() expects to be able to use
1128                                  * such resources.
1129                                  */
1130                                 if (unlikely(max_wqe < 2))
1131                                         break;
1132                                 max_wqe -= 2;
1133                                 mlx5_mpw_new(txq, &mpw, length);
1134                                 mpw.wqe->eseg.cs_flags = cs_flags;
1135                         } else {
1136                                 if (unlikely(max_wqe < wqe_inl_n))
1137                                         break;
1138                                 max_wqe -= wqe_inl_n;
1139                                 mlx5_mpw_inline_new(txq, &mpw, length);
1140                                 mpw.wqe->eseg.cs_flags = cs_flags;
1141                         }
1142                 }
1143                 /* Multi-segment packets must be alone in their MPW. */
1144                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1145                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1146                         assert(inline_room ==
1147                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1148 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1149                         length = 0;
1150 #endif
1151                         do {
1152                                 volatile struct mlx5_wqe_data_seg *dseg;
1153
1154                                 assert(buf);
1155                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1156                                 dseg = mpw.data.dseg[mpw.pkts_n];
1157                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1158                                 *dseg = (struct mlx5_wqe_data_seg){
1159                                         .byte_count =
1160                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1161                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1162                                         .addr = rte_cpu_to_be_64(addr),
1163                                 };
1164 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1165                                 length += DATA_LEN(buf);
1166 #endif
1167                                 buf = buf->next;
1168                                 ++mpw.pkts_n;
1169                                 ++j;
1170                         } while (--segs_n);
1171                         assert(length == mpw.len);
1172                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1173                                 mlx5_mpw_close(txq, &mpw);
1174                 } else {
1175                         unsigned int max;
1176
1177                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1178                         assert(length <= inline_room);
1179                         assert(length == DATA_LEN(buf));
1180                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1181                         (*txq->elts)[elts_head++ & elts_m] = buf;
1182                         /* Maximum number of bytes before wrapping. */
1183                         max = ((((uintptr_t)(txq->wqes)) +
1184                                 (1 << txq->wqe_n) *
1185                                 MLX5_WQE_SIZE) -
1186                                (uintptr_t)mpw.data.raw);
1187                         if (length > max) {
1188                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1189                                            (void *)addr,
1190                                            max);
1191                                 mpw.data.raw = (volatile void *)txq->wqes;
1192                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1193                                            (void *)(addr + max),
1194                                            length - max);
1195                                 mpw.data.raw += length - max;
1196                         } else {
1197                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1198                                            (void *)addr,
1199                                            length);
1200
1201                                 if (length == max)
1202                                         mpw.data.raw =
1203                                                 (volatile void *)txq->wqes;
1204                                 else
1205                                         mpw.data.raw += length;
1206                         }
1207                         ++mpw.pkts_n;
1208                         mpw.total_len += length;
1209                         ++j;
1210                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1211                                 mlx5_mpw_inline_close(txq, &mpw);
1212                                 inline_room =
1213                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1214                         } else {
1215                                 inline_room -= length;
1216                         }
1217                 }
1218 #ifdef MLX5_PMD_SOFT_COUNTERS
1219                 /* Increment sent bytes counter. */
1220                 txq->stats.obytes += length;
1221 #endif
1222                 ++i;
1223         } while (pkts_n);
1224         /* Take a shortcut if nothing must be sent. */
1225         if (unlikely(i == 0))
1226                 return 0;
1227         /* Check whether completion threshold has been reached. */
1228         /* "j" includes both packets and segments. */
1229         comp = txq->elts_comp + j;
1230         if (comp >= MLX5_TX_COMP_THRESH) {
1231                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1232
1233                 /* Request completion on last WQE. */
1234                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1235                 /* Save elts_head in unused "immediate" field of WQE. */
1236                 wqe->ctrl[3] = elts_head;
1237                 txq->elts_comp = 0;
1238         } else {
1239                 txq->elts_comp = comp;
1240         }
1241 #ifdef MLX5_PMD_SOFT_COUNTERS
1242         /* Increment sent packets counter. */
1243         txq->stats.opackets += i;
1244 #endif
1245         /* Ring QP doorbell. */
1246         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1247                 mlx5_mpw_inline_close(txq, &mpw);
1248         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1249                 mlx5_mpw_close(txq, &mpw);
1250         mlx5_tx_dbrec(txq, mpw.wqe);
1251         txq->elts_head = elts_head;
1252         return i;
1253 }
1254
1255 /**
1256  * Open an Enhanced MPW session.
