net/mlx5: prefix Tx structures and functions
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L3 */
101         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_NONFRAG;
103         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         /* Fragmented */
106         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
107                      RTE_PTYPE_L4_FRAG;
108         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         /* TCP */
111         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_TCP;
113         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         /* UDP */
116         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_UDP;
118         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         /* Repeat with outer_l3_type being set. Just in case. */
121         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_NONFRAG;
123         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_FRAG;
127         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L4_NONFRAG;
141         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L4_NONFRAG;
144         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L4_NONFRAG;
147         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_NONFRAG;
150         /* Tunneled - Fragmented */
151         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_FRAG;
154         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_FRAG;
157         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L4_FRAG;
160         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L4_FRAG;
163         /* Tunneled - TCP */
164         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
166                      RTE_PTYPE_L4_TCP;
167         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_L4_TCP;
170         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
172                      RTE_PTYPE_L4_TCP;
173         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_L4_TCP;
176         /* Tunneled - UDP */
177         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
178                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_L4_UDP;
180         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_L4_UDP;
183         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_L4_UDP;
186         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_L4_UDP;
189 }
190
191 /**
192  * Return the size of tailroom of WQ.
193  *
194  * @param txq
195  *   Pointer to TX queue structure.
196  * @param addr
197  *   Pointer to tail of WQ.
198  *
199  * @return
200  *   Size of tailroom.
201  */
202 static inline size_t
203 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
204 {
205         size_t tailroom;
206         tailroom = (uintptr_t)(txq->wqes) +
207                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
208                    (uintptr_t)addr;
209         return tailroom;
210 }
211
212 /**
213  * Copy data to tailroom of circular queue.
214  *
215  * @param dst
216  *   Pointer to destination.
217  * @param src
218  *   Pointer to source.
219  * @param n
220  *   Number of bytes to copy.
221  * @param base
222  *   Pointer to head of queue.
223  * @param tailroom
224  *   Size of tailroom from dst.
225  *
226  * @return
227  *   Pointer after copied data.
228  */
229 static inline void *
230 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
231                 void *base, size_t tailroom)
232 {
233         void *ret;
234
235         if (n > tailroom) {
236                 rte_memcpy(dst, src, tailroom);
237                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
238                            n - tailroom);
239                 ret = (uint8_t *)base + n - tailroom;
240         } else {
241                 rte_memcpy(dst, src, n);
242                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
243         }
244         return ret;
245 }
246
247 /**
248  * DPDK callback to check the status of a tx descriptor.
249  *
250  * @param tx_queue
251  *   The tx queue.
252  * @param[in] offset
253  *   The index of the descriptor in the ring.
254  *
255  * @return
256  *   The status of the tx descriptor.
257  */
258 int
259 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
260 {
261         struct mlx5_txq_data *txq = tx_queue;
262         uint16_t used;
263
264         mlx5_tx_complete(txq);
265         used = txq->elts_head - txq->elts_tail;
266         if (offset < used)
267                 return RTE_ETH_TX_DESC_FULL;
268         return RTE_ETH_TX_DESC_DONE;
269 }
270
271 /**
272  * DPDK callback to check the status of a rx descriptor.
273  *
274  * @param rx_queue
275  *   The rx queue.
276  * @param[in] offset
277  *   The index of the descriptor in the ring.
278  *
279  * @return
280  *   The status of the tx descriptor.
281  */
282 int
283 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
284 {
285         struct mlx5_rxq_data *rxq = rx_queue;
286         struct rxq_zip *zip = &rxq->zip;
287         volatile struct mlx5_cqe *cqe;
288         const unsigned int cqe_n = (1 << rxq->cqe_n);
289         const unsigned int cqe_cnt = cqe_n - 1;
290         unsigned int cq_ci;
291         unsigned int used;
292
293         /* if we are processing a compressed cqe */
294         if (zip->ai) {
295                 used = zip->cqe_cnt - zip->ca;
296                 cq_ci = zip->cq_ci;
297         } else {
298                 used = 0;
299                 cq_ci = rxq->cq_ci;
300         }
301         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
302         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
303                 int8_t op_own;
304                 unsigned int n;
305
306                 op_own = cqe->op_own;
307                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
308                         n = rte_be_to_cpu_32(cqe->byte_cnt);
309                 else
310                         n = 1;
311                 cq_ci += n;
312                 used += n;
313                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
314         }
315         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
316         if (offset < used)
317                 return RTE_ETH_RX_DESC_DONE;
318         return RTE_ETH_RX_DESC_AVAIL;
319 }
320
321 /**
322  * DPDK callback for TX.
323  *
324  * @param dpdk_txq
325  *   Generic pointer to TX queue structure.
326  * @param[in] pkts
327  *   Packets to transmit.
328  * @param pkts_n
329  *   Number of packets in array.
330  *
331  * @return
332  *   Number of packets successfully transmitted (<= pkts_n).
333  */
334 uint16_t
335 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
336 {
337         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
338         uint16_t elts_head = txq->elts_head;
339         const uint16_t elts_n = 1 << txq->elts_n;
340         const uint16_t elts_m = elts_n - 1;
341         unsigned int i = 0;
342         unsigned int j = 0;
343         unsigned int k = 0;
344         uint16_t max_elts;
345         unsigned int max_inline = txq->max_inline;
346         const unsigned int inline_en = !!max_inline && txq->inline_en;
347         uint16_t max_wqe;
348         unsigned int comp;
349         volatile struct mlx5_wqe_v *wqe = NULL;
350         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
351         unsigned int segs_n = 0;
352         struct rte_mbuf *buf = NULL;
353         uint8_t *raw;
354
355         if (unlikely(!pkts_n))
356                 return 0;
357         /* Prefetch first packet cacheline. */
358         rte_prefetch0(*pkts);
359         /* Start processing. */
360         mlx5_tx_complete(txq);
361         max_elts = (elts_n - (elts_head - txq->elts_tail));
362         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
363         if (unlikely(!max_wqe))
364                 return 0;
365         do {
366                 volatile rte_v128u32_t *dseg = NULL;
367                 uint32_t length;
368                 unsigned int ds = 0;
369                 unsigned int sg = 0; /* counter of additional segs attached. */
370                 uintptr_t addr;
371                 uint64_t naddr;
372                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
373                 uint16_t tso_header_sz = 0;
374                 uint16_t ehdr;
375                 uint8_t cs_flags = 0;
376                 uint64_t tso = 0;
377                 uint16_t tso_segsz = 0;
378 #ifdef MLX5_PMD_SOFT_COUNTERS
379                 uint32_t total_length = 0;
380 #endif
381
382                 /* first_seg */
383                 buf = *pkts;
384                 segs_n = buf->nb_segs;
385                 /*
386                  * Make sure there is enough room to store this packet and
387                  * that one ring entry remains unused.
