net/mlx5: fix Tx checksum offloads
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         uint16_t max_wqe;
348         unsigned int comp;
349         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
350         unsigned int segs_n = 0;
351         const unsigned int max_inline = txq->max_inline;
352
353         if (unlikely(!pkts_n))
354                 return 0;
355         /* Prefetch first packet cacheline. */
356         rte_prefetch0(*pkts);
357         /* Start processing. */
358         mlx5_tx_complete(txq);
359         max_elts = (elts_n - (elts_head - txq->elts_tail));
360         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
361         if (unlikely(!max_wqe))
362                 return 0;
363         do {
364                 struct rte_mbuf *buf = NULL;
365                 uint8_t *raw;
366                 volatile struct mlx5_wqe_v *wqe = NULL;
367                 volatile rte_v128u32_t *dseg = NULL;
368                 uint32_t length;
369                 unsigned int ds = 0;
370                 unsigned int sg = 0; /* counter of additional segs attached. */
371                 uintptr_t addr;
372                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
373                 uint16_t tso_header_sz = 0;
374                 uint16_t ehdr;
375                 uint8_t cs_flags;
376                 uint64_t tso = 0;
377                 uint16_t tso_segsz = 0;
378 #ifdef MLX5_PMD_SOFT_COUNTERS
379                 uint32_t total_length = 0;
380 #endif
381
382                 /* first_seg */
383                 buf = *pkts;
384                 segs_n = buf->nb_segs;
385                 /*
386                  * Make sure there is enough room to store this packet and
387                  * that one ring entry remains unused.
388                  */
389                 assert(segs_n);
390                 if (max_elts < segs_n)
391                         break;
392                 max_elts -= segs_n;
393                 --segs_n;
394                 if (unlikely(--max_wqe == 0))
395                         break;
396                 wqe = (volatile struct mlx5_wqe_v *)
397                         tx_mlx5_wqe(txq, txq->wqe_ci);
398                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
399                 if (pkts_n - i > 1)
400                         rte_prefetch0(*(pkts + 1));
401                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
402                 length = DATA_LEN(buf);
403                 ehdr = (((uint8_t *)addr)[1] << 8) |
404                        ((uint8_t *)addr)[0];
405 #ifdef MLX5_PMD_SOFT_COUNTERS
406                 total_length = length;
407 #endif
408                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
409                         txq->stats.oerrors++;
410                         break;
411                 }
412                 /* Update element. */
413                 (*txq->elts)[elts_head & elts_m] = buf;
414                 /* Prefetch next buffer data. */
415                 if (pkts_n - i > 1)
416                         rte_prefetch0(
417                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
418                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
419                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
420                 /* Replace the Ethernet type by the VLAN if necessary. */
421                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
422                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
423                                                          buf->vlan_tci);
424                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
425
426                         addr += 2;
427                         length -= 2;
428                         /* Copy Destination and source mac address. */
429                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
430                         /* Copy VLAN. */
431                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
432                         /* Copy missing two bytes to end the DSeg. */
433                         memcpy((uint8_t *)raw + len + sizeof(vlan),
434                                ((uint8_t *)addr) + len, 2);
435                         addr += len + 2;
436                         length -= (len + 2);
437                 } else {
438                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
439                                MLX5_WQE_DWORD_SIZE);
440                         length -= pkt_inline_sz;
441                         addr += pkt_inline_sz;
442                 }
443                 raw += MLX5_WQE_DWORD_SIZE;
444                 if (txq->tso_en) {
445                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
446                         if (tso) {
447                                 uintptr_t end = (uintptr_t)
448                                                 (((uintptr_t)txq->wqes) +
449                                                 (1 << txq->wqe_n) *
450                                                 MLX5_WQE_SIZE);
451                                 unsigned int copy_b;
452                                 uint8_t vlan_sz = (buf->ol_flags &
453                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
454                                 const uint64_t is_tunneled =
455                                                         buf->ol_flags &
456                                                         (PKT_TX_TUNNEL_GRE |
457                                                          PKT_TX_TUNNEL_VXLAN);
458
459                                 tso_header_sz = buf->l2_len + vlan_sz +
460                                                 buf->l3_len + buf->l4_len;
461                                 tso_segsz = buf->tso_segsz;
462                                 if (unlikely(tso_segsz == 0)) {
463                                         txq->stats.oerrors++;
464                                         break;
465                                 }
466                                 if (is_tunneled && txq->tunnel_en) {
467                                         tso_header_sz += buf->outer_l2_len +
468                                                          buf->outer_l3_len;
469                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
470                                 } else {
471                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
472                                 }
473                                 if (unlikely(tso_header_sz >
474                                              MLX5_MAX_TSO_HEADER)) {
475                                         txq->stats.oerrors++;
476                                         break;
477                                 }
478                                 copy_b = tso_header_sz - pkt_inline_sz;
479                                 /* First seg must contain all headers. */
480                                 assert(copy_b <= length);
481                                 if (copy_b &&
482                                    ((end - (uintptr_t)raw) > copy_b)) {
483                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
484                                                       1 + 3) / 4;
485
486                                         if (unlikely(max_wqe < n))
487                                                 break;
488                                         max_wqe -= n;
489                                         rte_memcpy((void *)raw,
490                                                    (void *)addr, copy_b);
491                                         addr += copy_b;
492                                         length -= copy_b;
493                                         /* Include padding for TSO header. */
494                                         copy_b = MLX5_WQE_DS(copy_b) *
495                                                  MLX5_WQE_DWORD_SIZE;
496                                         pkt_inline_sz += copy_b;
497                                         raw += copy_b;
498                                 } else {
499                                         /* NOP WQE. */
500                                         wqe->ctrl = (rte_v128u32_t){
501                                                      rte_cpu_to_be_32(
502                                                         txq->wqe_ci << 8),
503                                                      rte_cpu_to_be_32(
504                                                         txq->qp_num_8s | 1),
505                                                      0,
506                                                      0,
507                                         };
508                                         ds = 1;
509 #ifdef MLX5_PMD_SOFT_COUNTERS
510                                         total_length = 0;
511 #endif
512                                         k++;
513                                         goto next_wqe;
514                                 }
515                         }
516                 }
517                 /* Inline if enough room. */
518                 if (max_inline || tso) {
519                         uint32_t inl;
520                         uintptr_t end = (uintptr_t)
521                                 (((uintptr_t)txq->wqes) +
522                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
523                         unsigned int inline_room = max_inline *
524                                                    RTE_CACHE_LINE_SIZE -
525                                                    (pkt_inline_sz - 2) -
526                                                    !!tso * sizeof(inl);
527                         uintptr_t addr_end = (addr + inline_room) &
528                                              ~(RTE_CACHE_LINE_SIZE - 1);
529                         unsigned int copy_b = (addr_end > addr) ?
530                                 RTE_MIN((addr_end - addr), length) :
531                                 0;
532
533                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
534                                 /*
535                                  * One Dseg remains in the current WQE.  To
536                                  * keep the computation positive, it is
537                                  * removed after the bytes to Dseg conversion.
