net/mlx5: fix L4 packet type support
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5_hw.h>
46 #include <infiniband/arch.h>
47 #ifdef PEDANTIC
48 #pragma GCC diagnostic error "-Wpedantic"
49 #endif
50
51 /* DPDK headers don't like -pedantic. */
52 #ifdef PEDANTIC
53 #pragma GCC diagnostic ignored "-Wpedantic"
54 #endif
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58 #include <rte_common.h>
59 #include <rte_branch_prediction.h>
60 #include <rte_ether.h>
61 #ifdef PEDANTIC
62 #pragma GCC diagnostic error "-Wpedantic"
63 #endif
64
65 #include "mlx5.h"
66 #include "mlx5_utils.h"
67 #include "mlx5_rxtx.h"
68 #include "mlx5_autoconf.h"
69 #include "mlx5_defs.h"
70 #include "mlx5_prm.h"
71
72 static __rte_always_inline uint32_t
73 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
74
75 static __rte_always_inline int
76 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
77                  uint16_t cqe_cnt, uint32_t *rss_hash);
78
79 static __rte_always_inline uint32_t
80 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe);
81
82 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
83         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
84 };
85
86 /**
87  * Build a table to translate Rx completion flags to packet type.
88  *
89  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
90  */
91 void
92 mlx5_set_ptype_table(void)
93 {
94         unsigned int i;
95         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
96
97         for (i = 0; i < RTE_DIM(mlx5_ptype_table); ++i)
98                 (*p)[i] = RTE_PTYPE_UNKNOWN;
99         /*
100          * The index to the array should have:
101          * bit[1:0] = l3_hdr_type
102          * bit[4:2] = l4_hdr_type
103          * bit[5] = ip_frag
104          * bit[6] = tunneled
105          * bit[7] = outer_l3_type
106          */
107         /* L3 */
108         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_NONFRAG;
110         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_NONFRAG;
112         /* Fragmented */
113         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_FRAG;
115         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_FRAG;
117         /* TCP */
118         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_TCP;
120         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_TCP;
122         /* UDP */
123         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_UDP;
125         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_UDP;
127         /* Repeat with outer_l3_type being set. Just in case. */
128         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_L4_NONFRAG;
130         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
131                      RTE_PTYPE_L4_NONFRAG;
132         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
133                      RTE_PTYPE_L4_FRAG;
134         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
135                      RTE_PTYPE_L4_FRAG;
136         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_L4_TCP;
138         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
139                      RTE_PTYPE_L4_TCP;
140         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_L4_UDP;
142         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_L4_UDP;
144         /* Tunneled - L3 */
145         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L4_NONFRAG;
148         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L4_NONFRAG;
151         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_NONFRAG;
154         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_NONFRAG;
157         /* Tunneled - Fragmented */
158         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L4_FRAG;
161         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L4_FRAG;
164         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_FRAG;
167         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG;
170         /* Tunneled - TCP */
171         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_L4_TCP;
174         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_L4_TCP;
177         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
178                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_L4_TCP;
180         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_L4_TCP;
183         /* Tunneled - UDP */
184         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_L4_UDP;
187         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_L4_UDP;
190         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_L4_UDP;
193         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_L4_UDP;
196 }
197
198 /**
199  * Return the size of tailroom of WQ.
200  *
201  * @param txq
202  *   Pointer to TX queue structure.
203  * @param addr
204  *   Pointer to tail of WQ.
205  *
206  * @return
207  *   Size of tailroom.
208  */
209 static inline size_t
210 tx_mlx5_wq_tailroom(struct txq *txq, void *addr)
211 {
212         size_t tailroom;
213         tailroom = (uintptr_t)(txq->wqes) +
214                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
215                    (uintptr_t)addr;
216         return tailroom;
217 }
218
219 /**
220  * Copy data to tailroom of circular queue.
221  *
222  * @param dst
223  *   Pointer to destination.
224  * @param src
225  *   Pointer to source.
226  * @param n
227  *   Number of bytes to copy.
228  * @param base
229  *   Pointer to head of queue.
230  * @param tailroom
231  *   Size of tailroom from dst.
232  *
233  * @return
234  *   Pointer after copied data.
235  */
236 static inline void *
237 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
238                 void *base, size_t tailroom)
239 {
240         void *ret;
241
242         if (n > tailroom) {
243                 rte_memcpy(dst, src, tailroom);
244                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
245                            n - tailroom);
246                 ret = (uint8_t *)base + n - tailroom;
247         } else {
248                 rte_memcpy(dst, src, n);
249                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
250         }
251         return ret;
252 }
253
254 /**
255  * DPDK callback to check the status of a tx descriptor.
256  *
257  * @param tx_queue
258  *   The tx queue.
259  * @param[in] offset
260  *   The index of the descriptor in the ring.
261  *
262  * @return
263  *   The status of the tx descriptor.
264  */
265 int
266 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
267 {
268         struct txq *txq = tx_queue;
269         uint16_t used;
270
271         mlx5_tx_complete(txq);
272         used = txq->elts_head - txq->elts_tail;
273         if (offset < used)
274                 return RTE_ETH_TX_DESC_FULL;
275         return RTE_ETH_TX_DESC_DONE;
276 }
277
278 /**
279  * DPDK callback to check the status of a rx descriptor.
280  *
281  * @param rx_queue
282  *   The rx queue.
283  * @param[in] offset
284  *   The index of the descriptor in the ring.
285  *
286  * @return
287  *   The status of the tx descriptor.
288  */
289 int
290 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
291 {
292         struct rxq *rxq = rx_queue;
293         struct rxq_zip *zip = &rxq->zip;
294         volatile struct mlx5_cqe *cqe;
295         const unsigned int cqe_n = (1 << rxq->cqe_n);
296         const unsigned int cqe_cnt = cqe_n - 1;
297         unsigned int cq_ci;
298         unsigned int used;
299
300         /* if we are processing a compressed cqe */
301         if (zip->ai) {
302                 used = zip->cqe_cnt - zip->ca;
303                 cq_ci = zip->cq_ci;
304         } else {
305                 used = 0;
306                 cq_ci = rxq->cq_ci;
307         }
308         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
309         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
310                 int8_t op_own;
311                 unsigned int n;
312
313                 op_own = cqe->op_own;
314                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
315                         n = ntohl(cqe->byte_cnt);
316                 else
317                         n = 1;
318                 cq_ci += n;
319                 used += n;
320                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
321         }
322         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
323         if (offset < used)
324                 return RTE_ETH_RX_DESC_DONE;
325         return RTE_ETH_RX_DESC_AVAIL;
326 }
327
328 /**
329  * DPDK callback for TX.
330  *
331  * @param dpdk_txq
332  *   Generic pointer to TX queue structure.
333  * @param[in] pkts
334  *   Packets to transmit.
335  * @param pkts_n
336  *   Number of packets in array.
337  *
338  * @return
339  *   Number of packets successfully transmitted (<= pkts_n).
340  */
341 uint16_t
342 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
343 {
344         struct txq *txq = (struct txq *)dpdk_txq;
345         uint16_t elts_head = txq->elts_head;
346         const uint16_t elts_n = 1 << txq->elts_n;
347         const uint16_t elts_m = elts_n - 1;
348         unsigned int i = 0;
349         unsigned int j = 0;
350         unsigned int k = 0;
351         uint16_t max_elts;
352         unsigned int max_inline = txq->max_inline;
353         const unsigned int inline_en = !!max_inline && txq->inline_en;
354         uint16_t max_wqe;
355         unsigned int comp;
356         volatile struct mlx5_wqe_v *wqe = NULL;
357         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
358         unsigned int segs_n = 0;
359         struct rte_mbuf *buf = NULL;
360         uint8_t *raw;
361
362         if (unlikely(!pkts_n))
363                 return 0;
364         /* Prefetch first packet cacheline. */
365         rte_prefetch0(*pkts);
366         /* Start processing. */
367         mlx5_tx_complete(txq);
368         max_elts = (elts_n - (elts_head - txq->elts_tail));
369         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
370         if (unlikely(!max_wqe))
371                 return 0;
372         do {
373                 volatile rte_v128u32_t *dseg = NULL;
374                 uint32_t length;
375                 unsigned int ds = 0;
376                 unsigned int sg = 0; /* counter of additional segs attached. */
377                 uintptr_t addr;
378                 uint64_t naddr;
379                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
380                 uint16_t tso_header_sz = 0;
381                 uint16_t ehdr;
382                 uint8_t cs_flags = 0;
383                 uint64_t tso = 0;
384                 uint16_t tso_segsz = 0;
385 #ifdef MLX5_PMD_SOFT_COUNTERS
386                 uint32_t total_length = 0;
387 #endif
388
389                 /* first_seg */
390                 buf = *pkts;
391                 segs_n = buf->nb_segs;
392                 /*
393                  * Make sure there is enough room to store this packet and
394                  * that one ring entry remains unused.
