net/mlx5: add Multi-Packet Rx support
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433         struct mlx5_rxq_data *rxq = rx_queue;
434         struct rxq_zip *zip = &rxq->zip;
435         volatile struct mlx5_cqe *cqe;
436         const unsigned int cqe_n = (1 << rxq->cqe_n);
437         const unsigned int cqe_cnt = cqe_n - 1;
438         unsigned int cq_ci;
439         unsigned int used;
440
441         /* if we are processing a compressed cqe */
442         if (zip->ai) {
443                 used = zip->cqe_cnt - zip->ca;
444                 cq_ci = zip->cq_ci;
445         } else {
446                 used = 0;
447                 cq_ci = rxq->cq_ci;
448         }
449         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451                 int8_t op_own;
452                 unsigned int n;
453
454                 op_own = cqe->op_own;
455                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456                         n = rte_be_to_cpu_32(cqe->byte_cnt);
457                 else
458                         n = 1;
459                 cq_ci += n;
460                 used += n;
461                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462         }
463         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464         if (offset < used)
465                 return RTE_ETH_RX_DESC_DONE;
466         return RTE_ETH_RX_DESC_AVAIL;
467 }
468
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486         uint16_t elts_head = txq->elts_head;
487         const uint16_t elts_n = 1 << txq->elts_n;
488         const uint16_t elts_m = elts_n - 1;
489         unsigned int i = 0;
490         unsigned int j = 0;
491         unsigned int k = 0;
492         uint16_t max_elts;
493         uint16_t max_wqe;
494         unsigned int comp;
495         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496         unsigned int segs_n = 0;
497         const unsigned int max_inline = txq->max_inline;
498
499         if (unlikely(!pkts_n))
500                 return 0;
501         /* Prefetch first packet cacheline. */
502         rte_prefetch0(*pkts);
503         /* Start processing. */
504         mlx5_tx_complete(txq);
505         max_elts = (elts_n - (elts_head - txq->elts_tail));
506         /* A CQE slot must always be available. */
507         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
508         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
509         if (unlikely(!max_wqe))
510                 return 0;
511         do {
512                 struct rte_mbuf *buf = *pkts; /* First_seg. */
513                 uint8_t *raw;
514                 volatile struct mlx5_wqe_v *wqe = NULL;
515                 volatile rte_v128u32_t *dseg = NULL;
516                 uint32_t length;
517                 unsigned int ds = 0;
518                 unsigned int sg = 0; /* counter of additional segs attached. */
519                 uintptr_t addr;
520                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
521                 uint16_t tso_header_sz = 0;
522                 uint16_t ehdr;
523                 uint8_t cs_flags;
524                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
525                 uint8_t is_vlan = !!(buf->ol_flags & PKT_TX_VLAN_PKT);
526                 uint32_t swp_offsets = 0;
527                 uint8_t swp_types = 0;
528                 uint16_t tso_segsz = 0;
529 #ifdef MLX5_PMD_SOFT_COUNTERS
530                 uint32_t total_length = 0;
531 #endif
532                 int ret;
533
534                 segs_n = buf->nb_segs;
535                 /*
536                  * Make sure there is enough room to store this packet and
537                  * that one ring entry remains unused.
538                  */
539                 assert(segs_n);
540                 if (max_elts < segs_n)
541                         break;
542                 max_elts -= segs_n;
543                 sg = --segs_n;
544                 if (unlikely(--max_wqe == 0))
545                         break;
546                 wqe = (volatile struct mlx5_wqe_v *)
547                         tx_mlx5_wqe(txq, txq->wqe_ci);
548                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
549                 if (pkts_n - i > 1)
550                         rte_prefetch0(*(pkts + 1));
551                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
552                 length = DATA_LEN(buf);
553                 ehdr = (((uint8_t *)addr)[1] << 8) |
554                        ((uint8_t *)addr)[0];
555 #ifdef MLX5_PMD_SOFT_COUNTERS
556                 total_length = length;
557 #endif
558                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
559                         txq->stats.oerrors++;
560                         break;
561                 }
562                 /* Update element. */
563                 (*txq->elts)[elts_head & elts_m] = buf;
564                 /* Prefetch next buffer data. */
565                 if (pkts_n - i > 1)
566                         rte_prefetch0(
567                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
568                 cs_flags = txq_ol_cksum_to_cs(buf);
569                 txq_mbuf_to_swp(txq, buf, tso, is_vlan,
570                                 (uint8_t *)&swp_offsets, &swp_types);
571                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
572                 /* Replace the Ethernet type by the VLAN if necessary. */
573                 if (is_vlan) {
574                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
575                                                          buf->vlan_tci);
576                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
577
578                         addr += 2;
579                         length -= 2;
580                         /* Copy Destination and source mac address. */
581                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
582                         /* Copy VLAN. */
583                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
584                         /* Copy missing two bytes to end the DSeg. */
585                         memcpy((uint8_t *)raw + len + sizeof(vlan),
586                                ((uint8_t *)addr) + len, 2);
587                         addr += len + 2;
588                         length -= (len + 2);
589                 } else {
590                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
591                                MLX5_WQE_DWORD_SIZE);
592                         length -= pkt_inline_sz;
593                         addr += pkt_inline_sz;
594                 }
595                 raw += MLX5_WQE_DWORD_SIZE;
596                 if (tso) {
597                         ret = inline_tso(txq, buf, &length,
598                                          &addr, &pkt_inline_sz,
599                                          &raw, &max_wqe,
600                                          &tso_segsz, &tso_header_sz);
601                         if (ret == -EINVAL) {
602                                 break;
603                         } else if (ret == -EAGAIN) {
604                                 /* NOP WQE. */
605                                 wqe->ctrl = (rte_v128u32_t){
606                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
607                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
608                                         0,
609                                         0,
610                                 };
611                                 ds = 1;
612 #ifdef MLX5_PMD_SOFT_COUNTERS
613                                 total_length = 0;
614 #endif
615                                 k++;
616                                 goto next_wqe;
617                         }
618                 }
619                 /* Inline if enough room. */
620                 if (max_inline || tso) {
621                         uint32_t inl = 0;
622                         uintptr_t end = (uintptr_t)
623                                 (((uintptr_t)txq->wqes) +
624                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
625                         unsigned int inline_room = max_inline *
626                                                    RTE_CACHE_LINE_SIZE -
627                                                    (pkt_inline_sz - 2) -
628                                                    !!tso * sizeof(inl);
629                         uintptr_t addr_end;
630                         unsigned int copy_b;
631
632 pkt_inline:
633                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
634                                                    RTE_CACHE_LINE_SIZE);
635                         copy_b = (addr_end > addr) ?
636                                  RTE_MIN((addr_end - addr), length) : 0;
637                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
638                                 /*
639                                  * One Dseg remains in the current WQE.  To
640                                  * keep the computation positive, it is
641                                  * removed after the bytes to Dseg conversion.
642                                  */
643                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
644
645                                 if (unlikely(max_wqe < n))
646                                         break;
647                                 max_wqe -= n;
648                                 if (tso && !inl) {
649                                         inl = rte_cpu_to_be_32(copy_b |
650                                                                MLX5_INLINE_SEG);
651                                         rte_memcpy((void *)raw,
652                                                    (void *)&inl, sizeof(inl));
653                                         raw += sizeof(inl);
654                                         pkt_inline_sz += sizeof(inl);
655                                 }
656                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
657                                 addr += copy_b;
658                                 length -= copy_b;
659                                 pkt_inline_sz += copy_b;
660                         }
661                         /*
662                          * 2 DWORDs consumed by the WQE header + ETH segment +
663                          * the size of the inline part of the packet.
