07d40d5f480d723c7ce3635764e2d38e184ce1f3
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9 #include <assert.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <smmintrin.h>
14
15 #include <rte_mbuf.h>
16 #include <rte_mempool.h>
17 #include <rte_prefetch.h>
18
19 #include "mlx5.h"
20 #include "mlx5_utils.h"
21 #include "mlx5_rxtx.h"
22 #include "mlx5_rxtx_vec.h"
23 #include "mlx5_autoconf.h"
24 #include "mlx5_defs.h"
25 #include "mlx5_prm.h"
26
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param rxq
35  *   Pointer to RX queue structure.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44         const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45         struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46         unsigned int pos;
47         uint16_t p = n & -2;
48
49         for (pos = 0; pos < p; pos += 2) {
50                 __m128i mbp;
51
52                 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54         }
55         if (n & 1)
56                 pkts[pos] = elts[pos];
57 }
58
59 /**
60  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61  * extracted from the title completion descriptor.
62  *
63  * @param rxq
64  *   Pointer to RX queue structure.
65  * @param cq
66  *   Pointer to completion array having a compressed completion at first.
67  * @param elts
68  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69  *   the title completion descriptor to be copied to the rest of mbufs.
70  *
71  * @return
72  *   Number of mini-CQEs successfully decompressed.
73  */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76                     struct rte_mbuf **elts)
77 {
78         volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79         struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80         unsigned int pos;
81         unsigned int i;
82         unsigned int inv = 0;
83         /* Mask to shuffle from extracted mini CQE to mbuf. */
84         const __m128i shuf_mask1 =
85                 _mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
86                             -1, -1,         /* skip vlan_tci */
87                              6,  7,         /* data_len, bswap16 */
88                             -1, -1,  6,  7, /* pkt_len, bswap16 */
89                             -1, -1, -1, -1  /* skip packet_type */);
90         const __m128i shuf_mask2 =
91                 _mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
92                             -1, -1,         /* skip vlan_tci */
93                             14, 15,         /* data_len, bswap16 */
94                             -1, -1, 14, 15, /* pkt_len, bswap16 */
95                             -1, -1, -1, -1  /* skip packet_type */);
96         /* Restore the compressed count. Must be 16 bits. */
97         const uint16_t mcqe_n = t_pkt->data_len +
98                                 (rxq->crc_present * RTE_ETHER_CRC_LEN);
99         const __m128i rearm =
100                 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101         const __m128i rxdf =
102                 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103         const __m128i crc_adj =
104                 _mm_set_epi16(0, 0, 0,
105                               rxq->crc_present * RTE_ETHER_CRC_LEN,
106                               0,
107                               rxq->crc_present * RTE_ETHER_CRC_LEN,
108                               0, 0);
109         const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111         const __m128i zero = _mm_setzero_si128();
112         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113         uint32_t rcvd_byte = 0;
114         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115         const __m128i len_shuf_mask =
116                 _mm_set_epi8(-1, -1, -1, -1,
117                              -1, -1, -1, -1,
118                              14, 15,  6,  7,
119                              10, 11,  2,  3);
120 #endif
121
122         /*
123          * A. load mCQEs into a 128bit register.
124          * B. store rearm data to mbuf.
125          * C. combine data from mCQEs with rx_descriptor_fields1.
126          * D. store rx_descriptor_fields1.
127          * E. store flow tag (rte_flow mark).