1257  *
1258  * @param txq
1259  *   Pointer to TX queue structure.
1260  * @param mpw
1261  *   Pointer to MPW session structure.
1262  * @param length
1263  *   Packet length.
1264  */
1265 static inline void
1266 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1267 {
1268         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1269
1270         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1271         mpw->pkts_n = 0;
1272         mpw->total_len = sizeof(struct mlx5_wqe);
1273         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1274         mpw->wqe->ctrl[0] =
1275                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1276                                  (txq->wqe_ci << 8) |
1277                                  MLX5_OPCODE_ENHANCED_MPSW);
1278         mpw->wqe->ctrl[2] = 0;
1279         mpw->wqe->ctrl[3] = 0;
1280         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1281         if (unlikely(padding)) {
1282                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1283
1284                 /* Pad the first 2 DWORDs with zero-length inline header. */
1285                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1286                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1287                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1288                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1289                 /* Start from the next WQEBB. */
1290                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1291         } else {
1292                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1293         }
1294 }
1295
1296 /**
1297  * Close an Enhanced MPW session.
1298  *
1299  * @param txq
1300  *   Pointer to TX queue structure.
1301  * @param mpw
1302  *   Pointer to MPW session structure.
1303  *
1304  * @return
1305  *   Number of consumed WQEs.
1306  */
1307 static inline uint16_t
1308 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1309 {
1310         uint16_t ret;
1311
1312         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1313          * count as 2.
1314          */
1315         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1316                                              MLX5_WQE_DS(mpw->total_len));
1317         mpw->state = MLX5_MPW_STATE_CLOSED;
1318         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1319         txq->wqe_ci += ret;
1320         return ret;
1321 }
1322
1323 /**
1324  * DPDK callback for TX with Enhanced MPW support.
1325  *
1326  * @param dpdk_txq
1327  *   Generic pointer to TX queue structure.
1328  * @param[in] pkts
1329  *   Packets to transmit.
1330  * @param pkts_n
1331  *   Number of packets in array.
1332  *
1333  * @return
1334  *   Number of packets successfully transmitted (<= pkts_n).
1335  */
1336 uint16_t
1337 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1338 {
1339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1340         uint16_t elts_head = txq->elts_head;
1341         const uint16_t elts_n = 1 << txq->elts_n;
1342         const uint16_t elts_m = elts_n - 1;
1343         unsigned int i = 0;
1344         unsigned int j = 0;
1345         uint16_t max_elts;
1346         uint16_t max_wqe;
1347         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1348         unsigned int mpw_room = 0;
1349         unsigned int inl_pad = 0;
1350         uint32_t inl_hdr;
1351         struct mlx5_mpw mpw = {
1352                 .state = MLX5_MPW_STATE_CLOSED,
1353         };
1354
1355         if (unlikely(!pkts_n))
1356                 return 0;
1357         /* Start processing. */
1358         mlx5_tx_complete(txq);
1359         max_elts = (elts_n - (elts_head - txq->elts_tail));
1360         /* A CQE slot must always be available. */
1361         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1362         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1363         if (unlikely(!max_wqe))
1364                 return 0;
1365         do {
1366                 struct rte_mbuf *buf = *(pkts++);
1367                 uintptr_t addr;
1368                 uint64_t naddr;
1369                 unsigned int n;
1370                 unsigned int do_inline = 0; /* Whether inline is possible. */
1371                 uint32_t length;
1372                 unsigned int segs_n = buf->nb_segs;
1373                 uint32_t cs_flags = 0;
1374
1375                 /*
1376                  * Make sure there is enough room to store this packet and
1377                  * that one ring entry remains unused.
