net/mlx5: remove excessive data prefetch
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
45
46 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
47         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
48 };
49
50 /**
51  * Build a table to translate Rx completion flags to packet type.
52  *
53  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
54  */
55 void
56 mlx5_set_ptype_table(void)
57 {
58         unsigned int i;
59         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
60
61         /* Last entry must not be overwritten, reserved for errored packet. */
62         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
63                 (*p)[i] = RTE_PTYPE_UNKNOWN;
64         /*
65          * The index to the array should have:
66          * bit[1:0] = l3_hdr_type
67          * bit[4:2] = l4_hdr_type
68          * bit[5] = ip_frag
69          * bit[6] = tunneled
70          * bit[7] = outer_l3_type
71          */
72         /* L2 */
73         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
74         /* L3 */
75         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
76                      RTE_PTYPE_L4_NONFRAG;
77         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
78                      RTE_PTYPE_L4_NONFRAG;
79         /* Fragmented */
80         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
81                      RTE_PTYPE_L4_FRAG;
82         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
83                      RTE_PTYPE_L4_FRAG;
84         /* TCP */
85         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_TCP;
87         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_TCP;
89         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_TCP;
91         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_TCP;
93         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
94                      RTE_PTYPE_L4_TCP;
95         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         /* UDP */
98         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
99                      RTE_PTYPE_L4_UDP;
100         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_UDP;
102         /* Repeat with outer_l3_type being set. Just in case. */
103         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
108                      RTE_PTYPE_L4_FRAG;
109         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_FRAG;
111         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_TCP;
113         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_TCP;
119         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_TCP;
121         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_UDP;
125         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_UDP;
127         /* Tunneled - L3 */
128         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_NONFRAG;
131         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_NONFRAG;
134         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L4_NONFRAG;
137         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L4_NONFRAG;
140         /* Tunneled - Fragmented */
141         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L4_FRAG;
144         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L4_FRAG;
147         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG;
150         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG;
153         /* Tunneled - TCP */
154         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP;
157         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L4_TCP;
160         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L4_TCP;
163         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L4_TCP;
166         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         /* Tunneled - UDP */
191         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_UDP;
194         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_UDP;
197         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_UDP;
200         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L4_UDP;
203 }
204
205 /**
206  * Return the size of tailroom of WQ.
207  *
208  * @param txq
209  *   Pointer to TX queue structure.
210  * @param addr
211  *   Pointer to tail of WQ.
212  *
213  * @return
214  *   Size of tailroom.
215  */
216 static inline size_t
217 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
218 {
219         size_t tailroom;
220         tailroom = (uintptr_t)(txq->wqes) +
221                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
222                    (uintptr_t)addr;
223         return tailroom;
224 }
225
226 /**
227  * Copy data to tailroom of circular queue.
228  *
229  * @param dst
230  *   Pointer to destination.
231  * @param src
232  *   Pointer to source.
233  * @param n
234  *   Number of bytes to copy.
235  * @param base
236  *   Pointer to head of queue.
237  * @param tailroom
238  *   Size of tailroom from dst.
239  *
240  * @return
241  *   Pointer after copied data.
242  */
243 static inline void *
244 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
245                 void *base, size_t tailroom)
246 {
247         void *ret;
248
249         if (n > tailroom) {
250                 rte_memcpy(dst, src, tailroom);
251                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
252                            n - tailroom);
253                 ret = (uint8_t *)base + n - tailroom;
254         } else {
255                 rte_memcpy(dst, src, n);
256                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
257         }
258         return ret;
259 }
260
261 /**
262  * DPDK callback to check the status of a tx descriptor.
263  *
264  * @param tx_queue
265  *   The tx queue.
266  * @param[in] offset
267  *   The index of the descriptor in the ring.
268  *
269  * @return
270  *   The status of the tx descriptor.
271  */
272 int
273 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
274 {
275         struct mlx5_txq_data *txq = tx_queue;
276         uint16_t used;
277
278         mlx5_tx_complete(txq);
279         used = txq->elts_head - txq->elts_tail;
280         if (offset < used)
281                 return RTE_ETH_TX_DESC_FULL;
282         return RTE_ETH_TX_DESC_DONE;
283 }
284
285 /**
286  * DPDK callback to check the status of a rx descriptor.
287  *
288  * @param rx_queue
289  *   The rx queue.
290  * @param[in] offset
291  *   The index of the descriptor in the ring.
292  *
293  * @return
294  *   The status of the tx descriptor.
295  */
296 int
297 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
298 {
299         struct mlx5_rxq_data *rxq = rx_queue;
300         struct rxq_zip *zip = &rxq->zip;
301         volatile struct mlx5_cqe *cqe;
302         const unsigned int cqe_n = (1 << rxq->cqe_n);
303         const unsigned int cqe_cnt = cqe_n - 1;
304         unsigned int cq_ci;
305         unsigned int used;
306
307         /* if we are processing a compressed cqe */
308         if (zip->ai) {
309                 used = zip->cqe_cnt - zip->ca;
310                 cq_ci = zip->cq_ci;
311         } else {
312                 used = 0;
313                 cq_ci = rxq->cq_ci;
314         }
315         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
317                 int8_t op_own;
318                 unsigned int n;
319
320                 op_own = cqe->op_own;
321                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
322                         n = rte_be_to_cpu_32(cqe->byte_cnt);
323                 else
324                         n = 1;
325                 cq_ci += n;
326                 used += n;
327                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
328         }
329         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
330         if (offset < used)
331                 return RTE_ETH_RX_DESC_DONE;
332         return RTE_ETH_RX_DESC_AVAIL;
333 }
334
335 /**
336  * DPDK callback for TX.
337  *
338  * @param dpdk_txq
339  *   Generic pointer to TX queue structure.
340  * @param[in] pkts
341  *   Packets to transmit.
342  * @param pkts_n
343  *   Number of packets in array.
344  *
345  * @return
346  *   Number of packets successfully transmitted (<= pkts_n).
347  */
348 uint16_t
349 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
350 {
351         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
352         uint16_t elts_head = txq->elts_head;
353         const uint16_t elts_n = 1 << txq->elts_n;
354         const uint16_t elts_m = elts_n - 1;
355         unsigned int i = 0;
356         unsigned int j = 0;
357         unsigned int k = 0;
358         uint16_t max_elts;
359         uint16_t max_wqe;
360         unsigned int comp;
361         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
362         unsigned int segs_n = 0;
363         const unsigned int max_inline = txq->max_inline;
364
365         if (unlikely(!pkts_n))
366                 return 0;
367         /* Prefetch first packet cacheline. */
368         rte_prefetch0(*pkts);
369         /* Start processing. */
370         mlx5_tx_complete(txq);
371         max_elts = (elts_n - (elts_head - txq->elts_tail));
372         /* A CQE slot must always be available. */
373         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
374         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
375         if (unlikely(!max_wqe))
376                 return 0;
377         do {
378                 struct rte_mbuf *buf = NULL;
379                 uint8_t *raw;
380                 volatile struct mlx5_wqe_v *wqe = NULL;
381                 volatile rte_v128u32_t *dseg = NULL;
382                 uint32_t length;
383                 unsigned int ds = 0;
384                 unsigned int sg = 0; /* counter of additional segs attached. */
385                 uintptr_t addr;
386                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
387                 uint16_t tso_header_sz = 0;
388                 uint16_t ehdr;
389                 uint8_t cs_flags;
390                 uint64_t tso = 0;
391                 uint16_t tso_segsz = 0;
392 #ifdef MLX5_PMD_SOFT_COUNTERS
393                 uint32_t total_length = 0;
394 #endif
395
396                 /* first_seg */
397                 buf = *pkts;
398                 segs_n = buf->nb_segs;
399                 /*
400                  * Make sure there is enough room to store this packet and
401                  * that one ring entry remains unused.