388                  */
389                 assert(segs_n);
390                 if (max_elts < segs_n)
391                         break;
392                 max_elts -= segs_n;
393                 --segs_n;
394                 if (unlikely(--max_wqe == 0))
395                         break;
396                 wqe = (volatile struct mlx5_wqe_v *)
397                         tx_mlx5_wqe(txq, txq->wqe_ci);
398                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
399                 if (pkts_n - i > 1)
400                         rte_prefetch0(*(pkts + 1));
401                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
402                 length = DATA_LEN(buf);
403                 ehdr = (((uint8_t *)addr)[1] << 8) |
404                        ((uint8_t *)addr)[0];
405 #ifdef MLX5_PMD_SOFT_COUNTERS
406                 total_length = length;
407 #endif
408                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
409                         txq->stats.oerrors++;
410                         break;
411                 }
412                 /* Update element. */
413                 (*txq->elts)[elts_head & elts_m] = buf;
414                 /* Prefetch next buffer data. */
415                 if (pkts_n - i > 1)
416                         rte_prefetch0(
417                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
418                 /* Should we enable HW CKSUM offload */
419                 if (buf->ol_flags &
420                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
421                         const uint64_t is_tunneled = buf->ol_flags &
422                                                      (PKT_TX_TUNNEL_GRE |
423                                                       PKT_TX_TUNNEL_VXLAN);
424
425                         if (is_tunneled && txq->tunnel_en) {
426                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
427                                            MLX5_ETH_WQE_L4_INNER_CSUM;
428                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
429                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
430                         } else {
431                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
432                                            MLX5_ETH_WQE_L4_CSUM;
433                         }
434                 }
435                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
436                 /* Replace the Ethernet type by the VLAN if necessary. */
437                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
438                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
439                                                          buf->vlan_tci);
440                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
441
442                         addr += 2;
443                         length -= 2;
444                         /* Copy Destination and source mac address. */
445                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
446                         /* Copy VLAN. */
447                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
448                         /* Copy missing two bytes to end the DSeg. */
449                         memcpy((uint8_t *)raw + len + sizeof(vlan),
450                                ((uint8_t *)addr) + len, 2);
451                         addr += len + 2;
452                         length -= (len + 2);
453                 } else {
454                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
455                                MLX5_WQE_DWORD_SIZE);
456                         length -= pkt_inline_sz;
457                         addr += pkt_inline_sz;
458                 }
459                 raw += MLX5_WQE_DWORD_SIZE;
460                 if (txq->tso_en) {
461                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
462                         if (tso) {
463                                 uintptr_t end = (uintptr_t)
464                                                 (((uintptr_t)txq->wqes) +
465                                                 (1 << txq->wqe_n) *
466                                                 MLX5_WQE_SIZE);
467                                 unsigned int copy_b;
468                                 uint8_t vlan_sz = (buf->ol_flags &
469                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
470                                 const uint64_t is_tunneled =
471                                                         buf->ol_flags &
472                                                         (PKT_TX_TUNNEL_GRE |
473                                                          PKT_TX_TUNNEL_VXLAN);
474
475                                 tso_header_sz = buf->l2_len + vlan_sz +
476                                                 buf->l3_len + buf->l4_len;
477                                 tso_segsz = buf->tso_segsz;
478                                 if (unlikely(tso_segsz == 0)) {
479                                         txq->stats.oerrors++;
480                                         break;
481                                 }
482                                 if (is_tunneled && txq->tunnel_en) {
483                                         tso_header_sz += buf->outer_l2_len +
484                                                          buf->outer_l3_len;
485                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
486                                 } else {
487                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
488                                 }
489                                 if (unlikely(tso_header_sz >
490                                              MLX5_MAX_TSO_HEADER)) {
491                                         txq->stats.oerrors++;
492                                         break;
493                                 }
494                                 copy_b = tso_header_sz - pkt_inline_sz;
495                                 /* First seg must contain all headers. */
496                                 assert(copy_b <= length);
497                                 if (copy_b &&
498                                    ((end - (uintptr_t)raw) > copy_b)) {
499                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
500                                                       1 + 3) / 4;
501
502                                         if (unlikely(max_wqe < n))
503                                                 break;
504                                         max_wqe -= n;
505                                         rte_memcpy((void *)raw,
506                                                    (void *)addr, copy_b);
507                                         addr += copy_b;
508                                         length -= copy_b;
509                                         /* Include padding for TSO header. */
510                                         copy_b = MLX5_WQE_DS(copy_b) *
511                                                  MLX5_WQE_DWORD_SIZE;
512                                         pkt_inline_sz += copy_b;
513                                         raw += copy_b;
514                                 } else {
515                                         /* NOP WQE. */
516                                         wqe->ctrl = (rte_v128u32_t){
517                                                      rte_cpu_to_be_32(
518                                                         txq->wqe_ci << 8),
519                                                      rte_cpu_to_be_32(
520                                                         txq->qp_num_8s | 1),
521                                                      0,
522                                                      0,
523                                         };
524                                         ds = 1;
525                                         total_length = 0;
526                                         k++;
527                                         goto next_wqe;
528                                 }
529                         }
530                 }
531                 /* Inline if enough room. */
532                 if (inline_en || tso) {
533                         uint32_t inl;
534                         uintptr_t end = (uintptr_t)
535                                 (((uintptr_t)txq->wqes) +
536                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
537                         unsigned int inline_room = max_inline *
538                                                    RTE_CACHE_LINE_SIZE -
539                                                    (pkt_inline_sz - 2) -
540                                                    !!tso * sizeof(inl);
541                         uintptr_t addr_end = (addr + inline_room) &
542                                              ~(RTE_CACHE_LINE_SIZE - 1);
543                         unsigned int copy_b = (addr_end > addr) ?
544                                 RTE_MIN((addr_end - addr), length) :
545                                 0;
546
547                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
548                                 /*
549                                  * One Dseg remains in the current WQE.  To
550                                  * keep the computation positive, it is
551                                  * removed after the bytes to Dseg conversion.
552                                  */
553                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
554
555                                 if (unlikely(max_wqe < n))
556                                         break;
557                                 max_wqe -= n;
558                                 if (tso) {
559                                         uint32_t inl =
560                                         rte_cpu_to_be_32(copy_b |
561                                                          MLX5_INLINE_SEG);
562
563                                         pkt_inline_sz =
564                                                 MLX5_WQE_DS(tso_header_sz) *
565                                                 MLX5_WQE_DWORD_SIZE;
566
567                                         rte_memcpy((void *)raw,
568                                                    (void *)&inl, sizeof(inl));
569                                         raw += sizeof(inl);
570                                         pkt_inline_sz += sizeof(inl);
571                                 }
572                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
573                                 addr += copy_b;
574                                 length -= copy_b;
575                                 pkt_inline_sz += copy_b;
576                         }
577                         /*
578                          * 2 DWORDs consumed by the WQE header + ETH segment +
579                          * the size of the inline part of the packet.
580                          */
581                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
582                         if (length > 0) {
583                                 if (ds % (MLX5_WQE_SIZE /
584                                           MLX5_WQE_DWORD_SIZE) == 0) {
585                                         if (unlikely(--max_wqe == 0))
586                                                 break;
587                                         dseg = (volatile rte_v128u32_t *)
588                                                tx_mlx5_wqe(txq, txq->wqe_ci +
589                                                            ds / 4);
590                                 } else {
591                                         dseg = (volatile rte_v128u32_t *)
592                                                 ((uintptr_t)wqe +
593                                                  (ds * MLX5_WQE_DWORD_SIZE));
594                                 }
595                                 goto use_dseg;
596                         } else if (!segs_n) {
597                                 goto next_pkt;
598                         } else {
599                                 /* dseg will be advance as part of next_seg */
600                                 dseg = (volatile rte_v128u32_t *)
601                                         ((uintptr_t)wqe +
602                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
603                                 goto next_seg;
604                         }
605                 } else {
606                         /*
607                          * No inline has been done in the packet, only the
608                          * Ethernet Header as been stored.
609                          */
610                         dseg = (volatile rte_v128u32_t *)
611                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
612                         ds = 3;
613 use_dseg:
614                         /* Add the remaining packet as a simple ds. */
615                         naddr = rte_cpu_to_be_64(addr);
616                         *dseg = (rte_v128u32_t){
617                                 rte_cpu_to_be_32(length),
618                                 mlx5_tx_mb2mr(txq, buf),
619                                 naddr,
620                                 naddr >> 32,
621                         };
622                         ++ds;
623                         if (!segs_n)
624                                 goto next_pkt;
625                 }
626 next_seg:
627                 assert(buf);
628                 assert(ds);
629                 assert(wqe);
630                 /*
631                  * Spill on next WQE when the current one does not have
632                  * enough room left. Size of WQE must a be a multiple
633                  * of data segment size.