664                          */
665                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
666                         if (length > 0) {
667                                 if (ds % (MLX5_WQE_SIZE /
668                                           MLX5_WQE_DWORD_SIZE) == 0) {
669                                         if (unlikely(--max_wqe == 0))
670                                                 break;
671                                         dseg = (volatile rte_v128u32_t *)
672                                                tx_mlx5_wqe(txq, txq->wqe_ci +
673                                                            ds / 4);
674                                 } else {
675                                         dseg = (volatile rte_v128u32_t *)
676                                                 ((uintptr_t)wqe +
677                                                  (ds * MLX5_WQE_DWORD_SIZE));
678                                 }
679                                 goto use_dseg;
680                         } else if (!segs_n) {
681                                 goto next_pkt;
682                         } else {
683                                 raw += copy_b;
684                                 inline_room -= copy_b;
685                                 --segs_n;
686                                 buf = buf->next;
687                                 assert(buf);
688                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
689                                 length = DATA_LEN(buf);
690 #ifdef MLX5_PMD_SOFT_COUNTERS
691                                 total_length += length;
692 #endif
693                                 (*txq->elts)[++elts_head & elts_m] = buf;
694                                 goto pkt_inline;
695                         }
696                 } else {
697                         /*
698                          * No inline has been done in the packet, only the
699                          * Ethernet Header as been stored.
700                          */
701                         dseg = (volatile rte_v128u32_t *)
702                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
703                         ds = 3;
704 use_dseg:
705                         /* Add the remaining packet as a simple ds. */
706                         addr = rte_cpu_to_be_64(addr);
707                         *dseg = (rte_v128u32_t){
708                                 rte_cpu_to_be_32(length),
709                                 mlx5_tx_mb2mr(txq, buf),
710                                 addr,
711                                 addr >> 32,
712                         };
713                         ++ds;
714                         if (!segs_n)
715                                 goto next_pkt;
716                 }
717 next_seg:
718                 assert(buf);
719                 assert(ds);
720                 assert(wqe);
721                 /*
722                  * Spill on next WQE when the current one does not have
723                  * enough room left. Size of WQE must a be a multiple
724                  * of data segment size.
725                  */
726                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
727                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
728                         if (unlikely(--max_wqe == 0))
729                                 break;
730                         dseg = (volatile rte_v128u32_t *)
731                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
732                         rte_prefetch0(tx_mlx5_wqe(txq,
733                                                   txq->wqe_ci + ds / 4 + 1));
734                 } else {
735                         ++dseg;
736                 }
737                 ++ds;
738                 buf = buf->next;
739                 assert(buf);
740                 length = DATA_LEN(buf);
741 #ifdef MLX5_PMD_SOFT_COUNTERS
742                 total_length += length;
743 #endif
744                 /* Store segment information. */
745                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
746                 *dseg = (rte_v128u32_t){
747                         rte_cpu_to_be_32(length),
748                         mlx5_tx_mb2mr(txq, buf),
749                         addr,
750                         addr >> 32,
751                 };
752                 (*txq->elts)[++elts_head & elts_m] = buf;
753                 if (--segs_n)
754                         goto next_seg;
755 next_pkt:
756                 if (ds > MLX5_DSEG_MAX) {
757                         txq->stats.oerrors++;
758                         break;
759                 }
760                 ++elts_head;
761                 ++pkts;
762                 ++i;
763                 j += sg;
764                 /* Initialize known and common part of the WQE structure. */
765                 if (tso) {
766                         wqe->ctrl = (rte_v128u32_t){
767                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
768                                                  MLX5_OPCODE_TSO),
769                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
770                                 0,
771                                 0,
772                         };
773                         wqe->eseg = (rte_v128u32_t){
774                                 swp_offsets,
775                                 cs_flags | (swp_types << 8) |
776                                 (rte_cpu_to_be_16(tso_segsz) << 16),
777                                 0,
778                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
779                         };
780                 } else {
781                         wqe->ctrl = (rte_v128u32_t){
782                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
783                                                  MLX5_OPCODE_SEND),
784                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
785                                 0,
786                                 0,
787                         };
788                         wqe->eseg = (rte_v128u32_t){
789                                 swp_offsets,
790                                 cs_flags | (swp_types << 8),
791                                 0,
792                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
793                         };
794                 }
795 next_wqe:
796                 txq->wqe_ci += (ds + 3) / 4;
797                 /* Save the last successful WQE for completion request */
798                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
799 #ifdef MLX5_PMD_SOFT_COUNTERS
800                 /* Increment sent bytes counter. */
801                 txq->stats.obytes += total_length;
802 #endif
803         } while (i < pkts_n);
804         /* Take a shortcut if nothing must be sent. */
805         if (unlikely((i + k) == 0))
806                 return 0;
807         txq->elts_head += (i + j);
808         /* Check whether completion threshold has been reached. */
809         comp = txq->elts_comp + i + j + k;
810         if (comp >= MLX5_TX_COMP_THRESH) {
811                 /* Request completion on last WQE. */
812                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
813                 /* Save elts_head in unused "immediate" field of WQE. */
814                 last_wqe->ctrl3 = txq->elts_head;
815                 txq->elts_comp = 0;
816 #ifndef NDEBUG
817                 ++txq->cq_pi;
818 #endif
819         } else {
820                 txq->elts_comp = comp;
821         }
822 #ifdef MLX5_PMD_SOFT_COUNTERS
823         /* Increment sent packets counter. */
824         txq->stats.opackets += i;
825 #endif
826         /* Ring QP doorbell. */
827         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
828         return i;
829 }
830
831 /**
832  * Open a MPW session.
833  *
834  * @param txq
835  *   Pointer to TX queue structure.
836  * @param mpw
837  *   Pointer to MPW session structure.
838  * @param length
839  *   Packet length.
840  */
841 static inline void
842 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
843 {
844         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
845         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
846                 (volatile struct mlx5_wqe_data_seg (*)[])
847                 tx_mlx5_wqe(txq, idx + 1);
848
849         mpw->state = MLX5_MPW_STATE_OPENED;
850         mpw->pkts_n = 0;
851         mpw->len = length;
852         mpw->total_len = 0;
853         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
854         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
855         mpw->wqe->eseg.inline_hdr_sz = 0;
856         mpw->wqe->eseg.rsvd0 = 0;
857         mpw->wqe->eseg.rsvd1 = 0;
858         mpw->wqe->eseg.rsvd2 = 0;
859         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
860                                              (txq->wqe_ci << 8) |
861                                              MLX5_OPCODE_TSO);
862         mpw->wqe->ctrl[2] = 0;
863         mpw->wqe->ctrl[3] = 0;
864         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
865                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
866         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
867                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
868         mpw->data.dseg[2] = &(*dseg)[0];
869         mpw->data.dseg[3] = &(*dseg)[1];
870         mpw->data.dseg[4] = &(*dseg)[2];
871 }
872
873 /**
874  * Close a MPW session.
875  *
876  * @param txq
877  *   Pointer to TX queue structure.
878  * @param mpw
879  *   Pointer to MPW session structure.
880  */
881 static inline void
882 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
883 {
884         unsigned int num = mpw->pkts_n;
885
886         /*
887          * Store size in multiple of 16 bytes. Control and Ethernet segments
888          * count as 2.
889          */
890         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
891         mpw->state = MLX5_MPW_STATE_CLOSED;
892         if (num < 3)
893                 ++txq->wqe_ci;
894         else
895                 txq->wqe_ci += 2;
896         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
897         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
898 }
899
900 /**
901  * DPDK callback for TX with MPW support.
902  *
903  * @param dpdk_txq
904  *   Generic pointer to TX queue structure.
905  * @param[in] pkts
906  *   Packets to transmit.
907  * @param pkts_n
908  *   Number of packets in array.
909  *
910  * @return
911  *   Number of packets successfully transmitted (<= pkts_n).