402                  */
403                 assert(segs_n);
404                 if (max_elts < segs_n)
405                         break;
406                 max_elts -= segs_n;
407                 sg = --segs_n;
408                 if (unlikely(--max_wqe == 0))
409                         break;
410                 wqe = (volatile struct mlx5_wqe_v *)
411                         tx_mlx5_wqe(txq, txq->wqe_ci);
412                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
413                 if (pkts_n - i > 1)
414                         rte_prefetch0(*(pkts + 1));
415                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
416                 length = DATA_LEN(buf);
417                 ehdr = (((uint8_t *)addr)[1] << 8) |
418                        ((uint8_t *)addr)[0];
419 #ifdef MLX5_PMD_SOFT_COUNTERS
420                 total_length = length;
421 #endif
422                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
423                         txq->stats.oerrors++;
424                         break;
425                 }
426                 /* Update element. */
427                 (*txq->elts)[elts_head & elts_m] = buf;
428                 /* Prefetch next buffer data. */
429                 if (pkts_n - i > 1)
430                         rte_prefetch0(
431                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
432                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
433                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
434                 /* Replace the Ethernet type by the VLAN if necessary. */
435                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
436                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
437                                                          buf->vlan_tci);
438                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
439
440                         addr += 2;
441                         length -= 2;
442                         /* Copy Destination and source mac address. */
443                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
444                         /* Copy VLAN. */
445                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
446                         /* Copy missing two bytes to end the DSeg. */
447                         memcpy((uint8_t *)raw + len + sizeof(vlan),
448                                ((uint8_t *)addr) + len, 2);
449                         addr += len + 2;
450                         length -= (len + 2);
451                 } else {
452                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
453                                MLX5_WQE_DWORD_SIZE);
454                         length -= pkt_inline_sz;
455                         addr += pkt_inline_sz;
456                 }
457                 raw += MLX5_WQE_DWORD_SIZE;
458                 tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
459                 if (tso) {
460                         uintptr_t end =
461                                 (uintptr_t)(((uintptr_t)txq->wqes) +
462                                             (1 << txq->wqe_n) * MLX5_WQE_SIZE);
463                         unsigned int copy_b;
464                         uint8_t vlan_sz =
465                                 (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
466                         const uint64_t is_tunneled =
467                                 buf->ol_flags & (PKT_TX_TUNNEL_GRE |
468                                                  PKT_TX_TUNNEL_VXLAN);
469
470                         tso_header_sz = buf->l2_len + vlan_sz +
471                                         buf->l3_len + buf->l4_len;
472                         tso_segsz = buf->tso_segsz;
473                         if (unlikely(tso_segsz == 0)) {
474                                 txq->stats.oerrors++;
475                                 break;
476                         }
477                         if (is_tunneled && txq->tunnel_en) {
478                                 tso_header_sz += buf->outer_l2_len +
479                                                  buf->outer_l3_len;
480                                 cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
481                         } else {
482                                 cs_flags |= MLX5_ETH_WQE_L4_CSUM;
483                         }
484                         if (unlikely(tso_header_sz > MLX5_MAX_TSO_HEADER)) {
485                                 txq->stats.oerrors++;
486                                 break;
487                         }
488                         copy_b = tso_header_sz - pkt_inline_sz;
489                         /* First seg must contain all headers. */
490                         assert(copy_b <= length);
491                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
492                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
493
494                                 if (unlikely(max_wqe < n))
495                                         break;
496                                 max_wqe -= n;
497                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
498                                 addr += copy_b;
499                                 length -= copy_b;
500                                 /* Include padding for TSO header. */
501                                 copy_b = MLX5_WQE_DS(copy_b) *
502                                          MLX5_WQE_DWORD_SIZE;
503                                 pkt_inline_sz += copy_b;
504                                 raw += copy_b;
505                         } else {
506                                 /* NOP WQE. */
507                                 wqe->ctrl = (rte_v128u32_t){
508                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
509                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
510                                         0,
511                                         0,
512                                 };
513                                 ds = 1;
514 #ifdef MLX5_PMD_SOFT_COUNTERS
515                                 total_length = 0;
516 #endif
517                                 k++;
518                                 goto next_wqe;
519                         }
520                 }
521                 /* Inline if enough room. */
522                 if (max_inline || tso) {
523                         uint32_t inl = 0;
524                         uintptr_t end = (uintptr_t)
525                                 (((uintptr_t)txq->wqes) +
526                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
527                         unsigned int inline_room = max_inline *
528                                                    RTE_CACHE_LINE_SIZE -
529                                                    (pkt_inline_sz - 2) -
530                                                    !!tso * sizeof(inl);
531                         uintptr_t addr_end;
532                         unsigned int copy_b;
533
534 pkt_inline:
535                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
536                                                    RTE_CACHE_LINE_SIZE);
537                         copy_b = (addr_end > addr) ?
538                                  RTE_MIN((addr_end - addr), length) : 0;
539                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
540                                 /*
541                                  * One Dseg remains in the current WQE.  To
542                                  * keep the computation positive, it is
543                                  * removed after the bytes to Dseg conversion.
544                                  */
545                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
546
547                                 if (unlikely(max_wqe < n))
548                                         break;
549                                 max_wqe -= n;
550                                 if (tso && !inl) {
551                                         inl = rte_cpu_to_be_32(copy_b |
552                                                                MLX5_INLINE_SEG);
553                                         rte_memcpy((void *)raw,
554                                                    (void *)&inl, sizeof(inl));
555                                         raw += sizeof(inl);
556                                         pkt_inline_sz += sizeof(inl);
557                                 }
558                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
559                                 addr += copy_b;
560                                 length -= copy_b;
561                                 pkt_inline_sz += copy_b;
562                         }
563                         /*
564                          * 2 DWORDs consumed by the WQE header + ETH segment +
565                          * the size of the inline part of the packet.
566                          */
567                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
568                         if (length > 0) {
569                                 if (ds % (MLX5_WQE_SIZE /
570                                           MLX5_WQE_DWORD_SIZE) == 0) {
571                                         if (unlikely(--max_wqe == 0))
572                                                 break;
573                                         dseg = (volatile rte_v128u32_t *)
574                                                tx_mlx5_wqe(txq, txq->wqe_ci +
575                                                            ds / 4);
576                                 } else {
577                                         dseg = (volatile rte_v128u32_t *)
578                                                 ((uintptr_t)wqe +
579                                                  (ds * MLX5_WQE_DWORD_SIZE));
580                                 }
581                                 goto use_dseg;
582                         } else if (!segs_n) {
583                                 goto next_pkt;
584                         } else {
585                                 raw += copy_b;
586                                 inline_room -= copy_b;
587                                 --segs_n;
588                                 buf = buf->next;
589                                 assert(buf);
590                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
591                                 length = DATA_LEN(buf);
592 #ifdef MLX5_PMD_SOFT_COUNTERS
593                                 total_length += length;
594 #endif
595                                 (*txq->elts)[++elts_head & elts_m] = buf;
596                                 goto pkt_inline;
597                         }
598                 } else {
599                         /*
600                          * No inline has been done in the packet, only the
601                          * Ethernet Header as been stored.