395                  */
396                 assert(segs_n);
397                 if (max_elts < segs_n)
398                         break;
399                 max_elts -= segs_n;
400                 --segs_n;
401                 if (unlikely(--max_wqe == 0))
402                         break;
403                 wqe = (volatile struct mlx5_wqe_v *)
404                         tx_mlx5_wqe(txq, txq->wqe_ci);
405                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
406                 if (pkts_n - i > 1)
407                         rte_prefetch0(*(pkts + 1));
408                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
409                 length = DATA_LEN(buf);
410                 ehdr = (((uint8_t *)addr)[1] << 8) |
411                        ((uint8_t *)addr)[0];
412 #ifdef MLX5_PMD_SOFT_COUNTERS
413                 total_length = length;
414 #endif
415                 if (length < (MLX5_WQE_DWORD_SIZE + 2))
416                         break;
417                 /* Update element. */
418                 (*txq->elts)[elts_head & elts_m] = buf;
419                 /* Prefetch next buffer data. */
420                 if (pkts_n - i > 1)
421                         rte_prefetch0(
422                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
423                 /* Should we enable HW CKSUM offload */
424                 if (buf->ol_flags &
425                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
426                         const uint64_t is_tunneled = buf->ol_flags &
427                                                      (PKT_TX_TUNNEL_GRE |
428                                                       PKT_TX_TUNNEL_VXLAN);
429
430                         if (is_tunneled && txq->tunnel_en) {
431                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
432                                            MLX5_ETH_WQE_L4_INNER_CSUM;
433                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
434                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
435                         } else {
436                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
437                                            MLX5_ETH_WQE_L4_CSUM;
438                         }
439                 }
440                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
441                 /* Replace the Ethernet type by the VLAN if necessary. */
442                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
443                         uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
444                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
445
446                         addr += 2;
447                         length -= 2;
448                         /* Copy Destination and source mac address. */
449                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
450                         /* Copy VLAN. */
451                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
452                         /* Copy missing two bytes to end the DSeg. */
453                         memcpy((uint8_t *)raw + len + sizeof(vlan),
454                                ((uint8_t *)addr) + len, 2);
455                         addr += len + 2;
456                         length -= (len + 2);
457                 } else {
458                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
459                                MLX5_WQE_DWORD_SIZE);
460                         length -= pkt_inline_sz;
461                         addr += pkt_inline_sz;
462                 }
463                 if (txq->tso_en) {
464                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
465                         if (tso) {
466                                 uintptr_t end = (uintptr_t)
467                                                 (((uintptr_t)txq->wqes) +
468                                                 (1 << txq->wqe_n) *
469                                                 MLX5_WQE_SIZE);
470                                 unsigned int copy_b;
471                                 uint8_t vlan_sz = (buf->ol_flags &
472                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
473                                 const uint64_t is_tunneled =
474                                                         buf->ol_flags &
475                                                         (PKT_TX_TUNNEL_GRE |
476                                                          PKT_TX_TUNNEL_VXLAN);
477
478                                 tso_header_sz = buf->l2_len + vlan_sz +
479                                                 buf->l3_len + buf->l4_len;
480                                 tso_segsz = buf->tso_segsz;
481
482                                 if (is_tunneled && txq->tunnel_en) {
483                                         tso_header_sz += buf->outer_l2_len +
484                                                          buf->outer_l3_len;
485                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
486                                 } else {
487                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
488                                 }
489                                 if (unlikely(tso_header_sz >
490                                              MLX5_MAX_TSO_HEADER))
491                                         break;
492                                 copy_b = tso_header_sz - pkt_inline_sz;
493                                 /* First seg must contain all headers. */
494                                 assert(copy_b <= length);
495                                 raw += MLX5_WQE_DWORD_SIZE;
496                                 if (copy_b &&
497                                    ((end - (uintptr_t)raw) > copy_b)) {
498                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
499                                                       1 + 3) / 4;
500
501                                         if (unlikely(max_wqe < n))
502                                                 break;
503                                         max_wqe -= n;
504                                         rte_memcpy((void *)raw,
505                                                    (void *)addr, copy_b);
506                                         addr += copy_b;
507                                         length -= copy_b;
508                                         pkt_inline_sz += copy_b;
509                                         /*
510                                          * Another DWORD will be added
511                                          * in the inline part.
512                                          */
513                                         raw += MLX5_WQE_DS(copy_b) *
514                                                MLX5_WQE_DWORD_SIZE -
515                                                MLX5_WQE_DWORD_SIZE;
516                                 } else {
517                                         /* NOP WQE. */
518                                         wqe->ctrl = (rte_v128u32_t){
519                                                      htonl(txq->wqe_ci << 8),
520                                                      htonl(txq->qp_num_8s | 1),
521                                                      0,
522                                                      0,
523                                         };
524                                         ds = 1;
525                                         total_length = 0;
526                                         k++;
527                                         goto next_wqe;
528                                 }
529                         }
530                 }
531                 /* Inline if enough room. */
532                 if (inline_en || tso) {
533                         uintptr_t end = (uintptr_t)
534                                 (((uintptr_t)txq->wqes) +
535                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
536                         unsigned int inline_room = max_inline *
537                                                    RTE_CACHE_LINE_SIZE -
538                                                    (pkt_inline_sz - 2);
539                         uintptr_t addr_end = (addr + inline_room) &
540                                              ~(RTE_CACHE_LINE_SIZE - 1);
541                         unsigned int copy_b = (addr_end > addr) ?
542                                 RTE_MIN((addr_end - addr), length) :
543                                 0;
544
545                         raw += MLX5_WQE_DWORD_SIZE;
546                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
547                                 /*
548                                  * One Dseg remains in the current WQE.  To
549                                  * keep the computation positive, it is
550                                  * removed after the bytes to Dseg conversion.
551                                  */
552                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
553
554                                 if (unlikely(max_wqe < n))
555                                         break;
556                                 max_wqe -= n;
557                                 if (tso) {
558                                         uint32_t inl =
559                                                 htonl(copy_b | MLX5_INLINE_SEG);
560
561                                         pkt_inline_sz =
562                                                 MLX5_WQE_DS(tso_header_sz) *
563                                                 MLX5_WQE_DWORD_SIZE;
564                                         rte_memcpy((void *)raw,
565                                                    (void *)&inl, sizeof(inl));
566                                         raw += sizeof(inl);
567                                         pkt_inline_sz += sizeof(inl);
568                                 }
569                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
570                                 addr += copy_b;
571                                 length -= copy_b;
572                                 pkt_inline_sz += copy_b;
573                         }
574                         /*
575                          * 2 DWORDs consumed by the WQE header + ETH segment +
576                          * the size of the inline part of the packet.
577                          */
578                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
579                         if (length > 0) {
580                                 if (ds % (MLX5_WQE_SIZE /
581                                           MLX5_WQE_DWORD_SIZE) == 0) {
582                                         if (unlikely(--max_wqe == 0))
583                                                 break;
584                                         dseg = (volatile rte_v128u32_t *)
585                                                tx_mlx5_wqe(txq, txq->wqe_ci +
586                                                            ds / 4);
587                                 } else {
588                                         dseg = (volatile rte_v128u32_t *)
589                                                 ((uintptr_t)wqe +
590                                                  (ds * MLX5_WQE_DWORD_SIZE));
591                                 }
592                                 goto use_dseg;
593                         } else if (!segs_n) {
594                                 goto next_pkt;
595                         } else {
596                                 /* dseg will be advance as part of next_seg */
597                                 dseg = (volatile rte_v128u32_t *)
598                                         ((uintptr_t)wqe +
599                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
600                                 goto next_seg;
601                         }
602                 } else {
603                         /*
604                          * No inline has been done in the packet, only the
605                          * Ethernet Header as been stored.