538                                  */
539                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
540
541                                 if (unlikely(max_wqe < n))
542                                         break;
543                                 max_wqe -= n;
544                                 if (tso) {
545                                         inl = rte_cpu_to_be_32(copy_b |
546                                                                MLX5_INLINE_SEG);
547                                         rte_memcpy((void *)raw,
548                                                    (void *)&inl, sizeof(inl));
549                                         raw += sizeof(inl);
550                                         pkt_inline_sz += sizeof(inl);
551                                 }
552                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
553                                 addr += copy_b;
554                                 length -= copy_b;
555                                 pkt_inline_sz += copy_b;
556                         }
557                         /*
558                          * 2 DWORDs consumed by the WQE header + ETH segment +
559                          * the size of the inline part of the packet.
560                          */
561                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
562                         if (length > 0) {
563                                 if (ds % (MLX5_WQE_SIZE /
564                                           MLX5_WQE_DWORD_SIZE) == 0) {
565                                         if (unlikely(--max_wqe == 0))
566                                                 break;
567                                         dseg = (volatile rte_v128u32_t *)
568                                                tx_mlx5_wqe(txq, txq->wqe_ci +
569                                                            ds / 4);
570                                 } else {
571                                         dseg = (volatile rte_v128u32_t *)
572                                                 ((uintptr_t)wqe +
573                                                  (ds * MLX5_WQE_DWORD_SIZE));
574                                 }
575                                 goto use_dseg;
576                         } else if (!segs_n) {
577                                 goto next_pkt;
578                         } else {
579                                 /* dseg will be advance as part of next_seg */
580                                 dseg = (volatile rte_v128u32_t *)
581                                         ((uintptr_t)wqe +
582                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
583                                 goto next_seg;
584                         }
585                 } else {
586                         /*
587                          * No inline has been done in the packet, only the
588                          * Ethernet Header as been stored.
589                          */
590                         dseg = (volatile rte_v128u32_t *)
591                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
592                         ds = 3;
593 use_dseg:
594                         /* Add the remaining packet as a simple ds. */
595                         addr = rte_cpu_to_be_64(addr);
596                         *dseg = (rte_v128u32_t){
597                                 rte_cpu_to_be_32(length),
598                                 mlx5_tx_mb2mr(txq, buf),
599                                 addr,
600                                 addr >> 32,
601                         };
602                         ++ds;
603                         if (!segs_n)
604                                 goto next_pkt;
605                 }
606 next_seg:
607                 assert(buf);
608                 assert(ds);
609                 assert(wqe);
610                 /*
611                  * Spill on next WQE when the current one does not have
612                  * enough room left. Size of WQE must a be a multiple
613                  * of data segment size.
614                  */
615                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
616                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
617                         if (unlikely(--max_wqe == 0))
618                                 break;
619                         dseg = (volatile rte_v128u32_t *)
620                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
621                         rte_prefetch0(tx_mlx5_wqe(txq,
622                                                   txq->wqe_ci + ds / 4 + 1));
623                 } else {
624                         ++dseg;
625                 }
626                 ++ds;
627                 buf = buf->next;
628                 assert(buf);
629                 length = DATA_LEN(buf);
630 #ifdef MLX5_PMD_SOFT_COUNTERS
631                 total_length += length;
632 #endif
633                 /* Store segment information. */
634                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
635                 *dseg = (rte_v128u32_t){
636                         rte_cpu_to_be_32(length),
637                         mlx5_tx_mb2mr(txq, buf),
638                         addr,
639                         addr >> 32,
640                 };
641                 (*txq->elts)[++elts_head & elts_m] = buf;
642                 ++sg;
643                 /* Advance counter only if all segs are successfully posted. */
644                 if (sg < segs_n)
645                         goto next_seg;
646                 else
647                         j += sg;
648 next_pkt:
649                 if (ds > MLX5_DSEG_MAX) {
650                         txq->stats.oerrors++;
651                         break;
652                 }
653                 ++elts_head;
654                 ++pkts;
655                 ++i;
656                 /* Initialize known and common part of the WQE structure. */
657                 if (tso) {
658                         wqe->ctrl = (rte_v128u32_t){
659                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
660                                                  MLX5_OPCODE_TSO),
661                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
662                                 0,
663                                 0,
664                         };
665                         wqe->eseg = (rte_v128u32_t){
666                                 0,
667                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
668                                 0,
669                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
670                         };
671                 } else {
672                         wqe->ctrl = (rte_v128u32_t){
673                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
674                                                  MLX5_OPCODE_SEND),
675                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
676                                 0,
677                                 0,
678                         };
679                         wqe->eseg = (rte_v128u32_t){
680                                 0,
681                                 cs_flags,
682                                 0,
683                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
684                         };
685                 }
686 next_wqe:
687                 txq->wqe_ci += (ds + 3) / 4;
688                 /* Save the last successful WQE for completion request */
689                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
690 #ifdef MLX5_PMD_SOFT_COUNTERS
691                 /* Increment sent bytes counter. */
692                 txq->stats.obytes += total_length;
693 #endif
694         } while (i < pkts_n);
695         /* Take a shortcut if nothing must be sent. */
696         if (unlikely((i + k) == 0))
697                 return 0;
698         txq->elts_head += (i + j);
699         /* Check whether completion threshold has been reached. */
700         comp = txq->elts_comp + i + j + k;
701         if (comp >= MLX5_TX_COMP_THRESH) {
702                 /* Request completion on last WQE. */
703                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
704                 /* Save elts_head in unused "immediate" field of WQE. */
705                 last_wqe->ctrl3 = txq->elts_head;
706                 txq->elts_comp = 0;
707         } else {
708                 txq->elts_comp = comp;
709         }
710 #ifdef MLX5_PMD_SOFT_COUNTERS
711         /* Increment sent packets counter. */
712         txq->stats.opackets += i;
713 #endif
714         /* Ring QP doorbell. */
715         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
716         return i;
717 }
718
719 /**
720  * Open a MPW session.
721  *
722  * @param txq
723  *   Pointer to TX queue structure.
724  * @param mpw
725  *   Pointer to MPW session structure.
726  * @param length
727  *   Packet length.
728  */
729 static inline void
730 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
731 {
732         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
733         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
734                 (volatile struct mlx5_wqe_data_seg (*)[])
735                 tx_mlx5_wqe(txq, idx + 1);
736
737         mpw->state = MLX5_MPW_STATE_OPENED;
738         mpw->pkts_n = 0;
739         mpw->len = length;
740         mpw->total_len = 0;
741         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
742         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
743         mpw->wqe->eseg.inline_hdr_sz = 0;
744         mpw->wqe->eseg.rsvd0 = 0;
745         mpw->wqe->eseg.rsvd1 = 0;
746         mpw->wqe->eseg.rsvd2 = 0;
747         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
748                                              (txq->wqe_ci << 8) |
749                                              MLX5_OPCODE_TSO);
750         mpw->wqe->ctrl[2] = 0;
751         mpw->wqe->ctrl[3] = 0;
752         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
753                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
754         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
755                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
756         mpw->data.dseg[2] = &(*dseg)[0];
757         mpw->data.dseg[3] = &(*dseg)[1];
758         mpw->data.dseg[4] = &(*dseg)[2];
759 }
760
761 /**
762  * Close a MPW session.