602                          */
603                         dseg = (volatile rte_v128u32_t *)
604                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
605                         ds = 3;
606 use_dseg:
607                         /* Add the remaining packet as a simple ds. */
608                         addr = rte_cpu_to_be_64(addr);
609                         *dseg = (rte_v128u32_t){
610                                 rte_cpu_to_be_32(length),
611                                 mlx5_tx_mb2mr(txq, buf),
612                                 addr,
613                                 addr >> 32,
614                         };
615                         ++ds;
616                         if (!segs_n)
617                                 goto next_pkt;
618                 }
619 next_seg:
620                 assert(buf);
621                 assert(ds);
622                 assert(wqe);
623                 /*
624                  * Spill on next WQE when the current one does not have
625                  * enough room left. Size of WQE must a be a multiple
626                  * of data segment size.
627                  */
628                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
629                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
630                         if (unlikely(--max_wqe == 0))
631                                 break;
632                         dseg = (volatile rte_v128u32_t *)
633                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
634                         rte_prefetch0(tx_mlx5_wqe(txq,
635                                                   txq->wqe_ci + ds / 4 + 1));
636                 } else {
637                         ++dseg;
638                 }
639                 ++ds;
640                 buf = buf->next;
641                 assert(buf);
642                 length = DATA_LEN(buf);
643 #ifdef MLX5_PMD_SOFT_COUNTERS
644                 total_length += length;
645 #endif
646                 /* Store segment information. */
647                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
648                 *dseg = (rte_v128u32_t){
649                         rte_cpu_to_be_32(length),
650                         mlx5_tx_mb2mr(txq, buf),
651                         addr,
652                         addr >> 32,
653                 };
654                 (*txq->elts)[++elts_head & elts_m] = buf;
655                 if (--segs_n)
656                         goto next_seg;
657 next_pkt:
658                 if (ds > MLX5_DSEG_MAX) {
659                         txq->stats.oerrors++;
660                         break;
661                 }
662                 ++elts_head;
663                 ++pkts;
664                 ++i;
665                 j += sg;
666                 /* Initialize known and common part of the WQE structure. */
667                 if (tso) {
668                         wqe->ctrl = (rte_v128u32_t){
669                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
670                                                  MLX5_OPCODE_TSO),
671                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
672                                 0,
673                                 0,
674                         };
675                         wqe->eseg = (rte_v128u32_t){
676                                 0,
677                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
678                                 0,
679                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
680                         };
681                 } else {
682                         wqe->ctrl = (rte_v128u32_t){
683                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
684                                                  MLX5_OPCODE_SEND),
685                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
686                                 0,
687                                 0,
688                         };
689                         wqe->eseg = (rte_v128u32_t){
690                                 0,
691                                 cs_flags,
692                                 0,
693                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
694                         };
695                 }
696 next_wqe:
697                 txq->wqe_ci += (ds + 3) / 4;
698                 /* Save the last successful WQE for completion request */
699                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
700 #ifdef MLX5_PMD_SOFT_COUNTERS
701                 /* Increment sent bytes counter. */
702                 txq->stats.obytes += total_length;
703 #endif
704         } while (i < pkts_n);
705         /* Take a shortcut if nothing must be sent. */
706         if (unlikely((i + k) == 0))
707                 return 0;
708         txq->elts_head += (i + j);
709         /* Check whether completion threshold has been reached. */
710         comp = txq->elts_comp + i + j + k;
711         if (comp >= MLX5_TX_COMP_THRESH) {
712                 /* Request completion on last WQE. */
713                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
714                 /* Save elts_head in unused "immediate" field of WQE. */
715                 last_wqe->ctrl3 = txq->elts_head;
716                 txq->elts_comp = 0;
717 #ifndef NDEBUG
718                 ++txq->cq_pi;
719 #endif
720         } else {
721                 txq->elts_comp = comp;
722         }
723 #ifdef MLX5_PMD_SOFT_COUNTERS
724         /* Increment sent packets counter. */
725         txq->stats.opackets += i;
726 #endif
727         /* Ring QP doorbell. */
728         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
729         return i;
730 }
731
732 /**
733  * Open a MPW session.
734  *
735  * @param txq
736  *   Pointer to TX queue structure.
737  * @param mpw
738  *   Pointer to MPW session structure.
739  * @param length
740  *   Packet length.
741  */
742 static inline void
743 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
744 {
745         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
746         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
747                 (volatile struct mlx5_wqe_data_seg (*)[])
748                 tx_mlx5_wqe(txq, idx + 1);
749
750         mpw->state = MLX5_MPW_STATE_OPENED;
751         mpw->pkts_n = 0;
752         mpw->len = length;
753         mpw->total_len = 0;
754         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
755         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
756         mpw->wqe->eseg.inline_hdr_sz = 0;
757         mpw->wqe->eseg.rsvd0 = 0;
758         mpw->wqe->eseg.rsvd1 = 0;
759         mpw->wqe->eseg.rsvd2 = 0;
760         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
761                                              (txq->wqe_ci << 8) |
762                                              MLX5_OPCODE_TSO);
763         mpw->wqe->ctrl[2] = 0;
764         mpw->wqe->ctrl[3] = 0;
765         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
766                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
767         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
768                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
769         mpw->data.dseg[2] = &(*dseg)[0];
770         mpw->data.dseg[3] = &(*dseg)[1];
771         mpw->data.dseg[4] = &(*dseg)[2];
772 }
773
774 /**
775  * Close a MPW session.
776  *
777  * @param txq
778  *   Pointer to TX queue structure.
779  * @param mpw
780  *   Pointer to MPW session structure.
781  */
782 static inline void
783 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
784 {
785         unsigned int num = mpw->pkts_n;
786
787         /*
788          * Store size in multiple of 16 bytes. Control and Ethernet segments
789          * count as 2.
790          */
791         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
792         mpw->state = MLX5_MPW_STATE_CLOSED;
793         if (num < 3)
794                 ++txq->wqe_ci;
795         else
796                 txq->wqe_ci += 2;
797         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
798         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
799 }
800
801 /**
802  * DPDK callback for TX with MPW support.
803  *
804  * @param dpdk_txq
805  *   Generic pointer to TX queue structure.
806  * @param[in] pkts
807  *   Packets to transmit.
808  * @param pkts_n
809  *   Number of packets in array.
810  *
811  * @return
812  *   Number of packets successfully transmitted (<= pkts_n).
813  */
814 uint16_t
815 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
816 {
817         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
818         uint16_t elts_head = txq->elts_head;
819         const uint16_t elts_n = 1 << txq->elts_n;
820         const uint16_t elts_m = elts_n - 1;
821         unsigned int i = 0;
822         unsigned int j = 0;
823         uint16_t max_elts;
824         uint16_t max_wqe;
825         unsigned int comp;
826         struct mlx5_mpw mpw = {
827                 .state = MLX5_MPW_STATE_CLOSED,
828         };
829
830         if (unlikely(!pkts_n))
831                 return 0;
832         /* Prefetch first packet cacheline. */
833         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
834         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
835         /* Start processing. */
836         mlx5_tx_complete(txq);
837         max_elts = (elts_n - (elts_head - txq->elts_tail));
838         /* A CQE slot must always be available. */
839         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
840         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
841         if (unlikely(!max_wqe))
842                 return 0;
843         do {
844                 struct rte_mbuf *buf = *(pkts++);
845                 uint32_t length;
846                 unsigned int segs_n = buf->nb_segs;
847                 uint32_t cs_flags;
848
849                 /*
850                  * Make sure there is enough room to store this packet and
851                  * that one ring entry remains unused.
852                  */
853                 assert(segs_n);
854                 if (max_elts < segs_n)
855                         break;
856                 /* Do not bother with large packets MPW cannot handle. */
857                 if (segs_n > MLX5_MPW_DSEG_MAX) {
858                         txq->stats.oerrors++;
859                         break;
860                 }
861                 max_elts -= segs_n;
862                 --pkts_n;
863                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
864                 /* Retrieve packet information. */
865                 length = PKT_LEN(buf);
866                 assert(length);
867                 /* Start new session if packet differs. */
868                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
869                     ((mpw.len != length) ||
870                      (segs_n != 1) ||
871                      (mpw.wqe->eseg.cs_flags != cs_flags)))
872                         mlx5_mpw_close(txq, &mpw);
873                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
874                         /*
875                          * Multi-Packet WQE consumes at most two WQE.