606                          */
607                         dseg = (volatile rte_v128u32_t *)
608                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
609                         ds = 3;
610 use_dseg:
611                         /* Add the remaining packet as a simple ds. */
612                         naddr = htonll(addr);
613                         *dseg = (rte_v128u32_t){
614                                 htonl(length),
615                                 mlx5_tx_mb2mr(txq, buf),
616                                 naddr,
617                                 naddr >> 32,
618                         };
619                         ++ds;
620                         if (!segs_n)
621                                 goto next_pkt;
622                 }
623 next_seg:
624                 assert(buf);
625                 assert(ds);
626                 assert(wqe);
627                 /*
628                  * Spill on next WQE when the current one does not have
629                  * enough room left. Size of WQE must a be a multiple
630                  * of data segment size.
631                  */
632                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
633                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
634                         if (unlikely(--max_wqe == 0))
635                                 break;
636                         dseg = (volatile rte_v128u32_t *)
637                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
638                         rte_prefetch0(tx_mlx5_wqe(txq,
639                                                   txq->wqe_ci + ds / 4 + 1));
640                 } else {
641                         ++dseg;
642                 }
643                 ++ds;
644                 buf = buf->next;
645                 assert(buf);
646                 length = DATA_LEN(buf);
647 #ifdef MLX5_PMD_SOFT_COUNTERS
648                 total_length += length;
649 #endif
650                 /* Store segment information. */
651                 naddr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
652                 *dseg = (rte_v128u32_t){
653                         htonl(length),
654                         mlx5_tx_mb2mr(txq, buf),
655                         naddr,
656                         naddr >> 32,
657                 };
658                 (*txq->elts)[++elts_head & elts_m] = buf;
659                 ++sg;
660                 /* Advance counter only if all segs are successfully posted. */
661                 if (sg < segs_n)
662                         goto next_seg;
663                 else
664                         j += sg;
665 next_pkt:
666                 ++elts_head;
667                 ++pkts;
668                 ++i;
669                 /* Initialize known and common part of the WQE structure. */
670                 if (tso) {
671                         wqe->ctrl = (rte_v128u32_t){
672                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_TSO),
673                                 htonl(txq->qp_num_8s | ds),
674                                 0,
675                                 0,
676                         };
677                         wqe->eseg = (rte_v128u32_t){
678                                 0,
679                                 cs_flags | (htons(tso_segsz) << 16),
680                                 0,
681                                 (ehdr << 16) | htons(tso_header_sz),
682                         };
683                 } else {
684                         wqe->ctrl = (rte_v128u32_t){
685                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
686                                 htonl(txq->qp_num_8s | ds),
687                                 0,
688                                 0,
689                         };
690                         wqe->eseg = (rte_v128u32_t){
691                                 0,
692                                 cs_flags,
693                                 0,
694                                 (ehdr << 16) | htons(pkt_inline_sz),
695                         };
696                 }
697 next_wqe:
698                 txq->wqe_ci += (ds + 3) / 4;
699                 /* Save the last successful WQE for completion request */
700                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
701 #ifdef MLX5_PMD_SOFT_COUNTERS
702                 /* Increment sent bytes counter. */
703                 txq->stats.obytes += total_length;
704 #endif
705         } while (i < pkts_n);
706         /* Take a shortcut if nothing must be sent. */
707         if (unlikely((i + k) == 0))
708                 return 0;
709         txq->elts_head += (i + j);
710         /* Check whether completion threshold has been reached. */
711         comp = txq->elts_comp + i + j + k;
712         if (comp >= MLX5_TX_COMP_THRESH) {
713                 /* Request completion on last WQE. */
714                 last_wqe->ctrl2 = htonl(8);
715                 /* Save elts_head in unused "immediate" field of WQE. */
716                 last_wqe->ctrl3 = txq->elts_head;
717                 txq->elts_comp = 0;
718         } else {
719                 txq->elts_comp = comp;
720         }
721 #ifdef MLX5_PMD_SOFT_COUNTERS
722         /* Increment sent packets counter. */
723         txq->stats.opackets += i;
724 #endif
725         /* Ring QP doorbell. */
726         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
727         return i;
728 }
729
730 /**
731  * Open a MPW session.
732  *
733  * @param txq
734  *   Pointer to TX queue structure.
735  * @param mpw
736  *   Pointer to MPW session structure.
737  * @param length
738  *   Packet length.
739  */
740 static inline void
741 mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
742 {
743         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
744         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
745                 (volatile struct mlx5_wqe_data_seg (*)[])
746                 tx_mlx5_wqe(txq, idx + 1);
747
748         mpw->state = MLX5_MPW_STATE_OPENED;
749         mpw->pkts_n = 0;
750         mpw->len = length;
751         mpw->total_len = 0;
752         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
753         mpw->wqe->eseg.mss = htons(length);
754         mpw->wqe->eseg.inline_hdr_sz = 0;
755         mpw->wqe->eseg.rsvd0 = 0;
756         mpw->wqe->eseg.rsvd1 = 0;
757         mpw->wqe->eseg.rsvd2 = 0;
758         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
759                                   (txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
760         mpw->wqe->ctrl[2] = 0;
761         mpw->wqe->ctrl[3] = 0;
762         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
763                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
764         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
765                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
766         mpw->data.dseg[2] = &(*dseg)[0];
767         mpw->data.dseg[3] = &(*dseg)[1];
768         mpw->data.dseg[4] = &(*dseg)[2];
769 }
770
771 /**
772  * Close a MPW session.
773  *
774  * @param txq
775  *   Pointer to TX queue structure.
776  * @param mpw
777  *   Pointer to MPW session structure.
778  */
779 static inline void
780 mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
781 {
782         unsigned int num = mpw->pkts_n;
783
784         /*
785          * Store size in multiple of 16 bytes. Control and Ethernet segments
786          * count as 2.
787          */
788         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
789         mpw->state = MLX5_MPW_STATE_CLOSED;
790         if (num < 3)
791                 ++txq->wqe_ci;
792         else
793                 txq->wqe_ci += 2;
794         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
795         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
796 }
797
798 /**
799  * DPDK callback for TX with MPW support.
800  *
801  * @param dpdk_txq
802  *   Generic pointer to TX queue structure.
803  * @param[in] pkts
804  *   Packets to transmit.
805  * @param pkts_n
806  *   Number of packets in array.
807  *
808  * @return
809  *   Number of packets successfully transmitted (<= pkts_n).
810  */
811 uint16_t
812 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
813 {
814         struct txq *txq = (struct txq *)dpdk_txq;
815         uint16_t elts_head = txq->elts_head;
816         const uint16_t elts_n = 1 << txq->elts_n;
817         const uint16_t elts_m = elts_n - 1;
818         unsigned int i = 0;
819         unsigned int j = 0;
820         uint16_t max_elts;
821         uint16_t max_wqe;
822         unsigned int comp;
823         struct mlx5_mpw mpw = {
824                 .state = MLX5_MPW_STATE_CLOSED,
825         };
826
827         if (unlikely(!pkts_n))
828                 return 0;
829         /* Prefetch first packet cacheline. */
830         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
831         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
832         /* Start processing. */
833         mlx5_tx_complete(txq);
834         max_elts = (elts_n - (elts_head - txq->elts_tail));
835         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
836         if (unlikely(!max_wqe))
837                 return 0;
838         do {
839                 struct rte_mbuf *buf = *(pkts++);
840                 uint32_t length;
841                 unsigned int segs_n = buf->nb_segs;
842                 uint32_t cs_flags = 0;
843
844                 /*
845                  * Make sure there is enough room to store this packet and
846                  * that one ring entry remains unused.
847                  */
848                 assert(segs_n);
849                 if (max_elts < segs_n)
850                         break;
851                 /* Do not bother with large packets MPW cannot handle. */
852                 if (segs_n > MLX5_MPW_DSEG_MAX)
853                         break;
854                 max_elts -= segs_n;
855                 --pkts_n;
856                 /* Should we enable HW CKSUM offload */
857                 if (buf->ol_flags &
858                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
859                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
860                 /* Retrieve packet information. */
861                 length = PKT_LEN(buf);
862                 assert(length);
863                 /* Start new session if packet differs. */
864                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
865                     ((mpw.len != length) ||
866                      (segs_n != 1) ||
867                      (mpw.wqe->eseg.cs_flags != cs_flags)))
868                         mlx5_mpw_close(txq, &mpw);
869                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
870                         /*
871                          * Multi-Packet WQE consumes at most two WQE.
872                          * mlx5_mpw_new() expects to be able to use such
873                          * resources.
874                          */
875                         if (unlikely(max_wqe < 2))
876                                 break;
877                         max_wqe -= 2;
878                         mlx5_mpw_new(txq, &mpw, length);
879                         mpw.wqe->eseg.cs_flags = cs_flags;
880                 }
881                 /* Multi-segment packets must be alone in their MPW. */
882                 assert((segs_n == 1) || (mpw.pkts_n == 0));
883 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
884                 length = 0;
885 #endif
886                 do {
887                         volatile struct mlx5_wqe_data_seg *dseg;
888                         uintptr_t addr;
889
890                         assert(buf);
891                         (*txq->elts)[elts_head++ & elts_m] = buf;
892                         dseg = mpw.data.dseg[mpw.pkts_n];
893                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
894                         *dseg = (struct mlx5_wqe_data_seg){
895                                 .byte_count = htonl(DATA_LEN(buf)),
896                                 .lkey = mlx5_tx_mb2mr(txq, buf),
897                                 .addr = htonll(addr),
898                         };
899 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
900                         length += DATA_LEN(buf);
901 #endif
902                         buf = buf->next;
903                         ++mpw.pkts_n;
904                         ++j;
905                 } while (--segs_n);
906                 assert(length == mpw.len);
907                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
908                         mlx5_mpw_close(txq, &mpw);
909 #ifdef MLX5_PMD_SOFT_COUNTERS
910                 /* Increment sent bytes counter. */
911                 txq->stats.obytes += length;
912 #endif
913                 ++i;
914         } while (pkts_n);
915         /* Take a shortcut if nothing must be sent. */
916         if (unlikely(i == 0))
917                 return 0;
918         /* Check whether completion threshold has been reached. */
919         /* "j" includes both packets and segments. */
920         comp = txq->elts_comp + j;
921         if (comp >= MLX5_TX_COMP_THRESH) {
922                 volatile struct mlx5_wqe *wqe = mpw.wqe;
923
924                 /* Request completion on last WQE. */
925                 wqe->ctrl[2] = htonl(8);
926                 /* Save elts_head in unused "immediate" field of WQE. */
927                 wqe->ctrl[3] = elts_head;
928                 txq->elts_comp = 0;
929         } else {
930                 txq->elts_comp = comp;
931         }
932 #ifdef MLX5_PMD_SOFT_COUNTERS
933         /* Increment sent packets counter. */
934         txq->stats.opackets += i;
935 #endif
936         /* Ring QP doorbell. */
937         if (mpw.state == MLX5_MPW_STATE_OPENED)
938                 mlx5_mpw_close(txq, &mpw);
939         mlx5_tx_dbrec(txq, mpw.wqe);
940         txq->elts_head = elts_head;
941         return i;
942 }
943
944 /**
945  * Open a MPW inline session.
946  *
947  * @param txq
948  *   Pointer to TX queue structure.
949  * @param mpw
950  *   Pointer to MPW session structure.
951  * @param length
952  *   Packet length.
953  */
954 static inline void
955 mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
956 {
957         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
958         struct mlx5_wqe_inl_small *inl;
959
960         mpw->state = MLX5_MPW_INL_STATE_OPENED;
961         mpw->pkts_n = 0;
962         mpw->len = length;
963         mpw->total_len = 0;
964         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
965         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
966                                   (txq->wqe_ci << 8) |
967                                   MLX5_OPCODE_TSO);
968         mpw->wqe->ctrl[2] = 0;
969         mpw->wqe->ctrl[3] = 0;
970         mpw->wqe->eseg.mss = htons(length);
971         mpw->wqe->eseg.inline_hdr_sz = 0;
972         mpw->wqe->eseg.cs_flags = 0;
973         mpw->wqe->eseg.rsvd0 = 0;
974         mpw->wqe->eseg.rsvd1 = 0;
975         mpw->wqe->eseg.rsvd2 = 0;
976         inl = (struct mlx5_wqe_inl_small *)
977                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
978         mpw->data.raw = (uint8_t *)&inl->raw;
979 }
980
981 /**
982  * Close a MPW inline session.
983  *
984  * @param txq
985  *   Pointer to TX queue structure.
986  * @param mpw
987  *   Pointer to MPW session structure.
988  */
989 static inline void
990 mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
991 {
992         unsigned int size;
993         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
994                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
995
996         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
997         /*
998          * Store size in multiple of 16 bytes. Control and Ethernet segments
999          * count as 2.
1000          */
1001         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
1002         mpw->state = MLX5_MPW_STATE_CLOSED;
1003         inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
1004         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1005 }
1006
1007 /**
1008  * DPDK callback for TX with MPW inline support.
1009  *
1010  * @param dpdk_txq
1011  *   Generic pointer to TX queue structure.
1012  * @param[in] pkts
1013  *   Packets to transmit.
1014  * @param pkts_n
1015  *   Number of packets in array.
1016  *
1017  * @return
1018  *   Number of packets successfully transmitted (<= pkts_n).
1019  */
1020 uint16_t
1021 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1022                          uint16_t pkts_n)
1023 {
1024         struct txq *txq = (struct txq *)dpdk_txq;
1025         uint16_t elts_head = txq->elts_head;
1026         const uint16_t elts_n = 1 << txq->elts_n;
1027         const uint16_t elts_m = elts_n - 1;
1028         unsigned int i = 0;
1029         unsigned int j = 0;
1030         uint16_t max_elts;
1031         uint16_t max_wqe;
1032         unsigned int comp;
1033         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1034         struct mlx5_mpw mpw = {
1035                 .state = MLX5_MPW_STATE_CLOSED,
1036         };
1037         /*
1038          * Compute the maximum number of WQE which can be consumed by inline
1039          * code.
1040          * - 2 DSEG for:
1041          *   - 1 control segment,
1042          *   - 1 Ethernet segment,
1043          * - N Dseg from the inline request.
1044          */
1045         const unsigned int wqe_inl_n =
1046                 ((2 * MLX5_WQE_DWORD_SIZE +
1047                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1048                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1049
1050         if (unlikely(!pkts_n))
1051                 return 0;
1052         /* Prefetch first packet cacheline. */
1053         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1054         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1055         /* Start processing. */
1056         mlx5_tx_complete(txq);
1057         max_elts = (elts_n - (elts_head - txq->elts_tail));
1058         do {
1059                 struct rte_mbuf *buf = *(pkts++);
1060                 uintptr_t addr;
1061                 uint32_t length;
1062                 unsigned int segs_n = buf->nb_segs;
1063                 uint32_t cs_flags = 0;
1064
1065                 /*
1066                  * Make sure there is enough room to store this packet and
1067                  * that one ring entry remains unused.
1068                  */
1069                 assert(segs_n);
1070                 if (max_elts < segs_n)
1071                         break;
1072                 /* Do not bother with large packets MPW cannot handle. */
1073                 if (segs_n > MLX5_MPW_DSEG_MAX)
1074                         break;
1075                 max_elts -= segs_n;
1076                 --pkts_n;
1077                 /*
1078                  * Compute max_wqe in case less WQE were consumed in previous
1079                  * iteration.