128          */
129         for (pos = 0; pos < mcqe_n; ) {
130                 __m128i mcqe1, mcqe2;
131                 __m128i rxdf1, rxdf2;
132 #ifdef MLX5_PMD_SOFT_COUNTERS
133                 __m128i byte_cnt, invalid_mask;
134 #endif
135
136                 if (!(pos & 0x7) && pos + 8 < mcqe_n)
137                         rte_prefetch0((void *)(cq + pos + 8));
138                 /* A.1 load mCQEs into a 128bit register. */
139                 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
140                 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
141                 /* B.1 store rearm data to mbuf. */
142                 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
143                 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
144                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
145                 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
146                 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
147                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
148                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
149                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
150                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
151                 /* D.1 store rx_descriptor_fields1. */
152                 _mm_storeu_si128((__m128i *)
153                                   &elts[pos]->rx_descriptor_fields1,
154                                  rxdf1);
155                 _mm_storeu_si128((__m128i *)
156                                   &elts[pos + 1]->rx_descriptor_fields1,
157                                  rxdf2);
158                 /* B.1 store rearm data to mbuf. */
159                 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
160                 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
161                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
162                 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
163                 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
164                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
165                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
166                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
167                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
168                 /* D.1 store rx_descriptor_fields1. */
169                 _mm_storeu_si128((__m128i *)
170                                   &elts[pos + 2]->rx_descriptor_fields1,
171                                  rxdf1);
172                 _mm_storeu_si128((__m128i *)
173                                   &elts[pos + 3]->rx_descriptor_fields1,
174                                  rxdf2);
175 #ifdef MLX5_PMD_SOFT_COUNTERS
176                 invalid_mask = _mm_set_epi64x(0,
177                                               (mcqe_n - pos) *
178                                               sizeof(uint16_t) * 8);
179                 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
180                 mcqe1 = _mm_srli_si128(mcqe1, 4);
181                 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
182                 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
183                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
184                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
185                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
186 #endif
187                 if (rxq->mark) {
188                         /* E.1 store flow tag (rte_flow mark). */
189                         elts[pos]->hash.fdir.hi = flow_tag;
190                         elts[pos + 1]->hash.fdir.hi = flow_tag;
191                         elts[pos + 2]->hash.fdir.hi = flow_tag;
192                         elts[pos + 3]->hash.fdir.hi = flow_tag;
193                 }
194                 pos += MLX5_VPMD_DESCS_PER_LOOP;
195                 /* Move to next CQE and invalidate consumed CQEs. */
196                 if (!(pos & 0x7) && pos < mcqe_n) {
197                         mcq = (void *)(cq + pos);
198                         for (i = 0; i < 8; ++i)
199                                 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
200                 }
201         }
202         /* Invalidate the rest of CQEs. */
203         for (; inv < mcqe_n; ++inv)
204                 cq[inv].op_own = MLX5_CQE_INVALIDATE;
205 #ifdef MLX5_PMD_SOFT_COUNTERS
206         rxq->stats.ipackets += mcqe_n;
207         rxq->stats.ibytes += rcvd_byte;
208 #endif
209         rxq->cq_ci += mcqe_n;
210         return mcqe_n;
211 }
212
213 /**
214  * Calculate packet type and offload flag for mbuf and store it.
215  *
216  * @param rxq
217  *   Pointer to RX queue structure.
218  * @param cqes[4]
219  *   Array of four 16bytes completions extracted from the original completion
220  *   descriptor.
221  * @param op_err
222  *   Opcode vector having responder error status. Each field is 4B.
223  * @param pkts
224  *   Pointer to array of packets to be filled.
225  */
226 static inline void
227 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
228                          __m128i op_err, struct rte_mbuf **pkts)
229 {
230         __m128i pinfo0, pinfo1;
231         __m128i pinfo, ptype;
232         __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
233                                           rxq->hw_timestamp * PKT_RX_TIMESTAMP);
234         __m128i cv_flags;
235         const __m128i zero = _mm_setzero_si128();
236         const __m128i ptype_mask =
237                 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
238         const __m128i ptype_ol_mask =
239                 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
240         const __m128i pinfo_mask =
241                 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
242         const __m128i cv_flag_sel =
243                 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
244                              (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
245                                         PKT_RX_L4_CKSUM_GOOD) >> 1),
246                              0,
247                              (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
248                              0,
249                              (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