763  *
764  * @param txq
765  *   Pointer to TX queue structure.
766  * @param mpw
767  *   Pointer to MPW session structure.
768  */
769 static inline void
770 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
771 {
772         unsigned int num = mpw->pkts_n;
773
774         /*
775          * Store size in multiple of 16 bytes. Control and Ethernet segments
776          * count as 2.
777          */
778         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
779         mpw->state = MLX5_MPW_STATE_CLOSED;
780         if (num < 3)
781                 ++txq->wqe_ci;
782         else
783                 txq->wqe_ci += 2;
784         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
785         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
786 }
787
788 /**
789  * DPDK callback for TX with MPW support.
790  *
791  * @param dpdk_txq
792  *   Generic pointer to TX queue structure.
793  * @param[in] pkts
794  *   Packets to transmit.
795  * @param pkts_n
796  *   Number of packets in array.
797  *
798  * @return
799  *   Number of packets successfully transmitted (<= pkts_n).
800  */
801 uint16_t
802 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
803 {
804         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
805         uint16_t elts_head = txq->elts_head;
806         const uint16_t elts_n = 1 << txq->elts_n;
807         const uint16_t elts_m = elts_n - 1;
808         unsigned int i = 0;
809         unsigned int j = 0;
810         uint16_t max_elts;
811         uint16_t max_wqe;
812         unsigned int comp;
813         struct mlx5_mpw mpw = {
814                 .state = MLX5_MPW_STATE_CLOSED,
815         };
816
817         if (unlikely(!pkts_n))
818                 return 0;
819         /* Prefetch first packet cacheline. */
820         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
821         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
822         /* Start processing. */
823         mlx5_tx_complete(txq);
824         max_elts = (elts_n - (elts_head - txq->elts_tail));
825         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
826         if (unlikely(!max_wqe))
827                 return 0;
828         do {
829                 struct rte_mbuf *buf = *(pkts++);
830                 uint32_t length;
831                 unsigned int segs_n = buf->nb_segs;
832                 uint32_t cs_flags;
833
834                 /*
835                  * Make sure there is enough room to store this packet and
836                  * that one ring entry remains unused.
837                  */
838                 assert(segs_n);
839                 if (max_elts < segs_n)
840                         break;
841                 /* Do not bother with large packets MPW cannot handle. */
842                 if (segs_n > MLX5_MPW_DSEG_MAX) {
843                         txq->stats.oerrors++;
844                         break;
845                 }
846                 max_elts -= segs_n;
847                 --pkts_n;
848                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
849                 /* Retrieve packet information. */
850                 length = PKT_LEN(buf);
851                 assert(length);
852                 /* Start new session if packet differs. */
853                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
854                     ((mpw.len != length) ||
855                      (segs_n != 1) ||
856                      (mpw.wqe->eseg.cs_flags != cs_flags)))
857                         mlx5_mpw_close(txq, &mpw);
858                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
859                         /*
860                          * Multi-Packet WQE consumes at most two WQE.
861                          * mlx5_mpw_new() expects to be able to use such
862                          * resources.
863                          */
864                         if (unlikely(max_wqe < 2))
865                                 break;
866                         max_wqe -= 2;
867                         mlx5_mpw_new(txq, &mpw, length);
868                         mpw.wqe->eseg.cs_flags = cs_flags;
869                 }
870                 /* Multi-segment packets must be alone in their MPW. */
871                 assert((segs_n == 1) || (mpw.pkts_n == 0));
872 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
873                 length = 0;
874 #endif
875                 do {
876                         volatile struct mlx5_wqe_data_seg *dseg;
877                         uintptr_t addr;
878
879                         assert(buf);
880                         (*txq->elts)[elts_head++ & elts_m] = buf;
881                         dseg = mpw.data.dseg[mpw.pkts_n];
882                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
883                         *dseg = (struct mlx5_wqe_data_seg){
884                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
885                                 .lkey = mlx5_tx_mb2mr(txq, buf),
886                                 .addr = rte_cpu_to_be_64(addr),
887                         };
888 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
889                         length += DATA_LEN(buf);
890 #endif
891                         buf = buf->next;
892                         ++mpw.pkts_n;
893                         ++j;
894                 } while (--segs_n);
895                 assert(length == mpw.len);
896                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
897                         mlx5_mpw_close(txq, &mpw);
898 #ifdef MLX5_PMD_SOFT_COUNTERS
899                 /* Increment sent bytes counter. */
900                 txq->stats.obytes += length;
901 #endif
902                 ++i;
903         } while (pkts_n);
904         /* Take a shortcut if nothing must be sent. */
905         if (unlikely(i == 0))
906                 return 0;
907         /* Check whether completion threshold has been reached. */
908         /* "j" includes both packets and segments. */
909         comp = txq->elts_comp + j;
910         if (comp >= MLX5_TX_COMP_THRESH) {
911                 volatile struct mlx5_wqe *wqe = mpw.wqe;
912
913                 /* Request completion on last WQE. */
914                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
915                 /* Save elts_head in unused "immediate" field of WQE. */
916                 wqe->ctrl[3] = elts_head;
917                 txq->elts_comp = 0;
918         } else {
919                 txq->elts_comp = comp;
920         }
921 #ifdef MLX5_PMD_SOFT_COUNTERS
922         /* Increment sent packets counter. */
923         txq->stats.opackets += i;
924 #endif
925         /* Ring QP doorbell. */
926         if (mpw.state == MLX5_MPW_STATE_OPENED)
927                 mlx5_mpw_close(txq, &mpw);
928         mlx5_tx_dbrec(txq, mpw.wqe);
929         txq->elts_head = elts_head;
930         return i;
931 }
932
933 /**
934  * Open a MPW inline session.
935  *
936  * @param txq
937  *   Pointer to TX queue structure.
938  * @param mpw
939  *   Pointer to MPW session structure.
940  * @param length
941  *   Packet length.
942  */
943 static inline void
944 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
945                     uint32_t length)
946 {
947         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
948         struct mlx5_wqe_inl_small *inl;
949
950         mpw->state = MLX5_MPW_INL_STATE_OPENED;
951         mpw->pkts_n = 0;
952         mpw->len = length;
953         mpw->total_len = 0;
954         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
955         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
956                                              (txq->wqe_ci << 8) |
957                                              MLX5_OPCODE_TSO);
958         mpw->wqe->ctrl[2] = 0;
959         mpw->wqe->ctrl[3] = 0;
960         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
961         mpw->wqe->eseg.inline_hdr_sz = 0;
962         mpw->wqe->eseg.cs_flags = 0;
963         mpw->wqe->eseg.rsvd0 = 0;
964         mpw->wqe->eseg.rsvd1 = 0;
965         mpw->wqe->eseg.rsvd2 = 0;
966         inl = (struct mlx5_wqe_inl_small *)
967                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
968         mpw->data.raw = (uint8_t *)&inl->raw;
969 }
970
971 /**
972  * Close a MPW inline session.