634                  */
635                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
636                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
637                         if (unlikely(--max_wqe == 0))
638                                 break;
639                         dseg = (volatile rte_v128u32_t *)
640                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
641                         rte_prefetch0(tx_mlx5_wqe(txq,
642                                                   txq->wqe_ci + ds / 4 + 1));
643                 } else {
644                         ++dseg;
645                 }
646                 ++ds;
647                 buf = buf->next;
648                 assert(buf);
649                 length = DATA_LEN(buf);
650 #ifdef MLX5_PMD_SOFT_COUNTERS
651                 total_length += length;
652 #endif
653                 /* Store segment information. */
654                 naddr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
655                 *dseg = (rte_v128u32_t){
656                         rte_cpu_to_be_32(length),
657                         mlx5_tx_mb2mr(txq, buf),
658                         naddr,
659                         naddr >> 32,
660                 };
661                 (*txq->elts)[++elts_head & elts_m] = buf;
662                 ++sg;
663                 /* Advance counter only if all segs are successfully posted. */
664                 if (sg < segs_n)
665                         goto next_seg;
666                 else
667                         j += sg;
668 next_pkt:
669                 if (ds > MLX5_DSEG_MAX) {
670                         txq->stats.oerrors++;
671                         break;
672                 }
673                 ++elts_head;
674                 ++pkts;
675                 ++i;
676                 /* Initialize known and common part of the WQE structure. */
677                 if (tso) {
678                         wqe->ctrl = (rte_v128u32_t){
679                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
680                                                  MLX5_OPCODE_TSO),
681                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
682                                 0,
683                                 0,
684                         };
685                         wqe->eseg = (rte_v128u32_t){
686                                 0,
687                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
688                                 0,
689                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
690                         };
691                 } else {
692                         wqe->ctrl = (rte_v128u32_t){
693                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
694                                                  MLX5_OPCODE_SEND),
695                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
696                                 0,
697                                 0,
698                         };
699                         wqe->eseg = (rte_v128u32_t){
700                                 0,
701                                 cs_flags,
702                                 0,
703                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
704                         };
705                 }
706 next_wqe:
707                 txq->wqe_ci += (ds + 3) / 4;
708                 /* Save the last successful WQE for completion request */
709                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
710 #ifdef MLX5_PMD_SOFT_COUNTERS
711                 /* Increment sent bytes counter. */
712                 txq->stats.obytes += total_length;
713 #endif
714         } while (i < pkts_n);
715         /* Take a shortcut if nothing must be sent. */
716         if (unlikely((i + k) == 0))
717                 return 0;
718         txq->elts_head += (i + j);
719         /* Check whether completion threshold has been reached. */
720         comp = txq->elts_comp + i + j + k;
721         if (comp >= MLX5_TX_COMP_THRESH) {
722                 /* Request completion on last WQE. */
723                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
724                 /* Save elts_head in unused "immediate" field of WQE. */
725                 last_wqe->ctrl3 = txq->elts_head;
726                 txq->elts_comp = 0;
727         } else {
728                 txq->elts_comp = comp;
729         }
730 #ifdef MLX5_PMD_SOFT_COUNTERS
731         /* Increment sent packets counter. */
732         txq->stats.opackets += i;
733 #endif
734         /* Ring QP doorbell. */
735         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
736         return i;
737 }
738
739 /**
740  * Open a MPW session.
741  *
742  * @param txq
743  *   Pointer to TX queue structure.
744  * @param mpw
745  *   Pointer to MPW session structure.
746  * @param length
747  *   Packet length.
748  */
749 static inline void
750 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
751 {
752         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
753         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
754                 (volatile struct mlx5_wqe_data_seg (*)[])
755                 tx_mlx5_wqe(txq, idx + 1);
756
757         mpw->state = MLX5_MPW_STATE_OPENED;
758         mpw->pkts_n = 0;
759         mpw->len = length;
760         mpw->total_len = 0;
761         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
762         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
763         mpw->wqe->eseg.inline_hdr_sz = 0;
764         mpw->wqe->eseg.rsvd0 = 0;
765         mpw->wqe->eseg.rsvd1 = 0;
766         mpw->wqe->eseg.rsvd2 = 0;
767         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
768                                              (txq->wqe_ci << 8) |
769                                              MLX5_OPCODE_TSO);
770         mpw->wqe->ctrl[2] = 0;
771         mpw->wqe->ctrl[3] = 0;
772         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
773                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
774         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
775                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
776         mpw->data.dseg[2] = &(*dseg)[0];
777         mpw->data.dseg[3] = &(*dseg)[1];
778         mpw->data.dseg[4] = &(*dseg)[2];
779 }
780
781 /**
782  * Close a MPW session.
783  *
784  * @param txq
785  *   Pointer to TX queue structure.
786  * @param mpw
787  *   Pointer to MPW session structure.
788  */
789 static inline void
790 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
791 {
792         unsigned int num = mpw->pkts_n;
793
794         /*
795          * Store size in multiple of 16 bytes. Control and Ethernet segments
796          * count as 2.
797          */
798         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
799         mpw->state = MLX5_MPW_STATE_CLOSED;
800         if (num < 3)
801                 ++txq->wqe_ci;
802         else
803                 txq->wqe_ci += 2;
804         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
805         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
806 }
807
808 /**
809  * DPDK callback for TX with MPW support.
810  *
811  * @param dpdk_txq
812  *   Generic pointer to TX queue structure.
813  * @param[in] pkts
814  *   Packets to transmit.
815  * @param pkts_n
816  *   Number of packets in array.
817  *
818  * @return
819  *   Number of packets successfully transmitted (<= pkts_n).
820  */
821 uint16_t
822 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
823 {
824         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
825         uint16_t elts_head = txq->elts_head;
826         const uint16_t elts_n = 1 << txq->elts_n;
827         const uint16_t elts_m = elts_n - 1;
828         unsigned int i = 0;
829         unsigned int j = 0;
830         uint16_t max_elts;
831         uint16_t max_wqe;
832         unsigned int comp;
833         struct mlx5_mpw mpw = {
834                 .state = MLX5_MPW_STATE_CLOSED,
835         };
836
837         if (unlikely(!pkts_n))
838                 return 0;
839         /* Prefetch first packet cacheline. */
840         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
841         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
842         /* Start processing. */
843         mlx5_tx_complete(txq);
844         max_elts = (elts_n - (elts_head - txq->elts_tail));
845         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
846         if (unlikely(!max_wqe))
847                 return 0;
848         do {
849                 struct rte_mbuf *buf = *(pkts++);
850                 uint32_t length;
851                 unsigned int segs_n = buf->nb_segs;
852                 uint32_t cs_flags = 0;
853
854                 /*
855                  * Make sure there is enough room to store this packet and
856                  * that one ring entry remains unused.
857                  */
858                 assert(segs_n);
859                 if (max_elts < segs_n)
860                         break;
861                 /* Do not bother with large packets MPW cannot handle. */
862                 if (segs_n > MLX5_MPW_DSEG_MAX) {
863                         txq->stats.oerrors++;
864                         break;
865                 }
866                 max_elts -= segs_n;
867                 --pkts_n;
868                 /* Should we enable HW CKSUM offload */
869                 if (buf->ol_flags &
870                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
871                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
872                 /* Retrieve packet information. */
873                 length = PKT_LEN(buf);
874                 assert(length);
875                 /* Start new session if packet differs. */
876                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
877                     ((mpw.len != length) ||
878                      (segs_n != 1) ||
879                      (mpw.wqe->eseg.cs_flags != cs_flags)))
880                         mlx5_mpw_close(txq, &mpw);
881                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
882                         /*
883                          * Multi-Packet WQE consumes at most two WQE.
884                          * mlx5_mpw_new() expects to be able to use such
885                          * resources.