1378                  */
1379                 assert(segs_n);
1380                 if (max_elts - j < segs_n)
1381                         break;
1382                 /* Do not bother with large packets MPW cannot handle. */
1383                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1384                         txq->stats.oerrors++;
1385                         break;
1386                 }
1387                 /* Should we enable HW CKSUM offload. */
1388                 if (buf->ol_flags &
1389                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1390                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1391                 /* Retrieve packet information. */
1392                 length = PKT_LEN(buf);
1393                 /* Start new session if:
1394                  * - multi-segment packet
1395                  * - no space left even for a dseg
1396                  * - next packet can be inlined with a new WQE
1397                  * - cs_flag differs
1398                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1399                  * segmented packet.
1400                  */
1401                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1402                         if ((segs_n != 1) ||
1403                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1404                               mpw_room) ||
1405                             (length <= txq->inline_max_packet_sz &&
1406                              inl_pad + sizeof(inl_hdr) + length >
1407                               mpw_room) ||
1408                             (mpw.wqe->eseg.cs_flags != cs_flags))
1409                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1410                 }
1411                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1412                         if (unlikely(segs_n != 1)) {
1413                                 /* Fall back to legacy MPW.
1414                                  * A MPW session consumes 2 WQEs at most to
1415                                  * include MLX5_MPW_DSEG_MAX pointers.
1416                                  */
1417                                 if (unlikely(max_wqe < 2))
1418                                         break;
1419                                 mlx5_mpw_new(txq, &mpw, length);
1420                         } else {
1421                                 /* In Enhanced MPW, inline as much as the budget
1422                                  * is allowed. The remaining space is to be
1423                                  * filled with dsegs. If the title WQEBB isn't
1424                                  * padded, it will have 2 dsegs there.
1425                                  */
1426                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1427                                             (max_inline ? max_inline :
1428                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1429                                             MLX5_WQE_SIZE);
1430                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1431                                               mpw_room))
1432                                         break;
1433                                 /* Don't pad the title WQEBB to not waste WQ. */
1434                                 mlx5_empw_new(txq, &mpw, 0);
1435                                 mpw_room -= mpw.total_len;
1436                                 inl_pad = 0;
1437                                 do_inline =
1438                                         length <= txq->inline_max_packet_sz &&
1439                                         sizeof(inl_hdr) + length <= mpw_room &&
1440                                         !txq->mpw_hdr_dseg;
1441                         }
1442                         mpw.wqe->eseg.cs_flags = cs_flags;
1443                 } else {
1444                         /* Evaluate whether the next packet can be inlined.
1445                          * Inlininig is possible when:
1446                          * - length is less than configured value
1447                          * - length fits for remaining space
1448                          * - not required to fill the title WQEBB with dsegs
1449                          */
1450                         do_inline =
1451                                 length <= txq->inline_max_packet_sz &&
1452                                 inl_pad + sizeof(inl_hdr) + length <=
1453                                  mpw_room &&
1454                                 (!txq->mpw_hdr_dseg ||
1455                                  mpw.total_len >= MLX5_WQE_SIZE);
1456                 }
1457                 /* Multi-segment packets must be alone in their MPW. */
1458                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1459                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1460 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1461                         length = 0;
1462 #endif
1463                         do {
1464                                 volatile struct mlx5_wqe_data_seg *dseg;
1465
1466                                 assert(buf);
1467                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1468                                 dseg = mpw.data.dseg[mpw.pkts_n];
1469                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1470                                 *dseg = (struct mlx5_wqe_data_seg){
1471                                         .byte_count = rte_cpu_to_be_32(
1472                                                                 DATA_LEN(buf)),
1473                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1474                                         .addr = rte_cpu_to_be_64(addr),
1475                                 };
1476 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1477                                 length += DATA_LEN(buf);
1478 #endif
1479                                 buf = buf->next;
1480                                 ++j;
1481                                 ++mpw.pkts_n;
1482                         } while (--segs_n);
1483                         /* A multi-segmented packet takes one MPW session.