912  */
913 uint16_t
914 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
915 {
916         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
917         uint16_t elts_head = txq->elts_head;
918         const uint16_t elts_n = 1 << txq->elts_n;
919         const uint16_t elts_m = elts_n - 1;
920         unsigned int i = 0;
921         unsigned int j = 0;
922         uint16_t max_elts;
923         uint16_t max_wqe;
924         unsigned int comp;
925         struct mlx5_mpw mpw = {
926                 .state = MLX5_MPW_STATE_CLOSED,
927         };
928
929         if (unlikely(!pkts_n))
930                 return 0;
931         /* Prefetch first packet cacheline. */
932         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
933         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
934         /* Start processing. */
935         mlx5_tx_complete(txq);
936         max_elts = (elts_n - (elts_head - txq->elts_tail));
937         /* A CQE slot must always be available. */
938         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
939         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
940         if (unlikely(!max_wqe))
941                 return 0;
942         do {
943                 struct rte_mbuf *buf = *(pkts++);
944                 uint32_t length;
945                 unsigned int segs_n = buf->nb_segs;
946                 uint32_t cs_flags;
947
948                 /*
949                  * Make sure there is enough room to store this packet and
950                  * that one ring entry remains unused.
951                  */
952                 assert(segs_n);
953                 if (max_elts < segs_n)
954                         break;
955                 /* Do not bother with large packets MPW cannot handle. */
956                 if (segs_n > MLX5_MPW_DSEG_MAX) {
957                         txq->stats.oerrors++;
958                         break;
959                 }
960                 max_elts -= segs_n;
961                 --pkts_n;
962                 cs_flags = txq_ol_cksum_to_cs(buf);
963                 /* Retrieve packet information. */
964                 length = PKT_LEN(buf);
965                 assert(length);
966                 /* Start new session if packet differs. */
967                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
968                     ((mpw.len != length) ||
969                      (segs_n != 1) ||
970                      (mpw.wqe->eseg.cs_flags != cs_flags)))
971                         mlx5_mpw_close(txq, &mpw);
972                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
973                         /*
974                          * Multi-Packet WQE consumes at most two WQE.
975                          * mlx5_mpw_new() expects to be able to use such
976                          * resources.
977                          */
978                         if (unlikely(max_wqe < 2))
979                                 break;
980                         max_wqe -= 2;
981                         mlx5_mpw_new(txq, &mpw, length);
982                         mpw.wqe->eseg.cs_flags = cs_flags;
983                 }
984                 /* Multi-segment packets must be alone in their MPW. */
985                 assert((segs_n == 1) || (mpw.pkts_n == 0));
986 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
987                 length = 0;
988 #endif
989                 do {
990                         volatile struct mlx5_wqe_data_seg *dseg;
991                         uintptr_t addr;
992
993                         assert(buf);
994                         (*txq->elts)[elts_head++ & elts_m] = buf;
995                         dseg = mpw.data.dseg[mpw.pkts_n];
996                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
997                         *dseg = (struct mlx5_wqe_data_seg){
998                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
999                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1000                                 .addr = rte_cpu_to_be_64(addr),
1001                         };
1002 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1003                         length += DATA_LEN(buf);
1004 #endif
1005                         buf = buf->next;
1006                         ++mpw.pkts_n;
1007                         ++j;
1008                 } while (--segs_n);
1009                 assert(length == mpw.len);
1010                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1011                         mlx5_mpw_close(txq, &mpw);
1012 #ifdef MLX5_PMD_SOFT_COUNTERS
1013                 /* Increment sent bytes counter. */
1014                 txq->stats.obytes += length;
1015 #endif
1016                 ++i;
1017         } while (pkts_n);
1018         /* Take a shortcut if nothing must be sent. */
1019         if (unlikely(i == 0))
1020                 return 0;
1021         /* Check whether completion threshold has been reached. */
1022         /* "j" includes both packets and segments. */
1023         comp = txq->elts_comp + j;
1024         if (comp >= MLX5_TX_COMP_THRESH) {
1025                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1026
1027                 /* Request completion on last WQE. */
1028                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1029                 /* Save elts_head in unused "immediate" field of WQE. */
1030                 wqe->ctrl[3] = elts_head;
1031                 txq->elts_comp = 0;
1032 #ifndef NDEBUG
1033                 ++txq->cq_pi;
1034 #endif
1035         } else {
1036                 txq->elts_comp = comp;
1037         }
1038 #ifdef MLX5_PMD_SOFT_COUNTERS
1039         /* Increment sent packets counter. */
1040         txq->stats.opackets += i;
1041 #endif
1042         /* Ring QP doorbell. */
1043         if (mpw.state == MLX5_MPW_STATE_OPENED)
1044                 mlx5_mpw_close(txq, &mpw);
1045         mlx5_tx_dbrec(txq, mpw.wqe);
1046         txq->elts_head = elts_head;
1047         return i;
1048 }
1049
1050 /**
1051  * Open a MPW inline session.
1052  *
1053  * @param txq
1054  *   Pointer to TX queue structure.
1055  * @param mpw
1056  *   Pointer to MPW session structure.
1057  * @param length
1058  *   Packet length.
1059  */
1060 static inline void
1061 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1062                     uint32_t length)
1063 {
1064         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1065         struct mlx5_wqe_inl_small *inl;
1066
1067         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1068         mpw->pkts_n = 0;
1069         mpw->len = length;
1070         mpw->total_len = 0;
1071         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1072         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1073                                              (txq->wqe_ci << 8) |
1074                                              MLX5_OPCODE_TSO);
1075         mpw->wqe->ctrl[2] = 0;
1076         mpw->wqe->ctrl[3] = 0;
1077         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1078         mpw->wqe->eseg.inline_hdr_sz = 0;
1079         mpw->wqe->eseg.cs_flags = 0;
1080         mpw->wqe->eseg.rsvd0 = 0;
1081         mpw->wqe->eseg.rsvd1 = 0;
1082         mpw->wqe->eseg.rsvd2 = 0;
1083         inl = (struct mlx5_wqe_inl_small *)
1084                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1085         mpw->data.raw = (uint8_t *)&inl->raw;
1086 }
1087
1088 /**
1089  * Close a MPW inline session.
1090  *
1091  * @param txq
1092  *   Pointer to TX queue structure.
1093  * @param mpw
1094  *   Pointer to MPW session structure.
1095  */
1096 static inline void
1097 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1098 {
1099         unsigned int size;
1100         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1101                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1102
1103         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1104         /*
1105          * Store size in multiple of 16 bytes. Control and Ethernet segments
1106          * count as 2.
1107          */
1108         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1109                                              MLX5_WQE_DS(size));
1110         mpw->state = MLX5_MPW_STATE_CLOSED;
1111         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1112         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1113 }
1114
1115 /**
1116  * DPDK callback for TX with MPW inline support.
1117  *
1118  * @param dpdk_txq
1119  *   Generic pointer to TX queue structure.
1120  * @param[in] pkts
1121  *   Packets to transmit.
1122  * @param pkts_n
1123  *   Number of packets in array.
1124  *
1125  * @return
1126  *   Number of packets successfully transmitted (<= pkts_n).
1127  */
1128 uint16_t
1129 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1130                          uint16_t pkts_n)
1131 {
1132         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1133         uint16_t elts_head = txq->elts_head;
1134         const uint16_t elts_n = 1 << txq->elts_n;
1135         const uint16_t elts_m = elts_n - 1;
1136         unsigned int i = 0;
1137         unsigned int j = 0;
1138         uint16_t max_elts;
1139         uint16_t max_wqe;
1140         unsigned int comp;
1141         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1142         struct mlx5_mpw mpw = {
1143                 .state = MLX5_MPW_STATE_CLOSED,
1144         };
1145         /*
1146          * Compute the maximum number of WQE which can be consumed by inline
1147          * code.
1148          * - 2 DSEG for:
1149          *   - 1 control segment,
1150          *   - 1 Ethernet segment,
1151          * - N Dseg from the inline request.