876                          * mlx5_mpw_new() expects to be able to use such
877                          * resources.
878                          */
879                         if (unlikely(max_wqe < 2))
880                                 break;
881                         max_wqe -= 2;
882                         mlx5_mpw_new(txq, &mpw, length);
883                         mpw.wqe->eseg.cs_flags = cs_flags;
884                 }
885                 /* Multi-segment packets must be alone in their MPW. */
886                 assert((segs_n == 1) || (mpw.pkts_n == 0));
887 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
888                 length = 0;
889 #endif
890                 do {
891                         volatile struct mlx5_wqe_data_seg *dseg;
892                         uintptr_t addr;
893
894                         assert(buf);
895                         (*txq->elts)[elts_head++ & elts_m] = buf;
896                         dseg = mpw.data.dseg[mpw.pkts_n];
897                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
898                         *dseg = (struct mlx5_wqe_data_seg){
899                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
900                                 .lkey = mlx5_tx_mb2mr(txq, buf),
901                                 .addr = rte_cpu_to_be_64(addr),
902                         };
903 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
904                         length += DATA_LEN(buf);
905 #endif
906                         buf = buf->next;
907                         ++mpw.pkts_n;
908                         ++j;
909                 } while (--segs_n);
910                 assert(length == mpw.len);
911                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
912                         mlx5_mpw_close(txq, &mpw);
913 #ifdef MLX5_PMD_SOFT_COUNTERS
914                 /* Increment sent bytes counter. */
915                 txq->stats.obytes += length;
916 #endif
917                 ++i;
918         } while (pkts_n);
919         /* Take a shortcut if nothing must be sent. */
920         if (unlikely(i == 0))
921                 return 0;
922         /* Check whether completion threshold has been reached. */
923         /* "j" includes both packets and segments. */
924         comp = txq->elts_comp + j;
925         if (comp >= MLX5_TX_COMP_THRESH) {
926                 volatile struct mlx5_wqe *wqe = mpw.wqe;
927
928                 /* Request completion on last WQE. */
929                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
930                 /* Save elts_head in unused "immediate" field of WQE. */
931                 wqe->ctrl[3] = elts_head;
932                 txq->elts_comp = 0;
933 #ifndef NDEBUG
934                 ++txq->cq_pi;
935 #endif
936         } else {
937                 txq->elts_comp = comp;
938         }
939 #ifdef MLX5_PMD_SOFT_COUNTERS
940         /* Increment sent packets counter. */
941         txq->stats.opackets += i;
942 #endif
943         /* Ring QP doorbell. */
944         if (mpw.state == MLX5_MPW_STATE_OPENED)
945                 mlx5_mpw_close(txq, &mpw);
946         mlx5_tx_dbrec(txq, mpw.wqe);
947         txq->elts_head = elts_head;
948         return i;
949 }
950
951 /**
952  * Open a MPW inline session.
953  *
954  * @param txq
955  *   Pointer to TX queue structure.
956  * @param mpw
957  *   Pointer to MPW session structure.
958  * @param length
959  *   Packet length.
960  */
961 static inline void
962 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
963                     uint32_t length)
964 {
965         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
966         struct mlx5_wqe_inl_small *inl;
967
968         mpw->state = MLX5_MPW_INL_STATE_OPENED;
969         mpw->pkts_n = 0;
970         mpw->len = length;
971         mpw->total_len = 0;
972         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
973         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
974                                              (txq->wqe_ci << 8) |
975                                              MLX5_OPCODE_TSO);
976         mpw->wqe->ctrl[2] = 0;
977         mpw->wqe->ctrl[3] = 0;
978         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
979         mpw->wqe->eseg.inline_hdr_sz = 0;
980         mpw->wqe->eseg.cs_flags = 0;
981         mpw->wqe->eseg.rsvd0 = 0;
982         mpw->wqe->eseg.rsvd1 = 0;
983         mpw->wqe->eseg.rsvd2 = 0;
984         inl = (struct mlx5_wqe_inl_small *)
985                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
986         mpw->data.raw = (uint8_t *)&inl->raw;
987 }
988
989 /**
990  * Close a MPW inline session.
991  *
992  * @param txq
993  *   Pointer to TX queue structure.
994  * @param mpw
995  *   Pointer to MPW session structure.
996  */
997 static inline void
998 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
999 {
1000         unsigned int size;
1001         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1002                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1003
1004         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1005         /*
1006          * Store size in multiple of 16 bytes. Control and Ethernet segments
1007          * count as 2.
1008          */
1009         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1010                                              MLX5_WQE_DS(size));
1011         mpw->state = MLX5_MPW_STATE_CLOSED;
1012         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1013         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1014 }
1015
1016 /**
1017  * DPDK callback for TX with MPW inline support.
1018  *
1019  * @param dpdk_txq
1020  *   Generic pointer to TX queue structure.
1021  * @param[in] pkts
1022  *   Packets to transmit.
1023  * @param pkts_n
1024  *   Number of packets in array.
1025  *
1026  * @return
1027  *   Number of packets successfully transmitted (<= pkts_n).
1028  */
1029 uint16_t
1030 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1031                          uint16_t pkts_n)
1032 {
1033         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1034         uint16_t elts_head = txq->elts_head;
1035         const uint16_t elts_n = 1 << txq->elts_n;
1036         const uint16_t elts_m = elts_n - 1;
1037         unsigned int i = 0;
1038         unsigned int j = 0;
1039         uint16_t max_elts;
1040         uint16_t max_wqe;
1041         unsigned int comp;
1042         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1043         struct mlx5_mpw mpw = {
1044                 .state = MLX5_MPW_STATE_CLOSED,
1045         };
1046         /*
1047          * Compute the maximum number of WQE which can be consumed by inline
1048          * code.
1049          * - 2 DSEG for:
1050          *   - 1 control segment,
1051          *   - 1 Ethernet segment,
1052          * - N Dseg from the inline request.
1053          */
1054         const unsigned int wqe_inl_n =
1055                 ((2 * MLX5_WQE_DWORD_SIZE +
1056                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1057                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1058
1059         if (unlikely(!pkts_n))
1060                 return 0;
1061         /* Prefetch first packet cacheline. */
1062         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1063         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1064         /* Start processing. */
1065         mlx5_tx_complete(txq);
1066         max_elts = (elts_n - (elts_head - txq->elts_tail));
1067         /* A CQE slot must always be available. */
1068         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1069         do {
1070                 struct rte_mbuf *buf = *(pkts++);
1071                 uintptr_t addr;
1072                 uint32_t length;
1073                 unsigned int segs_n = buf->nb_segs;
1074                 uint8_t cs_flags;
1075
1076                 /*
1077                  * Make sure there is enough room to store this packet and
1078                  * that one ring entry remains unused.
1079                  */
1080                 assert(segs_n);
1081                 if (max_elts < segs_n)
1082                         break;
1083                 /* Do not bother with large packets MPW cannot handle. */
1084                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1085                         txq->stats.oerrors++;
1086                         break;
1087                 }
1088                 max_elts -= segs_n;
1089                 --pkts_n;
1090                 /*
1091                  * Compute max_wqe in case less WQE were consumed in previous
1092                  * iteration.