1080                  */
1081                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1082                 /* Should we enable HW CKSUM offload */
1083                 if (buf->ol_flags &
1084                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1085                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1086                 /* Retrieve packet information. */
1087                 length = PKT_LEN(buf);
1088                 /* Start new session if packet differs. */
1089                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1090                         if ((mpw.len != length) ||
1091                             (segs_n != 1) ||
1092                             (mpw.wqe->eseg.cs_flags != cs_flags))
1093                                 mlx5_mpw_close(txq, &mpw);
1094                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1095                         if ((mpw.len != length) ||
1096                             (segs_n != 1) ||
1097                             (length > inline_room) ||
1098                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1099                                 mlx5_mpw_inline_close(txq, &mpw);
1100                                 inline_room =
1101                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1102                         }
1103                 }
1104                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1105                         if ((segs_n != 1) ||
1106                             (length > inline_room)) {
1107                                 /*
1108                                  * Multi-Packet WQE consumes at most two WQE.
1109                                  * mlx5_mpw_new() expects to be able to use
1110                                  * such resources.
1111                                  */
1112                                 if (unlikely(max_wqe < 2))
1113                                         break;
1114                                 max_wqe -= 2;
1115                                 mlx5_mpw_new(txq, &mpw, length);
1116                                 mpw.wqe->eseg.cs_flags = cs_flags;
1117                         } else {
1118                                 if (unlikely(max_wqe < wqe_inl_n))
1119                                         break;
1120                                 max_wqe -= wqe_inl_n;
1121                                 mlx5_mpw_inline_new(txq, &mpw, length);
1122                                 mpw.wqe->eseg.cs_flags = cs_flags;
1123                         }
1124                 }
1125                 /* Multi-segment packets must be alone in their MPW. */
1126                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1127                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1128                         assert(inline_room ==
1129                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1130 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1131                         length = 0;
1132 #endif
1133                         do {
1134                                 volatile struct mlx5_wqe_data_seg *dseg;
1135
1136                                 assert(buf);
1137                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1138                                 dseg = mpw.data.dseg[mpw.pkts_n];
1139                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1140                                 *dseg = (struct mlx5_wqe_data_seg){
1141                                         .byte_count = htonl(DATA_LEN(buf)),
1142                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1143                                         .addr = htonll(addr),
1144                                 };
1145 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1146                                 length += DATA_LEN(buf);
1147 #endif
1148                                 buf = buf->next;
1149                                 ++mpw.pkts_n;
1150                                 ++j;
1151                         } while (--segs_n);
1152                         assert(length == mpw.len);
1153                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1154                                 mlx5_mpw_close(txq, &mpw);
1155                 } else {
1156                         unsigned int max;
1157
1158                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1159                         assert(length <= inline_room);
1160                         assert(length == DATA_LEN(buf));
1161                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1162                         (*txq->elts)[elts_head++ & elts_m] = buf;
1163                         /* Maximum number of bytes before wrapping. */
1164                         max = ((((uintptr_t)(txq->wqes)) +
1165                                 (1 << txq->wqe_n) *
1166                                 MLX5_WQE_SIZE) -
1167                                (uintptr_t)mpw.data.raw);
1168                         if (length > max) {
1169                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1170                                            (void *)addr,
1171                                            max);
1172                                 mpw.data.raw = (volatile void *)txq->wqes;
1173                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1174                                            (void *)(addr + max),
1175                                            length - max);
1176                                 mpw.data.raw += length - max;
1177                         } else {
1178                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1179                                            (void *)addr,
1180                                            length);
1181
1182                                 if (length == max)
1183                                         mpw.data.raw =
1184                                                 (volatile void *)txq->wqes;
1185                                 else
1186                                         mpw.data.raw += length;
1187                         }
1188                         ++mpw.pkts_n;
1189                         mpw.total_len += length;
1190                         ++j;
1191                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1192                                 mlx5_mpw_inline_close(txq, &mpw);
1193                                 inline_room =
1194                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1195                         } else {
1196                                 inline_room -= length;
1197                         }
1198                 }
1199 #ifdef MLX5_PMD_SOFT_COUNTERS
1200                 /* Increment sent bytes counter. */
1201                 txq->stats.obytes += length;
1202 #endif
1203                 ++i;
1204         } while (pkts_n);
1205         /* Take a shortcut if nothing must be sent. */
1206         if (unlikely(i == 0))
1207                 return 0;
1208         /* Check whether completion threshold has been reached. */
1209         /* "j" includes both packets and segments. */
1210         comp = txq->elts_comp + j;
1211         if (comp >= MLX5_TX_COMP_THRESH) {
1212                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1213
1214                 /* Request completion on last WQE. */
1215                 wqe->ctrl[2] = htonl(8);
1216                 /* Save elts_head in unused "immediate" field of WQE. */
1217                 wqe->ctrl[3] = elts_head;
1218                 txq->elts_comp = 0;
1219         } else {
1220                 txq->elts_comp = comp;
1221         }
1222 #ifdef MLX5_PMD_SOFT_COUNTERS
1223         /* Increment sent packets counter. */
1224         txq->stats.opackets += i;
1225 #endif
1226         /* Ring QP doorbell. */
1227         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1228                 mlx5_mpw_inline_close(txq, &mpw);
1229         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1230                 mlx5_mpw_close(txq, &mpw);
1231         mlx5_tx_dbrec(txq, mpw.wqe);
1232         txq->elts_head = elts_head;
1233         return i;
1234 }
1235
1236 /**
1237  * Open an Enhanced MPW session.
1238  *
1239  * @param txq
1240  *   Pointer to TX queue structure.
1241  * @param mpw
1242  *   Pointer to MPW session structure.
1243  * @param length
1244  *   Packet length.
1245  */
1246 static inline void
1247 mlx5_empw_new(struct txq *txq, struct mlx5_mpw *mpw, int padding)
1248 {
1249         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1250
1251         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1252         mpw->pkts_n = 0;
1253         mpw->total_len = sizeof(struct mlx5_wqe);
1254         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1255         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1256                                   (txq->wqe_ci << 8) |
1257                                   MLX5_OPCODE_ENHANCED_MPSW);
1258         mpw->wqe->ctrl[2] = 0;
1259         mpw->wqe->ctrl[3] = 0;
1260         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1261         if (unlikely(padding)) {
1262                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1263
1264                 /* Pad the first 2 DWORDs with zero-length inline header. */
1265                 *(volatile uint32_t *)addr = htonl(MLX5_INLINE_SEG);
1266                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1267                         htonl(MLX5_INLINE_SEG);
1268                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1269                 /* Start from the next WQEBB. */
1270                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1271         } else {
1272                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1273         }
1274 }
1275
1276 /**
1277  * Close an Enhanced MPW session.
1278  *
1279  * @param txq
1280  *   Pointer to TX queue structure.
1281  * @param mpw
1282  *   Pointer to MPW session structure.
1283  *
1284  * @return
1285  *   Number of consumed WQEs.
1286  */
1287 static inline uint16_t
1288 mlx5_empw_close(struct txq *txq, struct mlx5_mpw *mpw)
1289 {
1290         uint16_t ret;
1291
1292         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1293          * count as 2.
1294          */
1295         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(mpw->total_len));
1296         mpw->state = MLX5_MPW_STATE_CLOSED;
1297         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1298         txq->wqe_ci += ret;
1299         return ret;
1300 }
1301
1302 /**
1303  * DPDK callback for TX with Enhanced MPW support.
1304  *
1305  * @param dpdk_txq
1306  *   Generic pointer to TX queue structure.
1307  * @param[in] pkts
1308  *   Packets to transmit.
1309  * @param pkts_n
1310  *   Number of packets in array.
1311  *
1312  * @return
1313  *   Number of packets successfully transmitted (<= pkts_n).
1314  */
1315 uint16_t
1316 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1317 {
1318         struct txq *txq = (struct txq *)dpdk_txq;
1319         uint16_t elts_head = txq->elts_head;
1320         const uint16_t elts_n = 1 << txq->elts_n;
1321         const uint16_t elts_m = elts_n - 1;
1322         unsigned int i = 0;
1323         unsigned int j = 0;
1324         uint16_t max_elts;
1325         uint16_t max_wqe;
1326         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1327         unsigned int mpw_room = 0;
1328         unsigned int inl_pad = 0;
1329         uint32_t inl_hdr;
1330         struct mlx5_mpw mpw = {
1331                 .state = MLX5_MPW_STATE_CLOSED,
1332         };
1333
1334         if (unlikely(!pkts_n))
1335                 return 0;
1336         /* Start processing. */
1337         mlx5_tx_complete(txq);
1338         max_elts = (elts_n - (elts_head - txq->elts_tail));
1339         /* A CQE slot must always be available. */
1340         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1341         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1342         if (unlikely(!max_wqe))
1343                 return 0;
1344         do {
1345                 struct rte_mbuf *buf = *(pkts++);
1346                 uintptr_t addr;
1347                 uint64_t naddr;
1348                 unsigned int n;
1349                 unsigned int do_inline = 0; /* Whether inline is possible. */
1350                 uint32_t length;
1351                 unsigned int segs_n = buf->nb_segs;
1352                 uint32_t cs_flags = 0;
1353
1354                 /*
1355                  * Make sure there is enough room to store this packet and
1356                  * that one ring entry remains unused.