1152          */
1153         const unsigned int wqe_inl_n =
1154                 ((2 * MLX5_WQE_DWORD_SIZE +
1155                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1156                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1157
1158         if (unlikely(!pkts_n))
1159                 return 0;
1160         /* Prefetch first packet cacheline. */
1161         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1162         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1163         /* Start processing. */
1164         mlx5_tx_complete(txq);
1165         max_elts = (elts_n - (elts_head - txq->elts_tail));
1166         /* A CQE slot must always be available. */
1167         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1168         do {
1169                 struct rte_mbuf *buf = *(pkts++);
1170                 uintptr_t addr;
1171                 uint32_t length;
1172                 unsigned int segs_n = buf->nb_segs;
1173                 uint8_t cs_flags;
1174
1175                 /*
1176                  * Make sure there is enough room to store this packet and
1177                  * that one ring entry remains unused.
1178                  */
1179                 assert(segs_n);
1180                 if (max_elts < segs_n)
1181                         break;
1182                 /* Do not bother with large packets MPW cannot handle. */
1183                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1184                         txq->stats.oerrors++;
1185                         break;
1186                 }
1187                 max_elts -= segs_n;
1188                 --pkts_n;
1189                 /*
1190                  * Compute max_wqe in case less WQE were consumed in previous
1191                  * iteration.
1192                  */
1193                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1194                 cs_flags = txq_ol_cksum_to_cs(buf);
1195                 /* Retrieve packet information. */
1196                 length = PKT_LEN(buf);
1197                 /* Start new session if packet differs. */
1198                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1199                         if ((mpw.len != length) ||
1200                             (segs_n != 1) ||
1201                             (mpw.wqe->eseg.cs_flags != cs_flags))
1202                                 mlx5_mpw_close(txq, &mpw);
1203                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1204                         if ((mpw.len != length) ||
1205                             (segs_n != 1) ||
1206                             (length > inline_room) ||
1207                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1208                                 mlx5_mpw_inline_close(txq, &mpw);
1209                                 inline_room =
1210                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1211                         }
1212                 }
1213                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1214                         if ((segs_n != 1) ||
1215                             (length > inline_room)) {
1216                                 /*
1217                                  * Multi-Packet WQE consumes at most two WQE.
1218                                  * mlx5_mpw_new() expects to be able to use
1219                                  * such resources.
1220                                  */
1221                                 if (unlikely(max_wqe < 2))
1222                                         break;
1223                                 max_wqe -= 2;
1224                                 mlx5_mpw_new(txq, &mpw, length);
1225                                 mpw.wqe->eseg.cs_flags = cs_flags;
1226                         } else {
1227                                 if (unlikely(max_wqe < wqe_inl_n))
1228                                         break;
1229                                 max_wqe -= wqe_inl_n;
1230                                 mlx5_mpw_inline_new(txq, &mpw, length);
1231                                 mpw.wqe->eseg.cs_flags = cs_flags;
1232                         }
1233                 }
1234                 /* Multi-segment packets must be alone in their MPW. */
1235                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1236                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1237                         assert(inline_room ==
1238                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1239 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1240                         length = 0;
1241 #endif
1242                         do {
1243                                 volatile struct mlx5_wqe_data_seg *dseg;
1244
1245                                 assert(buf);
1246                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1247                                 dseg = mpw.data.dseg[mpw.pkts_n];
1248                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1249                                 *dseg = (struct mlx5_wqe_data_seg){
1250                                         .byte_count =
1251                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1252                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1253                                         .addr = rte_cpu_to_be_64(addr),
1254                                 };
1255 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1256                                 length += DATA_LEN(buf);
1257 #endif
1258                                 buf = buf->next;
1259                                 ++mpw.pkts_n;
1260                                 ++j;
1261                         } while (--segs_n);
1262                         assert(length == mpw.len);
1263                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1264                                 mlx5_mpw_close(txq, &mpw);
1265                 } else {
1266                         unsigned int max;
1267
1268                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1269                         assert(length <= inline_room);
1270                         assert(length == DATA_LEN(buf));
1271                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1272                         (*txq->elts)[elts_head++ & elts_m] = buf;
1273                         /* Maximum number of bytes before wrapping. */
1274                         max = ((((uintptr_t)(txq->wqes)) +
1275                                 (1 << txq->wqe_n) *
1276                                 MLX5_WQE_SIZE) -
1277                                (uintptr_t)mpw.data.raw);
1278                         if (length > max) {
1279                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1280                                            (void *)addr,
1281                                            max);
1282                                 mpw.data.raw = (volatile void *)txq->wqes;
1283                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1284                                            (void *)(addr + max),
1285                                            length - max);
1286                                 mpw.data.raw += length - max;
1287                         } else {
1288                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1289                                            (void *)addr,
1290                                            length);
1291
1292                                 if (length == max)
1293                                         mpw.data.raw =
1294                                                 (volatile void *)txq->wqes;
1295                                 else
1296                                         mpw.data.raw += length;
1297                         }
1298                         ++mpw.pkts_n;
1299                         mpw.total_len += length;
1300                         ++j;
1301                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1302                                 mlx5_mpw_inline_close(txq, &mpw);
1303                                 inline_room =
1304                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1305                         } else {
1306                                 inline_room -= length;
1307                         }
1308                 }
1309 #ifdef MLX5_PMD_SOFT_COUNTERS
1310                 /* Increment sent bytes counter. */
1311                 txq->stats.obytes += length;
1312 #endif
1313                 ++i;
1314         } while (pkts_n);
1315         /* Take a shortcut if nothing must be sent. */
1316         if (unlikely(i == 0))
1317                 return 0;
1318         /* Check whether completion threshold has been reached. */
1319         /* "j" includes both packets and segments. */
1320         comp = txq->elts_comp + j;
1321         if (comp >= MLX5_TX_COMP_THRESH) {
1322                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1323
1324                 /* Request completion on last WQE. */
1325                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1326                 /* Save elts_head in unused "immediate" field of WQE. */
1327                 wqe->ctrl[3] = elts_head;
1328                 txq->elts_comp = 0;
1329 #ifndef NDEBUG
1330                 ++txq->cq_pi;
1331 #endif
1332         } else {
1333                 txq->elts_comp = comp;
1334         }
1335 #ifdef MLX5_PMD_SOFT_COUNTERS
1336         /* Increment sent packets counter. */
1337         txq->stats.opackets += i;
1338 #endif
1339         /* Ring QP doorbell. */
1340         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1341                 mlx5_mpw_inline_close(txq, &mpw);
1342         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1343                 mlx5_mpw_close(txq, &mpw);
1344         mlx5_tx_dbrec(txq, mpw.wqe);
1345         txq->elts_head = elts_head;
1346         return i;
1347 }
1348
1349 /**
1350  * Open an Enhanced MPW session.
1351  *
1352  * @param txq
1353  *   Pointer to TX queue structure.
1354  * @param mpw
1355  *   Pointer to MPW session structure.
1356  * @param length
1357  *   Packet length.
1358  */
1359 static inline void
1360 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1361 {
1362         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1363
1364         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1365         mpw->pkts_n = 0;
1366         mpw->total_len = sizeof(struct mlx5_wqe);
1367         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1368         mpw->wqe->ctrl[0] =
1369                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1370                                  (txq->wqe_ci << 8) |
1371                                  MLX5_OPCODE_ENHANCED_MPSW);
1372         mpw->wqe->ctrl[2] = 0;
1373         mpw->wqe->ctrl[3] = 0;
1374         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1375         if (unlikely(padding)) {
1376                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1377
1378                 /* Pad the first 2 DWORDs with zero-length inline header. */
1379                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1380                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1381                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1382                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1383                 /* Start from the next WQEBB. */
1384                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1385         } else {
1386                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1387         }
1388 }
1389
1390 /**
1391  * Close an Enhanced MPW session.
1392  *
1393  * @param txq
1394  *   Pointer to TX queue structure.
1395  * @param mpw
1396  *   Pointer to MPW session structure.
1397  *
1398  * @return
1399  *   Number of consumed WQEs.