1093                  */
1094                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1095                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1096                 /* Retrieve packet information. */
1097                 length = PKT_LEN(buf);
1098                 /* Start new session if packet differs. */
1099                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1100                         if ((mpw.len != length) ||
1101                             (segs_n != 1) ||
1102                             (mpw.wqe->eseg.cs_flags != cs_flags))
1103                                 mlx5_mpw_close(txq, &mpw);
1104                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1105                         if ((mpw.len != length) ||
1106                             (segs_n != 1) ||
1107                             (length > inline_room) ||
1108                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1109                                 mlx5_mpw_inline_close(txq, &mpw);
1110                                 inline_room =
1111                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1112                         }
1113                 }
1114                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1115                         if ((segs_n != 1) ||
1116                             (length > inline_room)) {
1117                                 /*
1118                                  * Multi-Packet WQE consumes at most two WQE.
1119                                  * mlx5_mpw_new() expects to be able to use
1120                                  * such resources.
1121                                  */
1122                                 if (unlikely(max_wqe < 2))
1123                                         break;
1124                                 max_wqe -= 2;
1125                                 mlx5_mpw_new(txq, &mpw, length);
1126                                 mpw.wqe->eseg.cs_flags = cs_flags;
1127                         } else {
1128                                 if (unlikely(max_wqe < wqe_inl_n))
1129                                         break;
1130                                 max_wqe -= wqe_inl_n;
1131                                 mlx5_mpw_inline_new(txq, &mpw, length);
1132                                 mpw.wqe->eseg.cs_flags = cs_flags;
1133                         }
1134                 }
1135                 /* Multi-segment packets must be alone in their MPW. */
1136                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1137                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1138                         assert(inline_room ==
1139                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1140 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1141                         length = 0;
1142 #endif
1143                         do {
1144                                 volatile struct mlx5_wqe_data_seg *dseg;
1145
1146                                 assert(buf);
1147                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1148                                 dseg = mpw.data.dseg[mpw.pkts_n];
1149                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1150                                 *dseg = (struct mlx5_wqe_data_seg){
1151                                         .byte_count =
1152                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1153                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1154                                         .addr = rte_cpu_to_be_64(addr),
1155                                 };
1156 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1157                                 length += DATA_LEN(buf);
1158 #endif
1159                                 buf = buf->next;
1160                                 ++mpw.pkts_n;
1161                                 ++j;
1162                         } while (--segs_n);
1163                         assert(length == mpw.len);
1164                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1165                                 mlx5_mpw_close(txq, &mpw);
1166                 } else {
1167                         unsigned int max;
1168
1169                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1170                         assert(length <= inline_room);
1171                         assert(length == DATA_LEN(buf));
1172                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1173                         (*txq->elts)[elts_head++ & elts_m] = buf;
1174                         /* Maximum number of bytes before wrapping. */
1175                         max = ((((uintptr_t)(txq->wqes)) +
1176                                 (1 << txq->wqe_n) *
1177                                 MLX5_WQE_SIZE) -
1178                                (uintptr_t)mpw.data.raw);
1179                         if (length > max) {
1180                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1181                                            (void *)addr,
1182                                            max);
1183                                 mpw.data.raw = (volatile void *)txq->wqes;
1184                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1185                                            (void *)(addr + max),
1186                                            length - max);
1187                                 mpw.data.raw += length - max;
1188                         } else {
1189                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1190                                            (void *)addr,
1191                                            length);
1192
1193                                 if (length == max)
1194                                         mpw.data.raw =
1195                                                 (volatile void *)txq->wqes;
1196                                 else
1197                                         mpw.data.raw += length;
1198                         }
1199                         ++mpw.pkts_n;
1200                         mpw.total_len += length;
1201                         ++j;
1202                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1203                                 mlx5_mpw_inline_close(txq, &mpw);
1204                                 inline_room =
1205                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1206                         } else {
1207                                 inline_room -= length;
1208                         }
1209                 }
1210 #ifdef MLX5_PMD_SOFT_COUNTERS
1211                 /* Increment sent bytes counter. */
1212                 txq->stats.obytes += length;
1213 #endif
1214                 ++i;
1215         } while (pkts_n);
1216         /* Take a shortcut if nothing must be sent. */
1217         if (unlikely(i == 0))
1218                 return 0;
1219         /* Check whether completion threshold has been reached. */
1220         /* "j" includes both packets and segments. */
1221         comp = txq->elts_comp + j;
1222         if (comp >= MLX5_TX_COMP_THRESH) {
1223                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1224
1225                 /* Request completion on last WQE. */
1226                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1227                 /* Save elts_head in unused "immediate" field of WQE. */
1228                 wqe->ctrl[3] = elts_head;
1229                 txq->elts_comp = 0;
1230 #ifndef NDEBUG
1231                 ++txq->cq_pi;
1232 #endif
1233         } else {
1234                 txq->elts_comp = comp;
1235         }
1236 #ifdef MLX5_PMD_SOFT_COUNTERS
1237         /* Increment sent packets counter. */
1238         txq->stats.opackets += i;
1239 #endif
1240         /* Ring QP doorbell. */
1241         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1242                 mlx5_mpw_inline_close(txq, &mpw);
1243         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1244                 mlx5_mpw_close(txq, &mpw);
1245         mlx5_tx_dbrec(txq, mpw.wqe);
1246         txq->elts_head = elts_head;
1247         return i;
1248 }
1249
1250 /**
1251  * Open an Enhanced MPW session.
1252  *
1253  * @param txq
1254  *   Pointer to TX queue structure.
1255  * @param mpw
1256  *   Pointer to MPW session structure.
1257  * @param length
1258  *   Packet length.
1259  */
1260 static inline void
1261 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1262 {
1263         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1264
1265         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1266         mpw->pkts_n = 0;
1267         mpw->total_len = sizeof(struct mlx5_wqe);
1268         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1269         mpw->wqe->ctrl[0] =
1270                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1271                                  (txq->wqe_ci << 8) |
1272                                  MLX5_OPCODE_ENHANCED_MPSW);
1273         mpw->wqe->ctrl[2] = 0;
1274         mpw->wqe->ctrl[3] = 0;
1275         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1276         if (unlikely(padding)) {
1277                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1278
1279                 /* Pad the first 2 DWORDs with zero-length inline header. */
1280                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1281                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1282                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1283                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1284                 /* Start from the next WQEBB. */
1285                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1286         } else {
1287                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1288         }
1289 }
1290
1291 /**
1292  * Close an Enhanced MPW session.
1293  *
1294  * @param txq
1295  *   Pointer to TX queue structure.
1296  * @param mpw
1297  *   Pointer to MPW session structure.
1298  *
1299  * @return
1300  *   Number of consumed WQEs.
1301  */
1302 static inline uint16_t
1303 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1304 {
1305         uint16_t ret;
1306
1307         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1308          * count as 2.
1309          */
1310         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1311                                              MLX5_WQE_DS(mpw->total_len));
1312         mpw->state = MLX5_MPW_STATE_CLOSED;
1313         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1314         txq->wqe_ci += ret;
1315         return ret;
1316 }
1317
1318 /**
1319  * TX with Enhanced MPW support.
1320  *
1321  * @param txq
1322  *   Pointer to TX queue structure.
1323  * @param[in] pkts
1324  *   Packets to transmit.
1325  * @param pkts_n
1326  *   Number of packets in array.
1327  *
1328  * @return
1329  *   Number of packets successfully transmitted (<= pkts_n).