1357                  */
1358                 assert(segs_n);
1359                 if (max_elts - j < segs_n)
1360                         break;
1361                 /* Do not bother with large packets MPW cannot handle. */
1362                 if (segs_n > MLX5_MPW_DSEG_MAX)
1363                         break;
1364                 /* Should we enable HW CKSUM offload. */
1365                 if (buf->ol_flags &
1366                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1367                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1368                 /* Retrieve packet information. */
1369                 length = PKT_LEN(buf);
1370                 /* Start new session if:
1371                  * - multi-segment packet
1372                  * - no space left even for a dseg
1373                  * - next packet can be inlined with a new WQE
1374                  * - cs_flag differs
1375                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1376                  * segmented packet.
1377                  */
1378                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1379                         if ((segs_n != 1) ||
1380                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1381                               mpw_room) ||
1382                             (length <= txq->inline_max_packet_sz &&
1383                              inl_pad + sizeof(inl_hdr) + length >
1384                               mpw_room) ||
1385                             (mpw.wqe->eseg.cs_flags != cs_flags))
1386                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1387                 }
1388                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1389                         if (unlikely(segs_n != 1)) {
1390                                 /* Fall back to legacy MPW.
1391                                  * A MPW session consumes 2 WQEs at most to
1392                                  * include MLX5_MPW_DSEG_MAX pointers.
1393                                  */
1394                                 if (unlikely(max_wqe < 2))
1395                                         break;
1396                                 mlx5_mpw_new(txq, &mpw, length);
1397                         } else {
1398                                 /* In Enhanced MPW, inline as much as the budget
1399                                  * is allowed. The remaining space is to be
1400                                  * filled with dsegs. If the title WQEBB isn't
1401                                  * padded, it will have 2 dsegs there.
1402                                  */
1403                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1404                                             (max_inline ? max_inline :
1405                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1406                                             MLX5_WQE_SIZE);
1407                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1408                                               mpw_room))
1409                                         break;
1410                                 /* Don't pad the title WQEBB to not waste WQ. */
1411                                 mlx5_empw_new(txq, &mpw, 0);
1412                                 mpw_room -= mpw.total_len;
1413                                 inl_pad = 0;
1414                                 do_inline =
1415                                         length <= txq->inline_max_packet_sz &&
1416                                         sizeof(inl_hdr) + length <= mpw_room &&
1417                                         !txq->mpw_hdr_dseg;
1418                         }
1419                         mpw.wqe->eseg.cs_flags = cs_flags;
1420                 } else {
1421                         /* Evaluate whether the next packet can be inlined.
1422                          * Inlininig is possible when:
1423                          * - length is less than configured value
1424                          * - length fits for remaining space
1425                          * - not required to fill the title WQEBB with dsegs
1426                          */
1427                         do_inline =
1428                                 length <= txq->inline_max_packet_sz &&
1429                                 inl_pad + sizeof(inl_hdr) + length <=
1430                                  mpw_room &&
1431                                 (!txq->mpw_hdr_dseg ||
1432                                  mpw.total_len >= MLX5_WQE_SIZE);
1433                 }
1434                 /* Multi-segment packets must be alone in their MPW. */
1435                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1436                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1437 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1438                         length = 0;
1439 #endif
1440                         do {
1441                                 volatile struct mlx5_wqe_data_seg *dseg;
1442
1443                                 assert(buf);
1444                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1445                                 dseg = mpw.data.dseg[mpw.pkts_n];
1446                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1447                                 *dseg = (struct mlx5_wqe_data_seg){
1448                                         .byte_count = htonl(DATA_LEN(buf)),
1449                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1450                                         .addr = htonll(addr),
1451                                 };
1452 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1453                                 length += DATA_LEN(buf);
1454 #endif
1455                                 buf = buf->next;
1456                                 ++j;
1457                                 ++mpw.pkts_n;
1458                         } while (--segs_n);
1459                         /* A multi-segmented packet takes one MPW session.
1460                          * TODO: Pack more multi-segmented packets if possible.
1461                          */
1462                         mlx5_mpw_close(txq, &mpw);
1463                         if (mpw.pkts_n < 3)
1464                                 max_wqe--;
1465                         else
1466                                 max_wqe -= 2;
1467                 } else if (do_inline) {
1468                         /* Inline packet into WQE. */
1469                         unsigned int max;
1470
1471                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1472                         assert(length == DATA_LEN(buf));
1473                         inl_hdr = htonl(length | MLX5_INLINE_SEG);
1474                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1475                         mpw.data.raw = (volatile void *)
1476                                 ((uintptr_t)mpw.data.raw + inl_pad);
1477                         max = tx_mlx5_wq_tailroom(txq,
1478                                         (void *)(uintptr_t)mpw.data.raw);
1479                         /* Copy inline header. */
1480                         mpw.data.raw = (volatile void *)
1481                                 mlx5_copy_to_wq(
1482                                           (void *)(uintptr_t)mpw.data.raw,
1483                                           &inl_hdr,
1484                                           sizeof(inl_hdr),
1485                                           (void *)(uintptr_t)txq->wqes,
1486                                           max);
1487                         max = tx_mlx5_wq_tailroom(txq,
1488                                         (void *)(uintptr_t)mpw.data.raw);
1489                         /* Copy packet data. */
1490                         mpw.data.raw = (volatile void *)
1491                                 mlx5_copy_to_wq(
1492                                           (void *)(uintptr_t)mpw.data.raw,
1493                                           (void *)addr,
1494                                           length,
1495                                           (void *)(uintptr_t)txq->wqes,
1496                                           max);
1497                         ++mpw.pkts_n;
1498                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1499                         /* No need to get completion as the entire packet is
1500                          * copied to WQ. Free the buf right away.
1501                          */
1502                         rte_pktmbuf_free_seg(buf);
1503                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1504                         /* Add pad in the next packet if any. */
1505                         inl_pad = (((uintptr_t)mpw.data.raw +
1506                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1507                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1508                                   (uintptr_t)mpw.data.raw;
1509                 } else {
1510                         /* No inline. Load a dseg of packet pointer. */
1511                         volatile rte_v128u32_t *dseg;
1512
1513                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1514                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1515                         assert(length == DATA_LEN(buf));
1516                         if (!tx_mlx5_wq_tailroom(txq,
1517                                         (void *)((uintptr_t)mpw.data.raw
1518                                                 + inl_pad)))
1519                                 dseg = (volatile void *)txq->wqes;
1520                         else
1521                                 dseg = (volatile void *)
1522                                         ((uintptr_t)mpw.data.raw +
1523                                          inl_pad);
1524                         (*txq->elts)[elts_head++ & elts_m] = buf;
1525                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1526                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1527                                 rte_prefetch2((void *)(addr +
1528                                                 n * RTE_CACHE_LINE_SIZE));
1529                         naddr = htonll(addr);
1530                         *dseg = (rte_v128u32_t) {
1531                                 htonl(length),
1532                                 mlx5_tx_mb2mr(txq, buf),
1533                                 naddr,
1534                                 naddr >> 32,
1535                         };
1536                         mpw.data.raw = (volatile void *)(dseg + 1);
1537                         mpw.total_len += (inl_pad + sizeof(*dseg));
1538                         ++j;
1539                         ++mpw.pkts_n;
1540                         mpw_room -= (inl_pad + sizeof(*dseg));
1541                         inl_pad = 0;
1542                 }
1543 #ifdef MLX5_PMD_SOFT_COUNTERS
1544                 /* Increment sent bytes counter. */
1545                 txq->stats.obytes += length;
1546 #endif
1547                 ++i;
1548         } while (i < pkts_n);
1549         /* Take a shortcut if nothing must be sent. */
1550         if (unlikely(i == 0))
1551                 return 0;
1552         /* Check whether completion threshold has been reached. */
1553         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1554                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1555                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1556                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1557
1558                 /* Request completion on last WQE. */
1559                 wqe->ctrl[2] = htonl(8);
1560                 /* Save elts_head in unused "immediate" field of WQE. */
1561                 wqe->ctrl[3] = elts_head;
1562                 txq->elts_comp = 0;
1563                 txq->mpw_comp = txq->wqe_ci;
1564                 txq->cq_pi++;
1565         } else {
1566                 txq->elts_comp += j;
1567         }
1568 #ifdef MLX5_PMD_SOFT_COUNTERS
1569         /* Increment sent packets counter. */
1570         txq->stats.opackets += i;
1571 #endif
1572         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1573                 mlx5_empw_close(txq, &mpw);
1574         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1575                 mlx5_mpw_close(txq, &mpw);
1576         /* Ring QP doorbell. */
1577         mlx5_tx_dbrec(txq, mpw.wqe);
1578         txq->elts_head = elts_head;
1579         return i;
1580 }
1581
1582 /**
1583  * Translate RX completion flags to packet type.
1584  *
1585  * @param[in] cqe
1586  *   Pointer to CQE.
1587  *
1588  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1589  *
1590  * @return
1591  *   Packet type for struct rte_mbuf.
1592  */
1593 static inline uint32_t
1594 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1595 {
1596         uint8_t idx;
1597         uint8_t pinfo = cqe->pkt_info;
1598         uint16_t ptype = cqe->hdr_type_etc;
1599
1600         /*
1601          * The index to the array should have:
1602          * bit[1:0] = l3_hdr_type
1603          * bit[4:2] = l4_hdr_type
1604          * bit[5] = ip_frag
1605          * bit[6] = tunneled
1606          * bit[7] = outer_l3_type
1607          */
1608         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1609         return mlx5_ptype_table[idx];
1610 }
1611
1612 /**
1613  * Get size of the next packet for a given CQE. For compressed CQEs, the
1614  * consumer index is updated only once all packets of the current one have
1615  * been processed.
1616  *
1617  * @param rxq
1618  *   Pointer to RX queue.
1619  * @param cqe
1620  *   CQE to process.
1621  * @param[out] rss_hash
1622  *   Packet RSS Hash result.
1623  *
1624  * @return
1625  *   Packet size in bytes (0 if there is none), -1 in case of completion
1626  *   with error.
1627  */
1628 static inline int
1629 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
1630                  uint16_t cqe_cnt, uint32_t *rss_hash)
1631 {
1632         struct rxq_zip *zip = &rxq->zip;
1633         uint16_t cqe_n = cqe_cnt + 1;
1634         int len = 0;
1635         uint16_t idx, end;
1636
1637         /* Process compressed data in the CQE and mini arrays. */
1638         if (zip->ai) {
1639                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1640                         (volatile struct mlx5_mini_cqe8 (*)[8])
1641                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1642
1643                 len = ntohl((*mc)[zip->ai & 7].byte_cnt);
1644                 *rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
1645                 if ((++zip->ai & 7) == 0) {
1646                         /* Invalidate consumed CQEs */
1647                         idx = zip->ca;
1648                         end = zip->na;
1649                         while (idx != end) {
1650                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1651                                         MLX5_CQE_INVALIDATE;
1652                                 ++idx;
1653                         }
1654                         /*
1655                          * Increment consumer index to skip the number of
1656                          * CQEs consumed. Hardware leaves holes in the CQ
1657                          * ring for software use.
1658                          */
1659                         zip->ca = zip->na;
1660                         zip->na += 8;
1661                 }
1662                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1663                         /* Invalidate the rest */
1664                         idx = zip->ca;
1665                         end = zip->cq_ci;
1666
1667                         while (idx != end) {
1668                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1669                                         MLX5_CQE_INVALIDATE;
1670                                 ++idx;
1671                         }
1672                         rxq->cq_ci = zip->cq_ci;
1673                         zip->ai = 0;
1674                 }
1675         /* No compressed data, get next CQE and verify if it is compressed. */
1676         } else {
1677                 int ret;
1678                 int8_t op_own;
1679
1680                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1681                 if (unlikely(ret == 1))
1682                         return 0;
1683                 ++rxq->cq_ci;
1684                 op_own = cqe->op_own;
1685                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1686                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1687                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1688                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1689                                                           cqe_cnt].pkt_info);
1690
1691                         /* Fix endianness. */
1692                         zip->cqe_cnt = ntohl(cqe->byte_cnt);
1693                         /*
1694                          * Current mini array position is the one returned by
1695                          * check_cqe64().
1696                          *
1697                          * If completion comprises several mini arrays, as a
1698                          * special case the second one is located 7 CQEs after
1699                          * the initial CQE instead of 8 for subsequent ones.
1700                          */
1701                         zip->ca = rxq->cq_ci;
1702                         zip->na = zip->ca + 7;
1703                         /* Compute the next non compressed CQE. */
1704                         --rxq->cq_ci;
1705                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1706                         /* Get packet size to return. */
1707                         len = ntohl((*mc)[0].byte_cnt);
1708                         *rss_hash = ntohl((*mc)[0].rx_hash_result);
1709                         zip->ai = 1;
1710                         /* Prefetch all the entries to be invalidated */
1711                         idx = zip->ca;
1712                         end = zip->cq_ci;
1713                         while (idx != end) {
1714                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1715                                 ++idx;
1716                         }
1717                 } else {
1718                         len = ntohl(cqe->byte_cnt);
1719                         *rss_hash = ntohl(cqe->rx_hash_res);
1720                 }
1721                 /* Error while receiving packet. */
1722                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1723                         return -1;
1724         }
1725         return len;
1726 }
1727
1728 /**
1729  * Translate RX completion flags to offload flags.
1730  *
1731  * @param[in] rxq
1732  *   Pointer to RX queue structure.
1733  * @param[in] cqe
1734  *   Pointer to CQE.
1735  *
1736  * @return
1737  *   Offload flags (ol_flags) for struct rte_mbuf.
1738  */
1739 static inline uint32_t
1740 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
1741 {
1742         uint32_t ol_flags = 0;
1743         uint16_t flags = ntohs(cqe->hdr_type_etc);
1744
1745         ol_flags =
1746                 TRANSPOSE(flags,
1747                           MLX5_CQE_RX_L3_HDR_VALID,
1748                           PKT_RX_IP_CKSUM_GOOD) |
1749                 TRANSPOSE(flags,
1750                           MLX5_CQE_RX_L4_HDR_VALID,
1751                           PKT_RX_L4_CKSUM_GOOD);
1752         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1753                 ol_flags |=
1754                         TRANSPOSE(flags,
1755                                   MLX5_CQE_RX_L3_HDR_VALID,
1756                                   PKT_RX_IP_CKSUM_GOOD) |
1757                         TRANSPOSE(flags,
1758                                   MLX5_CQE_RX_L4_HDR_VALID,
1759                                   PKT_RX_L4_CKSUM_GOOD);
1760         return ol_flags;
1761 }
1762
1763 /**
1764  * DPDK callback for RX.
1765  *
1766  * @param dpdk_rxq
1767  *   Generic pointer to RX queue structure.
1768  * @param[out] pkts
1769  *   Array to store received packets.
1770  * @param pkts_n
1771  *   Maximum number of packets in array.
1772  *
1773  * @return
1774  *   Number of packets successfully received (<= pkts_n).
1775  */
1776 uint16_t
1777 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1778 {
1779         struct rxq *rxq = dpdk_rxq;
1780         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1781         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1782         const unsigned int sges_n = rxq->sges_n;
1783         struct rte_mbuf *pkt = NULL;
1784         struct rte_mbuf *seg = NULL;
1785         volatile struct mlx5_cqe *cqe =
1786                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1787         unsigned int i = 0;
1788         unsigned int rq_ci = rxq->rq_ci << sges_n;
1789         int len = 0; /* keep its value across iterations. */
1790
1791         while (pkts_n) {
1792                 unsigned int idx = rq_ci & wqe_cnt;
1793                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1794                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1795                 uint32_t rss_hash_res = 0;
1796
1797                 if (pkt)
1798                         NEXT(seg) = rep;
1799                 seg = rep;
1800                 rte_prefetch0(seg);
1801                 rte_prefetch0(cqe);
1802                 rte_prefetch0(wqe);
1803                 rep = rte_mbuf_raw_alloc(rxq->mp);
1804                 if (unlikely(rep == NULL)) {
1805                         ++rxq->stats.rx_nombuf;
1806                         if (!pkt) {
1807                                 /*
1808                                  * no buffers before we even started,
1809                                  * bail out silently.
1810                                  */
1811                                 break;
1812                         }
1813                         while (pkt != seg) {
1814                                 assert(pkt != (*rxq->elts)[idx]);
1815                                 rep = NEXT(pkt);
1816                                 NEXT(pkt) = NULL;
1817                                 NB_SEGS(pkt) = 1;
1818                                 rte_mbuf_raw_free(pkt);
1819                                 pkt = rep;
1820                         }
1821                         break;
1822                 }
1823                 if (!pkt) {
1824                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1825                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1826                                                &rss_hash_res);
1827                         if (!len) {
1828                                 rte_mbuf_raw_free(rep);
1829                                 break;
1830                         }
1831                         if (unlikely(len == -1)) {
1832                                 /* RX error, packet is likely too large. */
1833                                 rte_mbuf_raw_free(rep);
1834                                 ++rxq->stats.idropped;
1835                                 goto skip;
1836                         }
1837                         pkt = seg;
1838                         assert(len >= (rxq->crc_present << 2));
1839                         /* Update packet information. */
1840                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1841                         pkt->ol_flags = 0;
1842                         if (rss_hash_res && rxq->rss_hash) {
1843                                 pkt->hash.rss = rss_hash_res;
1844                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1845                         }
1846                         if (rxq->mark &&
1847                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1848                                 pkt->ol_flags |= PKT_RX_FDIR;
1849                                 if (cqe->sop_drop_qpn !=
1850                                     htonl(MLX5_FLOW_MARK_DEFAULT)) {
1851                                         uint32_t mark = cqe->sop_drop_qpn;
1852
1853                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1854                                         pkt->hash.fdir.hi =
1855                                                 mlx5_flow_mark_get(mark);
1856                                 }
1857                         }
1858                         if (rxq->csum | rxq->csum_l2tun)
1859                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1860                         if (rxq->vlan_strip &&
1861                             (cqe->hdr_type_etc &
1862                              htons(MLX5_CQE_VLAN_STRIPPED))) {
1863                                 pkt->ol_flags |= PKT_RX_VLAN_PKT |
1864                                         PKT_RX_VLAN_STRIPPED;
1865                                 pkt->vlan_tci = ntohs(cqe->vlan_info);
1866                         }
1867                         if (rxq->crc_present)
1868                                 len -= ETHER_CRC_LEN;
1869                         PKT_LEN(pkt) = len;
1870                 }
1871                 DATA_LEN(rep) = DATA_LEN(seg);
1872                 PKT_LEN(rep) = PKT_LEN(seg);
1873                 SET_DATA_OFF(rep, DATA_OFF(seg));
1874                 PORT(rep) = PORT(seg);
1875                 (*rxq->elts)[idx] = rep;
1876                 /*
1877                  * Fill NIC descriptor with the new buffer.  The lkey and size
1878                  * of the buffers are already known, only the buffer address
1879                  * changes.
1880                  */
1881                 wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
1882                 if (len > DATA_LEN(seg)) {
1883                         len -= DATA_LEN(seg);
1884                         ++NB_SEGS(pkt);
1885                         ++rq_ci;
1886                         continue;
1887                 }
1888                 DATA_LEN(seg) = len;
1889 #ifdef MLX5_PMD_SOFT_COUNTERS
1890                 /* Increment bytes counter. */
1891                 rxq->stats.ibytes += PKT_LEN(pkt);
1892 #endif
1893                 /* Return packet. */
1894                 *(pkts++) = pkt;
1895                 pkt = NULL;
1896                 --pkts_n;
1897                 ++i;
1898 skip:
1899                 /* Align consumer index to the next stride. */
1900                 rq_ci >>= sges_n;
1901                 ++rq_ci;
1902                 rq_ci <<= sges_n;
1903         }
1904         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1905                 return 0;
1906         /* Update the consumer index. */
1907         rxq->rq_ci = rq_ci >> sges_n;
1908         rte_wmb();
1909         *rxq->cq_db = htonl(rxq->cq_ci);
1910         rte_wmb();
1911         *rxq->rq_db = htonl(rxq->rq_ci);
1912 #ifdef MLX5_PMD_SOFT_COUNTERS
1913         /* Increment packets counter. */
1914         rxq->stats.ipackets += i;
1915 #endif
1916         return i;
1917 }
1918
1919 /**
1920  * Dummy DPDK callback for TX.
1921  *
1922  * This function is used to temporarily replace the real callback during
1923  * unsafe control operations on the queue, or in case of error.
1924  *
1925  * @param dpdk_txq
1926  *   Generic pointer to TX queue structure.
1927  * @param[in] pkts
1928  *   Packets to transmit.
1929  * @param pkts_n
1930  *   Number of packets in array.
1931  *
1932  * @return
1933  *   Number of packets successfully transmitted (<= pkts_n).
1934  */
1935 uint16_t
1936 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1937 {
1938         (void)dpdk_txq;
1939         (void)pkts;
1940         (void)pkts_n;
1941         return 0;
1942 }
1943
1944 /**
1945  * Dummy DPDK callback for RX.
1946  *
1947  * This function is used to temporarily replace the real callback during
1948  * unsafe control operations on the queue, or in case of error.
1949  *
1950  * @param dpdk_rxq
1951  *   Generic pointer to RX queue structure.
1952  * @param[out] pkts
1953  *   Array to store received packets.
1954  * @param pkts_n
1955  *   Maximum number of packets in array.
1956  *
1957  * @return
1958  *   Number of packets successfully received (<= pkts_n).
1959  */
1960 uint16_t
1961 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1962 {
1963         (void)dpdk_rxq;
1964         (void)pkts;
1965         (void)pkts_n;
1966         return 0;
1967 }
1968
1969 /*
1970  * Vectorized Rx/Tx routines are not compiled in when required vector
1971  * instructions are not supported on a target architecture. The following null
1972  * stubs are needed for linkage when those are not included outside of this file
1973  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1974  */
1975
1976 uint16_t __attribute__((weak))
1977 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1978 {
1979         (void)dpdk_txq;
1980         (void)pkts;
1981         (void)pkts_n;
1982         return 0;
1983 }
1984
1985 uint16_t __attribute__((weak))
1986 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1987 {
1988         (void)dpdk_txq;
1989         (void)pkts;
1990         (void)pkts_n;
1991         return 0;
1992 }
1993
1994 uint16_t __attribute__((weak))
1995 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1996 {
1997         (void)dpdk_rxq;
1998         (void)pkts;
1999         (void)pkts_n;
2000         return 0;
2001 }
2002
2003 int __attribute__((weak))
2004 priv_check_raw_vec_tx_support(struct priv *priv)
2005 {
2006         (void)priv;
2007         return -ENOTSUP;
2008 }
2009
2010 int __attribute__((weak))
2011 priv_check_vec_tx_support(struct priv *priv)
2012 {
2013         (void)priv;
2014         return -ENOTSUP;
2015 }
2016
2017 int __attribute__((weak))
2018 rxq_check_vec_support(struct rxq *rxq)
2019 {
2020         (void)rxq;
2021         return -ENOTSUP;
2022 }
2023
2024 int __attribute__((weak))
2025 priv_check_vec_rx_support(struct priv *priv)
2026 {
2027         (void)priv;
2028         return -ENOTSUP;
2029 }
2030
2031 void __attribute__((weak))
2032 priv_prep_vec_rx_function(struct priv *priv)
2033 {
2034         (void)priv;
2035 }