973  *
974  * @param txq
975  *   Pointer to TX queue structure.
976  * @param mpw
977  *   Pointer to MPW session structure.
978  */
979 static inline void
980 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
981 {
982         unsigned int size;
983         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
984                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
985
986         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
987         /*
988          * Store size in multiple of 16 bytes. Control and Ethernet segments
989          * count as 2.
990          */
991         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
992                                              MLX5_WQE_DS(size));
993         mpw->state = MLX5_MPW_STATE_CLOSED;
994         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
995         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
996 }
997
998 /**
999  * DPDK callback for TX with MPW inline support.
1000  *
1001  * @param dpdk_txq
1002  *   Generic pointer to TX queue structure.
1003  * @param[in] pkts
1004  *   Packets to transmit.
1005  * @param pkts_n
1006  *   Number of packets in array.
1007  *
1008  * @return
1009  *   Number of packets successfully transmitted (<= pkts_n).
1010  */
1011 uint16_t
1012 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1013                          uint16_t pkts_n)
1014 {
1015         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1016         uint16_t elts_head = txq->elts_head;
1017         const uint16_t elts_n = 1 << txq->elts_n;
1018         const uint16_t elts_m = elts_n - 1;
1019         unsigned int i = 0;
1020         unsigned int j = 0;
1021         uint16_t max_elts;
1022         uint16_t max_wqe;
1023         unsigned int comp;
1024         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1025         struct mlx5_mpw mpw = {
1026                 .state = MLX5_MPW_STATE_CLOSED,
1027         };
1028         /*
1029          * Compute the maximum number of WQE which can be consumed by inline
1030          * code.
1031          * - 2 DSEG for:
1032          *   - 1 control segment,
1033          *   - 1 Ethernet segment,
1034          * - N Dseg from the inline request.
1035          */
1036         const unsigned int wqe_inl_n =
1037                 ((2 * MLX5_WQE_DWORD_SIZE +
1038                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1039                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1040
1041         if (unlikely(!pkts_n))
1042                 return 0;
1043         /* Prefetch first packet cacheline. */
1044         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1045         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1046         /* Start processing. */
1047         mlx5_tx_complete(txq);
1048         max_elts = (elts_n - (elts_head - txq->elts_tail));
1049         do {
1050                 struct rte_mbuf *buf = *(pkts++);
1051                 uintptr_t addr;
1052                 uint32_t length;
1053                 unsigned int segs_n = buf->nb_segs;
1054                 uint8_t cs_flags;
1055
1056                 /*
1057                  * Make sure there is enough room to store this packet and
1058                  * that one ring entry remains unused.
1059                  */
1060                 assert(segs_n);
1061                 if (max_elts < segs_n)
1062                         break;
1063                 /* Do not bother with large packets MPW cannot handle. */
1064                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1065                         txq->stats.oerrors++;
1066                         break;
1067                 }
1068                 max_elts -= segs_n;
1069                 --pkts_n;
1070                 /*
1071                  * Compute max_wqe in case less WQE were consumed in previous
1072                  * iteration.
1073                  */
1074                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1075                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1076                 /* Retrieve packet information. */
1077                 length = PKT_LEN(buf);
1078                 /* Start new session if packet differs. */
1079                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1080                         if ((mpw.len != length) ||
1081                             (segs_n != 1) ||
1082                             (mpw.wqe->eseg.cs_flags != cs_flags))
1083                                 mlx5_mpw_close(txq, &mpw);
1084                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1085                         if ((mpw.len != length) ||
1086                             (segs_n != 1) ||
1087                             (length > inline_room) ||
1088                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1089                                 mlx5_mpw_inline_close(txq, &mpw);
1090                                 inline_room =
1091                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1092                         }
1093                 }
1094                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1095                         if ((segs_n != 1) ||
1096                             (length > inline_room)) {
1097                                 /*
1098                                  * Multi-Packet WQE consumes at most two WQE.
1099                                  * mlx5_mpw_new() expects to be able to use
1100                                  * such resources.
1101                                  */
1102                                 if (unlikely(max_wqe < 2))
1103                                         break;
1104                                 max_wqe -= 2;
1105                                 mlx5_mpw_new(txq, &mpw, length);
1106                                 mpw.wqe->eseg.cs_flags = cs_flags;
1107                         } else {
1108                                 if (unlikely(max_wqe < wqe_inl_n))
1109                                         break;
1110                                 max_wqe -= wqe_inl_n;
1111                                 mlx5_mpw_inline_new(txq, &mpw, length);
1112                                 mpw.wqe->eseg.cs_flags = cs_flags;
1113                         }
1114                 }
1115                 /* Multi-segment packets must be alone in their MPW. */
1116                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1117                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1118                         assert(inline_room ==
1119                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1120 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1121                         length = 0;
1122 #endif
1123                         do {
1124                                 volatile struct mlx5_wqe_data_seg *dseg;
1125
1126                                 assert(buf);
1127                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1128                                 dseg = mpw.data.dseg[mpw.pkts_n];
1129                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1130                                 *dseg = (struct mlx5_wqe_data_seg){
1131                                         .byte_count =
1132                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1133                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1134                                         .addr = rte_cpu_to_be_64(addr),
1135                                 };
1136 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1137                                 length += DATA_LEN(buf);
1138 #endif
1139                                 buf = buf->next;
1140                                 ++mpw.pkts_n;
1141                                 ++j;
1142                         } while (--segs_n);
1143                         assert(length == mpw.len);
1144                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1145                                 mlx5_mpw_close(txq, &mpw);
1146                 } else {
1147                         unsigned int max;
1148
1149                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1150                         assert(length <= inline_room);
1151                         assert(length == DATA_LEN(buf));
1152                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1153                         (*txq->elts)[elts_head++ & elts_m] = buf;
1154                         /* Maximum number of bytes before wrapping. */
1155                         max = ((((uintptr_t)(txq->wqes)) +
1156                                 (1 << txq->wqe_n) *
1157                                 MLX5_WQE_SIZE) -
1158                                (uintptr_t)mpw.data.raw);
1159                         if (length > max) {
1160                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1161                                            (void *)addr,
1162                                            max);
1163                                 mpw.data.raw = (volatile void *)txq->wqes;
1164                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1165                                            (void *)(addr + max),
1166                                            length - max);
1167                                 mpw.data.raw += length - max;
1168                         } else {
1169                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1170                                            (void *)addr,
1171                                            length);
1172
1173                                 if (length == max)
1174                                         mpw.data.raw =
1175                                                 (volatile void *)txq->wqes;
1176                                 else
1177                                         mpw.data.raw += length;
1178                         }
1179                         ++mpw.pkts_n;
1180                         mpw.total_len += length;
1181                         ++j;
1182                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1183                                 mlx5_mpw_inline_close(txq, &mpw);
1184                                 inline_room =
1185                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1186                         } else {
1187                                 inline_room -= length;
1188                         }
1189                 }
1190 #ifdef MLX5_PMD_SOFT_COUNTERS
1191                 /* Increment sent bytes counter. */
1192                 txq->stats.obytes += length;
1193 #endif
1194                 ++i;
1195         } while (pkts_n);
1196         /* Take a shortcut if nothing must be sent. */
1197         if (unlikely(i == 0))
1198                 return 0;
1199         /* Check whether completion threshold has been reached. */
1200         /* "j" includes both packets and segments. */
1201         comp = txq->elts_comp + j;
1202         if (comp >= MLX5_TX_COMP_THRESH) {
1203                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1204
1205                 /* Request completion on last WQE. */
1206                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1207                 /* Save elts_head in unused "immediate" field of WQE. */
1208                 wqe->ctrl[3] = elts_head;
1209                 txq->elts_comp = 0;
1210         } else {
1211                 txq->elts_comp = comp;
1212         }
1213 #ifdef MLX5_PMD_SOFT_COUNTERS
1214         /* Increment sent packets counter. */
1215         txq->stats.opackets += i;
1216 #endif
1217         /* Ring QP doorbell. */
1218         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1219                 mlx5_mpw_inline_close(txq, &mpw);
1220         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1221                 mlx5_mpw_close(txq, &mpw);
1222         mlx5_tx_dbrec(txq, mpw.wqe);
1223         txq->elts_head = elts_head;
1224         return i;
1225 }
1226
1227 /**
1228  * Open an Enhanced MPW session.
1229  *
1230  * @param txq
1231  *   Pointer to TX queue structure.
1232  * @param mpw
1233  *   Pointer to MPW session structure.
1234  * @param length
1235  *   Packet length.
1236  */
1237 static inline void
1238 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1239 {
1240         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1241
1242         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1243         mpw->pkts_n = 0;
1244         mpw->total_len = sizeof(struct mlx5_wqe);
1245         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1246         mpw->wqe->ctrl[0] =
1247                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1248                                  (txq->wqe_ci << 8) |
1249                                  MLX5_OPCODE_ENHANCED_MPSW);
1250         mpw->wqe->ctrl[2] = 0;
1251         mpw->wqe->ctrl[3] = 0;
1252         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1253         if (unlikely(padding)) {
1254                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1255
1256                 /* Pad the first 2 DWORDs with zero-length inline header. */
1257                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1258                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1259                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1260                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1261                 /* Start from the next WQEBB. */
1262                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1263         } else {
1264                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1265         }
1266 }
1267
1268 /**
1269  * Close an Enhanced MPW session.
1270  *
1271  * @param txq
1272  *   Pointer to TX queue structure.
1273  * @param mpw
1274  *   Pointer to MPW session structure.
1275  *
1276  * @return
1277  *   Number of consumed WQEs.
1278  */
1279 static inline uint16_t
1280 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1281 {
1282         uint16_t ret;
1283
1284         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1285          * count as 2.
1286          */
1287         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1288                                              MLX5_WQE_DS(mpw->total_len));
1289         mpw->state = MLX5_MPW_STATE_CLOSED;
1290         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1291         txq->wqe_ci += ret;
1292         return ret;
1293 }
1294
1295 /**
1296  * DPDK callback for TX with Enhanced MPW support.
1297  *
1298  * @param dpdk_txq
1299  *   Generic pointer to TX queue structure.
1300  * @param[in] pkts
1301  *   Packets to transmit.
1302  * @param pkts_n
1303  *   Number of packets in array.
1304  *
1305  * @return
1306  *   Number of packets successfully transmitted (<= pkts_n).
1307  */
1308 uint16_t
1309 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1310 {
1311         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1312         uint16_t elts_head = txq->elts_head;
1313         const uint16_t elts_n = 1 << txq->elts_n;
1314         const uint16_t elts_m = elts_n - 1;
1315         unsigned int i = 0;
1316         unsigned int j = 0;
1317         uint16_t max_elts;
1318         uint16_t max_wqe;
1319         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1320         unsigned int mpw_room = 0;
1321         unsigned int inl_pad = 0;
1322         uint32_t inl_hdr;
1323         struct mlx5_mpw mpw = {
1324                 .state = MLX5_MPW_STATE_CLOSED,
1325         };
1326
1327         if (unlikely(!pkts_n))
1328                 return 0;
1329         /* Start processing. */
1330         mlx5_tx_complete(txq);
1331         max_elts = (elts_n - (elts_head - txq->elts_tail));
1332         /* A CQE slot must always be available. */
1333         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1334         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1335         if (unlikely(!max_wqe))
1336                 return 0;
1337         do {
1338                 struct rte_mbuf *buf = *(pkts++);
1339                 uintptr_t addr;
1340                 unsigned int n;
1341                 unsigned int do_inline = 0; /* Whether inline is possible. */
1342                 uint32_t length;
1343                 unsigned int segs_n = buf->nb_segs;
1344                 uint8_t cs_flags;
1345
1346                 /*
1347                  * Make sure there is enough room to store this packet and
1348                  * that one ring entry remains unused.
1349                  */
1350                 assert(segs_n);
1351                 if (max_elts - j < segs_n)
1352                         break;
1353                 /* Do not bother with large packets MPW cannot handle. */
1354                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1355                         txq->stats.oerrors++;
1356                         break;
1357                 }
1358                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1359                 /* Retrieve packet information. */
1360                 length = PKT_LEN(buf);
1361                 /* Start new session if:
1362                  * - multi-segment packet
1363                  * - no space left even for a dseg
1364                  * - next packet can be inlined with a new WQE
1365                  * - cs_flag differs
1366                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1367                  * segmented packet.
1368                  */
1369                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1370                         if ((segs_n != 1) ||
1371                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1372                               mpw_room) ||
1373                             (length <= txq->inline_max_packet_sz &&
1374                              inl_pad + sizeof(inl_hdr) + length >
1375                               mpw_room) ||
1376                             (mpw.wqe->eseg.cs_flags != cs_flags))
1377                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1378                 }
1379                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1380                         if (unlikely(segs_n != 1)) {
1381                                 /* Fall back to legacy MPW.
1382                                  * A MPW session consumes 2 WQEs at most to
1383                                  * include MLX5_MPW_DSEG_MAX pointers.
1384                                  */
1385                                 if (unlikely(max_wqe < 2))
1386                                         break;
1387                                 mlx5_mpw_new(txq, &mpw, length);
1388                         } else {
1389                                 /* In Enhanced MPW, inline as much as the budget
1390                                  * is allowed. The remaining space is to be
1391                                  * filled with dsegs. If the title WQEBB isn't
1392                                  * padded, it will have 2 dsegs there.
1393                                  */
1394                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1395                                             (max_inline ? max_inline :
1396                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1397                                             MLX5_WQE_SIZE);
1398                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1399                                               mpw_room))
1400                                         break;
1401                                 /* Don't pad the title WQEBB to not waste WQ. */
1402                                 mlx5_empw_new(txq, &mpw, 0);
1403                                 mpw_room -= mpw.total_len;
1404                                 inl_pad = 0;
1405                                 do_inline =
1406                                         length <= txq->inline_max_packet_sz &&
1407                                         sizeof(inl_hdr) + length <= mpw_room &&
1408                                         !txq->mpw_hdr_dseg;
1409                         }
1410                         mpw.wqe->eseg.cs_flags = cs_flags;
1411                 } else {
1412                         /* Evaluate whether the next packet can be inlined.
1413                          * Inlininig is possible when:
1414                          * - length is less than configured value
1415                          * - length fits for remaining space
1416                          * - not required to fill the title WQEBB with dsegs
1417                          */
1418                         do_inline =
1419                                 length <= txq->inline_max_packet_sz &&
1420                                 inl_pad + sizeof(inl_hdr) + length <=
1421                                  mpw_room &&
1422                                 (!txq->mpw_hdr_dseg ||
1423                                  mpw.total_len >= MLX5_WQE_SIZE);
1424                 }
1425                 /* Multi-segment packets must be alone in their MPW. */
1426                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1427                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1428 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1429                         length = 0;
1430 #endif
1431                         do {
1432                                 volatile struct mlx5_wqe_data_seg *dseg;
1433
1434                                 assert(buf);
1435                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1436                                 dseg = mpw.data.dseg[mpw.pkts_n];
1437                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1438                                 *dseg = (struct mlx5_wqe_data_seg){
1439                                         .byte_count = rte_cpu_to_be_32(
1440                                                                 DATA_LEN(buf)),
1441                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1442                                         .addr = rte_cpu_to_be_64(addr),
1443                                 };
1444 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1445                                 length += DATA_LEN(buf);
1446 #endif
1447                                 buf = buf->next;
1448                                 ++j;
1449                                 ++mpw.pkts_n;
1450                         } while (--segs_n);
1451                         /* A multi-segmented packet takes one MPW session.
1452                          * TODO: Pack more multi-segmented packets if possible.
1453                          */
1454                         mlx5_mpw_close(txq, &mpw);
1455                         if (mpw.pkts_n < 3)
1456                                 max_wqe--;
1457                         else
1458                                 max_wqe -= 2;
1459                 } else if (do_inline) {
1460                         /* Inline packet into WQE. */
1461                         unsigned int max;
1462
1463                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1464                         assert(length == DATA_LEN(buf));
1465                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1466                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1467                         mpw.data.raw = (volatile void *)
1468                                 ((uintptr_t)mpw.data.raw + inl_pad);
1469                         max = tx_mlx5_wq_tailroom(txq,
1470                                         (void *)(uintptr_t)mpw.data.raw);
1471                         /* Copy inline header. */
1472                         mpw.data.raw = (volatile void *)
1473                                 mlx5_copy_to_wq(
1474                                           (void *)(uintptr_t)mpw.data.raw,
1475                                           &inl_hdr,
1476                                           sizeof(inl_hdr),
1477                                           (void *)(uintptr_t)txq->wqes,
1478                                           max);
1479                         max = tx_mlx5_wq_tailroom(txq,
1480                                         (void *)(uintptr_t)mpw.data.raw);
1481                         /* Copy packet data. */
1482                         mpw.data.raw = (volatile void *)
1483                                 mlx5_copy_to_wq(
1484                                           (void *)(uintptr_t)mpw.data.raw,
1485                                           (void *)addr,
1486                                           length,
1487                                           (void *)(uintptr_t)txq->wqes,
1488                                           max);
1489                         ++mpw.pkts_n;
1490                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1491                         /* No need to get completion as the entire packet is
1492                          * copied to WQ. Free the buf right away.
1493                          */
1494                         rte_pktmbuf_free_seg(buf);
1495                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1496                         /* Add pad in the next packet if any. */
1497                         inl_pad = (((uintptr_t)mpw.data.raw +
1498                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1499                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1500                                   (uintptr_t)mpw.data.raw;
1501                 } else {
1502                         /* No inline. Load a dseg of packet pointer. */
1503                         volatile rte_v128u32_t *dseg;
1504
1505                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1506                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1507                         assert(length == DATA_LEN(buf));
1508                         if (!tx_mlx5_wq_tailroom(txq,
1509                                         (void *)((uintptr_t)mpw.data.raw
1510                                                 + inl_pad)))
1511                                 dseg = (volatile void *)txq->wqes;
1512                         else
1513                                 dseg = (volatile void *)
1514                                         ((uintptr_t)mpw.data.raw +
1515                                          inl_pad);
1516                         (*txq->elts)[elts_head++ & elts_m] = buf;
1517                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1518                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1519                                 rte_prefetch2((void *)(addr +
1520                                                 n * RTE_CACHE_LINE_SIZE));
1521                         addr = rte_cpu_to_be_64(addr);
1522                         *dseg = (rte_v128u32_t) {
1523                                 rte_cpu_to_be_32(length),
1524                                 mlx5_tx_mb2mr(txq, buf),
1525                                 addr,
1526                                 addr >> 32,
1527                         };
1528                         mpw.data.raw = (volatile void *)(dseg + 1);
1529                         mpw.total_len += (inl_pad + sizeof(*dseg));
1530                         ++j;
1531                         ++mpw.pkts_n;
1532                         mpw_room -= (inl_pad + sizeof(*dseg));
1533                         inl_pad = 0;
1534                 }
1535 #ifdef MLX5_PMD_SOFT_COUNTERS
1536                 /* Increment sent bytes counter. */
1537                 txq->stats.obytes += length;
1538 #endif
1539                 ++i;
1540         } while (i < pkts_n);
1541         /* Take a shortcut if nothing must be sent. */
1542         if (unlikely(i == 0))
1543                 return 0;
1544         /* Check whether completion threshold has been reached. */
1545         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1546                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1547                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1548                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1549
1550                 /* Request completion on last WQE. */
1551                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1552                 /* Save elts_head in unused "immediate" field of WQE. */
1553                 wqe->ctrl[3] = elts_head;
1554                 txq->elts_comp = 0;
1555                 txq->mpw_comp = txq->wqe_ci;
1556                 txq->cq_pi++;
1557         } else {
1558                 txq->elts_comp += j;
1559         }
1560 #ifdef MLX5_PMD_SOFT_COUNTERS
1561         /* Increment sent packets counter. */
1562         txq->stats.opackets += i;
1563 #endif
1564         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1565                 mlx5_empw_close(txq, &mpw);
1566         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1567                 mlx5_mpw_close(txq, &mpw);
1568         /* Ring QP doorbell. */
1569         mlx5_tx_dbrec(txq, mpw.wqe);
1570         txq->elts_head = elts_head;
1571         return i;
1572 }
1573
1574 /**
1575  * Translate RX completion flags to packet type.
1576  *
1577  * @param[in] cqe
1578  *   Pointer to CQE.
1579  *
1580  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1581  *
1582  * @return
1583  *   Packet type for struct rte_mbuf.
1584  */
1585 static inline uint32_t
1586 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1587 {
1588         uint8_t idx;
1589         uint8_t pinfo = cqe->pkt_info;
1590         uint16_t ptype = cqe->hdr_type_etc;
1591
1592         /*
1593          * The index to the array should have:
1594          * bit[1:0] = l3_hdr_type
1595          * bit[4:2] = l4_hdr_type
1596          * bit[5] = ip_frag
1597          * bit[6] = tunneled
1598          * bit[7] = outer_l3_type
1599          */
1600         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1601         return mlx5_ptype_table[idx];
1602 }
1603
1604 /**
1605  * Get size of the next packet for a given CQE. For compressed CQEs, the
1606  * consumer index is updated only once all packets of the current one have
1607  * been processed.
1608  *
1609  * @param rxq
1610  *   Pointer to RX queue.
1611  * @param cqe
1612  *   CQE to process.
1613  * @param[out] rss_hash
1614  *   Packet RSS Hash result.
1615  *
1616  * @return
1617  *   Packet size in bytes (0 if there is none), -1 in case of completion
1618  *   with error.
1619  */
1620 static inline int
1621 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1622                  uint16_t cqe_cnt, uint32_t *rss_hash)
1623 {
1624         struct rxq_zip *zip = &rxq->zip;
1625         uint16_t cqe_n = cqe_cnt + 1;
1626         int len = 0;
1627         uint16_t idx, end;
1628
1629         /* Process compressed data in the CQE and mini arrays. */
1630         if (zip->ai) {
1631                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1632                         (volatile struct mlx5_mini_cqe8 (*)[8])
1633                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1634
1635                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1636                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1637                 if ((++zip->ai & 7) == 0) {
1638                         /* Invalidate consumed CQEs */
1639                         idx = zip->ca;
1640                         end = zip->na;
1641                         while (idx != end) {
1642                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1643                                         MLX5_CQE_INVALIDATE;
1644                                 ++idx;
1645                         }
1646                         /*
1647                          * Increment consumer index to skip the number of
1648                          * CQEs consumed. Hardware leaves holes in the CQ
1649                          * ring for software use.
1650                          */
1651                         zip->ca = zip->na;
1652                         zip->na += 8;
1653                 }
1654                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1655                         /* Invalidate the rest */
1656                         idx = zip->ca;
1657                         end = zip->cq_ci;
1658
1659                         while (idx != end) {
1660                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1661                                         MLX5_CQE_INVALIDATE;
1662                                 ++idx;
1663                         }
1664                         rxq->cq_ci = zip->cq_ci;
1665                         zip->ai = 0;
1666                 }
1667         /* No compressed data, get next CQE and verify if it is compressed. */
1668         } else {
1669                 int ret;
1670                 int8_t op_own;
1671
1672                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1673                 if (unlikely(ret == 1))
1674                         return 0;
1675                 ++rxq->cq_ci;
1676                 op_own = cqe->op_own;
1677                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1678                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1679                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1680                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1681                                                           cqe_cnt].pkt_info);
1682
1683                         /* Fix endianness. */
1684                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1685                         /*
1686                          * Current mini array position is the one returned by
1687                          * check_cqe64().
1688                          *
1689                          * If completion comprises several mini arrays, as a
1690                          * special case the second one is located 7 CQEs after
1691                          * the initial CQE instead of 8 for subsequent ones.
1692                          */
1693                         zip->ca = rxq->cq_ci;
1694                         zip->na = zip->ca + 7;
1695                         /* Compute the next non compressed CQE. */
1696                         --rxq->cq_ci;
1697                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1698                         /* Get packet size to return. */
1699                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1700                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1701                         zip->ai = 1;
1702                         /* Prefetch all the entries to be invalidated */
1703                         idx = zip->ca;
1704                         end = zip->cq_ci;
1705                         while (idx != end) {
1706                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1707                                 ++idx;
1708                         }
1709                 } else {
1710                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1711                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1712                 }
1713                 /* Error while receiving packet. */
1714                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1715                         return -1;
1716         }
1717         return len;
1718 }
1719
1720 /**
1721  * Translate RX completion flags to offload flags.
1722  *
1723  * @param[in] rxq
1724  *   Pointer to RX queue structure.
1725  * @param[in] cqe
1726  *   Pointer to CQE.
1727  *
1728  * @return
1729  *   Offload flags (ol_flags) for struct rte_mbuf.
1730  */
1731 static inline uint32_t
1732 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1733 {
1734         uint32_t ol_flags = 0;
1735         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1736
1737         ol_flags =
1738                 TRANSPOSE(flags,
1739                           MLX5_CQE_RX_L3_HDR_VALID,
1740                           PKT_RX_IP_CKSUM_GOOD) |
1741                 TRANSPOSE(flags,
1742                           MLX5_CQE_RX_L4_HDR_VALID,
1743                           PKT_RX_L4_CKSUM_GOOD);
1744         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1745                 ol_flags |=
1746                         TRANSPOSE(flags,
1747                                   MLX5_CQE_RX_L3_HDR_VALID,
1748                                   PKT_RX_IP_CKSUM_GOOD) |
1749                         TRANSPOSE(flags,
1750                                   MLX5_CQE_RX_L4_HDR_VALID,
1751                                   PKT_RX_L4_CKSUM_GOOD);
1752         return ol_flags;
1753 }
1754
1755 /**
1756  * DPDK callback for RX.
1757  *
1758  * @param dpdk_rxq
1759  *   Generic pointer to RX queue structure.
1760  * @param[out] pkts
1761  *   Array to store received packets.
1762  * @param pkts_n
1763  *   Maximum number of packets in array.
1764  *
1765  * @return
1766  *   Number of packets successfully received (<= pkts_n).
1767  */
1768 uint16_t
1769 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1770 {
1771         struct mlx5_rxq_data *rxq = dpdk_rxq;
1772         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1773         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1774         const unsigned int sges_n = rxq->sges_n;
1775         struct rte_mbuf *pkt = NULL;
1776         struct rte_mbuf *seg = NULL;
1777         volatile struct mlx5_cqe *cqe =
1778                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1779         unsigned int i = 0;
1780         unsigned int rq_ci = rxq->rq_ci << sges_n;
1781         int len = 0; /* keep its value across iterations. */
1782
1783         while (pkts_n) {
1784                 unsigned int idx = rq_ci & wqe_cnt;
1785                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1786                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1787                 uint32_t rss_hash_res = 0;
1788
1789                 if (pkt)
1790                         NEXT(seg) = rep;
1791                 seg = rep;
1792                 rte_prefetch0(seg);
1793                 rte_prefetch0(cqe);
1794                 rte_prefetch0(wqe);
1795                 rep = rte_mbuf_raw_alloc(rxq->mp);
1796                 if (unlikely(rep == NULL)) {
1797                         ++rxq->stats.rx_nombuf;
1798                         if (!pkt) {
1799                                 /*
1800                                  * no buffers before we even started,
1801                                  * bail out silently.
1802                                  */
1803                                 break;
1804                         }
1805                         while (pkt != seg) {
1806                                 assert(pkt != (*rxq->elts)[idx]);
1807                                 rep = NEXT(pkt);
1808                                 NEXT(pkt) = NULL;
1809                                 NB_SEGS(pkt) = 1;
1810                                 rte_mbuf_raw_free(pkt);
1811                                 pkt = rep;
1812                         }
1813                         break;
1814                 }
1815                 if (!pkt) {
1816                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1817                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1818                                                &rss_hash_res);
1819                         if (!len) {
1820                                 rte_mbuf_raw_free(rep);
1821                                 break;
1822                         }
1823                         if (unlikely(len == -1)) {
1824                                 /* RX error, packet is likely too large. */
1825                                 rte_mbuf_raw_free(rep);
1826                                 ++rxq->stats.idropped;
1827                                 goto skip;
1828                         }
1829                         pkt = seg;
1830                         assert(len >= (rxq->crc_present << 2));
1831                         /* Update packet information. */
1832                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1833                         pkt->ol_flags = 0;
1834                         if (rss_hash_res && rxq->rss_hash) {
1835                                 pkt->hash.rss = rss_hash_res;
1836                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1837                         }
1838                         if (rxq->mark &&
1839                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1840                                 pkt->ol_flags |= PKT_RX_FDIR;
1841                                 if (cqe->sop_drop_qpn !=
1842                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1843                                         uint32_t mark = cqe->sop_drop_qpn;
1844
1845                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1846                                         pkt->hash.fdir.hi =
1847                                                 mlx5_flow_mark_get(mark);
1848                                 }
1849                         }
1850                         if (rxq->csum | rxq->csum_l2tun)
1851                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1852                         if (rxq->vlan_strip &&
1853                             (cqe->hdr_type_etc &
1854                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1855                                 pkt->ol_flags |= PKT_RX_VLAN |
1856                                         PKT_RX_VLAN_STRIPPED;
1857                                 pkt->vlan_tci =
1858                                         rte_be_to_cpu_16(cqe->vlan_info);
1859                         }
1860                         if (rxq->hw_timestamp) {
1861                                 pkt->timestamp =
1862                                         rte_be_to_cpu_64(cqe->timestamp);
1863                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1864                         }
1865                         if (rxq->crc_present)
1866                                 len -= ETHER_CRC_LEN;
1867                         PKT_LEN(pkt) = len;
1868                 }
1869                 DATA_LEN(rep) = DATA_LEN(seg);
1870                 PKT_LEN(rep) = PKT_LEN(seg);
1871                 SET_DATA_OFF(rep, DATA_OFF(seg));
1872                 PORT(rep) = PORT(seg);
1873                 (*rxq->elts)[idx] = rep;
1874                 /*
1875                  * Fill NIC descriptor with the new buffer.  The lkey and size
1876                  * of the buffers are already known, only the buffer address
1877                  * changes.
1878                  */
1879                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1880                 if (len > DATA_LEN(seg)) {
1881                         len -= DATA_LEN(seg);
1882                         ++NB_SEGS(pkt);
1883                         ++rq_ci;
1884                         continue;
1885                 }
1886                 DATA_LEN(seg) = len;
1887 #ifdef MLX5_PMD_SOFT_COUNTERS
1888                 /* Increment bytes counter. */
1889                 rxq->stats.ibytes += PKT_LEN(pkt);
1890 #endif
1891                 /* Return packet. */
1892                 *(pkts++) = pkt;
1893                 pkt = NULL;
1894                 --pkts_n;
1895                 ++i;
1896 skip:
1897                 /* Align consumer index to the next stride. */
1898                 rq_ci >>= sges_n;
1899                 ++rq_ci;
1900                 rq_ci <<= sges_n;
1901         }
1902         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1903                 return 0;
1904         /* Update the consumer index. */
1905         rxq->rq_ci = rq_ci >> sges_n;
1906         rte_io_wmb();
1907         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1908         rte_io_wmb();
1909         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1910 #ifdef MLX5_PMD_SOFT_COUNTERS
1911         /* Increment packets counter. */
1912         rxq->stats.ipackets += i;
1913 #endif
1914         return i;
1915 }
1916
1917 /**
1918  * Dummy DPDK callback for TX.
1919  *
1920  * This function is used to temporarily replace the real callback during
1921  * unsafe control operations on the queue, or in case of error.
1922  *
1923  * @param dpdk_txq
1924  *   Generic pointer to TX queue structure.
1925  * @param[in] pkts
1926  *   Packets to transmit.
1927  * @param pkts_n
1928  *   Number of packets in array.
1929  *
1930  * @return
1931  *   Number of packets successfully transmitted (<= pkts_n).
1932  */
1933 uint16_t
1934 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1935 {
1936         (void)dpdk_txq;
1937         (void)pkts;
1938         (void)pkts_n;
1939         return 0;
1940 }
1941
1942 /**
1943  * Dummy DPDK callback for RX.
1944  *
1945  * This function is used to temporarily replace the real callback during
1946  * unsafe control operations on the queue, or in case of error.
1947  *
1948  * @param dpdk_rxq
1949  *   Generic pointer to RX queue structure.
1950  * @param[out] pkts
1951  *   Array to store received packets.
1952  * @param pkts_n
1953  *   Maximum number of packets in array.
1954  *
1955  * @return
1956  *   Number of packets successfully received (<= pkts_n).
1957  */
1958 uint16_t
1959 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1960 {
1961         (void)dpdk_rxq;
1962         (void)pkts;
1963         (void)pkts_n;
1964         return 0;
1965 }
1966
1967 /*
1968  * Vectorized Rx/Tx routines are not compiled in when required vector
1969  * instructions are not supported on a target architecture. The following null
1970  * stubs are needed for linkage when those are not included outside of this file
1971  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1972  */
1973
1974 uint16_t __attribute__((weak))
1975 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1976 {
1977         (void)dpdk_txq;
1978         (void)pkts;
1979         (void)pkts_n;
1980         return 0;
1981 }
1982
1983 uint16_t __attribute__((weak))
1984 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1985 {
1986         (void)dpdk_txq;
1987         (void)pkts;
1988         (void)pkts_n;
1989         return 0;
1990 }
1991
1992 uint16_t __attribute__((weak))
1993 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1994 {
1995         (void)dpdk_rxq;
1996         (void)pkts;
1997         (void)pkts_n;
1998         return 0;
1999 }
2000
2001 int __attribute__((weak))
2002 priv_check_raw_vec_tx_support(struct priv *priv)
2003 {
2004         (void)priv;
2005         return -ENOTSUP;
2006 }
2007
2008 int __attribute__((weak))
2009 priv_check_vec_tx_support(struct priv *priv)
2010 {
2011         (void)priv;
2012         return -ENOTSUP;
2013 }
2014
2015 int __attribute__((weak))
2016 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2017 {
2018         (void)rxq;
2019         return -ENOTSUP;
2020 }
2021
2022 int __attribute__((weak))
2023 priv_check_vec_rx_support(struct priv *priv)
2024 {
2025         (void)priv;
2026         return -ENOTSUP;
2027 }