1330  */
1331 static inline uint16_t
1332 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1333                uint16_t pkts_n)
1334 {
1335         uint16_t elts_head = txq->elts_head;
1336         const uint16_t elts_n = 1 << txq->elts_n;
1337         const uint16_t elts_m = elts_n - 1;
1338         unsigned int i = 0;
1339         unsigned int j = 0;
1340         uint16_t max_elts;
1341         uint16_t max_wqe;
1342         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1343         unsigned int mpw_room = 0;
1344         unsigned int inl_pad = 0;
1345         uint32_t inl_hdr;
1346         struct mlx5_mpw mpw = {
1347                 .state = MLX5_MPW_STATE_CLOSED,
1348         };
1349
1350         if (unlikely(!pkts_n))
1351                 return 0;
1352         /* Start processing. */
1353         mlx5_tx_complete(txq);
1354         max_elts = (elts_n - (elts_head - txq->elts_tail));
1355         /* A CQE slot must always be available. */
1356         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1357         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1358         if (unlikely(!max_wqe))
1359                 return 0;
1360         do {
1361                 struct rte_mbuf *buf = *(pkts++);
1362                 uintptr_t addr;
1363                 unsigned int do_inline = 0; /* Whether inline is possible. */
1364                 uint32_t length;
1365                 uint8_t cs_flags;
1366
1367                 /* Multi-segmented packet is handled in slow-path outside. */
1368                 assert(NB_SEGS(buf) == 1);
1369                 /* Make sure there is enough room to store this packet. */
1370                 if (max_elts - j == 0)
1371                         break;
1372                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1373                 /* Retrieve packet information. */
1374                 length = PKT_LEN(buf);
1375                 /* Start new session if:
1376                  * - multi-segment packet
1377                  * - no space left even for a dseg
1378                  * - next packet can be inlined with a new WQE
1379                  * - cs_flag differs
1380                  */
1381                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1382                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1383                              mpw_room) ||
1384                             (length <= txq->inline_max_packet_sz &&
1385                              inl_pad + sizeof(inl_hdr) + length >
1386                              mpw_room) ||
1387                             (mpw.wqe->eseg.cs_flags != cs_flags))
1388                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1389                 }
1390                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1391                         /* In Enhanced MPW, inline as much as the budget is
1392                          * allowed. The remaining space is to be filled with
1393                          * dsegs. If the title WQEBB isn't padded, it will have
1394                          * 2 dsegs there.
1395                          */
1396                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1397                                            (max_inline ? max_inline :
1398                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1399                                            MLX5_WQE_SIZE);
1400                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1401                                 break;
1402                         /* Don't pad the title WQEBB to not waste WQ. */
1403                         mlx5_empw_new(txq, &mpw, 0);
1404                         mpw_room -= mpw.total_len;
1405                         inl_pad = 0;
1406                         do_inline = length <= txq->inline_max_packet_sz &&
1407                                     sizeof(inl_hdr) + length <= mpw_room &&
1408                                     !txq->mpw_hdr_dseg;
1409                         mpw.wqe->eseg.cs_flags = cs_flags;
1410                 } else {
1411                         /* Evaluate whether the next packet can be inlined.
1412                          * Inlininig is possible when:
1413                          * - length is less than configured value
1414                          * - length fits for remaining space
1415                          * - not required to fill the title WQEBB with dsegs
1416                          */
1417                         do_inline =
1418                                 length <= txq->inline_max_packet_sz &&
1419                                 inl_pad + sizeof(inl_hdr) + length <=
1420                                  mpw_room &&
1421                                 (!txq->mpw_hdr_dseg ||
1422                                  mpw.total_len >= MLX5_WQE_SIZE);
1423                 }
1424                 if (max_inline && do_inline) {
1425                         /* Inline packet into WQE. */
1426                         unsigned int max;
1427
1428                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1429                         assert(length == DATA_LEN(buf));
1430                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1431                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1432                         mpw.data.raw = (volatile void *)
1433                                 ((uintptr_t)mpw.data.raw + inl_pad);
1434                         max = tx_mlx5_wq_tailroom(txq,
1435                                         (void *)(uintptr_t)mpw.data.raw);
1436                         /* Copy inline header. */
1437                         mpw.data.raw = (volatile void *)
1438                                 mlx5_copy_to_wq(
1439                                           (void *)(uintptr_t)mpw.data.raw,
1440                                           &inl_hdr,
1441                                           sizeof(inl_hdr),
1442                                           (void *)(uintptr_t)txq->wqes,
1443                                           max);
1444                         max = tx_mlx5_wq_tailroom(txq,
1445                                         (void *)(uintptr_t)mpw.data.raw);
1446                         /* Copy packet data. */
1447                         mpw.data.raw = (volatile void *)
1448                                 mlx5_copy_to_wq(
1449                                           (void *)(uintptr_t)mpw.data.raw,
1450                                           (void *)addr,
1451                                           length,
1452                                           (void *)(uintptr_t)txq->wqes,
1453                                           max);
1454                         ++mpw.pkts_n;
1455                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1456                         /* No need to get completion as the entire packet is
1457                          * copied to WQ. Free the buf right away.
1458                          */
1459                         rte_pktmbuf_free_seg(buf);
1460                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1461                         /* Add pad in the next packet if any. */
1462                         inl_pad = (((uintptr_t)mpw.data.raw +
1463                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1464                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1465                                   (uintptr_t)mpw.data.raw;
1466                 } else {
1467                         /* No inline. Load a dseg of packet pointer. */
1468                         volatile rte_v128u32_t *dseg;
1469
1470                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1471                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1472                         assert(length == DATA_LEN(buf));
1473                         if (!tx_mlx5_wq_tailroom(txq,
1474                                         (void *)((uintptr_t)mpw.data.raw
1475                                                 + inl_pad)))
1476                                 dseg = (volatile void *)txq->wqes;
1477                         else
1478                                 dseg = (volatile void *)
1479                                         ((uintptr_t)mpw.data.raw +
1480                                          inl_pad);
1481                         (*txq->elts)[elts_head++ & elts_m] = buf;
1482                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1483                                                                  uintptr_t));
1484                         *dseg = (rte_v128u32_t) {
1485                                 rte_cpu_to_be_32(length),
1486                                 mlx5_tx_mb2mr(txq, buf),
1487                                 addr,
1488                                 addr >> 32,
1489                         };
1490                         mpw.data.raw = (volatile void *)(dseg + 1);
1491                         mpw.total_len += (inl_pad + sizeof(*dseg));
1492                         ++j;
1493                         ++mpw.pkts_n;
1494                         mpw_room -= (inl_pad + sizeof(*dseg));
1495                         inl_pad = 0;
1496                 }
1497 #ifdef MLX5_PMD_SOFT_COUNTERS
1498                 /* Increment sent bytes counter. */
1499                 txq->stats.obytes += length;
1500 #endif
1501                 ++i;
1502         } while (i < pkts_n);
1503         /* Take a shortcut if nothing must be sent. */
1504         if (unlikely(i == 0))
1505                 return 0;
1506         /* Check whether completion threshold has been reached. */
1507         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1508                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1509                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1510                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1511
1512                 /* Request completion on last WQE. */
1513                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1514                 /* Save elts_head in unused "immediate" field of WQE. */
1515                 wqe->ctrl[3] = elts_head;
1516                 txq->elts_comp = 0;
1517                 txq->mpw_comp = txq->wqe_ci;
1518 #ifndef NDEBUG
1519                 ++txq->cq_pi;
1520 #endif
1521         } else {
1522                 txq->elts_comp += j;
1523         }
1524 #ifdef MLX5_PMD_SOFT_COUNTERS
1525         /* Increment sent packets counter. */
1526         txq->stats.opackets += i;
1527 #endif
1528         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1529                 mlx5_empw_close(txq, &mpw);
1530         /* Ring QP doorbell. */
1531         mlx5_tx_dbrec(txq, mpw.wqe);
1532         txq->elts_head = elts_head;
1533         return i;
1534 }
1535
1536 /**
1537  * DPDK callback for TX with Enhanced MPW support.