886                          */
887                         if (unlikely(max_wqe < 2))
888                                 break;
889                         max_wqe -= 2;
890                         mlx5_mpw_new(txq, &mpw, length);
891                         mpw.wqe->eseg.cs_flags = cs_flags;
892                 }
893                 /* Multi-segment packets must be alone in their MPW. */
894                 assert((segs_n == 1) || (mpw.pkts_n == 0));
895 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
896                 length = 0;
897 #endif
898                 do {
899                         volatile struct mlx5_wqe_data_seg *dseg;
900                         uintptr_t addr;
901
902                         assert(buf);
903                         (*txq->elts)[elts_head++ & elts_m] = buf;
904                         dseg = mpw.data.dseg[mpw.pkts_n];
905                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
906                         *dseg = (struct mlx5_wqe_data_seg){
907                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
908                                 .lkey = mlx5_tx_mb2mr(txq, buf),
909                                 .addr = rte_cpu_to_be_64(addr),
910                         };
911 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
912                         length += DATA_LEN(buf);
913 #endif
914                         buf = buf->next;
915                         ++mpw.pkts_n;
916                         ++j;
917                 } while (--segs_n);
918                 assert(length == mpw.len);
919                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
920                         mlx5_mpw_close(txq, &mpw);
921 #ifdef MLX5_PMD_SOFT_COUNTERS
922                 /* Increment sent bytes counter. */
923                 txq->stats.obytes += length;
924 #endif
925                 ++i;
926         } while (pkts_n);
927         /* Take a shortcut if nothing must be sent. */
928         if (unlikely(i == 0))
929                 return 0;
930         /* Check whether completion threshold has been reached. */
931         /* "j" includes both packets and segments. */
932         comp = txq->elts_comp + j;
933         if (comp >= MLX5_TX_COMP_THRESH) {
934                 volatile struct mlx5_wqe *wqe = mpw.wqe;
935
936                 /* Request completion on last WQE. */
937                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
938                 /* Save elts_head in unused "immediate" field of WQE. */
939                 wqe->ctrl[3] = elts_head;
940                 txq->elts_comp = 0;
941         } else {
942                 txq->elts_comp = comp;
943         }
944 #ifdef MLX5_PMD_SOFT_COUNTERS
945         /* Increment sent packets counter. */
946         txq->stats.opackets += i;
947 #endif
948         /* Ring QP doorbell. */
949         if (mpw.state == MLX5_MPW_STATE_OPENED)
950                 mlx5_mpw_close(txq, &mpw);
951         mlx5_tx_dbrec(txq, mpw.wqe);
952         txq->elts_head = elts_head;
953         return i;
954 }
955
956 /**
957  * Open a MPW inline session.
958  *
959  * @param txq
960  *   Pointer to TX queue structure.
961  * @param mpw
962  *   Pointer to MPW session structure.
963  * @param length
964  *   Packet length.
965  */
966 static inline void
967 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
968                     uint32_t length)
969 {
970         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
971         struct mlx5_wqe_inl_small *inl;
972
973         mpw->state = MLX5_MPW_INL_STATE_OPENED;
974         mpw->pkts_n = 0;
975         mpw->len = length;
976         mpw->total_len = 0;
977         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
978         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
979                                              (txq->wqe_ci << 8) |
980                                              MLX5_OPCODE_TSO);
981         mpw->wqe->ctrl[2] = 0;
982         mpw->wqe->ctrl[3] = 0;
983         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
984         mpw->wqe->eseg.inline_hdr_sz = 0;
985         mpw->wqe->eseg.cs_flags = 0;
986         mpw->wqe->eseg.rsvd0 = 0;
987         mpw->wqe->eseg.rsvd1 = 0;
988         mpw->wqe->eseg.rsvd2 = 0;
989         inl = (struct mlx5_wqe_inl_small *)
990                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
991         mpw->data.raw = (uint8_t *)&inl->raw;
992 }
993
994 /**
995  * Close a MPW inline session.
996  *
997  * @param txq
998  *   Pointer to TX queue structure.
999  * @param mpw
1000  *   Pointer to MPW session structure.
1001  */
1002 static inline void
1003 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1004 {
1005         unsigned int size;
1006         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1007                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1008
1009         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1010         /*
1011          * Store size in multiple of 16 bytes. Control and Ethernet segments
1012          * count as 2.
1013          */
1014         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1015                                              MLX5_WQE_DS(size));
1016         mpw->state = MLX5_MPW_STATE_CLOSED;
1017         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1018         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1019 }
1020
1021 /**
1022  * DPDK callback for TX with MPW inline support.
1023  *
1024  * @param dpdk_txq
1025  *   Generic pointer to TX queue structure.
1026  * @param[in] pkts
1027  *   Packets to transmit.
1028  * @param pkts_n
1029  *   Number of packets in array.
1030  *
1031  * @return
1032  *   Number of packets successfully transmitted (<= pkts_n).
1033  */
1034 uint16_t
1035 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1036                          uint16_t pkts_n)
1037 {
1038         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1039         uint16_t elts_head = txq->elts_head;
1040         const uint16_t elts_n = 1 << txq->elts_n;
1041         const uint16_t elts_m = elts_n - 1;
1042         unsigned int i = 0;
1043         unsigned int j = 0;
1044         uint16_t max_elts;
1045         uint16_t max_wqe;
1046         unsigned int comp;
1047         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1048         struct mlx5_mpw mpw = {
1049                 .state = MLX5_MPW_STATE_CLOSED,
1050         };
1051         /*
1052          * Compute the maximum number of WQE which can be consumed by inline
1053          * code.
1054          * - 2 DSEG for:
1055          *   - 1 control segment,
1056          *   - 1 Ethernet segment,
1057          * - N Dseg from the inline request.
1058          */
1059         const unsigned int wqe_inl_n =
1060                 ((2 * MLX5_WQE_DWORD_SIZE +
1061                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1062                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1063
1064         if (unlikely(!pkts_n))
1065                 return 0;
1066         /* Prefetch first packet cacheline. */
1067         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1068         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1069         /* Start processing. */
1070         mlx5_tx_complete(txq);
1071         max_elts = (elts_n - (elts_head - txq->elts_tail));
1072         do {
1073                 struct rte_mbuf *buf = *(pkts++);
1074                 uintptr_t addr;
1075                 uint32_t length;
1076                 unsigned int segs_n = buf->nb_segs;
1077                 uint32_t cs_flags = 0;
1078
1079                 /*
1080                  * Make sure there is enough room to store this packet and
1081                  * that one ring entry remains unused.
1082                  */
1083                 assert(segs_n);
1084                 if (max_elts < segs_n)
1085                         break;
1086                 /* Do not bother with large packets MPW cannot handle. */
1087                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1088                         txq->stats.oerrors++;
1089                         break;
1090                 }
1091                 max_elts -= segs_n;
1092                 --pkts_n;
1093                 /*
1094                  * Compute max_wqe in case less WQE were consumed in previous
1095                  * iteration.
1096                  */
1097                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1098                 /* Should we enable HW CKSUM offload */
1099                 if (buf->ol_flags &
1100                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1101                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1102                 /* Retrieve packet information. */
1103                 length = PKT_LEN(buf);
1104                 /* Start new session if packet differs. */
1105                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1106                         if ((mpw.len != length) ||
1107                             (segs_n != 1) ||
1108                             (mpw.wqe->eseg.cs_flags != cs_flags))
1109                                 mlx5_mpw_close(txq, &mpw);
1110                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1111                         if ((mpw.len != length) ||
1112                             (segs_n != 1) ||
1113                             (length > inline_room) ||
1114                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1115                                 mlx5_mpw_inline_close(txq, &mpw);
1116                                 inline_room =
1117                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1118                         }
1119                 }
1120                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1121                         if ((segs_n != 1) ||
1122                             (length > inline_room)) {
1123                                 /*
1124                                  * Multi-Packet WQE consumes at most two WQE.