250                              (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
251                              0);
252         const __m128i cv_mask =
253                 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
254                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
255                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
256                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
257                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
258                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
259                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
260                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
261         const __m128i mbuf_init =
262                 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
263         __m128i rearm0, rearm1, rearm2, rearm3;
264         uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
265
266         /* Extract pkt_info field. */
267         pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
268         pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
269         pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
270         /* Extract hdr_type_etc field. */
271         pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
272         pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
273         ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
274         if (rxq->mark) {
275                 const __m128i pinfo_ft_mask =
276                         _mm_set_epi32(0xffffff00, 0xffffff00,
277                                       0xffffff00, 0xffffff00);
278                 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
279                 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
280                 __m128i flow_tag, invalid_mask;
281
282                 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
283                 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
284                 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
285                 ol_flags = _mm_or_si128(ol_flags,
286                                         _mm_andnot_si128(invalid_mask,
287                                                          fdir_flags));
288                 /* Mask out invalid entries. */
289                 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
290                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
291                 ol_flags = _mm_or_si128(ol_flags,
292                                         _mm_andnot_si128(
293                                                 _mm_cmpeq_epi32(flow_tag,
294                                                                 pinfo_ft_mask),
295                                                 fdir_id_flags));
296         }
297         /*
298          * Merge the two fields to generate the following:
299          * bit[1]     = l3_ok
300          * bit[2]     = l4_ok
301          * bit[8]     = cv
302          * bit[11:10] = l3_hdr_type
303          * bit[14:12] = l4_hdr_type
304          * bit[15]    = ip_frag
305          * bit[16]    = tunneled
306          * bit[17]    = outer_l3_type
307          */
308         ptype = _mm_and_si128(ptype, ptype_mask);
309         pinfo = _mm_and_si128(pinfo, pinfo_mask);
310         pinfo = _mm_slli_epi32(pinfo, 16);
311         /* Make pinfo has merged fields for ol_flags calculation. */
312         pinfo = _mm_or_si128(ptype, pinfo);
313         ptype = _mm_srli_epi32(pinfo, 10);
314         ptype = _mm_packs_epi32(ptype, zero);
315         /* Errored packets will have RTE_PTYPE_ALL_MASK. */
316         op_err = _mm_srli_epi16(op_err, 8);
317         ptype = _mm_or_si128(ptype, op_err);
318         pt_idx0 = _mm_extract_epi8(ptype, 0);
319         pt_idx1 = _mm_extract_epi8(ptype, 2);
320         pt_idx2 = _mm_extract_epi8(ptype, 4);
321         pt_idx3 = _mm_extract_epi8(ptype, 6);
322         pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
323                                !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
324         pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
325                                !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
326         pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
327                                !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
328         pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
329                                !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
330         /* Fill flags for checksum and VLAN. */
331         pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
332         pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
333         /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
334         cv_flags = _mm_slli_epi32(pinfo, 9);
335         cv_flags = _mm_or_si128(pinfo, cv_flags);
336         /* Move back flags to start from byte[0]. */
337         cv_flags = _mm_srli_epi32(cv_flags, 8);
338         /* Mask out garbage bits. */
339         cv_flags = _mm_and_si128(cv_flags, cv_mask);
340         /* Merge to ol_flags. */
341         ol_flags = _mm_or_si128(ol_flags, cv_flags);
342         /* Merge mbuf_init and ol_flags. */
343         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
344         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
345         rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
346         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
347         /* Write 8B rearm_data and 8B ol_flags. */
348         _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
349         _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
350         _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
351         _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
352 }
353
354 /**
355  * Receive burst of packets. An errored completion also consumes a mbuf, but the
356  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
357  * before returning to application.
358  *
359  * @param rxq
360  *   Pointer to RX queue structure.
361  * @param[out] pkts
362  *   Array to store received packets.
363  * @param pkts_n
364  *   Maximum number of packets in array.
365  * @param[out] err
366  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
367  *   packet to handle.
368  *
369  * @return
370  *   Number of packets received including errors (<= pkts_n).