1484                          * TODO: Pack more multi-segmented packets if possible.
1485                          */
1486                         mlx5_mpw_close(txq, &mpw);
1487                         if (mpw.pkts_n < 3)
1488                                 max_wqe--;
1489                         else
1490                                 max_wqe -= 2;
1491                 } else if (do_inline) {
1492                         /* Inline packet into WQE. */
1493                         unsigned int max;
1494
1495                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1496                         assert(length == DATA_LEN(buf));
1497                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1498                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1499                         mpw.data.raw = (volatile void *)
1500                                 ((uintptr_t)mpw.data.raw + inl_pad);
1501                         max = tx_mlx5_wq_tailroom(txq,
1502                                         (void *)(uintptr_t)mpw.data.raw);
1503                         /* Copy inline header. */
1504                         mpw.data.raw = (volatile void *)
1505                                 mlx5_copy_to_wq(
1506                                           (void *)(uintptr_t)mpw.data.raw,
1507                                           &inl_hdr,
1508                                           sizeof(inl_hdr),
1509                                           (void *)(uintptr_t)txq->wqes,
1510                                           max);
1511                         max = tx_mlx5_wq_tailroom(txq,
1512                                         (void *)(uintptr_t)mpw.data.raw);
1513                         /* Copy packet data. */
1514                         mpw.data.raw = (volatile void *)
1515                                 mlx5_copy_to_wq(
1516                                           (void *)(uintptr_t)mpw.data.raw,
1517                                           (void *)addr,
1518                                           length,
1519                                           (void *)(uintptr_t)txq->wqes,
1520                                           max);
1521                         ++mpw.pkts_n;
1522                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1523                         /* No need to get completion as the entire packet is
1524                          * copied to WQ. Free the buf right away.
1525                          */
1526                         rte_pktmbuf_free_seg(buf);
1527                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1528                         /* Add pad in the next packet if any. */
1529                         inl_pad = (((uintptr_t)mpw.data.raw +
1530                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1531                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1532                                   (uintptr_t)mpw.data.raw;
1533                 } else {
1534                         /* No inline. Load a dseg of packet pointer. */
1535                         volatile rte_v128u32_t *dseg;
1536
1537                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1538                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1539                         assert(length == DATA_LEN(buf));
1540                         if (!tx_mlx5_wq_tailroom(txq,
1541                                         (void *)((uintptr_t)mpw.data.raw
1542                                                 + inl_pad)))
1543                                 dseg = (volatile void *)txq->wqes;
1544                         else
1545                                 dseg = (volatile void *)
1546                                         ((uintptr_t)mpw.data.raw +
1547                                          inl_pad);
1548                         (*txq->elts)[elts_head++ & elts_m] = buf;
1549                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1550                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1551                                 rte_prefetch2((void *)(addr +
1552                                                 n * RTE_CACHE_LINE_SIZE));
1553                         naddr = rte_cpu_to_be_64(addr);
1554                         *dseg = (rte_v128u32_t) {
1555                                 rte_cpu_to_be_32(length),
1556                                 mlx5_tx_mb2mr(txq, buf),
1557                                 naddr,
1558                                 naddr >> 32,
1559                         };
1560                         mpw.data.raw = (volatile void *)(dseg + 1);
1561                         mpw.total_len += (inl_pad + sizeof(*dseg));