1400  */
1401 static inline uint16_t
1402 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1403 {
1404         uint16_t ret;
1405
1406         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1407          * count as 2.
1408          */
1409         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1410                                              MLX5_WQE_DS(mpw->total_len));
1411         mpw->state = MLX5_MPW_STATE_CLOSED;
1412         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1413         txq->wqe_ci += ret;
1414         return ret;
1415 }
1416
1417 /**
1418  * TX with Enhanced MPW support.
1419  *
1420  * @param txq
1421  *   Pointer to TX queue structure.
1422  * @param[in] pkts
1423  *   Packets to transmit.
1424  * @param pkts_n
1425  *   Number of packets in array.
1426  *
1427  * @return
1428  *   Number of packets successfully transmitted (<= pkts_n).
1429  */
1430 static inline uint16_t
1431 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1432                uint16_t pkts_n)
1433 {
1434         uint16_t elts_head = txq->elts_head;
1435         const uint16_t elts_n = 1 << txq->elts_n;
1436         const uint16_t elts_m = elts_n - 1;
1437         unsigned int i = 0;
1438         unsigned int j = 0;
1439         uint16_t max_elts;
1440         uint16_t max_wqe;
1441         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1442         unsigned int mpw_room = 0;
1443         unsigned int inl_pad = 0;
1444         uint32_t inl_hdr;
1445         struct mlx5_mpw mpw = {
1446                 .state = MLX5_MPW_STATE_CLOSED,
1447         };
1448
1449         if (unlikely(!pkts_n))
1450                 return 0;
1451         /* Start processing. */
1452         mlx5_tx_complete(txq);
1453         max_elts = (elts_n - (elts_head - txq->elts_tail));
1454         /* A CQE slot must always be available. */
1455         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1456         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1457         if (unlikely(!max_wqe))
1458                 return 0;
1459         do {
1460                 struct rte_mbuf *buf = *(pkts++);
1461                 uintptr_t addr;
1462                 unsigned int do_inline = 0; /* Whether inline is possible. */
1463                 uint32_t length;
1464                 uint8_t cs_flags;
1465
1466                 /* Multi-segmented packet is handled in slow-path outside. */
1467                 assert(NB_SEGS(buf) == 1);
1468                 /* Make sure there is enough room to store this packet. */
1469                 if (max_elts - j == 0)
1470                         break;
1471                 cs_flags = txq_ol_cksum_to_cs(buf);
1472                 /* Retrieve packet information. */
1473                 length = PKT_LEN(buf);
1474                 /* Start new session if:
1475                  * - multi-segment packet
1476                  * - no space left even for a dseg
1477                  * - next packet can be inlined with a new WQE
1478                  * - cs_flag differs
1479                  */
1480                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1481                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1482                              mpw_room) ||
1483                             (length <= txq->inline_max_packet_sz &&
1484                              inl_pad + sizeof(inl_hdr) + length >
1485                              mpw_room) ||
1486                             (mpw.wqe->eseg.cs_flags != cs_flags))
1487                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1488                 }
1489                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1490                         /* In Enhanced MPW, inline as much as the budget is
1491                          * allowed. The remaining space is to be filled with
1492                          * dsegs. If the title WQEBB isn't padded, it will have
1493                          * 2 dsegs there.
1494                          */
1495                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1496                                            (max_inline ? max_inline :
1497                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1498                                            MLX5_WQE_SIZE);
1499                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1500                                 break;
1501                         /* Don't pad the title WQEBB to not waste WQ. */
1502                         mlx5_empw_new(txq, &mpw, 0);
1503                         mpw_room -= mpw.total_len;
1504                         inl_pad = 0;
1505                         do_inline = length <= txq->inline_max_packet_sz &&
1506                                     sizeof(inl_hdr) + length <= mpw_room &&
1507                                     !txq->mpw_hdr_dseg;
1508                         mpw.wqe->eseg.cs_flags = cs_flags;
1509                 } else {
1510                         /* Evaluate whether the next packet can be inlined.
1511                          * Inlininig is possible when:
1512                          * - length is less than configured value
1513                          * - length fits for remaining space
1514                          * - not required to fill the title WQEBB with dsegs
1515                          */
1516                         do_inline =
1517                                 length <= txq->inline_max_packet_sz &&
1518                                 inl_pad + sizeof(inl_hdr) + length <=
1519                                  mpw_room &&
1520                                 (!txq->mpw_hdr_dseg ||
1521                                  mpw.total_len >= MLX5_WQE_SIZE);
1522                 }
1523                 if (max_inline && do_inline) {
1524                         /* Inline packet into WQE. */
1525                         unsigned int max;
1526
1527                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1528                         assert(length == DATA_LEN(buf));
1529                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1530                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1531                         mpw.data.raw = (volatile void *)
1532                                 ((uintptr_t)mpw.data.raw + inl_pad);
1533                         max = tx_mlx5_wq_tailroom(txq,
1534                                         (void *)(uintptr_t)mpw.data.raw);
1535                         /* Copy inline header. */
1536                         mpw.data.raw = (volatile void *)
1537                                 mlx5_copy_to_wq(
1538                                           (void *)(uintptr_t)mpw.data.raw,
1539                                           &inl_hdr,
1540                                           sizeof(inl_hdr),
1541                                           (void *)(uintptr_t)txq->wqes,
1542                                           max);
1543                         max = tx_mlx5_wq_tailroom(txq,
1544                                         (void *)(uintptr_t)mpw.data.raw);
1545                         /* Copy packet data. */
1546                         mpw.data.raw = (volatile void *)
1547                                 mlx5_copy_to_wq(
1548                                           (void *)(uintptr_t)mpw.data.raw,
1549                                           (void *)addr,
1550                                           length,
1551                                           (void *)(uintptr_t)txq->wqes,
1552                                           max);
1553                         ++mpw.pkts_n;
1554                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1555                         /* No need to get completion as the entire packet is
1556                          * copied to WQ. Free the buf right away.
1557                          */
1558                         rte_pktmbuf_free_seg(buf);
1559                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1560                         /* Add pad in the next packet if any. */
1561                         inl_pad = (((uintptr_t)mpw.data.raw +
1562                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1563                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1564                                   (uintptr_t)mpw.data.raw;
1565                 } else {
1566                         /* No inline. Load a dseg of packet pointer. */
1567                         volatile rte_v128u32_t *dseg;
1568
1569                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1570                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1571                         assert(length == DATA_LEN(buf));
1572                         if (!tx_mlx5_wq_tailroom(txq,
1573                                         (void *)((uintptr_t)mpw.data.raw
1574                                                 + inl_pad)))
1575                                 dseg = (volatile void *)txq->wqes;
1576                         else
1577                                 dseg = (volatile void *)
1578                                         ((uintptr_t)mpw.data.raw +
1579                                          inl_pad);
1580                         (*txq->elts)[elts_head++ & elts_m] = buf;
1581                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1582                                                                  uintptr_t));
1583                         *dseg = (rte_v128u32_t) {
1584                                 rte_cpu_to_be_32(length),
1585                                 mlx5_tx_mb2mr(txq, buf),
1586                                 addr,
1587                                 addr >> 32,
1588                         };
1589                         mpw.data.raw = (volatile void *)(dseg + 1);
1590                         mpw.total_len += (inl_pad + sizeof(*dseg));
1591                         ++j;
1592                         ++mpw.pkts_n;
1593                         mpw_room -= (inl_pad + sizeof(*dseg));
1594                         inl_pad = 0;
1595                 }
1596 #ifdef MLX5_PMD_SOFT_COUNTERS
1597                 /* Increment sent bytes counter. */
1598                 txq->stats.obytes += length;
1599 #endif
1600                 ++i;
1601         } while (i < pkts_n);
1602         /* Take a shortcut if nothing must be sent. */
1603         if (unlikely(i == 0))
1604                 return 0;
1605         /* Check whether completion threshold has been reached. */
1606         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1607                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1608                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1609                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1610
1611                 /* Request completion on last WQE. */
1612                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1613                 /* Save elts_head in unused "immediate" field of WQE. */
1614                 wqe->ctrl[3] = elts_head;
1615                 txq->elts_comp = 0;
1616                 txq->mpw_comp = txq->wqe_ci;
1617 #ifndef NDEBUG
1618                 ++txq->cq_pi;
1619 #endif
1620         } else {
1621                 txq->elts_comp += j;
1622         }
1623 #ifdef MLX5_PMD_SOFT_COUNTERS
1624         /* Increment sent packets counter. */
1625         txq->stats.opackets += i;
1626 #endif
1627         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1628                 mlx5_empw_close(txq, &mpw);
1629         /* Ring QP doorbell. */
1630         mlx5_tx_dbrec(txq, mpw.wqe);
1631         txq->elts_head = elts_head;
1632         return i;
1633 }
1634
1635 /**
1636  * DPDK callback for TX with Enhanced MPW support.
1637  *
1638  * @param dpdk_txq
1639  *   Generic pointer to TX queue structure.
1640  * @param[in] pkts
1641  *   Packets to transmit.
1642  * @param pkts_n
1643  *   Number of packets in array.
1644  *
1645  * @return
1646  *   Number of packets successfully transmitted (<= pkts_n).
1647  */
1648 uint16_t
1649 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1650 {
1651         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1652         uint16_t nb_tx = 0;
1653
1654         while (pkts_n > nb_tx) {
1655                 uint16_t n;
1656                 uint16_t ret;
1657
1658                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1659                 if (n) {
1660                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1661                         if (!ret)
1662                                 break;
1663                         nb_tx += ret;
1664                 }
1665                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1666                 if (n) {
1667                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1668                         if (!ret)
1669                                 break;
1670                         nb_tx += ret;
1671                 }
1672         }
1673         return nb_tx;
1674 }
1675
1676 /**
1677  * Translate RX completion flags to packet type.
1678  *
1679  * @param[in] rxq
1680  *   Pointer to RX queue structure.
1681  * @param[in] cqe
1682  *   Pointer to CQE.
1683  *
1684  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1685  *
1686  * @return
1687  *   Packet type for struct rte_mbuf.
1688  */
1689 static inline uint32_t
1690 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1691 {
1692         uint8_t idx;
1693         uint8_t pinfo = cqe->pkt_info;
1694         uint16_t ptype = cqe->hdr_type_etc;
1695
1696         /*
1697          * The index to the array should have:
1698          * bit[1:0] = l3_hdr_type
1699          * bit[4:2] = l4_hdr_type
1700          * bit[5] = ip_frag
1701          * bit[6] = tunneled
1702          * bit[7] = outer_l3_type
1703          */
1704         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1705         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1706 }
1707
1708 /**
1709  * Get size of the next packet for a given CQE. For compressed CQEs, the
1710  * consumer index is updated only once all packets of the current one have
1711  * been processed.
1712  *
1713  * @param rxq
1714  *   Pointer to RX queue.
1715  * @param cqe
1716  *   CQE to process.
1717  * @param[out] rss_hash
1718  *   Packet RSS Hash result.
1719  *
1720  * @return
1721  *   Packet size in bytes (0 if there is none), -1 in case of completion
1722  *   with error.
1723  */
1724 static inline int
1725 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1726                  uint16_t cqe_cnt, uint32_t *rss_hash)
1727 {
1728         struct rxq_zip *zip = &rxq->zip;
1729         uint16_t cqe_n = cqe_cnt + 1;
1730         int len = 0;
1731         uint16_t idx, end;
1732
1733         /* Process compressed data in the CQE and mini arrays. */
1734         if (zip->ai) {
1735                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1736                         (volatile struct mlx5_mini_cqe8 (*)[8])
1737                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1738
1739                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1740                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1741                 if ((++zip->ai & 7) == 0) {
1742                         /* Invalidate consumed CQEs */
1743                         idx = zip->ca;
1744                         end = zip->na;
1745                         while (idx != end) {
1746                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1747                                         MLX5_CQE_INVALIDATE;
1748                                 ++idx;
1749                         }
1750                         /*
1751                          * Increment consumer index to skip the number of
1752                          * CQEs consumed. Hardware leaves holes in the CQ
1753                          * ring for software use.
1754                          */
1755                         zip->ca = zip->na;
1756                         zip->na += 8;
1757                 }
1758                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1759                         /* Invalidate the rest */
1760                         idx = zip->ca;
1761                         end = zip->cq_ci;
1762
1763                         while (idx != end) {
1764                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1765                                         MLX5_CQE_INVALIDATE;
1766                                 ++idx;
1767                         }
1768                         rxq->cq_ci = zip->cq_ci;
1769                         zip->ai = 0;
1770                 }
1771         /* No compressed data, get next CQE and verify if it is compressed. */
1772         } else {
1773                 int ret;
1774                 int8_t op_own;
1775
1776                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1777                 if (unlikely(ret == 1))
1778                         return 0;
1779                 ++rxq->cq_ci;
1780                 op_own = cqe->op_own;
1781                 rte_cio_rmb();
1782                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1783                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1784                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1785                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1786                                                           cqe_cnt].pkt_info);
1787
1788                         /* Fix endianness. */
1789                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1790                         /*
1791                          * Current mini array position is the one returned by
1792                          * check_cqe64().
1793                          *
1794                          * If completion comprises several mini arrays, as a
1795                          * special case the second one is located 7 CQEs after
1796                          * the initial CQE instead of 8 for subsequent ones.
1797                          */
1798                         zip->ca = rxq->cq_ci;
1799                         zip->na = zip->ca + 7;
1800                         /* Compute the next non compressed CQE. */
1801                         --rxq->cq_ci;
1802                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1803                         /* Get packet size to return. */
1804                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1805                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1806                         zip->ai = 1;
1807                         /* Prefetch all the entries to be invalidated */
1808                         idx = zip->ca;
1809                         end = zip->cq_ci;
1810                         while (idx != end) {
1811                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1812                                 ++idx;
1813                         }
1814                 } else {
1815                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1816                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1817                 }
1818                 /* Error while receiving packet. */
1819                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1820                         return -1;
1821         }
1822         return len;
1823 }
1824
1825 /**
1826  * Translate RX completion flags to offload flags.
1827  *
1828  * @param[in] cqe
1829  *   Pointer to CQE.
1830  *
1831  * @return
1832  *   Offload flags (ol_flags) for struct rte_mbuf.
1833  */
1834 static inline uint32_t
1835 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1836 {
1837         uint32_t ol_flags = 0;
1838         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1839
1840         ol_flags =
1841                 TRANSPOSE(flags,
1842                           MLX5_CQE_RX_L3_HDR_VALID,
1843                           PKT_RX_IP_CKSUM_GOOD) |
1844                 TRANSPOSE(flags,
1845                           MLX5_CQE_RX_L4_HDR_VALID,
1846                           PKT_RX_L4_CKSUM_GOOD);
1847         return ol_flags;
1848 }
1849
1850 /**
1851  * Fill in mbuf fields from RX completion flags.
1852  * Note that pkt->ol_flags should be initialized outside of this function.
1853  *
1854  * @param rxq
1855  *   Pointer to RX queue.
1856  * @param pkt
1857  *   mbuf to fill.
1858  * @param cqe
1859  *   CQE to process.
1860  * @param rss_hash_res
1861  *   Packet RSS Hash result.
1862  */
1863 static inline void
1864 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1865                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1866 {
1867         /* Update packet information. */
1868         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1869         if (rss_hash_res && rxq->rss_hash) {
1870                 pkt->hash.rss = rss_hash_res;
1871                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1872         }
1873         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1874                 pkt->ol_flags |= PKT_RX_FDIR;
1875                 if (cqe->sop_drop_qpn !=
1876                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1877                         uint32_t mark = cqe->sop_drop_qpn;
1878
1879                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1880                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1881                 }
1882         }
1883         if (rxq->csum)
1884                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1885         if (rxq->vlan_strip &&
1886             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1887                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1888                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1889         }
1890         if (rxq->hw_timestamp) {
1891                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1892                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1893         }
1894 }
1895
1896 /**
1897  * DPDK callback for RX.
1898  *
1899  * @param dpdk_rxq
1900  *   Generic pointer to RX queue structure.
1901  * @param[out] pkts
1902  *   Array to store received packets.
1903  * @param pkts_n
1904  *   Maximum number of packets in array.
1905  *
1906  * @return
1907  *   Number of packets successfully received (<= pkts_n).
1908  */
1909 uint16_t
1910 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1911 {
1912         struct mlx5_rxq_data *rxq = dpdk_rxq;
1913         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1914         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1915         const unsigned int sges_n = rxq->sges_n;
1916         struct rte_mbuf *pkt = NULL;
1917         struct rte_mbuf *seg = NULL;
1918         volatile struct mlx5_cqe *cqe =
1919                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1920         unsigned int i = 0;
1921         unsigned int rq_ci = rxq->rq_ci << sges_n;
1922         int len = 0; /* keep its value across iterations. */
1923
1924         while (pkts_n) {
1925                 unsigned int idx = rq_ci & wqe_cnt;
1926                 volatile struct mlx5_wqe_data_seg *wqe =
1927                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1928                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1929                 uint32_t rss_hash_res = 0;
1930
1931                 if (pkt)
1932                         NEXT(seg) = rep;
1933                 seg = rep;
1934                 rte_prefetch0(seg);
1935                 rte_prefetch0(cqe);
1936                 rte_prefetch0(wqe);
1937                 rep = rte_mbuf_raw_alloc(rxq->mp);
1938                 if (unlikely(rep == NULL)) {
1939                         ++rxq->stats.rx_nombuf;
1940                         if (!pkt) {
1941                                 /*
1942                                  * no buffers before we even started,
1943                                  * bail out silently.
1944                                  */
1945                                 break;
1946                         }
1947                         while (pkt != seg) {
1948                                 assert(pkt != (*rxq->elts)[idx]);
1949                                 rep = NEXT(pkt);
1950                                 NEXT(pkt) = NULL;
1951                                 NB_SEGS(pkt) = 1;
1952                                 rte_mbuf_raw_free(pkt);
1953                                 pkt = rep;
1954                         }
1955                         break;
1956                 }
1957                 if (!pkt) {
1958                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1959                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1960                                                &rss_hash_res);
1961                         if (!len) {
1962                                 rte_mbuf_raw_free(rep);
1963                                 break;
1964                         }
1965                         if (unlikely(len == -1)) {
1966                                 /* RX error, packet is likely too large. */
1967                                 rte_mbuf_raw_free(rep);
1968                                 ++rxq->stats.idropped;
1969                                 goto skip;
1970                         }
1971                         pkt = seg;
1972                         assert(len >= (rxq->crc_present << 2));
1973                         pkt->ol_flags = 0;
1974                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1975                         if (rxq->crc_present)
1976                                 len -= ETHER_CRC_LEN;
1977                         PKT_LEN(pkt) = len;
1978                 }
1979                 DATA_LEN(rep) = DATA_LEN(seg);
1980                 PKT_LEN(rep) = PKT_LEN(seg);
1981                 SET_DATA_OFF(rep, DATA_OFF(seg));
1982                 PORT(rep) = PORT(seg);
1983                 (*rxq->elts)[idx] = rep;
1984                 /*
1985                  * Fill NIC descriptor with the new buffer.  The lkey and size
1986                  * of the buffers are already known, only the buffer address
1987                  * changes.
1988                  */
1989                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1990                 /* If there's only one MR, no need to replace LKey in WQE. */
1991                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1992                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
1993                 if (len > DATA_LEN(seg)) {
1994                         len -= DATA_LEN(seg);
1995                         ++NB_SEGS(pkt);
1996                         ++rq_ci;
1997                         continue;
1998                 }
1999                 DATA_LEN(seg) = len;
2000 #ifdef MLX5_PMD_SOFT_COUNTERS
2001                 /* Increment bytes counter. */
2002                 rxq->stats.ibytes += PKT_LEN(pkt);
2003 #endif
2004                 /* Return packet. */
2005                 *(pkts++) = pkt;
2006                 pkt = NULL;
2007                 --pkts_n;
2008                 ++i;
2009 skip:
2010                 /* Align consumer index to the next stride. */
2011                 rq_ci >>= sges_n;
2012                 ++rq_ci;
2013                 rq_ci <<= sges_n;
2014         }
2015         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2016                 return 0;
2017         /* Update the consumer index. */
2018         rxq->rq_ci = rq_ci >> sges_n;
2019         rte_cio_wmb();
2020         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2021         rte_cio_wmb();
2022         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2023 #ifdef MLX5_PMD_SOFT_COUNTERS
2024         /* Increment packets counter. */
2025         rxq->stats.ipackets += i;
2026 #endif
2027         return i;
2028 }
2029
2030 void
2031 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2032 {
2033         struct mlx5_mprq_buf *buf = opaque;
2034
2035         if (rte_atomic16_read(&buf->refcnt) == 1) {
2036                 rte_mempool_put(buf->mp, buf);
2037         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2038                 rte_atomic16_set(&buf->refcnt, 1);
2039                 rte_mempool_put(buf->mp, buf);
2040         }
2041 }
2042
2043 void
2044 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2045 {
2046         mlx5_mprq_buf_free_cb(NULL, buf);
2047 }
2048
2049 static inline void
2050 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2051 {
2052         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2053         volatile struct mlx5_wqe_data_seg *wqe =
2054                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2055         void *addr;
2056
2057         assert(rep != NULL);
2058         /* Replace MPRQ buf. */
2059         (*rxq->mprq_bufs)[rq_idx] = rep;
2060         /* Replace WQE. */
2061         addr = mlx5_mprq_buf_addr(rep);
2062         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2063         /* If there's only one MR, no need to replace LKey in WQE. */
2064         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2065                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2066         /* Stash a mbuf for next replacement. */
2067         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2068                 rxq->mprq_repl = rep;
2069         else
2070                 rxq->mprq_repl = NULL;
2071 }
2072
2073 /**
2074  * DPDK callback for RX with Multi-Packet RQ support.
2075  *
2076  * @param dpdk_rxq
2077  *   Generic pointer to RX queue structure.
2078  * @param[out] pkts
2079  *   Array to store received packets.
2080  * @param pkts_n
2081  *   Maximum number of packets in array.
2082  *
2083  * @return
2084  *   Number of packets successfully received (<= pkts_n).
2085  */
2086 uint16_t
2087 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2088 {
2089         struct mlx5_rxq_data *rxq = dpdk_rxq;
2090         const unsigned int strd_n = 1 << rxq->strd_num_n;
2091         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2092         const unsigned int strd_shift =
2093                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2094         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2095         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2096         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2097         unsigned int i = 0;
2098         uint16_t rq_ci = rxq->rq_ci;
2099         uint16_t strd_idx = rxq->strd_ci;
2100         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2101
2102         while (i < pkts_n) {
2103                 struct rte_mbuf *pkt;
2104                 void *addr;
2105                 int ret;
2106                 unsigned int len;
2107                 uint16_t consumed_strd;
2108                 uint32_t offset;
2109                 uint32_t byte_cnt;
2110                 uint32_t rss_hash_res = 0;
2111
2112                 if (strd_idx == strd_n) {
2113                         /* Replace WQE only if the buffer is still in use. */
2114                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2115                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2116                                 /* Release the old buffer. */
2117                                 mlx5_mprq_buf_free(buf);
2118                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2119                                 struct mlx5_mprq_buf *rep;
2120
2121                                 /*
2122                                  * Currently, the MPRQ mempool is out of buffer
2123                                  * and doing memcpy regardless of the size of Rx
2124                                  * packet. Retry allocation to get back to
2125                                  * normal.
2126                                  */
2127                                 if (!rte_mempool_get(rxq->mprq_mp,
2128                                                      (void **)&rep))
2129                                         rxq->mprq_repl = rep;
2130                         }
2131                         /* Advance to the next WQE. */
2132                         strd_idx = 0;
2133                         ++rq_ci;
2134                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2135                 }
2136                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2137                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &rss_hash_res);
2138                 if (!ret)
2139                         break;
2140                 if (unlikely(ret == -1)) {
2141                         /* RX error, packet is likely too large. */
2142                         ++rxq->stats.idropped;
2143                         continue;
2144                 }
2145                 byte_cnt = ret;
2146                 consumed_strd = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2147                                 MLX5_MPRQ_STRIDE_NUM_SHIFT;
2148                 assert(consumed_strd);
2149                 /* Calculate offset before adding up stride index. */
2150                 offset = strd_idx * strd_sz + strd_shift;
2151                 strd_idx += consumed_strd;
2152                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2153                         continue;
2154                 /*
2155                  * Currently configured to receive a packet per a stride. But if
2156                  * MTU is adjusted through kernel interface, device could
2157                  * consume multiple strides without raising an error. In this
2158                  * case, the packet should be dropped because it is bigger than
2159                  * the max_rx_pkt_len.
2160                  */
2161                 if (unlikely(consumed_strd > 1)) {
2162                         ++rxq->stats.idropped;
2163                         continue;
2164                 }
2165                 pkt = rte_pktmbuf_alloc(rxq->mp);
2166                 if (unlikely(pkt == NULL)) {
2167                         ++rxq->stats.rx_nombuf;
2168                         break;
2169                 }
2170                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2171                 assert((int)len >= (rxq->crc_present << 2));
2172                 if (rxq->crc_present)
2173                         len -= ETHER_CRC_LEN;
2174                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2175                 /* Initialize the offload flag. */
2176                 pkt->ol_flags = 0;
2177                 /*
2178                  * Memcpy packets to the target mbuf if:
2179                  * - The size of packet is smaller than mprq_max_memcpy_len.
2180                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2181                  */
2182                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2183                         /*
2184                          * When memcpy'ing packet due to out-of-buffer, the
2185                          * packet must be smaller than the target mbuf.
2186                          */
2187                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2188                                 rte_pktmbuf_free_seg(pkt);
2189                                 ++rxq->stats.idropped;
2190                                 continue;
2191                         }
2192                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2193                 } else {
2194                         rte_iova_t buf_iova;
2195                         struct rte_mbuf_ext_shared_info *shinfo;
2196                         uint16_t buf_len = consumed_strd * strd_sz;
2197
2198                         /* Increment the refcnt of the whole chunk. */
2199                         rte_atomic16_add_return(&buf->refcnt, 1);
2200                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2201                                strd_n + 1);
2202                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2203                         /*
2204                          * MLX5 device doesn't use iova but it is necessary in a
2205                          * case where the Rx packet is transmitted via a
2206                          * different PMD.
2207                          */
2208                         buf_iova = rte_mempool_virt2iova(buf) +
2209                                    RTE_PTR_DIFF(addr, buf);
2210                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2211                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2212                         /*
2213                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2214                          * attaching the stride to mbuf and more offload flags
2215                          * will be added below by calling rxq_cq_to_mbuf().
2216                          * Other fields will be overwritten.
2217                          */
2218                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2219                                                   shinfo);
2220                         rte_pktmbuf_reset_headroom(pkt);
2221                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2222                         /*
2223                          * Prevent potential overflow due to MTU change through
2224                          * kernel interface.
2225                          */
2226                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2227                                 rte_pktmbuf_free_seg(pkt);
2228                                 ++rxq->stats.idropped;
2229                                 continue;
2230                         }
2231                 }
2232                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2233                 PKT_LEN(pkt) = len;
2234                 DATA_LEN(pkt) = len;
2235                 PORT(pkt) = rxq->port_id;
2236 #ifdef MLX5_PMD_SOFT_COUNTERS
2237                 /* Increment bytes counter. */
2238                 rxq->stats.ibytes += PKT_LEN(pkt);
2239 #endif
2240                 /* Return packet. */
2241                 *(pkts++) = pkt;
2242                 ++i;
2243         }
2244         /* Update the consumer indexes. */
2245         rxq->strd_ci = strd_idx;
2246         rte_io_wmb();
2247         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2248         if (rq_ci != rxq->rq_ci) {
2249                 rxq->rq_ci = rq_ci;
2250                 rte_io_wmb();
2251                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2252         }
2253 #ifdef MLX5_PMD_SOFT_COUNTERS
2254         /* Increment packets counter. */
2255         rxq->stats.ipackets += i;
2256 #endif
2257         return i;
2258 }
2259
2260 /**
2261  * Dummy DPDK callback for TX.
2262  *
2263  * This function is used to temporarily replace the real callback during
2264  * unsafe control operations on the queue, or in case of error.
2265  *
2266  * @param dpdk_txq
2267  *   Generic pointer to TX queue structure.
2268  * @param[in] pkts
2269  *   Packets to transmit.
2270  * @param pkts_n
2271  *   Number of packets in array.
2272  *
2273  * @return
2274  *   Number of packets successfully transmitted (<= pkts_n).
2275  */
2276 uint16_t
2277 removed_tx_burst(void *dpdk_txq __rte_unused,
2278                  struct rte_mbuf **pkts __rte_unused,
2279                  uint16_t pkts_n __rte_unused)
2280 {
2281         return 0;
2282 }
2283
2284 /**
2285  * Dummy DPDK callback for RX.
2286  *
2287  * This function is used to temporarily replace the real callback during
2288  * unsafe control operations on the queue, or in case of error.
2289  *
2290  * @param dpdk_rxq
2291  *   Generic pointer to RX queue structure.
2292  * @param[out] pkts
2293  *   Array to store received packets.
2294  * @param pkts_n
2295  *   Maximum number of packets in array.
2296  *
2297  * @return
2298  *   Number of packets successfully received (<= pkts_n).
2299  */
2300 uint16_t
2301 removed_rx_burst(void *dpdk_txq __rte_unused,
2302                  struct rte_mbuf **pkts __rte_unused,
2303                  uint16_t pkts_n __rte_unused)
2304 {
2305         return 0;
2306 }
2307
2308 /*
2309  * Vectorized Rx/Tx routines are not compiled in when required vector
2310  * instructions are not supported on a target architecture. The following null
2311  * stubs are needed for linkage when those are not included outside of this file
2312  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2313  */
2314
2315 uint16_t __attribute__((weak))
2316 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2317                       struct rte_mbuf **pkts __rte_unused,
2318                       uint16_t pkts_n __rte_unused)
2319 {
2320         return 0;
2321 }
2322
2323 uint16_t __attribute__((weak))
2324 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2325                   struct rte_mbuf **pkts __rte_unused,
2326                   uint16_t pkts_n __rte_unused)
2327 {
2328         return 0;
2329 }
2330
2331 uint16_t __attribute__((weak))
2332 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2333                   struct rte_mbuf **pkts __rte_unused,
2334                   uint16_t pkts_n __rte_unused)
2335 {
2336         return 0;
2337 }
2338
2339 int __attribute__((weak))
2340 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2341 {
2342         return -ENOTSUP;
2343 }
2344
2345 int __attribute__((weak))
2346 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2347 {
2348         return -ENOTSUP;
2349 }
2350
2351 int __attribute__((weak))
2352 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2353 {
2354         return -ENOTSUP;
2355 }
2356
2357 int __attribute__((weak))
2358 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2359 {
2360         return -ENOTSUP;
2361 }