371  */
372 static inline uint16_t
373 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
374             uint64_t *err)
375 {
376         const uint16_t q_n = 1 << rxq->cqe_n;
377         const uint16_t q_mask = q_n - 1;
378         volatile struct mlx5_cqe *cq;
379         struct rte_mbuf **elts;
380         unsigned int pos;
381         uint64_t n;
382         uint16_t repl_n;
383         uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
384         uint16_t nocmp_n = 0;
385         uint16_t rcvd_pkt = 0;
386         unsigned int cq_idx = rxq->cq_ci & q_mask;
387         unsigned int elts_idx;
388         unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
389         const __m128i owner_check =
390                 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
391         const __m128i opcode_check =
392                 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
393         const __m128i format_check =
394                 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
395         const __m128i resp_err_check =
396                 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
397 #ifdef MLX5_PMD_SOFT_COUNTERS
398         uint32_t rcvd_byte = 0;
399         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
400         const __m128i len_shuf_mask =
401                 _mm_set_epi8(-1, -1, -1, -1,
402                              -1, -1, -1, -1,
403                              12, 13,  8,  9,
404                               4,  5,  0,  1);
405 #endif
406         /* Mask to shuffle from extracted CQE to mbuf. */
407         const __m128i shuf_mask =
408                 _mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
409                              12, 13, 14, 15, /* rss, bswap32 */
410                              10, 11,         /* vlan_tci, bswap16 */
411                               4,  5,         /* data_len, bswap16 */
412                              -1, -1,         /* zero out 2nd half of pkt_len */
413                               4,  5          /* pkt_len, bswap16 */);
414         /* Mask to blend from the last Qword to the first DQword. */
415         const __m128i blend_mask =
416                 _mm_set_epi8(-1, -1, -1, -1,
417                              -1, -1, -1, -1,
418                               0,  0,  0,  0,
419                               0,  0,  0, -1);
420         const __m128i zero = _mm_setzero_si128();
421         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
422         const __m128i crc_adj =
423                 _mm_set_epi16(0, 0, 0, 0, 0,
424                               rxq->crc_present * RTE_ETHER_CRC_LEN,
425                               0,
426                               rxq->crc_present * RTE_ETHER_CRC_LEN);
427         const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
428
429         assert(rxq->sges_n == 0);
430         assert(rxq->cqe_n == rxq->elts_n);
431         cq = &(*rxq->cqes)[cq_idx];
432         rte_prefetch0(cq);
433         rte_prefetch0(cq + 1);
434         rte_prefetch0(cq + 2);
435         rte_prefetch0(cq + 3);
436         pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
437         repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
438         if (repl_n >= rxq->rq_repl_thresh)
439                 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
440         /* See if there're unreturned mbufs from compressed CQE. */
441         rcvd_pkt = rxq->decompressed;
442         if (rcvd_pkt > 0) {
443                 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
444                 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
445                 rxq->rq_pi += rcvd_pkt;
446                 rxq->decompressed -= rcvd_pkt;
447                 pkts += rcvd_pkt;
448         }
449         elts_idx = rxq->rq_pi & q_mask;
450         elts = &(*rxq->elts)[elts_idx];
451         /* Not to overflow pkts array. */
452         pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
453         /* Not to cross queue end. */
454         pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
455         pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
456         if (!pkts_n)
457                 return rcvd_pkt;
458         /* At this point, there shouldn't be any remained packets. */
459         assert(rxq->decompressed == 0);
460         /*
461          * A. load first Qword (8bytes) in one loop.
462          * B. copy 4 mbuf pointers from elts ring to returing pkts.
463          * C. load remained CQE data and extract necessary fields.
464          *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
465          *    following structure:
466          *        struct {
467          *          uint8_t  pkt_info;
468          *          uint8_t  flow_tag[3];
469          *          uint16_t byte_cnt;
470          *          uint8_t  rsvd4;
471          *          uint8_t  op_own;
472          *          uint16_t hdr_type_etc;
473          *          uint16_t vlan_info;
474          *          uint32_t rx_has_res;
475          *        } c;
476          * D. fill in mbuf.
477          * E. get valid CQEs.
478          * F. find compressed CQE.