1562                         ++j;
1563                         ++mpw.pkts_n;
1564                         mpw_room -= (inl_pad + sizeof(*dseg));
1565                         inl_pad = 0;
1566                 }
1567 #ifdef MLX5_PMD_SOFT_COUNTERS
1568                 /* Increment sent bytes counter. */
1569                 txq->stats.obytes += length;
1570 #endif
1571                 ++i;
1572         } while (i < pkts_n);
1573         /* Take a shortcut if nothing must be sent. */
1574         if (unlikely(i == 0))
1575                 return 0;
1576         /* Check whether completion threshold has been reached. */
1577         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1578                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1579                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1580                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1581
1582                 /* Request completion on last WQE. */
1583                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1584                 /* Save elts_head in unused "immediate" field of WQE. */
1585                 wqe->ctrl[3] = elts_head;
1586                 txq->elts_comp = 0;
1587                 txq->mpw_comp = txq->wqe_ci;
1588                 txq->cq_pi++;
1589         } else {
1590                 txq->elts_comp += j;
1591         }
1592 #ifdef MLX5_PMD_SOFT_COUNTERS
1593         /* Increment sent packets counter. */
1594         txq->stats.opackets += i;
1595 #endif
1596         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1597                 mlx5_empw_close(txq, &mpw);
1598         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1599                 mlx5_mpw_close(txq, &mpw);
1600         /* Ring QP doorbell. */
1601         mlx5_tx_dbrec(txq, mpw.wqe);
1602         txq->elts_head = elts_head;
1603         return i;
1604 }
1605
1606 /**
1607  * Translate RX completion flags to packet type.
1608  *
1609  * @param[in] cqe
1610  *   Pointer to CQE.
1611  *
1612  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1613  *
1614  * @return
1615  *   Packet type for struct rte_mbuf.
1616  */
1617 static inline uint32_t
1618 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1619 {
1620         uint8_t idx;
1621         uint8_t pinfo = cqe->pkt_info;
1622         uint16_t ptype = cqe->hdr_type_etc;
1623
1624         /*
1625          * The index to the array should have:
1626          * bit[1:0] = l3_hdr_type
1627          * bit[4:2] = l4_hdr_type
1628          * bit[5] = ip_frag
1629          * bit[6] = tunneled
1630          * bit[7] = outer_l3_type
1631          */
1632         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1633         return mlx5_ptype_table[idx];
1634 }
1635
1636 /**
1637  * Get size of the next packet for a given CQE. For compressed CQEs, the
1638  * consumer index is updated only once all packets of the current one have
1639  * been processed.
1640  *
1641  * @param rxq
1642  *   Pointer to RX queue.
1643  * @param cqe
1644  *   CQE to process.
1645  * @param[out] rss_hash
1646  *   Packet RSS Hash result.
1647  *
1648  * @return
1649  *   Packet size in bytes (0 if there is none), -1 in case of completion
1650  *   with error.
1651  */
1652 static inline int
1653 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1654                  uint16_t cqe_cnt, uint32_t *rss_hash)
1655 {
1656         struct rxq_zip *zip = &rxq->zip;
1657         uint16_t cqe_n = cqe_cnt + 1;
1658         int len = 0;
1659         uint16_t idx, end;
1660
1661         /* Process compressed data in the CQE and mini arrays. */
1662         if (zip->ai) {
1663                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1664                         (volatile struct mlx5_mini_cqe8 (*)[8])
1665                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1666
1667                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1668                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1669                 if ((++zip->ai & 7) == 0) {
1670                         /* Invalidate consumed CQEs */
1671                         idx = zip->ca;
1672                         end = zip->na;
1673                         while (idx != end) {
1674                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1675                                         MLX5_CQE_INVALIDATE;
1676                                 ++idx;
1677                         }
1678                         /*
1679                          * Increment consumer index to skip the number of
1680                          * CQEs consumed. Hardware leaves holes in the CQ
1681                          * ring for software use.
1682                          */
1683                         zip->ca = zip->na;
1684                         zip->na += 8;
1685                 }
1686                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1687                         /* Invalidate the rest */
1688                         idx = zip->ca;
1689                         end = zip->cq_ci;
1690
1691                         while (idx != end) {
1692                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1693                                         MLX5_CQE_INVALIDATE;
1694                                 ++idx;
1695                         }
1696                         rxq->cq_ci = zip->cq_ci;
1697                         zip->ai = 0;
1698                 }
1699         /* No compressed data, get next CQE and verify if it is compressed. */
1700         } else {
1701                 int ret;
1702                 int8_t op_own;
1703
1704                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1705                 if (unlikely(ret == 1))
1706                         return 0;
1707                 ++rxq->cq_ci;
1708                 op_own = cqe->op_own;
1709                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1710                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1711                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1712                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1713                                                           cqe_cnt].pkt_info);
1714
1715                         /* Fix endianness. */
1716                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1717                         /*
1718                          * Current mini array position is the one returned by
1719                          * check_cqe64().
1720                          *
1721                          * If completion comprises several mini arrays, as a
1722                          * special case the second one is located 7 CQEs after
1723                          * the initial CQE instead of 8 for subsequent ones.
1724                          */
1725                         zip->ca = rxq->cq_ci;
1726                         zip->na = zip->ca + 7;
1727                         /* Compute the next non compressed CQE. */
1728                         --rxq->cq_ci;
1729                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1730                         /* Get packet size to return. */
1731                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1732                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1733                         zip->ai = 1;
1734                         /* Prefetch all the entries to be invalidated */
1735                         idx = zip->ca;
1736                         end = zip->cq_ci;
1737                         while (idx != end) {
1738                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1739                                 ++idx;
1740                         }
1741                 } else {
1742                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1743                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1744                 }
1745                 /* Error while receiving packet. */
1746                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1747                         return -1;
1748         }
1749         return len;
1750 }
1751
1752 /**
1753  * Translate RX completion flags to offload flags.
1754  *
1755  * @param[in] rxq
1756  *   Pointer to RX queue structure.
1757  * @param[in] cqe
1758  *   Pointer to CQE.
1759  *
1760  * @return
1761  *   Offload flags (ol_flags) for struct rte_mbuf.
1762  */
1763 static inline uint32_t
1764 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1765 {
1766         uint32_t ol_flags = 0;
1767         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1768
1769         ol_flags =
1770                 TRANSPOSE(flags,
1771                           MLX5_CQE_RX_L3_HDR_VALID,
1772                           PKT_RX_IP_CKSUM_GOOD) |
1773                 TRANSPOSE(flags,
1774                           MLX5_CQE_RX_L4_HDR_VALID,
1775                           PKT_RX_L4_CKSUM_GOOD);
1776         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1777                 ol_flags |=
1778                         TRANSPOSE(flags,
1779                                   MLX5_CQE_RX_L3_HDR_VALID,
1780                                   PKT_RX_IP_CKSUM_GOOD) |
1781                         TRANSPOSE(flags,
1782                                   MLX5_CQE_RX_L4_HDR_VALID,
1783                                   PKT_RX_L4_CKSUM_GOOD);
1784         return ol_flags;
1785 }
1786
1787 /**
1788  * DPDK callback for RX.
1789  *
1790  * @param dpdk_rxq
1791  *   Generic pointer to RX queue structure.
1792  * @param[out] pkts
1793  *   Array to store received packets.
1794  * @param pkts_n
1795  *   Maximum number of packets in array.
1796  *
1797  * @return
1798  *   Number of packets successfully received (<= pkts_n).
1799  */
1800 uint16_t
1801 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1802 {
1803         struct mlx5_rxq_data *rxq = dpdk_rxq;
1804         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1805         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1806         const unsigned int sges_n = rxq->sges_n;
1807         struct rte_mbuf *pkt = NULL;
1808         struct rte_mbuf *seg = NULL;
1809         volatile struct mlx5_cqe *cqe =
1810                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1811         unsigned int i = 0;
1812         unsigned int rq_ci = rxq->rq_ci << sges_n;
1813         int len = 0; /* keep its value across iterations. */
1814
1815         while (pkts_n) {
1816                 unsigned int idx = rq_ci & wqe_cnt;
1817                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1818                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1819                 uint32_t rss_hash_res = 0;
1820
1821                 if (pkt)
1822                         NEXT(seg) = rep;
1823                 seg = rep;
1824                 rte_prefetch0(seg);
1825                 rte_prefetch0(cqe);
1826                 rte_prefetch0(wqe);
1827                 rep = rte_mbuf_raw_alloc(rxq->mp);
1828                 if (unlikely(rep == NULL)) {
1829                         ++rxq->stats.rx_nombuf;
1830                         if (!pkt) {
1831                                 /*
1832                                  * no buffers before we even started,
1833                                  * bail out silently.
1834                                  */
1835                                 break;
1836                         }
1837                         while (pkt != seg) {
1838                                 assert(pkt != (*rxq->elts)[idx]);
1839                                 rep = NEXT(pkt);
1840                                 NEXT(pkt) = NULL;
1841                                 NB_SEGS(pkt) = 1;
1842                                 rte_mbuf_raw_free(pkt);
1843                                 pkt = rep;
1844                         }
1845                         break;
1846                 }
1847                 if (!pkt) {
1848                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1849                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1850                                                &rss_hash_res);
1851                         if (!len) {
1852                                 rte_mbuf_raw_free(rep);
1853                                 break;
1854                         }
1855                         if (unlikely(len == -1)) {
1856                                 /* RX error, packet is likely too large. */
1857                                 rte_mbuf_raw_free(rep);
1858                                 ++rxq->stats.idropped;
1859                                 goto skip;
1860                         }
1861                         pkt = seg;
1862                         assert(len >= (rxq->crc_present << 2));
1863                         /* Update packet information. */
1864                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1865                         pkt->ol_flags = 0;
1866                         if (rss_hash_res && rxq->rss_hash) {
1867                                 pkt->hash.rss = rss_hash_res;
1868                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1869                         }
1870                         if (rxq->mark &&
1871                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1872                                 pkt->ol_flags |= PKT_RX_FDIR;
1873                                 if (cqe->sop_drop_qpn !=
1874                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1875                                         uint32_t mark = cqe->sop_drop_qpn;
1876
1877                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1878                                         pkt->hash.fdir.hi =
1879                                                 mlx5_flow_mark_get(mark);
1880                                 }
1881                         }
1882                         if (rxq->csum | rxq->csum_l2tun)
1883                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1884                         if (rxq->vlan_strip &&
1885                             (cqe->hdr_type_etc &
1886                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1887                                 pkt->ol_flags |= PKT_RX_VLAN_PKT |
1888                                         PKT_RX_VLAN_STRIPPED;
1889                                 pkt->vlan_tci =
1890                                         rte_be_to_cpu_16(cqe->vlan_info);
1891                         }
1892                         if (rxq->hw_timestamp) {
1893                                 pkt->timestamp =
1894                                         rte_be_to_cpu_64(cqe->timestamp);
1895                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1896                         }
1897                         if (rxq->crc_present)
1898                                 len -= ETHER_CRC_LEN;
1899                         PKT_LEN(pkt) = len;
1900                 }
1901                 DATA_LEN(rep) = DATA_LEN(seg);
1902                 PKT_LEN(rep) = PKT_LEN(seg);
1903                 SET_DATA_OFF(rep, DATA_OFF(seg));
1904                 PORT(rep) = PORT(seg);
1905                 (*rxq->elts)[idx] = rep;
1906                 /*
1907                  * Fill NIC descriptor with the new buffer.  The lkey and size
1908                  * of the buffers are already known, only the buffer address
1909                  * changes.
1910                  */
1911                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1912                 if (len > DATA_LEN(seg)) {
1913                         len -= DATA_LEN(seg);
1914                         ++NB_SEGS(pkt);
1915                         ++rq_ci;
1916                         continue;
1917                 }
1918                 DATA_LEN(seg) = len;
1919 #ifdef MLX5_PMD_SOFT_COUNTERS
1920                 /* Increment bytes counter. */
1921                 rxq->stats.ibytes += PKT_LEN(pkt);
1922 #endif
1923                 /* Return packet. */
1924                 *(pkts++) = pkt;
1925                 pkt = NULL;
1926                 --pkts_n;
1927                 ++i;
1928 skip:
1929                 /* Align consumer index to the next stride. */
1930                 rq_ci >>= sges_n;
1931                 ++rq_ci;
1932                 rq_ci <<= sges_n;
1933         }
1934         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1935                 return 0;
1936         /* Update the consumer index. */
1937         rxq->rq_ci = rq_ci >> sges_n;
1938         rte_io_wmb();
1939         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1940         rte_io_wmb();
1941         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1942 #ifdef MLX5_PMD_SOFT_COUNTERS
1943         /* Increment packets counter. */
1944         rxq->stats.ipackets += i;
1945 #endif
1946         return i;
1947 }
1948
1949 /**
1950  * Dummy DPDK callback for TX.
1951  *
1952  * This function is used to temporarily replace the real callback during
1953  * unsafe control operations on the queue, or in case of error.
1954  *
1955  * @param dpdk_txq
1956  *   Generic pointer to TX queue structure.
1957  * @param[in] pkts
1958  *   Packets to transmit.
1959  * @param pkts_n
1960  *   Number of packets in array.
1961  *
1962  * @return
1963  *   Number of packets successfully transmitted (<= pkts_n).
1964  */
1965 uint16_t
1966 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1967 {
1968         (void)dpdk_txq;
1969         (void)pkts;
1970         (void)pkts_n;
1971         return 0;
1972 }
1973
1974 /**
1975  * Dummy DPDK callback for RX.
1976  *
1977  * This function is used to temporarily replace the real callback during
1978  * unsafe control operations on the queue, or in case of error.
1979  *
1980  * @param dpdk_rxq
1981  *   Generic pointer to RX queue structure.
1982  * @param[out] pkts
1983  *   Array to store received packets.
1984  * @param pkts_n
1985  *   Maximum number of packets in array.
1986  *
1987  * @return
1988  *   Number of packets successfully received (<= pkts_n).
1989  */
1990 uint16_t
1991 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1992 {
1993         (void)dpdk_rxq;
1994         (void)pkts;
1995         (void)pkts_n;
1996         return 0;
1997 }
1998
1999 /*
2000  * Vectorized Rx/Tx routines are not compiled in when required vector
2001  * instructions are not supported on a target architecture. The following null
2002  * stubs are needed for linkage when those are not included outside of this file
2003  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2004  */
2005
2006 uint16_t __attribute__((weak))
2007 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2008 {
2009         (void)dpdk_txq;
2010         (void)pkts;
2011         (void)pkts_n;
2012         return 0;
2013 }
2014
2015 uint16_t __attribute__((weak))
2016 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2017 {
2018         (void)dpdk_txq;
2019         (void)pkts;
2020         (void)pkts_n;
2021         return 0;
2022 }
2023
2024 uint16_t __attribute__((weak))
2025 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2026 {
2027         (void)dpdk_rxq;
2028         (void)pkts;
2029         (void)pkts_n;
2030         return 0;
2031 }
2032
2033 int __attribute__((weak))
2034 priv_check_raw_vec_tx_support(struct priv *priv)
2035 {
2036         (void)priv;
2037         return -ENOTSUP;
2038 }
2039
2040 int __attribute__((weak))
2041 priv_check_vec_tx_support(struct priv *priv)
2042 {
2043         (void)priv;
2044         return -ENOTSUP;
2045 }
2046
2047 int __attribute__((weak))
2048 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2049 {
2050         (void)rxq;
2051         return -ENOTSUP;
2052 }
2053
2054 int __attribute__((weak))
2055 priv_check_vec_rx_support(struct priv *priv)
2056 {
2057         (void)priv;
2058         return -ENOTSUP;
2059 }