1125                                  * mlx5_mpw_new() expects to be able to use
1126                                  * such resources.
1127                                  */
1128                                 if (unlikely(max_wqe < 2))
1129                                         break;
1130                                 max_wqe -= 2;
1131                                 mlx5_mpw_new(txq, &mpw, length);
1132                                 mpw.wqe->eseg.cs_flags = cs_flags;
1133                         } else {
1134                                 if (unlikely(max_wqe < wqe_inl_n))
1135                                         break;
1136                                 max_wqe -= wqe_inl_n;
1137                                 mlx5_mpw_inline_new(txq, &mpw, length);
1138                                 mpw.wqe->eseg.cs_flags = cs_flags;
1139                         }
1140                 }
1141                 /* Multi-segment packets must be alone in their MPW. */
1142                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1143                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1144                         assert(inline_room ==
1145                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1146 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1147                         length = 0;
1148 #endif
1149                         do {
1150                                 volatile struct mlx5_wqe_data_seg *dseg;
1151
1152                                 assert(buf);
1153                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1154                                 dseg = mpw.data.dseg[mpw.pkts_n];
1155                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1156                                 *dseg = (struct mlx5_wqe_data_seg){
1157                                         .byte_count =
1158                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1159                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1160                                         .addr = rte_cpu_to_be_64(addr),
1161                                 };
1162 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1163                                 length += DATA_LEN(buf);
1164 #endif
1165                                 buf = buf->next;
1166                                 ++mpw.pkts_n;
1167                                 ++j;
1168                         } while (--segs_n);
1169                         assert(length == mpw.len);
1170                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1171                                 mlx5_mpw_close(txq, &mpw);
1172                 } else {
1173                         unsigned int max;
1174
1175                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1176                         assert(length <= inline_room);
1177                         assert(length == DATA_LEN(buf));
1178                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1179                         (*txq->elts)[elts_head++ & elts_m] = buf;
1180                         /* Maximum number of bytes before wrapping. */
1181                         max = ((((uintptr_t)(txq->wqes)) +
1182                                 (1 << txq->wqe_n) *
1183                                 MLX5_WQE_SIZE) -
1184                                (uintptr_t)mpw.data.raw);
1185                         if (length > max) {
1186                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1187                                            (void *)addr,
1188                                            max);
1189                                 mpw.data.raw = (volatile void *)txq->wqes;
1190                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1191                                            (void *)(addr + max),
1192                                            length - max);
1193                                 mpw.data.raw += length - max;
1194                         } else {
1195                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1196                                            (void *)addr,
1197                                            length);
1198
1199                                 if (length == max)
1200                                         mpw.data.raw =
1201                                                 (volatile void *)txq->wqes;
1202                                 else
1203                                         mpw.data.raw += length;
1204                         }
1205                         ++mpw.pkts_n;
1206                         mpw.total_len += length;
1207                         ++j;
1208                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1209                                 mlx5_mpw_inline_close(txq, &mpw);
1210                                 inline_room =
1211                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1212                         } else {
1213                                 inline_room -= length;
1214                         }
1215                 }
1216 #ifdef MLX5_PMD_SOFT_COUNTERS
1217                 /* Increment sent bytes counter. */
1218                 txq->stats.obytes += length;
1219 #endif
1220                 ++i;
1221         } while (pkts_n);
1222         /* Take a shortcut if nothing must be sent. */
1223         if (unlikely(i == 0))
1224                 return 0;
1225         /* Check whether completion threshold has been reached. */
1226         /* "j" includes both packets and segments. */
1227         comp = txq->elts_comp + j;
1228         if (comp >= MLX5_TX_COMP_THRESH) {
1229                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1230
1231                 /* Request completion on last WQE. */
1232                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1233                 /* Save elts_head in unused "immediate" field of WQE. */
1234                 wqe->ctrl[3] = elts_head;
1235                 txq->elts_comp = 0;
1236         } else {
1237                 txq->elts_comp = comp;
1238         }
1239 #ifdef MLX5_PMD_SOFT_COUNTERS
1240         /* Increment sent packets counter. */
1241         txq->stats.opackets += i;
1242 #endif
1243         /* Ring QP doorbell. */
1244         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1245                 mlx5_mpw_inline_close(txq, &mpw);
1246         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1247                 mlx5_mpw_close(txq, &mpw);
1248         mlx5_tx_dbrec(txq, mpw.wqe);
1249         txq->elts_head = elts_head;
1250         return i;
1251 }
1252
1253 /**
1254  * Open an Enhanced MPW session.
1255  *
1256  * @param txq
1257  *   Pointer to TX queue structure.
1258  * @param mpw
1259  *   Pointer to MPW session structure.
1260  * @param length
1261  *   Packet length.
1262  */
1263 static inline void
1264 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1265 {
1266         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1267
1268         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1269         mpw->pkts_n = 0;
1270         mpw->total_len = sizeof(struct mlx5_wqe);
1271         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1272         mpw->wqe->ctrl[0] =
1273                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1274                                  (txq->wqe_ci << 8) |
1275                                  MLX5_OPCODE_ENHANCED_MPSW);
1276         mpw->wqe->ctrl[2] = 0;
1277         mpw->wqe->ctrl[3] = 0;
1278         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1279         if (unlikely(padding)) {
1280                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1281
1282                 /* Pad the first 2 DWORDs with zero-length inline header. */
1283                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1284                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1285                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1286                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1287                 /* Start from the next WQEBB. */
1288                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1289         } else {
1290                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1291         }
1292 }
1293
1294 /**
1295  * Close an Enhanced MPW session.
1296  *
1297  * @param txq
1298  *   Pointer to TX queue structure.
1299  * @param mpw
1300  *   Pointer to MPW session structure.
1301  *
1302  * @return
1303  *   Number of consumed WQEs.
1304  */
1305 static inline uint16_t
1306 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1307 {
1308         uint16_t ret;
1309
1310         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1311          * count as 2.
1312          */
1313         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1314                                              MLX5_WQE_DS(mpw->total_len));
1315         mpw->state = MLX5_MPW_STATE_CLOSED;
1316         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1317         txq->wqe_ci += ret;
1318         return ret;
1319 }
1320
1321 /**
1322  * DPDK callback for TX with Enhanced MPW support.
1323  *
1324  * @param dpdk_txq
1325  *   Generic pointer to TX queue structure.
1326  * @param[in] pkts
1327  *   Packets to transmit.
1328  * @param pkts_n
1329  *   Number of packets in array.
1330  *
1331  * @return
1332  *   Number of packets successfully transmitted (<= pkts_n).
1333  */
1334 uint16_t
1335 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1336 {
1337         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1338         uint16_t elts_head = txq->elts_head;
1339         const uint16_t elts_n = 1 << txq->elts_n;
1340         const uint16_t elts_m = elts_n - 1;
1341         unsigned int i = 0;
1342         unsigned int j = 0;
1343         uint16_t max_elts;
1344         uint16_t max_wqe;
1345         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1346         unsigned int mpw_room = 0;
1347         unsigned int inl_pad = 0;
1348         uint32_t inl_hdr;
1349         struct mlx5_mpw mpw = {
1350                 .state = MLX5_MPW_STATE_CLOSED,
1351         };
1352
1353         if (unlikely(!pkts_n))
1354                 return 0;
1355         /* Start processing. */
1356         mlx5_tx_complete(txq);
1357         max_elts = (elts_n - (elts_head - txq->elts_tail));
1358         /* A CQE slot must always be available. */
1359         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1360         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1361         if (unlikely(!max_wqe))
1362                 return 0;
1363         do {
1364                 struct rte_mbuf *buf = *(pkts++);
1365                 uintptr_t addr;
1366                 uint64_t naddr;
1367                 unsigned int n;
1368                 unsigned int do_inline = 0; /* Whether inline is possible. */
1369                 uint32_t length;
1370                 unsigned int segs_n = buf->nb_segs;
1371                 uint32_t cs_flags = 0;
1372
1373                 /*
1374                  * Make sure there is enough room to store this packet and
1375                  * that one ring entry remains unused.
1376                  */
1377                 assert(segs_n);
1378                 if (max_elts - j < segs_n)
1379                         break;
1380                 /* Do not bother with large packets MPW cannot handle. */
1381                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1382                         txq->stats.oerrors++;
1383                         break;
1384                 }
1385                 /* Should we enable HW CKSUM offload. */
1386                 if (buf->ol_flags &
1387                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1388                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1389                 /* Retrieve packet information. */
1390                 length = PKT_LEN(buf);
1391                 /* Start new session if:
1392                  * - multi-segment packet
1393                  * - no space left even for a dseg
1394                  * - next packet can be inlined with a new WQE
1395                  * - cs_flag differs
1396                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1397                  * segmented packet.
1398                  */
1399                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1400                         if ((segs_n != 1) ||
1401                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1402                               mpw_room) ||
1403                             (length <= txq->inline_max_packet_sz &&
1404                              inl_pad + sizeof(inl_hdr) + length >
1405                               mpw_room) ||
1406                             (mpw.wqe->eseg.cs_flags != cs_flags))
1407                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1408                 }
1409                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1410                         if (unlikely(segs_n != 1)) {
1411                                 /* Fall back to legacy MPW.
1412                                  * A MPW session consumes 2 WQEs at most to
1413                                  * include MLX5_MPW_DSEG_MAX pointers.
1414                                  */
1415                                 if (unlikely(max_wqe < 2))
1416                                         break;
1417                                 mlx5_mpw_new(txq, &mpw, length);
1418                         } else {
1419                                 /* In Enhanced MPW, inline as much as the budget
1420                                  * is allowed. The remaining space is to be
1421                                  * filled with dsegs. If the title WQEBB isn't
1422                                  * padded, it will have 2 dsegs there.
1423                                  */
1424                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1425                                             (max_inline ? max_inline :
1426                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1427                                             MLX5_WQE_SIZE);
1428                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1429                                               mpw_room))
1430                                         break;
1431                                 /* Don't pad the title WQEBB to not waste WQ. */
1432                                 mlx5_empw_new(txq, &mpw, 0);
1433                                 mpw_room -= mpw.total_len;
1434                                 inl_pad = 0;
1435                                 do_inline =
1436                                         length <= txq->inline_max_packet_sz &&
1437                                         sizeof(inl_hdr) + length <= mpw_room &&
1438                                         !txq->mpw_hdr_dseg;
1439                         }
1440                         mpw.wqe->eseg.cs_flags = cs_flags;
1441                 } else {
1442                         /* Evaluate whether the next packet can be inlined.
1443                          * Inlininig is possible when:
1444                          * - length is less than configured value
1445                          * - length fits for remaining space
1446                          * - not required to fill the title WQEBB with dsegs
1447                          */
1448                         do_inline =
1449                                 length <= txq->inline_max_packet_sz &&
1450                                 inl_pad + sizeof(inl_hdr) + length <=
1451                                  mpw_room &&
1452                                 (!txq->mpw_hdr_dseg ||
1453                                  mpw.total_len >= MLX5_WQE_SIZE);
1454                 }
1455                 /* Multi-segment packets must be alone in their MPW. */
1456                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1457                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1458 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1459                         length = 0;
1460 #endif
1461                         do {
1462                                 volatile struct mlx5_wqe_data_seg *dseg;
1463
1464                                 assert(buf);
1465                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1466                                 dseg = mpw.data.dseg[mpw.pkts_n];
1467                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1468                                 *dseg = (struct mlx5_wqe_data_seg){
1469                                         .byte_count = rte_cpu_to_be_32(
1470                                                                 DATA_LEN(buf)),
1471                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1472                                         .addr = rte_cpu_to_be_64(addr),
1473                                 };
1474 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1475                                 length += DATA_LEN(buf);
1476 #endif
1477                                 buf = buf->next;
1478                                 ++j;
1479                                 ++mpw.pkts_n;
1480                         } while (--segs_n);
1481                         /* A multi-segmented packet takes one MPW session.
1482                          * TODO: Pack more multi-segmented packets if possible.
1483                          */
1484                         mlx5_mpw_close(txq, &mpw);
1485                         if (mpw.pkts_n < 3)
1486                                 max_wqe--;
1487                         else
1488                                 max_wqe -= 2;
1489                 } else if (do_inline) {
1490                         /* Inline packet into WQE. */
1491                         unsigned int max;
1492
1493                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1494                         assert(length == DATA_LEN(buf));
1495                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1496                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1497                         mpw.data.raw = (volatile void *)
1498                                 ((uintptr_t)mpw.data.raw + inl_pad);
1499                         max = tx_mlx5_wq_tailroom(txq,
1500                                         (void *)(uintptr_t)mpw.data.raw);
1501                         /* Copy inline header. */
1502                         mpw.data.raw = (volatile void *)
1503                                 mlx5_copy_to_wq(
1504                                           (void *)(uintptr_t)mpw.data.raw,
1505                                           &inl_hdr,
1506                                           sizeof(inl_hdr),
1507                                           (void *)(uintptr_t)txq->wqes,
1508                                           max);
1509                         max = tx_mlx5_wq_tailroom(txq,
1510                                         (void *)(uintptr_t)mpw.data.raw);
1511                         /* Copy packet data. */
1512                         mpw.data.raw = (volatile void *)
1513                                 mlx5_copy_to_wq(
1514                                           (void *)(uintptr_t)mpw.data.raw,
1515                                           (void *)addr,
1516                                           length,
1517                                           (void *)(uintptr_t)txq->wqes,
1518                                           max);
1519                         ++mpw.pkts_n;
1520                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1521                         /* No need to get completion as the entire packet is
1522                          * copied to WQ. Free the buf right away.
1523                          */
1524                         rte_pktmbuf_free_seg(buf);
1525                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1526                         /* Add pad in the next packet if any. */
1527                         inl_pad = (((uintptr_t)mpw.data.raw +
1528                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1529                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1530                                   (uintptr_t)mpw.data.raw;
1531                 } else {
1532                         /* No inline. Load a dseg of packet pointer. */
1533                         volatile rte_v128u32_t *dseg;
1534
1535                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1536                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1537                         assert(length == DATA_LEN(buf));
1538                         if (!tx_mlx5_wq_tailroom(txq,
1539                                         (void *)((uintptr_t)mpw.data.raw
1540                                                 + inl_pad)))
1541                                 dseg = (volatile void *)txq->wqes;
1542                         else
1543                                 dseg = (volatile void *)
1544                                         ((uintptr_t)mpw.data.raw +
1545                                          inl_pad);
1546                         (*txq->elts)[elts_head++ & elts_m] = buf;
1547                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1548                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1549                                 rte_prefetch2((void *)(addr +
1550                                                 n * RTE_CACHE_LINE_SIZE));
1551                         naddr = rte_cpu_to_be_64(addr);
1552                         *dseg = (rte_v128u32_t) {
1553                                 rte_cpu_to_be_32(length),
1554                                 mlx5_tx_mb2mr(txq, buf),
1555                                 naddr,
1556                                 naddr >> 32,
1557                         };
1558                         mpw.data.raw = (volatile void *)(dseg + 1);
1559                         mpw.total_len += (inl_pad + sizeof(*dseg));
1560                         ++j;
1561                         ++mpw.pkts_n;
1562                         mpw_room -= (inl_pad + sizeof(*dseg));
1563                         inl_pad = 0;
1564                 }
1565 #ifdef MLX5_PMD_SOFT_COUNTERS
1566                 /* Increment sent bytes counter. */
1567                 txq->stats.obytes += length;
1568 #endif
1569                 ++i;
1570         } while (i < pkts_n);
1571         /* Take a shortcut if nothing must be sent. */
1572         if (unlikely(i == 0))
1573                 return 0;
1574         /* Check whether completion threshold has been reached. */
1575         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1576                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1577                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1578                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1579
1580                 /* Request completion on last WQE. */
1581                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1582                 /* Save elts_head in unused "immediate" field of WQE. */
1583                 wqe->ctrl[3] = elts_head;
1584                 txq->elts_comp = 0;
1585                 txq->mpw_comp = txq->wqe_ci;
1586                 txq->cq_pi++;
1587         } else {
1588                 txq->elts_comp += j;
1589         }
1590 #ifdef MLX5_PMD_SOFT_COUNTERS
1591         /* Increment sent packets counter. */
1592         txq->stats.opackets += i;
1593 #endif
1594         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1595                 mlx5_empw_close(txq, &mpw);
1596         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1597                 mlx5_mpw_close(txq, &mpw);
1598         /* Ring QP doorbell. */
1599         mlx5_tx_dbrec(txq, mpw.wqe);
1600         txq->elts_head = elts_head;
1601         return i;
1602 }
1603
1604 /**
1605  * Translate RX completion flags to packet type.
1606  *
1607  * @param[in] cqe
1608  *   Pointer to CQE.
1609  *
1610  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1611  *
1612  * @return
1613  *   Packet type for struct rte_mbuf.
1614  */
1615 static inline uint32_t
1616 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1617 {
1618         uint8_t idx;
1619         uint8_t pinfo = cqe->pkt_info;
1620         uint16_t ptype = cqe->hdr_type_etc;
1621
1622         /*
1623          * The index to the array should have:
1624          * bit[1:0] = l3_hdr_type
1625          * bit[4:2] = l4_hdr_type
1626          * bit[5] = ip_frag
1627          * bit[6] = tunneled
1628          * bit[7] = outer_l3_type
1629          */
1630         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1631         return mlx5_ptype_table[idx];
1632 }
1633
1634 /**
1635  * Get size of the next packet for a given CQE. For compressed CQEs, the
1636  * consumer index is updated only once all packets of the current one have
1637  * been processed.
1638  *
1639  * @param rxq
1640  *   Pointer to RX queue.
1641  * @param cqe
1642  *   CQE to process.
1643  * @param[out] rss_hash
1644  *   Packet RSS Hash result.
1645  *
1646  * @return
1647  *   Packet size in bytes (0 if there is none), -1 in case of completion
1648  *   with error.
1649  */
1650 static inline int
1651 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1652                  uint16_t cqe_cnt, uint32_t *rss_hash)
1653 {
1654         struct rxq_zip *zip = &rxq->zip;
1655         uint16_t cqe_n = cqe_cnt + 1;
1656         int len = 0;
1657         uint16_t idx, end;
1658
1659         /* Process compressed data in the CQE and mini arrays. */
1660         if (zip->ai) {
1661                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1662                         (volatile struct mlx5_mini_cqe8 (*)[8])
1663                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1664
1665                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1666                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1667                 if ((++zip->ai & 7) == 0) {
1668                         /* Invalidate consumed CQEs */
1669                         idx = zip->ca;
1670                         end = zip->na;
1671                         while (idx != end) {
1672                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1673                                         MLX5_CQE_INVALIDATE;
1674                                 ++idx;
1675                         }
1676                         /*
1677                          * Increment consumer index to skip the number of
1678                          * CQEs consumed. Hardware leaves holes in the CQ
1679                          * ring for software use.
1680                          */
1681                         zip->ca = zip->na;
1682                         zip->na += 8;
1683                 }
1684                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1685                         /* Invalidate the rest */
1686                         idx = zip->ca;
1687                         end = zip->cq_ci;
1688
1689                         while (idx != end) {
1690                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1691                                         MLX5_CQE_INVALIDATE;
1692                                 ++idx;
1693                         }
1694                         rxq->cq_ci = zip->cq_ci;
1695                         zip->ai = 0;
1696                 }
1697         /* No compressed data, get next CQE and verify if it is compressed. */
1698         } else {
1699                 int ret;
1700                 int8_t op_own;
1701
1702                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1703                 if (unlikely(ret == 1))
1704                         return 0;
1705                 ++rxq->cq_ci;
1706                 op_own = cqe->op_own;
1707                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1708                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1709                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1710                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1711                                                           cqe_cnt].pkt_info);
1712
1713                         /* Fix endianness. */
1714                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1715                         /*
1716                          * Current mini array position is the one returned by
1717                          * check_cqe64().
1718                          *
1719                          * If completion comprises several mini arrays, as a
1720                          * special case the second one is located 7 CQEs after
1721                          * the initial CQE instead of 8 for subsequent ones.
1722                          */
1723                         zip->ca = rxq->cq_ci;
1724                         zip->na = zip->ca + 7;
1725                         /* Compute the next non compressed CQE. */
1726                         --rxq->cq_ci;
1727                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1728                         /* Get packet size to return. */
1729                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1730                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1731                         zip->ai = 1;
1732                         /* Prefetch all the entries to be invalidated */
1733                         idx = zip->ca;
1734                         end = zip->cq_ci;
1735                         while (idx != end) {
1736                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1737                                 ++idx;
1738                         }
1739                 } else {
1740                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1741                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1742                 }
1743                 /* Error while receiving packet. */
1744                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1745                         return -1;
1746         }
1747         return len;
1748 }
1749
1750 /**
1751  * Translate RX completion flags to offload flags.
1752  *
1753  * @param[in] rxq
1754  *   Pointer to RX queue structure.
1755  * @param[in] cqe
1756  *   Pointer to CQE.
1757  *
1758  * @return
1759  *   Offload flags (ol_flags) for struct rte_mbuf.
1760  */
1761 static inline uint32_t
1762 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1763 {
1764         uint32_t ol_flags = 0;
1765         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1766
1767         ol_flags =
1768                 TRANSPOSE(flags,
1769                           MLX5_CQE_RX_L3_HDR_VALID,
1770                           PKT_RX_IP_CKSUM_GOOD) |
1771                 TRANSPOSE(flags,
1772                           MLX5_CQE_RX_L4_HDR_VALID,
1773                           PKT_RX_L4_CKSUM_GOOD);
1774         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1775                 ol_flags |=
1776                         TRANSPOSE(flags,
1777                                   MLX5_CQE_RX_L3_HDR_VALID,
1778                                   PKT_RX_IP_CKSUM_GOOD) |
1779                         TRANSPOSE(flags,
1780                                   MLX5_CQE_RX_L4_HDR_VALID,
1781                                   PKT_RX_L4_CKSUM_GOOD);
1782         return ol_flags;
1783 }
1784
1785 /**
1786  * DPDK callback for RX.
1787  *
1788  * @param dpdk_rxq
1789  *   Generic pointer to RX queue structure.
1790  * @param[out] pkts
1791  *   Array to store received packets.
1792  * @param pkts_n
1793  *   Maximum number of packets in array.
1794  *
1795  * @return
1796  *   Number of packets successfully received (<= pkts_n).
1797  */
1798 uint16_t
1799 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1800 {
1801         struct mlx5_rxq_data *rxq = dpdk_rxq;
1802         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1803         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1804         const unsigned int sges_n = rxq->sges_n;
1805         struct rte_mbuf *pkt = NULL;
1806         struct rte_mbuf *seg = NULL;
1807         volatile struct mlx5_cqe *cqe =
1808                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1809         unsigned int i = 0;
1810         unsigned int rq_ci = rxq->rq_ci << sges_n;
1811         int len = 0; /* keep its value across iterations. */
1812
1813         while (pkts_n) {
1814                 unsigned int idx = rq_ci & wqe_cnt;
1815                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1816                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1817                 uint32_t rss_hash_res = 0;
1818
1819                 if (pkt)
1820                         NEXT(seg) = rep;
1821                 seg = rep;
1822                 rte_prefetch0(seg);
1823                 rte_prefetch0(cqe);
1824                 rte_prefetch0(wqe);
1825                 rep = rte_mbuf_raw_alloc(rxq->mp);
1826                 if (unlikely(rep == NULL)) {
1827                         ++rxq->stats.rx_nombuf;
1828                         if (!pkt) {
1829                                 /*
1830                                  * no buffers before we even started,
1831                                  * bail out silently.
1832                                  */
1833                                 break;
1834                         }
1835                         while (pkt != seg) {
1836                                 assert(pkt != (*rxq->elts)[idx]);
1837                                 rep = NEXT(pkt);
1838                                 NEXT(pkt) = NULL;
1839                                 NB_SEGS(pkt) = 1;
1840                                 rte_mbuf_raw_free(pkt);
1841                                 pkt = rep;
1842                         }
1843                         break;
1844                 }
1845                 if (!pkt) {
1846                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1847                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1848                                                &rss_hash_res);
1849                         if (!len) {
1850                                 rte_mbuf_raw_free(rep);
1851                                 break;
1852                         }
1853                         if (unlikely(len == -1)) {
1854                                 /* RX error, packet is likely too large. */
1855                                 rte_mbuf_raw_free(rep);
1856                                 ++rxq->stats.idropped;
1857                                 goto skip;
1858                         }
1859                         pkt = seg;
1860                         assert(len >= (rxq->crc_present << 2));
1861                         /* Update packet information. */
1862                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1863                         pkt->ol_flags = 0;
1864                         if (rss_hash_res && rxq->rss_hash) {
1865                                 pkt->hash.rss = rss_hash_res;
1866                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1867                         }
1868                         if (rxq->mark &&
1869                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1870                                 pkt->ol_flags |= PKT_RX_FDIR;
1871                                 if (cqe->sop_drop_qpn !=
1872                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1873                                         uint32_t mark = cqe->sop_drop_qpn;
1874
1875                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1876                                         pkt->hash.fdir.hi =
1877                                                 mlx5_flow_mark_get(mark);
1878                                 }
1879                         }
1880                         if (rxq->csum | rxq->csum_l2tun)
1881                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1882                         if (rxq->vlan_strip &&
1883                             (cqe->hdr_type_etc &
1884                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1885                                 pkt->ol_flags |= PKT_RX_VLAN_PKT |
1886                                         PKT_RX_VLAN_STRIPPED;
1887                                 pkt->vlan_tci =
1888                                         rte_be_to_cpu_16(cqe->vlan_info);
1889                         }
1890                         if (rxq->crc_present)
1891                                 len -= ETHER_CRC_LEN;
1892                         PKT_LEN(pkt) = len;
1893                 }
1894                 DATA_LEN(rep) = DATA_LEN(seg);
1895                 PKT_LEN(rep) = PKT_LEN(seg);
1896                 SET_DATA_OFF(rep, DATA_OFF(seg));
1897                 PORT(rep) = PORT(seg);
1898                 (*rxq->elts)[idx] = rep;
1899                 /*
1900                  * Fill NIC descriptor with the new buffer.  The lkey and size
1901                  * of the buffers are already known, only the buffer address
1902                  * changes.
1903                  */
1904                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1905                 if (len > DATA_LEN(seg)) {
1906                         len -= DATA_LEN(seg);
1907                         ++NB_SEGS(pkt);
1908                         ++rq_ci;
1909                         continue;
1910                 }
1911                 DATA_LEN(seg) = len;
1912 #ifdef MLX5_PMD_SOFT_COUNTERS
1913                 /* Increment bytes counter. */
1914                 rxq->stats.ibytes += PKT_LEN(pkt);
1915 #endif
1916                 /* Return packet. */
1917                 *(pkts++) = pkt;
1918                 pkt = NULL;
1919                 --pkts_n;
1920                 ++i;
1921 skip:
1922                 /* Align consumer index to the next stride. */
1923                 rq_ci >>= sges_n;
1924                 ++rq_ci;
1925                 rq_ci <<= sges_n;
1926         }
1927         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1928                 return 0;
1929         /* Update the consumer index. */
1930         rxq->rq_ci = rq_ci >> sges_n;
1931         rte_wmb();
1932         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1933         rte_wmb();
1934         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1935 #ifdef MLX5_PMD_SOFT_COUNTERS
1936         /* Increment packets counter. */
1937         rxq->stats.ipackets += i;
1938 #endif
1939         return i;
1940 }
1941
1942 /**
1943  * Dummy DPDK callback for TX.
1944  *
1945  * This function is used to temporarily replace the real callback during
1946  * unsafe control operations on the queue, or in case of error.
1947  *
1948  * @param dpdk_txq
1949  *   Generic pointer to TX queue structure.
1950  * @param[in] pkts
1951  *   Packets to transmit.
1952  * @param pkts_n
1953  *   Number of packets in array.
1954  *
1955  * @return
1956  *   Number of packets successfully transmitted (<= pkts_n).
1957  */
1958 uint16_t
1959 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1960 {
1961         (void)dpdk_txq;
1962         (void)pkts;
1963         (void)pkts_n;
1964         return 0;
1965 }
1966
1967 /**
1968  * Dummy DPDK callback for RX.
1969  *
1970  * This function is used to temporarily replace the real callback during
1971  * unsafe control operations on the queue, or in case of error.
1972  *
1973  * @param dpdk_rxq
1974  *   Generic pointer to RX queue structure.
1975  * @param[out] pkts
1976  *   Array to store received packets.
1977  * @param pkts_n
1978  *   Maximum number of packets in array.
1979  *
1980  * @return
1981  *   Number of packets successfully received (<= pkts_n).
1982  */
1983 uint16_t
1984 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1985 {
1986         (void)dpdk_rxq;
1987         (void)pkts;
1988         (void)pkts_n;
1989         return 0;
1990 }
1991
1992 /*
1993  * Vectorized Rx/Tx routines are not compiled in when required vector
1994  * instructions are not supported on a target architecture. The following null
1995  * stubs are needed for linkage when those are not included outside of this file
1996  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1997  */
1998
1999 uint16_t __attribute__((weak))
2000 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2001 {
2002         (void)dpdk_txq;
2003         (void)pkts;
2004         (void)pkts_n;
2005         return 0;
2006 }
2007
2008 uint16_t __attribute__((weak))
2009 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
2010 {
2011         (void)dpdk_txq;
2012         (void)pkts;
2013         (void)pkts_n;
2014         return 0;
2015 }
2016
2017 uint16_t __attribute__((weak))
2018 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2019 {
2020         (void)dpdk_rxq;
2021         (void)pkts;
2022         (void)pkts_n;
2023         return 0;
2024 }
2025
2026 int __attribute__((weak))
2027 priv_check_raw_vec_tx_support(struct priv *priv)
2028 {
2029         (void)priv;
2030         return -ENOTSUP;
2031 }
2032
2033 int __attribute__((weak))
2034 priv_check_vec_tx_support(struct priv *priv)
2035 {
2036         (void)priv;
2037         return -ENOTSUP;
2038 }
2039
2040 int __attribute__((weak))
2041 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2042 {
2043         (void)rxq;
2044         return -ENOTSUP;
2045 }
2046
2047 int __attribute__((weak))
2048 priv_check_vec_rx_support(struct priv *priv)
2049 {
2050         (void)priv;
2051         return -ENOTSUP;
2052 }