net/mlx5: enable inlining data from multiple segments
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         uint16_t max_wqe;
348         unsigned int comp;
349         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
350         unsigned int segs_n = 0;
351         const unsigned int max_inline = txq->max_inline;
352
353         if (unlikely(!pkts_n))
354                 return 0;
355         /* Prefetch first packet cacheline. */
356         rte_prefetch0(*pkts);
357         /* Start processing. */
358         mlx5_tx_complete(txq);
359         max_elts = (elts_n - (elts_head - txq->elts_tail));
360         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
361         if (unlikely(!max_wqe))
362                 return 0;
363         do {
364                 struct rte_mbuf *buf = NULL;
365                 uint8_t *raw;
366                 volatile struct mlx5_wqe_v *wqe = NULL;
367                 volatile rte_v128u32_t *dseg = NULL;
368                 uint32_t length;
369                 unsigned int ds = 0;
370                 unsigned int sg = 0; /* counter of additional segs attached. */
371                 uintptr_t addr;
372                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
373                 uint16_t tso_header_sz = 0;
374                 uint16_t ehdr;
375                 uint8_t cs_flags;
376                 uint64_t tso = 0;
377                 uint16_t tso_segsz = 0;
378 #ifdef MLX5_PMD_SOFT_COUNTERS
379                 uint32_t total_length = 0;
380 #endif
381
382                 /* first_seg */
383                 buf = *pkts;
384                 segs_n = buf->nb_segs;
385                 /*
386                  * Make sure there is enough room to store this packet and
387                  * that one ring entry remains unused.
388                  */
389                 assert(segs_n);
390                 if (max_elts < segs_n)
391                         break;
392                 max_elts -= segs_n;
393                 sg = --segs_n;
394                 if (unlikely(--max_wqe == 0))
395                         break;
396                 wqe = (volatile struct mlx5_wqe_v *)
397                         tx_mlx5_wqe(txq, txq->wqe_ci);
398                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
399                 if (pkts_n - i > 1)
400                         rte_prefetch0(*(pkts + 1));
401                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
402                 length = DATA_LEN(buf);
403                 ehdr = (((uint8_t *)addr)[1] << 8) |
404                        ((uint8_t *)addr)[0];
405 #ifdef MLX5_PMD_SOFT_COUNTERS
406                 total_length = length;
407 #endif
408                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
409                         txq->stats.oerrors++;
410                         break;
411                 }
412                 /* Update element. */
413                 (*txq->elts)[elts_head & elts_m] = buf;
414                 /* Prefetch next buffer data. */
415                 if (pkts_n - i > 1)
416                         rte_prefetch0(
417                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
418                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
419                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
420                 /* Replace the Ethernet type by the VLAN if necessary. */
421                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
422                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
423                                                          buf->vlan_tci);
424                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
425
426                         addr += 2;
427                         length -= 2;
428                         /* Copy Destination and source mac address. */
429                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
430                         /* Copy VLAN. */
431                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
432                         /* Copy missing two bytes to end the DSeg. */
433                         memcpy((uint8_t *)raw + len + sizeof(vlan),
434                                ((uint8_t *)addr) + len, 2);
435                         addr += len + 2;
436                         length -= (len + 2);
437                 } else {
438                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
439                                MLX5_WQE_DWORD_SIZE);
440                         length -= pkt_inline_sz;
441                         addr += pkt_inline_sz;
442                 }
443                 raw += MLX5_WQE_DWORD_SIZE;
444                 if (txq->tso_en) {
445                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
446                         if (tso) {
447                                 uintptr_t end = (uintptr_t)
448                                                 (((uintptr_t)txq->wqes) +
449                                                 (1 << txq->wqe_n) *
450                                                 MLX5_WQE_SIZE);
451                                 unsigned int copy_b;
452                                 uint8_t vlan_sz = (buf->ol_flags &
453                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
454                                 const uint64_t is_tunneled =
455                                                         buf->ol_flags &
456                                                         (PKT_TX_TUNNEL_GRE |
457                                                          PKT_TX_TUNNEL_VXLAN);
458
459                                 tso_header_sz = buf->l2_len + vlan_sz +
460                                                 buf->l3_len + buf->l4_len;
461                                 tso_segsz = buf->tso_segsz;
462                                 if (unlikely(tso_segsz == 0)) {
463                                         txq->stats.oerrors++;
464                                         break;
465                                 }
466                                 if (is_tunneled && txq->tunnel_en) {
467                                         tso_header_sz += buf->outer_l2_len +
468                                                          buf->outer_l3_len;
469                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
470                                 } else {
471                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
472                                 }
473                                 if (unlikely(tso_header_sz >
474                                              MLX5_MAX_TSO_HEADER)) {
475                                         txq->stats.oerrors++;
476                                         break;
477                                 }
478                                 copy_b = tso_header_sz - pkt_inline_sz;
479                                 /* First seg must contain all headers. */
480                                 assert(copy_b <= length);
481                                 if (copy_b &&
482                                    ((end - (uintptr_t)raw) > copy_b)) {
483                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
484                                                       1 + 3) / 4;
485
486                                         if (unlikely(max_wqe < n))
487                                                 break;
488                                         max_wqe -= n;
489                                         rte_memcpy((void *)raw,
490                                                    (void *)addr, copy_b);
491                                         addr += copy_b;
492                                         length -= copy_b;
493                                         /* Include padding for TSO header. */
494                                         copy_b = MLX5_WQE_DS(copy_b) *
495                                                  MLX5_WQE_DWORD_SIZE;
496                                         pkt_inline_sz += copy_b;
497                                         raw += copy_b;
498                                 } else {
499                                         /* NOP WQE. */
500                                         wqe->ctrl = (rte_v128u32_t){
501                                                      rte_cpu_to_be_32(
502                                                         txq->wqe_ci << 8),
503                                                      rte_cpu_to_be_32(
504                                                         txq->qp_num_8s | 1),
505                                                      0,
506                                                      0,
507                                         };
508                                         ds = 1;
509 #ifdef MLX5_PMD_SOFT_COUNTERS
510                                         total_length = 0;
511 #endif
512                                         k++;
513                                         goto next_wqe;
514                                 }
515                         }
516                 }
517                 /* Inline if enough room. */
518                 if (max_inline || tso) {
519                         uint32_t inl = 0;
520                         uintptr_t end = (uintptr_t)
521                                 (((uintptr_t)txq->wqes) +
522                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
523                         unsigned int inline_room = max_inline *
524                                                    RTE_CACHE_LINE_SIZE -
525                                                    (pkt_inline_sz - 2) -
526                                                    !!tso * sizeof(inl);
527                         uintptr_t addr_end;
528                         unsigned int copy_b;
529
530 pkt_inline:
531                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
532                                                    RTE_CACHE_LINE_SIZE);
533                         copy_b = (addr_end > addr) ?
534                                  RTE_MIN((addr_end - addr), length) : 0;
535                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
536                                 /*
537                                  * One Dseg remains in the current WQE.  To
538                                  * keep the computation positive, it is
539                                  * removed after the bytes to Dseg conversion.
540                                  */
541                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
542
543                                 if (unlikely(max_wqe < n))
544                                         break;
545                                 max_wqe -= n;
546                                 if (tso && !inl) {
547                                         inl = rte_cpu_to_be_32(copy_b |
548                                                                MLX5_INLINE_SEG);
549                                         rte_memcpy((void *)raw,
550                                                    (void *)&inl, sizeof(inl));
551                                         raw += sizeof(inl);
552                                         pkt_inline_sz += sizeof(inl);
553                                 }
554                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
555                                 addr += copy_b;
556                                 length -= copy_b;
557                                 pkt_inline_sz += copy_b;
558                         }
559                         /*
560                          * 2 DWORDs consumed by the WQE header + ETH segment +
561                          * the size of the inline part of the packet.
562                          */
563                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
564                         if (length > 0) {
565                                 if (ds % (MLX5_WQE_SIZE /
566                                           MLX5_WQE_DWORD_SIZE) == 0) {
567                                         if (unlikely(--max_wqe == 0))
568                                                 break;
569                                         dseg = (volatile rte_v128u32_t *)
570                                                tx_mlx5_wqe(txq, txq->wqe_ci +
571                                                            ds / 4);
572                                 } else {
573                                         dseg = (volatile rte_v128u32_t *)
574                                                 ((uintptr_t)wqe +
575                                                  (ds * MLX5_WQE_DWORD_SIZE));
576                                 }
577                                 goto use_dseg;
578                         } else if (!segs_n) {
579                                 goto next_pkt;
580                         } else {
581                                 raw += copy_b;
582                                 inline_room -= copy_b;
583                                 --segs_n;
584                                 buf = buf->next;
585                                 assert(buf);
586                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
587                                 length = DATA_LEN(buf);
588 #ifdef MLX5_PMD_SOFT_COUNTERS
589                                 total_length += length;
590 #endif
591                                 (*txq->elts)[++elts_head & elts_m] = buf;
592                                 goto pkt_inline;
593                         }
594                 } else {
595                         /*
596                          * No inline has been done in the packet, only the
597                          * Ethernet Header as been stored.
598                          */
599                         dseg = (volatile rte_v128u32_t *)
600                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
601                         ds = 3;
602 use_dseg:
603                         /* Add the remaining packet as a simple ds. */
604                         addr = rte_cpu_to_be_64(addr);
605                         *dseg = (rte_v128u32_t){
606                                 rte_cpu_to_be_32(length),
607                                 mlx5_tx_mb2mr(txq, buf),
608                                 addr,
609                                 addr >> 32,
610                         };
611                         ++ds;
612                         if (!segs_n)
613                                 goto next_pkt;
614                 }
615 next_seg:
616                 assert(buf);
617                 assert(ds);
618                 assert(wqe);
619                 /*
620                  * Spill on next WQE when the current one does not have
621                  * enough room left. Size of WQE must a be a multiple
622                  * of data segment size.
623                  */
624                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
625                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
626                         if (unlikely(--max_wqe == 0))
627                                 break;
628                         dseg = (volatile rte_v128u32_t *)
629                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
630                         rte_prefetch0(tx_mlx5_wqe(txq,
631                                                   txq->wqe_ci + ds / 4 + 1));
632                 } else {
633                         ++dseg;
634                 }
635                 ++ds;
636                 buf = buf->next;
637                 assert(buf);
638                 length = DATA_LEN(buf);
639 #ifdef MLX5_PMD_SOFT_COUNTERS
640                 total_length += length;
641 #endif
642                 /* Store segment information. */
643                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
644                 *dseg = (rte_v128u32_t){
645                         rte_cpu_to_be_32(length),
646                         mlx5_tx_mb2mr(txq, buf),
647                         addr,
648                         addr >> 32,
649                 };
650                 (*txq->elts)[++elts_head & elts_m] = buf;
651                 if (--segs_n)
652                         goto next_seg;
653 next_pkt:
654                 if (ds > MLX5_DSEG_MAX) {
655                         txq->stats.oerrors++;
656                         break;
657                 }
658                 ++elts_head;
659                 ++pkts;
660                 ++i;
661                 j += sg;
662                 /* Initialize known and common part of the WQE structure. */
663                 if (tso) {
664                         wqe->ctrl = (rte_v128u32_t){
665                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
666                                                  MLX5_OPCODE_TSO),
667                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
668                                 0,
669                                 0,
670                         };
671                         wqe->eseg = (rte_v128u32_t){
672                                 0,
673                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
674                                 0,
675                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
676                         };
677                 } else {
678                         wqe->ctrl = (rte_v128u32_t){
679                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
680                                                  MLX5_OPCODE_SEND),
681                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
682                                 0,
683                                 0,
684                         };
685                         wqe->eseg = (rte_v128u32_t){
686                                 0,
687                                 cs_flags,
688                                 0,
689                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
690                         };
691                 }
692 next_wqe:
693                 txq->wqe_ci += (ds + 3) / 4;
694                 /* Save the last successful WQE for completion request */
695                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
696 #ifdef MLX5_PMD_SOFT_COUNTERS
697                 /* Increment sent bytes counter. */
698                 txq->stats.obytes += total_length;
699 #endif
700         } while (i < pkts_n);
701         /* Take a shortcut if nothing must be sent. */
702         if (unlikely((i + k) == 0))
703                 return 0;
704         txq->elts_head += (i + j);
705         /* Check whether completion threshold has been reached. */
706         comp = txq->elts_comp + i + j + k;
707         if (comp >= MLX5_TX_COMP_THRESH) {
708                 /* Request completion on last WQE. */
709                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
710                 /* Save elts_head in unused "immediate" field of WQE. */
711                 last_wqe->ctrl3 = txq->elts_head;
712                 txq->elts_comp = 0;
713         } else {
714                 txq->elts_comp = comp;
715         }
716 #ifdef MLX5_PMD_SOFT_COUNTERS
717         /* Increment sent packets counter. */
718         txq->stats.opackets += i;
719 #endif
720         /* Ring QP doorbell. */
721         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
722         return i;
723 }
724
725 /**
726  * Open a MPW session.
727  *
728  * @param txq
729  *   Pointer to TX queue structure.
730  * @param mpw
731  *   Pointer to MPW session structure.
732  * @param length
733  *   Packet length.
734  */
735 static inline void
736 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
737 {
738         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
739         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
740                 (volatile struct mlx5_wqe_data_seg (*)[])
741                 tx_mlx5_wqe(txq, idx + 1);
742
743         mpw->state = MLX5_MPW_STATE_OPENED;
744         mpw->pkts_n = 0;
745         mpw->len = length;
746         mpw->total_len = 0;
747         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
748         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
749         mpw->wqe->eseg.inline_hdr_sz = 0;
750         mpw->wqe->eseg.rsvd0 = 0;
751         mpw->wqe->eseg.rsvd1 = 0;
752         mpw->wqe->eseg.rsvd2 = 0;
753         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
754                                              (txq->wqe_ci << 8) |
755                                              MLX5_OPCODE_TSO);
756         mpw->wqe->ctrl[2] = 0;
757         mpw->wqe->ctrl[3] = 0;
758         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
759                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
760         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
761                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
762         mpw->data.dseg[2] = &(*dseg)[0];
763         mpw->data.dseg[3] = &(*dseg)[1];
764         mpw->data.dseg[4] = &(*dseg)[2];
765 }
766
767 /**
768  * Close a MPW session.
769  *
770  * @param txq
771  *   Pointer to TX queue structure.
772  * @param mpw
773  *   Pointer to MPW session structure.
774  */
775 static inline void
776 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
777 {
778         unsigned int num = mpw->pkts_n;
779
780         /*
781          * Store size in multiple of 16 bytes. Control and Ethernet segments
782          * count as 2.
783          */
784         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
785         mpw->state = MLX5_MPW_STATE_CLOSED;
786         if (num < 3)
787                 ++txq->wqe_ci;
788         else
789                 txq->wqe_ci += 2;
790         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
791         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
792 }
793
794 /**
795  * DPDK callback for TX with MPW support.
796  *
797  * @param dpdk_txq
798  *   Generic pointer to TX queue structure.
799  * @param[in] pkts
800  *   Packets to transmit.
801  * @param pkts_n
802  *   Number of packets in array.
803  *
804  * @return
805  *   Number of packets successfully transmitted (<= pkts_n).
806  */
807 uint16_t
808 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
809 {
810         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
811         uint16_t elts_head = txq->elts_head;
812         const uint16_t elts_n = 1 << txq->elts_n;
813         const uint16_t elts_m = elts_n - 1;
814         unsigned int i = 0;
815         unsigned int j = 0;
816         uint16_t max_elts;
817         uint16_t max_wqe;
818         unsigned int comp;
819         struct mlx5_mpw mpw = {
820                 .state = MLX5_MPW_STATE_CLOSED,
821         };
822
823         if (unlikely(!pkts_n))
824                 return 0;
825         /* Prefetch first packet cacheline. */
826         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
827         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
828         /* Start processing. */
829         mlx5_tx_complete(txq);
830         max_elts = (elts_n - (elts_head - txq->elts_tail));
831         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
832         if (unlikely(!max_wqe))
833                 return 0;
834         do {
835                 struct rte_mbuf *buf = *(pkts++);
836                 uint32_t length;
837                 unsigned int segs_n = buf->nb_segs;
838                 uint32_t cs_flags;
839
840                 /*
841                  * Make sure there is enough room to store this packet and
842                  * that one ring entry remains unused.
843                  */
844                 assert(segs_n);
845                 if (max_elts < segs_n)
846                         break;
847                 /* Do not bother with large packets MPW cannot handle. */
848                 if (segs_n > MLX5_MPW_DSEG_MAX) {
849                         txq->stats.oerrors++;
850                         break;
851                 }
852                 max_elts -= segs_n;
853                 --pkts_n;
854                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
855                 /* Retrieve packet information. */
856                 length = PKT_LEN(buf);
857                 assert(length);
858                 /* Start new session if packet differs. */
859                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
860                     ((mpw.len != length) ||
861                      (segs_n != 1) ||
862                      (mpw.wqe->eseg.cs_flags != cs_flags)))
863                         mlx5_mpw_close(txq, &mpw);
864                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
865                         /*
866                          * Multi-Packet WQE consumes at most two WQE.
867                          * mlx5_mpw_new() expects to be able to use such
868                          * resources.
869                          */
870                         if (unlikely(max_wqe < 2))
871                                 break;
872                         max_wqe -= 2;
873                         mlx5_mpw_new(txq, &mpw, length);
874                         mpw.wqe->eseg.cs_flags = cs_flags;
875                 }
876                 /* Multi-segment packets must be alone in their MPW. */
877                 assert((segs_n == 1) || (mpw.pkts_n == 0));
878 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
879                 length = 0;
880 #endif
881                 do {
882                         volatile struct mlx5_wqe_data_seg *dseg;
883                         uintptr_t addr;
884
885                         assert(buf);
886                         (*txq->elts)[elts_head++ & elts_m] = buf;
887                         dseg = mpw.data.dseg[mpw.pkts_n];
888                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
889                         *dseg = (struct mlx5_wqe_data_seg){
890                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
891                                 .lkey = mlx5_tx_mb2mr(txq, buf),
892                                 .addr = rte_cpu_to_be_64(addr),
893                         };
894 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
895                         length += DATA_LEN(buf);
896 #endif
897                         buf = buf->next;
898                         ++mpw.pkts_n;
899                         ++j;
900                 } while (--segs_n);
901                 assert(length == mpw.len);
902                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
903                         mlx5_mpw_close(txq, &mpw);
904 #ifdef MLX5_PMD_SOFT_COUNTERS
905                 /* Increment sent bytes counter. */
906                 txq->stats.obytes += length;
907 #endif
908                 ++i;
909         } while (pkts_n);
910         /* Take a shortcut if nothing must be sent. */
911         if (unlikely(i == 0))
912                 return 0;
913         /* Check whether completion threshold has been reached. */
914         /* "j" includes both packets and segments. */
915         comp = txq->elts_comp + j;
916         if (comp >= MLX5_TX_COMP_THRESH) {
917                 volatile struct mlx5_wqe *wqe = mpw.wqe;
918
919                 /* Request completion on last WQE. */
920                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
921                 /* Save elts_head in unused "immediate" field of WQE. */
922                 wqe->ctrl[3] = elts_head;
923                 txq->elts_comp = 0;
924         } else {
925                 txq->elts_comp = comp;
926         }
927 #ifdef MLX5_PMD_SOFT_COUNTERS
928         /* Increment sent packets counter. */
929         txq->stats.opackets += i;
930 #endif
931         /* Ring QP doorbell. */
932         if (mpw.state == MLX5_MPW_STATE_OPENED)
933                 mlx5_mpw_close(txq, &mpw);
934         mlx5_tx_dbrec(txq, mpw.wqe);
935         txq->elts_head = elts_head;
936         return i;
937 }
938
939 /**
940  * Open a MPW inline session.
941  *
942  * @param txq
943  *   Pointer to TX queue structure.
944  * @param mpw
945  *   Pointer to MPW session structure.
946  * @param length
947  *   Packet length.
948  */
949 static inline void
950 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
951                     uint32_t length)
952 {
953         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
954         struct mlx5_wqe_inl_small *inl;
955
956         mpw->state = MLX5_MPW_INL_STATE_OPENED;
957         mpw->pkts_n = 0;
958         mpw->len = length;
959         mpw->total_len = 0;
960         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
961         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
962                                              (txq->wqe_ci << 8) |
963                                              MLX5_OPCODE_TSO);
964         mpw->wqe->ctrl[2] = 0;
965         mpw->wqe->ctrl[3] = 0;
966         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
967         mpw->wqe->eseg.inline_hdr_sz = 0;
968         mpw->wqe->eseg.cs_flags = 0;
969         mpw->wqe->eseg.rsvd0 = 0;
970         mpw->wqe->eseg.rsvd1 = 0;
971         mpw->wqe->eseg.rsvd2 = 0;
972         inl = (struct mlx5_wqe_inl_small *)
973                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
974         mpw->data.raw = (uint8_t *)&inl->raw;
975 }
976
977 /**
978  * Close a MPW inline session.
979  *
980  * @param txq
981  *   Pointer to TX queue structure.
982  * @param mpw
983  *   Pointer to MPW session structure.
984  */
985 static inline void
986 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
987 {
988         unsigned int size;
989         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
990                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
991
992         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
993         /*
994          * Store size in multiple of 16 bytes. Control and Ethernet segments
995          * count as 2.
996          */
997         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
998                                              MLX5_WQE_DS(size));
999         mpw->state = MLX5_MPW_STATE_CLOSED;
1000         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1001         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1002 }
1003
1004 /**
1005  * DPDK callback for TX with MPW inline support.
1006  *
1007  * @param dpdk_txq
1008  *   Generic pointer to TX queue structure.
1009  * @param[in] pkts
1010  *   Packets to transmit.
1011  * @param pkts_n
1012  *   Number of packets in array.
1013  *
1014  * @return
1015  *   Number of packets successfully transmitted (<= pkts_n).
1016  */
1017 uint16_t
1018 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1019                          uint16_t pkts_n)
1020 {
1021         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1022         uint16_t elts_head = txq->elts_head;
1023         const uint16_t elts_n = 1 << txq->elts_n;
1024         const uint16_t elts_m = elts_n - 1;
1025         unsigned int i = 0;
1026         unsigned int j = 0;
1027         uint16_t max_elts;
1028         uint16_t max_wqe;
1029         unsigned int comp;
1030         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1031         struct mlx5_mpw mpw = {
1032                 .state = MLX5_MPW_STATE_CLOSED,
1033         };
1034         /*
1035          * Compute the maximum number of WQE which can be consumed by inline
1036          * code.
1037          * - 2 DSEG for:
1038          *   - 1 control segment,
1039          *   - 1 Ethernet segment,
1040          * - N Dseg from the inline request.
1041          */
1042         const unsigned int wqe_inl_n =
1043                 ((2 * MLX5_WQE_DWORD_SIZE +
1044                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1045                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1046
1047         if (unlikely(!pkts_n))
1048                 return 0;
1049         /* Prefetch first packet cacheline. */
1050         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1051         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1052         /* Start processing. */
1053         mlx5_tx_complete(txq);
1054         max_elts = (elts_n - (elts_head - txq->elts_tail));
1055         do {
1056                 struct rte_mbuf *buf = *(pkts++);
1057                 uintptr_t addr;
1058                 uint32_t length;
1059                 unsigned int segs_n = buf->nb_segs;
1060                 uint8_t cs_flags;
1061
1062                 /*
1063                  * Make sure there is enough room to store this packet and
1064                  * that one ring entry remains unused.
1065                  */
1066                 assert(segs_n);
1067                 if (max_elts < segs_n)
1068                         break;
1069                 /* Do not bother with large packets MPW cannot handle. */
1070                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1071                         txq->stats.oerrors++;
1072                         break;
1073                 }
1074                 max_elts -= segs_n;
1075                 --pkts_n;
1076                 /*
1077                  * Compute max_wqe in case less WQE were consumed in previous
1078                  * iteration.
1079                  */
1080                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1081                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1082                 /* Retrieve packet information. */
1083                 length = PKT_LEN(buf);
1084                 /* Start new session if packet differs. */
1085                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1086                         if ((mpw.len != length) ||
1087                             (segs_n != 1) ||
1088                             (mpw.wqe->eseg.cs_flags != cs_flags))
1089                                 mlx5_mpw_close(txq, &mpw);
1090                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1091                         if ((mpw.len != length) ||
1092                             (segs_n != 1) ||
1093                             (length > inline_room) ||
1094                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1095                                 mlx5_mpw_inline_close(txq, &mpw);
1096                                 inline_room =
1097                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1098                         }
1099                 }
1100                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1101                         if ((segs_n != 1) ||
1102                             (length > inline_room)) {
1103                                 /*
1104                                  * Multi-Packet WQE consumes at most two WQE.
1105                                  * mlx5_mpw_new() expects to be able to use
1106                                  * such resources.
1107                                  */
1108                                 if (unlikely(max_wqe < 2))
1109                                         break;
1110                                 max_wqe -= 2;
1111                                 mlx5_mpw_new(txq, &mpw, length);
1112                                 mpw.wqe->eseg.cs_flags = cs_flags;
1113                         } else {
1114                                 if (unlikely(max_wqe < wqe_inl_n))
1115                                         break;
1116                                 max_wqe -= wqe_inl_n;
1117                                 mlx5_mpw_inline_new(txq, &mpw, length);
1118                                 mpw.wqe->eseg.cs_flags = cs_flags;
1119                         }
1120                 }
1121                 /* Multi-segment packets must be alone in their MPW. */
1122                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1123                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1124                         assert(inline_room ==
1125                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1126 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1127                         length = 0;
1128 #endif
1129                         do {
1130                                 volatile struct mlx5_wqe_data_seg *dseg;
1131
1132                                 assert(buf);
1133                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1134                                 dseg = mpw.data.dseg[mpw.pkts_n];
1135                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1136                                 *dseg = (struct mlx5_wqe_data_seg){
1137                                         .byte_count =
1138                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1139                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1140                                         .addr = rte_cpu_to_be_64(addr),
1141                                 };
1142 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1143                                 length += DATA_LEN(buf);
1144 #endif
1145                                 buf = buf->next;
1146                                 ++mpw.pkts_n;
1147                                 ++j;
1148                         } while (--segs_n);
1149                         assert(length == mpw.len);
1150                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1151                                 mlx5_mpw_close(txq, &mpw);
1152                 } else {
1153                         unsigned int max;
1154
1155                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1156                         assert(length <= inline_room);
1157                         assert(length == DATA_LEN(buf));
1158                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1159                         (*txq->elts)[elts_head++ & elts_m] = buf;
1160                         /* Maximum number of bytes before wrapping. */
1161                         max = ((((uintptr_t)(txq->wqes)) +
1162                                 (1 << txq->wqe_n) *
1163                                 MLX5_WQE_SIZE) -
1164                                (uintptr_t)mpw.data.raw);
1165                         if (length > max) {
1166                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1167                                            (void *)addr,
1168                                            max);
1169                                 mpw.data.raw = (volatile void *)txq->wqes;
1170                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1171                                            (void *)(addr + max),
1172                                            length - max);
1173                                 mpw.data.raw += length - max;
1174                         } else {
1175                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1176                                            (void *)addr,
1177                                            length);
1178
1179                                 if (length == max)
1180                                         mpw.data.raw =
1181                                                 (volatile void *)txq->wqes;
1182                                 else
1183                                         mpw.data.raw += length;
1184                         }
1185                         ++mpw.pkts_n;
1186                         mpw.total_len += length;
1187                         ++j;
1188                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1189                                 mlx5_mpw_inline_close(txq, &mpw);
1190                                 inline_room =
1191                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1192                         } else {
1193                                 inline_room -= length;
1194                         }
1195                 }
1196 #ifdef MLX5_PMD_SOFT_COUNTERS
1197                 /* Increment sent bytes counter. */
1198                 txq->stats.obytes += length;
1199 #endif
1200                 ++i;
1201         } while (pkts_n);
1202         /* Take a shortcut if nothing must be sent. */
1203         if (unlikely(i == 0))
1204                 return 0;
1205         /* Check whether completion threshold has been reached. */
1206         /* "j" includes both packets and segments. */
1207         comp = txq->elts_comp + j;
1208         if (comp >= MLX5_TX_COMP_THRESH) {
1209                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1210
1211                 /* Request completion on last WQE. */
1212                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1213                 /* Save elts_head in unused "immediate" field of WQE. */
1214                 wqe->ctrl[3] = elts_head;
1215                 txq->elts_comp = 0;
1216         } else {
1217                 txq->elts_comp = comp;
1218         }
1219 #ifdef MLX5_PMD_SOFT_COUNTERS
1220         /* Increment sent packets counter. */
1221         txq->stats.opackets += i;
1222 #endif
1223         /* Ring QP doorbell. */
1224         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1225                 mlx5_mpw_inline_close(txq, &mpw);
1226         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1227                 mlx5_mpw_close(txq, &mpw);
1228         mlx5_tx_dbrec(txq, mpw.wqe);
1229         txq->elts_head = elts_head;
1230         return i;
1231 }
1232
1233 /**
1234  * Open an Enhanced MPW session.
1235  *
1236  * @param txq
1237  *   Pointer to TX queue structure.
1238  * @param mpw
1239  *   Pointer to MPW session structure.
1240  * @param length
1241  *   Packet length.
1242  */
1243 static inline void
1244 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1245 {
1246         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1247
1248         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1249         mpw->pkts_n = 0;
1250         mpw->total_len = sizeof(struct mlx5_wqe);
1251         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1252         mpw->wqe->ctrl[0] =
1253                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1254                                  (txq->wqe_ci << 8) |
1255                                  MLX5_OPCODE_ENHANCED_MPSW);
1256         mpw->wqe->ctrl[2] = 0;
1257         mpw->wqe->ctrl[3] = 0;
1258         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1259         if (unlikely(padding)) {
1260                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1261
1262                 /* Pad the first 2 DWORDs with zero-length inline header. */
1263                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1264                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1265                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1266                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1267                 /* Start from the next WQEBB. */
1268                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1269         } else {
1270                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1271         }
1272 }
1273
1274 /**
1275  * Close an Enhanced MPW session.
1276  *
1277  * @param txq
1278  *   Pointer to TX queue structure.
1279  * @param mpw
1280  *   Pointer to MPW session structure.
1281  *
1282  * @return
1283  *   Number of consumed WQEs.
1284  */
1285 static inline uint16_t
1286 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1287 {
1288         uint16_t ret;
1289
1290         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1291          * count as 2.
1292          */
1293         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1294                                              MLX5_WQE_DS(mpw->total_len));
1295         mpw->state = MLX5_MPW_STATE_CLOSED;
1296         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1297         txq->wqe_ci += ret;
1298         return ret;
1299 }
1300
1301 /**
1302  * DPDK callback for TX with Enhanced MPW support.
1303  *
1304  * @param dpdk_txq
1305  *   Generic pointer to TX queue structure.
1306  * @param[in] pkts
1307  *   Packets to transmit.
1308  * @param pkts_n
1309  *   Number of packets in array.
1310  *
1311  * @return
1312  *   Number of packets successfully transmitted (<= pkts_n).
1313  */
1314 uint16_t
1315 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1316 {
1317         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1318         uint16_t elts_head = txq->elts_head;
1319         const uint16_t elts_n = 1 << txq->elts_n;
1320         const uint16_t elts_m = elts_n - 1;
1321         unsigned int i = 0;
1322         unsigned int j = 0;
1323         uint16_t max_elts;
1324         uint16_t max_wqe;
1325         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1326         unsigned int mpw_room = 0;
1327         unsigned int inl_pad = 0;
1328         uint32_t inl_hdr;
1329         struct mlx5_mpw mpw = {
1330                 .state = MLX5_MPW_STATE_CLOSED,
1331         };
1332
1333         if (unlikely(!pkts_n))
1334                 return 0;
1335         /* Start processing. */
1336         mlx5_tx_complete(txq);
1337         max_elts = (elts_n - (elts_head - txq->elts_tail));
1338         /* A CQE slot must always be available. */
1339         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1340         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1341         if (unlikely(!max_wqe))
1342                 return 0;
1343         do {
1344                 struct rte_mbuf *buf = *(pkts++);
1345                 uintptr_t addr;
1346                 unsigned int n;
1347                 unsigned int do_inline = 0; /* Whether inline is possible. */
1348                 uint32_t length;
1349                 unsigned int segs_n = buf->nb_segs;
1350                 uint8_t cs_flags;
1351
1352                 /*
1353                  * Make sure there is enough room to store this packet and
1354                  * that one ring entry remains unused.
1355                  */
1356                 assert(segs_n);
1357                 if (max_elts - j < segs_n)
1358                         break;
1359                 /* Do not bother with large packets MPW cannot handle. */
1360                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1361                         txq->stats.oerrors++;
1362                         break;
1363                 }
1364                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1365                 /* Retrieve packet information. */
1366                 length = PKT_LEN(buf);
1367                 /* Start new session if:
1368                  * - multi-segment packet
1369                  * - no space left even for a dseg
1370                  * - next packet can be inlined with a new WQE
1371                  * - cs_flag differs
1372                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1373                  * segmented packet.
1374                  */
1375                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1376                         if ((segs_n != 1) ||
1377                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1378                               mpw_room) ||
1379                             (length <= txq->inline_max_packet_sz &&
1380                              inl_pad + sizeof(inl_hdr) + length >
1381                               mpw_room) ||
1382                             (mpw.wqe->eseg.cs_flags != cs_flags))
1383                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1384                 }
1385                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1386                         if (unlikely(segs_n != 1)) {
1387                                 /* Fall back to legacy MPW.
1388                                  * A MPW session consumes 2 WQEs at most to
1389                                  * include MLX5_MPW_DSEG_MAX pointers.
1390                                  */
1391                                 if (unlikely(max_wqe < 2))
1392                                         break;
1393                                 mlx5_mpw_new(txq, &mpw, length);
1394                         } else {
1395                                 /* In Enhanced MPW, inline as much as the budget
1396                                  * is allowed. The remaining space is to be
1397                                  * filled with dsegs. If the title WQEBB isn't
1398                                  * padded, it will have 2 dsegs there.
1399                                  */
1400                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1401                                             (max_inline ? max_inline :
1402                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1403                                             MLX5_WQE_SIZE);
1404                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1405                                               mpw_room))
1406                                         break;
1407                                 /* Don't pad the title WQEBB to not waste WQ. */
1408                                 mlx5_empw_new(txq, &mpw, 0);
1409                                 mpw_room -= mpw.total_len;
1410                                 inl_pad = 0;
1411                                 do_inline =
1412                                         length <= txq->inline_max_packet_sz &&
1413                                         sizeof(inl_hdr) + length <= mpw_room &&
1414                                         !txq->mpw_hdr_dseg;
1415                         }
1416                         mpw.wqe->eseg.cs_flags = cs_flags;
1417                 } else {
1418                         /* Evaluate whether the next packet can be inlined.
1419                          * Inlininig is possible when:
1420                          * - length is less than configured value
1421                          * - length fits for remaining space
1422                          * - not required to fill the title WQEBB with dsegs
1423                          */
1424                         do_inline =
1425                                 length <= txq->inline_max_packet_sz &&
1426                                 inl_pad + sizeof(inl_hdr) + length <=
1427                                  mpw_room &&
1428                                 (!txq->mpw_hdr_dseg ||
1429                                  mpw.total_len >= MLX5_WQE_SIZE);
1430                 }
1431                 /* Multi-segment packets must be alone in their MPW. */
1432                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1433                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1434 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1435                         length = 0;
1436 #endif
1437                         do {
1438                                 volatile struct mlx5_wqe_data_seg *dseg;
1439
1440                                 assert(buf);
1441                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1442                                 dseg = mpw.data.dseg[mpw.pkts_n];
1443                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1444                                 *dseg = (struct mlx5_wqe_data_seg){
1445                                         .byte_count = rte_cpu_to_be_32(
1446                                                                 DATA_LEN(buf)),
1447                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1448                                         .addr = rte_cpu_to_be_64(addr),
1449                                 };
1450 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1451                                 length += DATA_LEN(buf);
1452 #endif
1453                                 buf = buf->next;
1454                                 ++j;
1455                                 ++mpw.pkts_n;
1456                         } while (--segs_n);
1457                         /* A multi-segmented packet takes one MPW session.
1458                          * TODO: Pack more multi-segmented packets if possible.
1459                          */
1460                         mlx5_mpw_close(txq, &mpw);
1461                         if (mpw.pkts_n < 3)
1462                                 max_wqe--;
1463                         else
1464                                 max_wqe -= 2;
1465                 } else if (do_inline) {
1466                         /* Inline packet into WQE. */
1467                         unsigned int max;
1468
1469                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1470                         assert(length == DATA_LEN(buf));
1471                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1472                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1473                         mpw.data.raw = (volatile void *)
1474                                 ((uintptr_t)mpw.data.raw + inl_pad);
1475                         max = tx_mlx5_wq_tailroom(txq,
1476                                         (void *)(uintptr_t)mpw.data.raw);
1477                         /* Copy inline header. */
1478                         mpw.data.raw = (volatile void *)
1479                                 mlx5_copy_to_wq(
1480                                           (void *)(uintptr_t)mpw.data.raw,
1481                                           &inl_hdr,
1482                                           sizeof(inl_hdr),
1483                                           (void *)(uintptr_t)txq->wqes,
1484                                           max);
1485                         max = tx_mlx5_wq_tailroom(txq,
1486                                         (void *)(uintptr_t)mpw.data.raw);
1487                         /* Copy packet data. */
1488                         mpw.data.raw = (volatile void *)
1489                                 mlx5_copy_to_wq(
1490                                           (void *)(uintptr_t)mpw.data.raw,
1491                                           (void *)addr,
1492                                           length,
1493                                           (void *)(uintptr_t)txq->wqes,
1494                                           max);
1495                         ++mpw.pkts_n;
1496                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1497                         /* No need to get completion as the entire packet is
1498                          * copied to WQ. Free the buf right away.
1499                          */
1500                         rte_pktmbuf_free_seg(buf);
1501                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1502                         /* Add pad in the next packet if any. */
1503                         inl_pad = (((uintptr_t)mpw.data.raw +
1504                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1505                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1506                                   (uintptr_t)mpw.data.raw;
1507                 } else {
1508                         /* No inline. Load a dseg of packet pointer. */
1509                         volatile rte_v128u32_t *dseg;
1510
1511                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1512                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1513                         assert(length == DATA_LEN(buf));
1514                         if (!tx_mlx5_wq_tailroom(txq,
1515                                         (void *)((uintptr_t)mpw.data.raw
1516                                                 + inl_pad)))
1517                                 dseg = (volatile void *)txq->wqes;
1518                         else
1519                                 dseg = (volatile void *)
1520                                         ((uintptr_t)mpw.data.raw +
1521                                          inl_pad);
1522                         (*txq->elts)[elts_head++ & elts_m] = buf;
1523                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1524                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1525                                 rte_prefetch2((void *)(addr +
1526                                                 n * RTE_CACHE_LINE_SIZE));
1527                         addr = rte_cpu_to_be_64(addr);
1528                         *dseg = (rte_v128u32_t) {
1529                                 rte_cpu_to_be_32(length),
1530                                 mlx5_tx_mb2mr(txq, buf),
1531                                 addr,
1532                                 addr >> 32,
1533                         };
1534                         mpw.data.raw = (volatile void *)(dseg + 1);
1535                         mpw.total_len += (inl_pad + sizeof(*dseg));
1536                         ++j;
1537                         ++mpw.pkts_n;
1538                         mpw_room -= (inl_pad + sizeof(*dseg));
1539                         inl_pad = 0;
1540                 }
1541 #ifdef MLX5_PMD_SOFT_COUNTERS
1542                 /* Increment sent bytes counter. */
1543                 txq->stats.obytes += length;
1544 #endif
1545                 ++i;
1546         } while (i < pkts_n);
1547         /* Take a shortcut if nothing must be sent. */
1548         if (unlikely(i == 0))
1549                 return 0;
1550         /* Check whether completion threshold has been reached. */
1551         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1552                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1553                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1554                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1555
1556                 /* Request completion on last WQE. */
1557                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1558                 /* Save elts_head in unused "immediate" field of WQE. */
1559                 wqe->ctrl[3] = elts_head;
1560                 txq->elts_comp = 0;
1561                 txq->mpw_comp = txq->wqe_ci;
1562                 txq->cq_pi++;
1563         } else {
1564                 txq->elts_comp += j;
1565         }
1566 #ifdef MLX5_PMD_SOFT_COUNTERS
1567         /* Increment sent packets counter. */
1568         txq->stats.opackets += i;
1569 #endif
1570         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1571                 mlx5_empw_close(txq, &mpw);
1572         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1573                 mlx5_mpw_close(txq, &mpw);
1574         /* Ring QP doorbell. */
1575         mlx5_tx_dbrec(txq, mpw.wqe);
1576         txq->elts_head = elts_head;
1577         return i;
1578 }
1579
1580 /**
1581  * Translate RX completion flags to packet type.
1582  *
1583  * @param[in] cqe
1584  *   Pointer to CQE.
1585  *
1586  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1587  *
1588  * @return
1589  *   Packet type for struct rte_mbuf.
1590  */
1591 static inline uint32_t
1592 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1593 {
1594         uint8_t idx;
1595         uint8_t pinfo = cqe->pkt_info;
1596         uint16_t ptype = cqe->hdr_type_etc;
1597
1598         /*
1599          * The index to the array should have:
1600          * bit[1:0] = l3_hdr_type
1601          * bit[4:2] = l4_hdr_type
1602          * bit[5] = ip_frag
1603          * bit[6] = tunneled
1604          * bit[7] = outer_l3_type
1605          */
1606         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1607         return mlx5_ptype_table[idx];
1608 }
1609
1610 /**
1611  * Get size of the next packet for a given CQE. For compressed CQEs, the
1612  * consumer index is updated only once all packets of the current one have
1613  * been processed.
1614  *
1615  * @param rxq
1616  *   Pointer to RX queue.
1617  * @param cqe
1618  *   CQE to process.
1619  * @param[out] rss_hash
1620  *   Packet RSS Hash result.
1621  *
1622  * @return
1623  *   Packet size in bytes (0 if there is none), -1 in case of completion
1624  *   with error.
1625  */
1626 static inline int
1627 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1628                  uint16_t cqe_cnt, uint32_t *rss_hash)
1629 {
1630         struct rxq_zip *zip = &rxq->zip;
1631         uint16_t cqe_n = cqe_cnt + 1;
1632         int len = 0;
1633         uint16_t idx, end;
1634
1635         /* Process compressed data in the CQE and mini arrays. */
1636         if (zip->ai) {
1637                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1638                         (volatile struct mlx5_mini_cqe8 (*)[8])
1639                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1640
1641                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1642                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1643                 if ((++zip->ai & 7) == 0) {
1644                         /* Invalidate consumed CQEs */
1645                         idx = zip->ca;
1646                         end = zip->na;
1647                         while (idx != end) {
1648                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1649                                         MLX5_CQE_INVALIDATE;
1650                                 ++idx;
1651                         }
1652                         /*
1653                          * Increment consumer index to skip the number of
1654                          * CQEs consumed. Hardware leaves holes in the CQ
1655                          * ring for software use.
1656                          */
1657                         zip->ca = zip->na;
1658                         zip->na += 8;
1659                 }
1660                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1661                         /* Invalidate the rest */
1662                         idx = zip->ca;
1663                         end = zip->cq_ci;
1664
1665                         while (idx != end) {
1666                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1667                                         MLX5_CQE_INVALIDATE;
1668                                 ++idx;
1669                         }
1670                         rxq->cq_ci = zip->cq_ci;
1671                         zip->ai = 0;
1672                 }
1673         /* No compressed data, get next CQE and verify if it is compressed. */
1674         } else {
1675                 int ret;
1676                 int8_t op_own;
1677
1678                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1679                 if (unlikely(ret == 1))
1680                         return 0;
1681                 ++rxq->cq_ci;
1682                 op_own = cqe->op_own;
1683                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1684                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1685                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1686                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1687                                                           cqe_cnt].pkt_info);
1688
1689                         /* Fix endianness. */
1690                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1691                         /*
1692                          * Current mini array position is the one returned by
1693                          * check_cqe64().
1694                          *
1695                          * If completion comprises several mini arrays, as a
1696                          * special case the second one is located 7 CQEs after
1697                          * the initial CQE instead of 8 for subsequent ones.
1698                          */
1699                         zip->ca = rxq->cq_ci;
1700                         zip->na = zip->ca + 7;
1701                         /* Compute the next non compressed CQE. */
1702                         --rxq->cq_ci;
1703                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1704                         /* Get packet size to return. */
1705                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1706                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1707                         zip->ai = 1;
1708                         /* Prefetch all the entries to be invalidated */
1709                         idx = zip->ca;
1710                         end = zip->cq_ci;
1711                         while (idx != end) {
1712                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1713                                 ++idx;
1714                         }
1715                 } else {
1716                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1717                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1718                 }
1719                 /* Error while receiving packet. */
1720                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1721                         return -1;
1722         }
1723         return len;
1724 }
1725
1726 /**
1727  * Translate RX completion flags to offload flags.
1728  *
1729  * @param[in] rxq
1730  *   Pointer to RX queue structure.
1731  * @param[in] cqe
1732  *   Pointer to CQE.
1733  *
1734  * @return
1735  *   Offload flags (ol_flags) for struct rte_mbuf.
1736  */
1737 static inline uint32_t
1738 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1739 {
1740         uint32_t ol_flags = 0;
1741         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1742
1743         ol_flags =
1744                 TRANSPOSE(flags,
1745                           MLX5_CQE_RX_L3_HDR_VALID,
1746                           PKT_RX_IP_CKSUM_GOOD) |
1747                 TRANSPOSE(flags,
1748                           MLX5_CQE_RX_L4_HDR_VALID,
1749                           PKT_RX_L4_CKSUM_GOOD);
1750         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1751                 ol_flags |=
1752                         TRANSPOSE(flags,
1753                                   MLX5_CQE_RX_L3_HDR_VALID,
1754                                   PKT_RX_IP_CKSUM_GOOD) |
1755                         TRANSPOSE(flags,
1756                                   MLX5_CQE_RX_L4_HDR_VALID,
1757                                   PKT_RX_L4_CKSUM_GOOD);
1758         return ol_flags;
1759 }
1760
1761 /**
1762  * DPDK callback for RX.
1763  *
1764  * @param dpdk_rxq
1765  *   Generic pointer to RX queue structure.
1766  * @param[out] pkts
1767  *   Array to store received packets.
1768  * @param pkts_n
1769  *   Maximum number of packets in array.
1770  *
1771  * @return
1772  *   Number of packets successfully received (<= pkts_n).
1773  */
1774 uint16_t
1775 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1776 {
1777         struct mlx5_rxq_data *rxq = dpdk_rxq;
1778         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1779         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1780         const unsigned int sges_n = rxq->sges_n;
1781         struct rte_mbuf *pkt = NULL;
1782         struct rte_mbuf *seg = NULL;
1783         volatile struct mlx5_cqe *cqe =
1784                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1785         unsigned int i = 0;
1786         unsigned int rq_ci = rxq->rq_ci << sges_n;
1787         int len = 0; /* keep its value across iterations. */
1788
1789         while (pkts_n) {
1790                 unsigned int idx = rq_ci & wqe_cnt;
1791                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1792                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1793                 uint32_t rss_hash_res = 0;
1794
1795                 if (pkt)
1796                         NEXT(seg) = rep;
1797                 seg = rep;
1798                 rte_prefetch0(seg);
1799                 rte_prefetch0(cqe);
1800                 rte_prefetch0(wqe);
1801                 rep = rte_mbuf_raw_alloc(rxq->mp);
1802                 if (unlikely(rep == NULL)) {
1803                         ++rxq->stats.rx_nombuf;
1804                         if (!pkt) {
1805                                 /*
1806                                  * no buffers before we even started,
1807                                  * bail out silently.
1808                                  */
1809                                 break;
1810                         }
1811                         while (pkt != seg) {
1812                                 assert(pkt != (*rxq->elts)[idx]);
1813                                 rep = NEXT(pkt);
1814                                 NEXT(pkt) = NULL;
1815                                 NB_SEGS(pkt) = 1;
1816                                 rte_mbuf_raw_free(pkt);
1817                                 pkt = rep;
1818                         }
1819                         break;
1820                 }
1821                 if (!pkt) {
1822                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1823                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1824                                                &rss_hash_res);
1825                         if (!len) {
1826                                 rte_mbuf_raw_free(rep);
1827                                 break;
1828                         }
1829                         if (unlikely(len == -1)) {
1830                                 /* RX error, packet is likely too large. */
1831                                 rte_mbuf_raw_free(rep);
1832                                 ++rxq->stats.idropped;
1833                                 goto skip;
1834                         }
1835                         pkt = seg;
1836                         assert(len >= (rxq->crc_present << 2));
1837                         /* Update packet information. */
1838                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1839                         pkt->ol_flags = 0;
1840                         if (rss_hash_res && rxq->rss_hash) {
1841                                 pkt->hash.rss = rss_hash_res;
1842                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1843                         }
1844                         if (rxq->mark &&
1845                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1846                                 pkt->ol_flags |= PKT_RX_FDIR;
1847                                 if (cqe->sop_drop_qpn !=
1848                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1849                                         uint32_t mark = cqe->sop_drop_qpn;
1850
1851                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1852                                         pkt->hash.fdir.hi =
1853                                                 mlx5_flow_mark_get(mark);
1854                                 }
1855                         }
1856                         if (rxq->csum | rxq->csum_l2tun)
1857                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1858                         if (rxq->vlan_strip &&
1859                             (cqe->hdr_type_etc &
1860                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1861                                 pkt->ol_flags |= PKT_RX_VLAN |
1862                                         PKT_RX_VLAN_STRIPPED;
1863                                 pkt->vlan_tci =
1864                                         rte_be_to_cpu_16(cqe->vlan_info);
1865                         }
1866                         if (rxq->hw_timestamp) {
1867                                 pkt->timestamp =
1868                                         rte_be_to_cpu_64(cqe->timestamp);
1869                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1870                         }
1871                         if (rxq->crc_present)
1872                                 len -= ETHER_CRC_LEN;
1873                         PKT_LEN(pkt) = len;
1874                 }
1875                 DATA_LEN(rep) = DATA_LEN(seg);
1876                 PKT_LEN(rep) = PKT_LEN(seg);
1877                 SET_DATA_OFF(rep, DATA_OFF(seg));
1878                 PORT(rep) = PORT(seg);
1879                 (*rxq->elts)[idx] = rep;
1880                 /*
1881                  * Fill NIC descriptor with the new buffer.  The lkey and size
1882                  * of the buffers are already known, only the buffer address
1883                  * changes.
1884                  */
1885                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1886                 if (len > DATA_LEN(seg)) {
1887                         len -= DATA_LEN(seg);
1888                         ++NB_SEGS(pkt);
1889                         ++rq_ci;
1890                         continue;
1891                 }
1892                 DATA_LEN(seg) = len;
1893 #ifdef MLX5_PMD_SOFT_COUNTERS
1894                 /* Increment bytes counter. */
1895                 rxq->stats.ibytes += PKT_LEN(pkt);
1896 #endif
1897                 /* Return packet. */
1898                 *(pkts++) = pkt;
1899                 pkt = NULL;
1900                 --pkts_n;
1901                 ++i;
1902 skip:
1903                 /* Align consumer index to the next stride. */
1904                 rq_ci >>= sges_n;
1905                 ++rq_ci;
1906                 rq_ci <<= sges_n;
1907         }
1908         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1909                 return 0;
1910         /* Update the consumer index. */
1911         rxq->rq_ci = rq_ci >> sges_n;
1912         rte_io_wmb();
1913         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1914         rte_io_wmb();
1915         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1916 #ifdef MLX5_PMD_SOFT_COUNTERS
1917         /* Increment packets counter. */
1918         rxq->stats.ipackets += i;
1919 #endif
1920         return i;
1921 }
1922
1923 /**
1924  * Dummy DPDK callback for TX.
1925  *
1926  * This function is used to temporarily replace the real callback during
1927  * unsafe control operations on the queue, or in case of error.
1928  *
1929  * @param dpdk_txq
1930  *   Generic pointer to TX queue structure.
1931  * @param[in] pkts
1932  *   Packets to transmit.
1933  * @param pkts_n
1934  *   Number of packets in array.
1935  *
1936  * @return
1937  *   Number of packets successfully transmitted (<= pkts_n).
1938  */
1939 uint16_t
1940 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1941 {
1942         (void)dpdk_txq;
1943         (void)pkts;
1944         (void)pkts_n;
1945         return 0;
1946 }
1947
1948 /**
1949  * Dummy DPDK callback for RX.
1950  *
1951  * This function is used to temporarily replace the real callback during
1952  * unsafe control operations on the queue, or in case of error.
1953  *
1954  * @param dpdk_rxq
1955  *   Generic pointer to RX queue structure.
1956  * @param[out] pkts
1957  *   Array to store received packets.
1958  * @param pkts_n
1959  *   Maximum number of packets in array.
1960  *
1961  * @return
1962  *   Number of packets successfully received (<= pkts_n).
1963  */
1964 uint16_t
1965 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1966 {
1967         (void)dpdk_rxq;
1968         (void)pkts;
1969         (void)pkts_n;
1970         return 0;
1971 }
1972
1973 /*
1974  * Vectorized Rx/Tx routines are not compiled in when required vector
1975  * instructions are not supported on a target architecture. The following null
1976  * stubs are needed for linkage when those are not included outside of this file
1977  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1978  */
1979
1980 uint16_t __attribute__((weak))
1981 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1982 {
1983         (void)dpdk_txq;
1984         (void)pkts;
1985         (void)pkts_n;
1986         return 0;
1987 }
1988
1989 uint16_t __attribute__((weak))
1990 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1991 {
1992         (void)dpdk_txq;
1993         (void)pkts;
1994         (void)pkts_n;
1995         return 0;
1996 }
1997
1998 uint16_t __attribute__((weak))
1999 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2000 {
2001         (void)dpdk_rxq;
2002         (void)pkts;
2003         (void)pkts_n;
2004         return 0;
2005 }
2006
2007 int __attribute__((weak))
2008 priv_check_raw_vec_tx_support(struct priv *priv)
2009 {
2010         (void)priv;
2011         return -ENOTSUP;
2012 }
2013
2014 int __attribute__((weak))
2015 priv_check_vec_tx_support(struct priv *priv)
2016 {
2017         (void)priv;
2018         return -ENOTSUP;
2019 }
2020
2021 int __attribute__((weak))
2022 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2023 {
2024         (void)rxq;
2025         return -ENOTSUP;
2026 }
2027
2028 int __attribute__((weak))
2029 priv_check_vec_rx_support(struct priv *priv)
2030 {
2031         (void)priv;
2032         return -ENOTSUP;
2033 }