1538  *
1539  * @param dpdk_txq
1540  *   Generic pointer to TX queue structure.
1541  * @param[in] pkts
1542  *   Packets to transmit.
1543  * @param pkts_n
1544  *   Number of packets in array.
1545  *
1546  * @return
1547  *   Number of packets successfully transmitted (<= pkts_n).
1548  */
1549 uint16_t
1550 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1551 {
1552         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1553         uint16_t nb_tx = 0;
1554
1555         while (pkts_n > nb_tx) {
1556                 uint16_t n;
1557                 uint16_t ret;
1558
1559                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1560                 if (n) {
1561                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1562                         if (!ret)
1563                                 break;
1564                         nb_tx += ret;
1565                 }
1566                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1567                 if (n) {
1568                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1569                         if (!ret)
1570                                 break;
1571                         nb_tx += ret;
1572                 }
1573         }
1574         return nb_tx;
1575 }
1576
1577 /**
1578  * Translate RX completion flags to packet type.
1579  *
1580  * @param[in] cqe
1581  *   Pointer to CQE.
1582  *
1583  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1584  *
1585  * @return
1586  *   Packet type for struct rte_mbuf.
1587  */
1588 static inline uint32_t
1589 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1590 {
1591         uint8_t idx;
1592         uint8_t pinfo = cqe->pkt_info;
1593         uint16_t ptype = cqe->hdr_type_etc;
1594
1595         /*
1596          * The index to the array should have:
1597          * bit[1:0] = l3_hdr_type
1598          * bit[4:2] = l4_hdr_type
1599          * bit[5] = ip_frag
1600          * bit[6] = tunneled
1601          * bit[7] = outer_l3_type
1602          */
1603         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1604         return mlx5_ptype_table[idx];
1605 }
1606
1607 /**
1608  * Get size of the next packet for a given CQE. For compressed CQEs, the
1609  * consumer index is updated only once all packets of the current one have
1610  * been processed.
1611  *
1612  * @param rxq
1613  *   Pointer to RX queue.
1614  * @param cqe
1615  *   CQE to process.
1616  * @param[out] rss_hash
1617  *   Packet RSS Hash result.
1618  *
1619  * @return
1620  *   Packet size in bytes (0 if there is none), -1 in case of completion
1621  *   with error.
1622  */
1623 static inline int
1624 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1625                  uint16_t cqe_cnt, uint32_t *rss_hash)
1626 {
1627         struct rxq_zip *zip = &rxq->zip;
1628         uint16_t cqe_n = cqe_cnt + 1;
1629         int len = 0;
1630         uint16_t idx, end;
1631
1632         /* Process compressed data in the CQE and mini arrays. */
1633         if (zip->ai) {
1634                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1635                         (volatile struct mlx5_mini_cqe8 (*)[8])
1636                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1637
1638                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1639                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1640                 if ((++zip->ai & 7) == 0) {
1641                         /* Invalidate consumed CQEs */
1642                         idx = zip->ca;
1643                         end = zip->na;
1644                         while (idx != end) {
1645                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1646                                         MLX5_CQE_INVALIDATE;
1647                                 ++idx;
1648                         }
1649                         /*
1650                          * Increment consumer index to skip the number of
1651                          * CQEs consumed. Hardware leaves holes in the CQ
1652                          * ring for software use.
1653                          */
1654                         zip->ca = zip->na;
1655                         zip->na += 8;
1656                 }
1657                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1658                         /* Invalidate the rest */
1659                         idx = zip->ca;
1660                         end = zip->cq_ci;
1661
1662                         while (idx != end) {
1663                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1664                                         MLX5_CQE_INVALIDATE;
1665                                 ++idx;
1666                         }
1667                         rxq->cq_ci = zip->cq_ci;
1668                         zip->ai = 0;
1669                 }
1670         /* No compressed data, get next CQE and verify if it is compressed. */
1671         } else {
1672                 int ret;
1673                 int8_t op_own;
1674
1675                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1676                 if (unlikely(ret == 1))
1677                         return 0;
1678                 ++rxq->cq_ci;
1679                 op_own = cqe->op_own;
1680                 rte_cio_rmb();
1681                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1682                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1683                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1684                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1685                                                           cqe_cnt].pkt_info);
1686
1687                         /* Fix endianness. */
1688                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1689                         /*
1690                          * Current mini array position is the one returned by
1691                          * check_cqe64().
1692                          *
1693                          * If completion comprises several mini arrays, as a
1694                          * special case the second one is located 7 CQEs after
1695                          * the initial CQE instead of 8 for subsequent ones.
1696                          */
1697                         zip->ca = rxq->cq_ci;
1698                         zip->na = zip->ca + 7;
1699                         /* Compute the next non compressed CQE. */
1700                         --rxq->cq_ci;
1701                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1702                         /* Get packet size to return. */
1703                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1704                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1705                         zip->ai = 1;
1706                         /* Prefetch all the entries to be invalidated */
1707                         idx = zip->ca;
1708                         end = zip->cq_ci;
1709                         while (idx != end) {
1710                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1711                                 ++idx;
1712                         }
1713                 } else {
1714                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1715                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1716                 }
1717                 /* Error while receiving packet. */
1718                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1719                         return -1;
1720         }
1721         return len;
1722 }
1723
1724 /**
1725  * Translate RX completion flags to offload flags.
1726  *
1727  * @param[in] rxq
1728  *   Pointer to RX queue structure.
1729  * @param[in] cqe
1730  *   Pointer to CQE.
1731  *
1732  * @return
1733  *   Offload flags (ol_flags) for struct rte_mbuf.
1734  */
1735 static inline uint32_t
1736 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1737 {
1738         uint32_t ol_flags = 0;
1739         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1740
1741         ol_flags =
1742                 TRANSPOSE(flags,
1743                           MLX5_CQE_RX_L3_HDR_VALID,
1744                           PKT_RX_IP_CKSUM_GOOD) |
1745                 TRANSPOSE(flags,
1746                           MLX5_CQE_RX_L4_HDR_VALID,
1747                           PKT_RX_L4_CKSUM_GOOD);
1748         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1749                 ol_flags |=
1750                         TRANSPOSE(flags,
1751                                   MLX5_CQE_RX_L3_HDR_VALID,
1752                                   PKT_RX_IP_CKSUM_GOOD) |
1753                         TRANSPOSE(flags,
1754                                   MLX5_CQE_RX_L4_HDR_VALID,
1755                                   PKT_RX_L4_CKSUM_GOOD);
1756         return ol_flags;
1757 }
1758
1759 /**
1760  * DPDK callback for RX.
1761  *
1762  * @param dpdk_rxq
1763  *   Generic pointer to RX queue structure.
1764  * @param[out] pkts
1765  *   Array to store received packets.
1766  * @param pkts_n
1767  *   Maximum number of packets in array.
1768  *
1769  * @return
1770  *   Number of packets successfully received (<= pkts_n).
1771  */
1772 uint16_t
1773 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1774 {
1775         struct mlx5_rxq_data *rxq = dpdk_rxq;
1776         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1777         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1778         const unsigned int sges_n = rxq->sges_n;
1779         struct rte_mbuf *pkt = NULL;
1780         struct rte_mbuf *seg = NULL;
1781         volatile struct mlx5_cqe *cqe =
1782                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1783         unsigned int i = 0;
1784         unsigned int rq_ci = rxq->rq_ci << sges_n;
1785         int len = 0; /* keep its value across iterations. */
1786
1787         while (pkts_n) {
1788                 unsigned int idx = rq_ci & wqe_cnt;
1789                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1790                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1791                 uint32_t rss_hash_res = 0;
1792
1793                 if (pkt)
1794                         NEXT(seg) = rep;
1795                 seg = rep;
1796                 rte_prefetch0(seg);
1797                 rte_prefetch0(cqe);
1798                 rte_prefetch0(wqe);
1799                 rep = rte_mbuf_raw_alloc(rxq->mp);
1800                 if (unlikely(rep == NULL)) {
1801                         ++rxq->stats.rx_nombuf;
1802                         if (!pkt) {
1803                                 /*
1804                                  * no buffers before we even started,
1805                                  * bail out silently.
1806                                  */
1807                                 break;
1808                         }
1809                         while (pkt != seg) {
1810                                 assert(pkt != (*rxq->elts)[idx]);
1811                                 rep = NEXT(pkt);
1812                                 NEXT(pkt) = NULL;
1813                                 NB_SEGS(pkt) = 1;
1814                                 rte_mbuf_raw_free(pkt);
1815                                 pkt = rep;
1816                         }
1817                         break;
1818                 }
1819                 if (!pkt) {
1820                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1821                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1822                                                &rss_hash_res);
1823                         if (!len) {
1824                                 rte_mbuf_raw_free(rep);
1825                                 break;
1826                         }
1827                         if (unlikely(len == -1)) {
1828                                 /* RX error, packet is likely too large. */
1829                                 rte_mbuf_raw_free(rep);
1830                                 ++rxq->stats.idropped;
1831                                 goto skip;
1832                         }
1833                         pkt = seg;
1834                         assert(len >= (rxq->crc_present << 2));
1835                         /* Update packet information. */
1836                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1837                         pkt->ol_flags = 0;
1838                         if (rss_hash_res && rxq->rss_hash) {
1839                                 pkt->hash.rss = rss_hash_res;
1840                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1841                         }
1842                         if (rxq->mark &&
1843                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1844                                 pkt->ol_flags |= PKT_RX_FDIR;
1845                                 if (cqe->sop_drop_qpn !=
1846                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1847                                         uint32_t mark = cqe->sop_drop_qpn;
1848
1849                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1850                                         pkt->hash.fdir.hi =
1851                                                 mlx5_flow_mark_get(mark);
1852                                 }
1853                         }
1854                         if (rxq->csum | rxq->csum_l2tun)
1855                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1856                         if (rxq->vlan_strip &&
1857                             (cqe->hdr_type_etc &
1858                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1859                                 pkt->ol_flags |= PKT_RX_VLAN |
1860                                         PKT_RX_VLAN_STRIPPED;
1861                                 pkt->vlan_tci =
1862                                         rte_be_to_cpu_16(cqe->vlan_info);
1863                         }
1864                         if (rxq->hw_timestamp) {
1865                                 pkt->timestamp =
1866                                         rte_be_to_cpu_64(cqe->timestamp);
1867                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1868                         }
1869                         if (rxq->crc_present)
1870                                 len -= ETHER_CRC_LEN;
1871                         PKT_LEN(pkt) = len;
1872                 }
1873                 DATA_LEN(rep) = DATA_LEN(seg);
1874                 PKT_LEN(rep) = PKT_LEN(seg);
1875                 SET_DATA_OFF(rep, DATA_OFF(seg));
1876                 PORT(rep) = PORT(seg);
1877                 (*rxq->elts)[idx] = rep;
1878                 /*
1879                  * Fill NIC descriptor with the new buffer.  The lkey and size
1880                  * of the buffers are already known, only the buffer address
1881                  * changes.
1882                  */
1883                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1884                 if (len > DATA_LEN(seg)) {
1885                         len -= DATA_LEN(seg);
1886                         ++NB_SEGS(pkt);
1887                         ++rq_ci;
1888                         continue;
1889                 }
1890                 DATA_LEN(seg) = len;
1891 #ifdef MLX5_PMD_SOFT_COUNTERS
1892                 /* Increment bytes counter. */
1893                 rxq->stats.ibytes += PKT_LEN(pkt);
1894 #endif
1895                 /* Return packet. */
1896                 *(pkts++) = pkt;
1897                 pkt = NULL;
1898                 --pkts_n;
1899                 ++i;
1900 skip:
1901                 /* Align consumer index to the next stride. */
1902                 rq_ci >>= sges_n;
1903                 ++rq_ci;
1904                 rq_ci <<= sges_n;
1905         }
1906         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1907                 return 0;
1908         /* Update the consumer index. */
1909         rxq->rq_ci = rq_ci >> sges_n;
1910         rte_cio_wmb();
1911         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1912         rte_cio_wmb();
1913         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1914 #ifdef MLX5_PMD_SOFT_COUNTERS
1915         /* Increment packets counter. */
1916         rxq->stats.ipackets += i;
1917 #endif
1918         return i;
1919 }
1920
1921 /**
1922  * Dummy DPDK callback for TX.
1923  *
1924  * This function is used to temporarily replace the real callback during
1925  * unsafe control operations on the queue, or in case of error.
1926  *
1927  * @param dpdk_txq
1928  *   Generic pointer to TX queue structure.
1929  * @param[in] pkts
1930  *   Packets to transmit.
1931  * @param pkts_n
1932  *   Number of packets in array.
1933  *
1934  * @return
1935  *   Number of packets successfully transmitted (<= pkts_n).
1936  */
1937 uint16_t
1938 removed_tx_burst(void *dpdk_txq __rte_unused,
1939                  struct rte_mbuf **pkts __rte_unused,
1940                  uint16_t pkts_n __rte_unused)
1941 {
1942         return 0;
1943 }
1944
1945 /**
1946  * Dummy DPDK callback for RX.
1947  *
1948  * This function is used to temporarily replace the real callback during
1949  * unsafe control operations on the queue, or in case of error.
1950  *
1951  * @param dpdk_rxq
1952  *   Generic pointer to RX queue structure.
1953  * @param[out] pkts
1954  *   Array to store received packets.
1955  * @param pkts_n
1956  *   Maximum number of packets in array.
1957  *
1958  * @return
1959  *   Number of packets successfully received (<= pkts_n).
1960  */
1961 uint16_t
1962 removed_rx_burst(void *dpdk_txq __rte_unused,
1963                  struct rte_mbuf **pkts __rte_unused,
1964                  uint16_t pkts_n __rte_unused)
1965 {
1966         return 0;
1967 }
1968
1969 /*
1970  * Vectorized Rx/Tx routines are not compiled in when required vector
1971  * instructions are not supported on a target architecture. The following null
1972  * stubs are needed for linkage when those are not included outside of this file
1973  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1974  */
1975
1976 uint16_t __attribute__((weak))
1977 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
1978                       struct rte_mbuf **pkts __rte_unused,
1979                       uint16_t pkts_n __rte_unused)
1980 {
1981         return 0;
1982 }
1983
1984 uint16_t __attribute__((weak))
1985 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
1986                   struct rte_mbuf **pkts __rte_unused,
1987                   uint16_t pkts_n __rte_unused)
1988 {
1989         return 0;
1990 }
1991
1992 uint16_t __attribute__((weak))
1993 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
1994                   struct rte_mbuf **pkts __rte_unused,
1995                   uint16_t pkts_n __rte_unused)
1996 {
1997         return 0;
1998 }
1999
2000 int __attribute__((weak))
2001 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2002 {
2003         return -ENOTSUP;
2004 }
2005
2006 int __attribute__((weak))
2007 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2008 {
2009         return -ENOTSUP;
2010 }
2011
2012 int __attribute__((weak))
2013 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2014 {
2015         return -ENOTSUP;
2016 }
2017
2018 int __attribute__((weak))
2019 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2020 {
2021         return -ENOTSUP;
2022 }