479          */
480         for (pos = 0;
481              pos < pkts_n;
482              pos += MLX5_VPMD_DESCS_PER_LOOP) {
483                 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
484                 __m128i cqe_tmp1, cqe_tmp2;
485                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
486                 __m128i op_own, op_own_tmp1, op_own_tmp2;
487                 __m128i opcode, owner_mask, invalid_mask;
488                 __m128i comp_mask;
489                 __m128i mask;
490 #ifdef MLX5_PMD_SOFT_COUNTERS
491                 __m128i byte_cnt;
492 #endif
493                 __m128i mbp1, mbp2;
494                 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
495                 unsigned int p1, p2, p3;
496
497                 /* Prefetch next 4 CQEs. */
498                 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
499                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
500                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
501                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
502                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
503                 }
504                 /* A.0 do not cross the end of CQ. */
505                 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
506                 mask = _mm_sll_epi64(ones, mask);
507                 p = _mm_andnot_si128(mask, p);
508                 /* A.1 load cqes. */
509                 p3 = _mm_extract_epi16(p, 3);
510                 cqes[3] = _mm_loadl_epi64((__m128i *)
511                                            &cq[pos + p3].sop_drop_qpn);
512                 rte_compiler_barrier();
513                 p2 = _mm_extract_epi16(p, 2);
514                 cqes[2] = _mm_loadl_epi64((__m128i *)
515                                            &cq[pos + p2].sop_drop_qpn);
516                 rte_compiler_barrier();
517                 /* B.1 load mbuf pointers. */
518                 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
519                 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
520                 /* A.1 load a block having op_own. */
521                 p1 = _mm_extract_epi16(p, 1);
522                 cqes[1] = _mm_loadl_epi64((__m128i *)
523                                            &cq[pos + p1].sop_drop_qpn);
524                 rte_compiler_barrier();
525                 cqes[0] = _mm_loadl_epi64((__m128i *)
526                                            &cq[pos].sop_drop_qpn);
527                 /* B.2 copy mbuf pointers. */
528                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
529                 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
530                 rte_cio_rmb();
531                 /* C.1 load remained CQE data and extract necessary fields. */
532                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
533                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
534                 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
535                 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
536                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
537                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
538                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
539                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
540                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
541                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
542                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
543                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
544                 /* C.2 generate final structure for mbuf with swapping bytes. */
545                 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
546                 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
547                 /* C.3 adjust CRC length. */
548                 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
549                 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
550                 /* C.4 adjust flow mark. */
551                 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
552                 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
553                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
554                 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
555                 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
556                 /* E.1 extract op_own field. */
557                 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
558                 /* C.1 load remained CQE data and extract necessary fields. */
559                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
560                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
561                 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
562                 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
563                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
564                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
565                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
566                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
567                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
568                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
569                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
570                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
571                 /* C.2 generate final structure for mbuf with swapping bytes. */
572                 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
573                 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
574                 /* C.3 adjust CRC length. */
575                 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
576                 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
577                 /* C.4 adjust flow mark. */
578                 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
579                 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
580                 /* E.1 extract op_own byte. */
581                 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
582                 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
583                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
584                 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
585                 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
586                 /* E.2 flip owner bit to mark CQEs from last round. */
587                 owner_mask = _mm_and_si128(op_own, owner_check);
588                 if (ownership)
589                         owner_mask = _mm_xor_si128(owner_mask, owner_check);
590                 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
591                 owner_mask = _mm_packs_epi32(owner_mask, zero);
592                 /* E.3 get mask for invalidated CQEs. */
593                 opcode = _mm_and_si128(op_own, opcode_check);
594                 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
595                 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
596                 /* E.4 mask out beyond boundary. */
597                 invalid_mask = _mm_or_si128(invalid_mask, mask);
598                 /* E.5 merge invalid_mask with invalid owner. */
599                 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
600                 /* F.1 find compressed CQE format. */
601                 comp_mask = _mm_and_si128(op_own, format_check);
602                 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
603                 comp_mask = _mm_packs_epi32(comp_mask, zero);
604                 /* F.2 mask out invalid entries. */
605                 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
606                 comp_idx = _mm_cvtsi128_si64(comp_mask);
607                 /* F.3 get the first compressed CQE. */
608                 comp_idx = comp_idx ?
609                                 __builtin_ctzll(comp_idx) /
610                                         (sizeof(uint16_t) * 8) :
611                                 MLX5_VPMD_DESCS_PER_LOOP;
612                 /* E.6 mask out entries after the compressed CQE. */
613                 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
614                 mask = _mm_sll_epi64(ones, mask);
615                 invalid_mask = _mm_or_si128(invalid_mask, mask);
616                 /* E.7 count non-compressed valid CQEs. */
617                 n = _mm_cvtsi128_si64(invalid_mask);
618                 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
619                         MLX5_VPMD_DESCS_PER_LOOP;
620                 nocmp_n += n;
621                 /* D.2 get the final invalid mask. */
622                 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
623                 mask = _mm_sll_epi64(ones, mask);
624                 invalid_mask = _mm_or_si128(invalid_mask, mask);
625                 /* D.3 check error in opcode. */
626                 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
627                 opcode = _mm_packs_epi32(opcode, zero);
628                 opcode = _mm_andnot_si128(invalid_mask, opcode);
629                 /* D.4 mark if any error is set */
630                 *err |= _mm_cvtsi128_si64(opcode);
631                 /* D.5 fill in mbuf - rearm_data and packet_type. */
632                 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
633                 if (rxq->hw_timestamp) {
634                         pkts[pos]->timestamp =
635                                 rte_be_to_cpu_64(cq[pos].timestamp);
636                         pkts[pos + 1]->timestamp =
637                                 rte_be_to_cpu_64(cq[pos + p1].timestamp);
638                         pkts[pos + 2]->timestamp =
639                                 rte_be_to_cpu_64(cq[pos + p2].timestamp);
640                         pkts[pos + 3]->timestamp =
641                                 rte_be_to_cpu_64(cq[pos + p3].timestamp);
642                 }
643                 if (rte_flow_dynf_metadata_avail()) {
644                         /* This code is subject for futher optimization. */
645                         *RTE_FLOW_DYNF_METADATA(pkts[pos]) =
646                                 cq[pos].flow_table_metadata;
647                         *RTE_FLOW_DYNF_METADATA(pkts[pos + 1]) =
648                                 cq[pos + p1].flow_table_metadata;
649                         *RTE_FLOW_DYNF_METADATA(pkts[pos + 2]) =
650                                 cq[pos + p2].flow_table_metadata;
651                         *RTE_FLOW_DYNF_METADATA(pkts[pos + 3]) =
652                                 cq[pos + p3].flow_table_metadata;
653                         if (*RTE_FLOW_DYNF_METADATA(pkts[pos]))
654                                 pkts[pos]->ol_flags |= PKT_RX_DYNF_METADATA;
655                         if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 1]))
656                                 pkts[pos + 1]->ol_flags |= PKT_RX_DYNF_METADATA;
657                         if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 2]))
658                                 pkts[pos + 2]->ol_flags |= PKT_RX_DYNF_METADATA;
659                         if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 3]))
660                                 pkts[pos + 3]->ol_flags |= PKT_RX_DYNF_METADATA;
661                 }
662 #ifdef MLX5_PMD_SOFT_COUNTERS
663                 /* Add up received bytes count. */
664                 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
665                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
666                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
667                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
668 #endif
669                 /*
670                  * Break the loop unless more valid CQE is expected, or if
671                  * there's a compressed CQE.
672                  */
673                 if (n != MLX5_VPMD_DESCS_PER_LOOP)
674                         break;
675         }
676         /* If no new CQE seen, return without updating cq_db. */
677         if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
678                 return rcvd_pkt;
679         /* Update the consumer indexes for non-compressed CQEs. */
680         assert(nocmp_n <= pkts_n);
681         rxq->cq_ci += nocmp_n;
682         rxq->rq_pi += nocmp_n;
683         rcvd_pkt += nocmp_n;
684 #ifdef MLX5_PMD_SOFT_COUNTERS
685         rxq->stats.ipackets += nocmp_n;
686         rxq->stats.ibytes += rcvd_byte;
687 #endif
688         /* Decompress the last CQE if compressed. */
689         if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
690                 assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
691                 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
692                                                         &elts[nocmp_n]);
693                 /* Return more packets if needed. */
694                 if (nocmp_n < pkts_n) {
695                         uint16_t n = rxq->decompressed;
696
697                         n = RTE_MIN(n, pkts_n - nocmp_n);
698                         rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
699                         rxq->rq_pi += n;
700                         rcvd_pkt += n;
701                         rxq->decompressed -= n;
702                 }
703         }
704         rte_compiler_barrier();
705         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
706         return rcvd_pkt;
707 }
708
709 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */