net/mlx5: set dynamic flow metadata in Rx queues
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17
18 #include <mlx5_prm.h>
19
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param rxq
35  *   Pointer to RX queue structure.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44         const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45         struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46         unsigned int pos;
47         uint16_t p = n & -2;
48
49         for (pos = 0; pos < p; pos += 2) {
50                 __m128i mbp;
51
52                 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54         }
55         if (n & 1)
56                 pkts[pos] = elts[pos];
57 }
58
59 /**
60  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61  * extracted from the title completion descriptor.
62  *
63  * @param rxq
64  *   Pointer to RX queue structure.
65  * @param cq
66  *   Pointer to completion array having a compressed completion at first.
67  * @param elts
68  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69  *   the title completion descriptor to be copied to the rest of mbufs.
70  *
71  * @return
72  *   Number of mini-CQEs successfully decompressed.
73  */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76                     struct rte_mbuf **elts)
77 {
78         volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79         struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80         unsigned int pos;
81         unsigned int i;
82         unsigned int inv = 0;
83         /* Mask to shuffle from extracted mini CQE to mbuf. */
84         const __m128i shuf_mask1 =
85                 _mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
86                             -1, -1,         /* skip vlan_tci */
87                              6,  7,         /* data_len, bswap16 */
88                             -1, -1,  6,  7, /* pkt_len, bswap16 */
89                             -1, -1, -1, -1  /* skip packet_type */);
90         const __m128i shuf_mask2 =
91                 _mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
92                             -1, -1,         /* skip vlan_tci */
93                             14, 15,         /* data_len, bswap16 */
94                             -1, -1, 14, 15, /* pkt_len, bswap16 */
95                             -1, -1, -1, -1  /* skip packet_type */);
96         /* Restore the compressed count. Must be 16 bits. */
97         const uint16_t mcqe_n = t_pkt->data_len +
98                                 (rxq->crc_present * RTE_ETHER_CRC_LEN);
99         const __m128i rearm =
100                 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101         const __m128i rxdf =
102                 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103         const __m128i crc_adj =
104                 _mm_set_epi16(0, 0, 0,
105                               rxq->crc_present * RTE_ETHER_CRC_LEN,
106                               0,
107                               rxq->crc_present * RTE_ETHER_CRC_LEN,
108                               0, 0);
109         const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111         const __m128i zero = _mm_setzero_si128();
112         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113         uint32_t rcvd_byte = 0;
114         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115         const __m128i len_shuf_mask =
116                 _mm_set_epi8(-1, -1, -1, -1,
117                              -1, -1, -1, -1,
118                              14, 15,  6,  7,
119                              10, 11,  2,  3);
120 #endif
121         /*
122          * A. load mCQEs into a 128bit register.
123          * B. store rearm data to mbuf.
124          * C. combine data from mCQEs with rx_descriptor_fields1.
125          * D. store rx_descriptor_fields1.
126          * E. store flow tag (rte_flow mark).
127          */
128         for (pos = 0; pos < mcqe_n; ) {
129                 __m128i mcqe1, mcqe2;
130                 __m128i rxdf1, rxdf2;
131 #ifdef MLX5_PMD_SOFT_COUNTERS
132                 __m128i byte_cnt, invalid_mask;
133 #endif
134
135                 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
136                         if (likely(pos + i < mcqe_n))
137                                 rte_prefetch0((void *)(cq + pos + i));
138
139                 /* A.1 load mCQEs into a 128bit register. */
140                 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
141                 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
142                 /* B.1 store rearm data to mbuf. */
143                 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
144                 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
145                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
146                 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
147                 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
148                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
149                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
150                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
151                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
152                 /* D.1 store rx_descriptor_fields1. */
153                 _mm_storeu_si128((__m128i *)
154                                   &elts[pos]->rx_descriptor_fields1,
155                                  rxdf1);
156                 _mm_storeu_si128((__m128i *)
157                                   &elts[pos + 1]->rx_descriptor_fields1,
158                                  rxdf2);
159                 /* B.1 store rearm data to mbuf. */
160                 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
161                 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
162                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
163                 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
164                 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
165                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
166                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
167                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
168                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
169                 /* D.1 store rx_descriptor_fields1. */
170                 _mm_storeu_si128((__m128i *)
171                                   &elts[pos + 2]->rx_descriptor_fields1,
172                                  rxdf1);
173                 _mm_storeu_si128((__m128i *)
174                                   &elts[pos + 3]->rx_descriptor_fields1,
175                                  rxdf2);
176 #ifdef MLX5_PMD_SOFT_COUNTERS
177                 invalid_mask = _mm_set_epi64x(0,
178                                               (mcqe_n - pos) *
179                                               sizeof(uint16_t) * 8);
180                 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
181                 mcqe1 = _mm_srli_si128(mcqe1, 4);
182                 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
183                 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
184                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
185                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
186                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
187 #endif
188                 if (rxq->mark) {
189                         /* E.1 store flow tag (rte_flow mark). */
190                         elts[pos]->hash.fdir.hi = flow_tag;
191                         elts[pos + 1]->hash.fdir.hi = flow_tag;
192                         elts[pos + 2]->hash.fdir.hi = flow_tag;
193                         elts[pos + 3]->hash.fdir.hi = flow_tag;
194                 }
195                 if (rxq->dynf_meta) {
196                         int32_t offs = rxq->flow_meta_offset;
197                         const uint32_t meta =
198                                 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
199
200                         /* Check if title packet has valid metadata. */
201                         if (meta) {
202                                 MLX5_ASSERT(t_pkt->ol_flags & offs);
203                                 *RTE_MBUF_DYNFIELD(elts[pos], offs,
204                                                         uint32_t *) = meta;
205                                 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
206                                                         uint32_t *) = meta;
207                                 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
208                                                         uint32_t *) = meta;
209                                 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
210                                                         uint32_t *) = meta;
211                         }
212                 }
213                 pos += MLX5_VPMD_DESCS_PER_LOOP;
214                 /* Move to next CQE and invalidate consumed CQEs. */
215                 if (!(pos & 0x7) && pos < mcqe_n) {
216                         mcq = (void *)(cq + pos);
217                         for (i = 0; i < 8; ++i)
218                                 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
219                 }
220         }
221         /* Invalidate the rest of CQEs. */
222         for (; inv < mcqe_n; ++inv)
223                 cq[inv].op_own = MLX5_CQE_INVALIDATE;
224 #ifdef MLX5_PMD_SOFT_COUNTERS
225         rxq->stats.ipackets += mcqe_n;
226         rxq->stats.ibytes += rcvd_byte;
227 #endif
228         rxq->cq_ci += mcqe_n;
229         return mcqe_n;
230 }
231
232 /**
233  * Calculate packet type and offload flag for mbuf and store it.
234  *
235  * @param rxq
236  *   Pointer to RX queue structure.
237  * @param cqes[4]
238  *   Array of four 16bytes completions extracted from the original completion
239  *   descriptor.
240  * @param op_err
241  *   Opcode vector having responder error status. Each field is 4B.
242  * @param pkts
243  *   Pointer to array of packets to be filled.
244  */
245 static inline void
246 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
247                          __m128i op_err, struct rte_mbuf **pkts)
248 {
249         __m128i pinfo0, pinfo1;
250         __m128i pinfo, ptype;
251         __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
252                                           rxq->hw_timestamp * PKT_RX_TIMESTAMP);
253         __m128i cv_flags;
254         const __m128i zero = _mm_setzero_si128();
255         const __m128i ptype_mask =
256                 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
257         const __m128i ptype_ol_mask =
258                 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
259         const __m128i pinfo_mask =
260                 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
261         const __m128i cv_flag_sel =
262                 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
263                              (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
264                                         PKT_RX_L4_CKSUM_GOOD) >> 1),
265                              0,
266                              (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
267                              0,
268                              (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
269                              (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
270                              0);
271         const __m128i cv_mask =
272                 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
273                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
274                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
275                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
276                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
277                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
278                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
279                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
280         const __m128i mbuf_init =
281                 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
282         __m128i rearm0, rearm1, rearm2, rearm3;
283         uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
284
285         /* Extract pkt_info field. */
286         pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
287         pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
288         pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
289         /* Extract hdr_type_etc field. */
290         pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
291         pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
292         ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
293         if (rxq->mark) {
294                 const __m128i pinfo_ft_mask =
295                         _mm_set_epi32(0xffffff00, 0xffffff00,
296                                       0xffffff00, 0xffffff00);
297                 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
298                 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
299                 __m128i flow_tag, invalid_mask;
300
301                 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
302                 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
303                 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
304                 ol_flags = _mm_or_si128(ol_flags,
305                                         _mm_andnot_si128(invalid_mask,
306                                                          fdir_flags));
307                 /* Mask out invalid entries. */
308                 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
309                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
310                 ol_flags = _mm_or_si128(ol_flags,
311                                         _mm_andnot_si128(
312                                                 _mm_cmpeq_epi32(flow_tag,
313                                                                 pinfo_ft_mask),
314                                                 fdir_id_flags));
315         }
316         /*
317          * Merge the two fields to generate the following:
318          * bit[1]     = l3_ok
319          * bit[2]     = l4_ok
320          * bit[8]     = cv
321          * bit[11:10] = l3_hdr_type
322          * bit[14:12] = l4_hdr_type
323          * bit[15]    = ip_frag
324          * bit[16]    = tunneled
325          * bit[17]    = outer_l3_type
326          */
327         ptype = _mm_and_si128(ptype, ptype_mask);
328         pinfo = _mm_and_si128(pinfo, pinfo_mask);
329         pinfo = _mm_slli_epi32(pinfo, 16);
330         /* Make pinfo has merged fields for ol_flags calculation. */
331         pinfo = _mm_or_si128(ptype, pinfo);
332         ptype = _mm_srli_epi32(pinfo, 10);
333         ptype = _mm_packs_epi32(ptype, zero);
334         /* Errored packets will have RTE_PTYPE_ALL_MASK. */
335         op_err = _mm_srli_epi16(op_err, 8);
336         ptype = _mm_or_si128(ptype, op_err);
337         pt_idx0 = _mm_extract_epi8(ptype, 0);
338         pt_idx1 = _mm_extract_epi8(ptype, 2);
339         pt_idx2 = _mm_extract_epi8(ptype, 4);
340         pt_idx3 = _mm_extract_epi8(ptype, 6);
341         pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
342                                !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
343         pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
344                                !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
345         pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
346                                !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
347         pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
348                                !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
349         /* Fill flags for checksum and VLAN. */
350         pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
351         pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
352         /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
353         cv_flags = _mm_slli_epi32(pinfo, 9);
354         cv_flags = _mm_or_si128(pinfo, cv_flags);
355         /* Move back flags to start from byte[0]. */
356         cv_flags = _mm_srli_epi32(cv_flags, 8);
357         /* Mask out garbage bits. */
358         cv_flags = _mm_and_si128(cv_flags, cv_mask);
359         /* Merge to ol_flags. */
360         ol_flags = _mm_or_si128(ol_flags, cv_flags);
361         /* Merge mbuf_init and ol_flags. */
362         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
363         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
364         rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
365         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
366         /* Write 8B rearm_data and 8B ol_flags. */
367         _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
368         _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
369         _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
370         _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
371 }
372
373 /**
374  * Receive burst of packets. An errored completion also consumes a mbuf, but the
375  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
376  * before returning to application.
377  *
378  * @param rxq
379  *   Pointer to RX queue structure.
380  * @param[out] pkts
381  *   Array to store received packets.
382  * @param pkts_n
383  *   Maximum number of packets in array.
384  * @param[out] err
385  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
386  *   packet to handle.
387  *
388  * @return
389  *   Number of packets received including errors (<= pkts_n).
390  */
391 static inline uint16_t
392 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
393             uint64_t *err)
394 {
395         const uint16_t q_n = 1 << rxq->cqe_n;
396         const uint16_t q_mask = q_n - 1;
397         volatile struct mlx5_cqe *cq;
398         struct rte_mbuf **elts;
399         unsigned int pos;
400         uint64_t n;
401         uint16_t repl_n;
402         uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
403         uint16_t nocmp_n = 0;
404         uint16_t rcvd_pkt = 0;
405         unsigned int cq_idx = rxq->cq_ci & q_mask;
406         unsigned int elts_idx;
407         unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
408         const __m128i owner_check =
409                 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
410         const __m128i opcode_check =
411                 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
412         const __m128i format_check =
413                 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
414         const __m128i resp_err_check =
415                 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
416 #ifdef MLX5_PMD_SOFT_COUNTERS
417         uint32_t rcvd_byte = 0;
418         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
419         const __m128i len_shuf_mask =
420                 _mm_set_epi8(-1, -1, -1, -1,
421                              -1, -1, -1, -1,
422                              12, 13,  8,  9,
423                               4,  5,  0,  1);
424 #endif
425         /* Mask to shuffle from extracted CQE to mbuf. */
426         const __m128i shuf_mask =
427                 _mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
428                              12, 13, 14, 15, /* rss, bswap32 */
429                              10, 11,         /* vlan_tci, bswap16 */
430                               4,  5,         /* data_len, bswap16 */
431                              -1, -1,         /* zero out 2nd half of pkt_len */
432                               4,  5          /* pkt_len, bswap16 */);
433         /* Mask to blend from the last Qword to the first DQword. */
434         const __m128i blend_mask =
435                 _mm_set_epi8(-1, -1, -1, -1,
436                              -1, -1, -1, -1,
437                               0,  0,  0,  0,
438                               0,  0,  0, -1);
439         const __m128i zero = _mm_setzero_si128();
440         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
441         const __m128i crc_adj =
442                 _mm_set_epi16(0, 0, 0, 0, 0,
443                               rxq->crc_present * RTE_ETHER_CRC_LEN,
444                               0,
445                               rxq->crc_present * RTE_ETHER_CRC_LEN);
446         const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
447
448         MLX5_ASSERT(rxq->sges_n == 0);
449         MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
450         cq = &(*rxq->cqes)[cq_idx];
451         rte_prefetch0(cq);
452         rte_prefetch0(cq + 1);
453         rte_prefetch0(cq + 2);
454         rte_prefetch0(cq + 3);
455         pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
456         repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
457         if (repl_n >= rxq->rq_repl_thresh)
458                 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
459         /* See if there're unreturned mbufs from compressed CQE. */
460         rcvd_pkt = rxq->decompressed;
461         if (rcvd_pkt > 0) {
462                 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
463                 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
464                 rxq->rq_pi += rcvd_pkt;
465                 rxq->decompressed -= rcvd_pkt;
466                 pkts += rcvd_pkt;
467         }
468         elts_idx = rxq->rq_pi & q_mask;
469         elts = &(*rxq->elts)[elts_idx];
470         /* Not to overflow pkts array. */
471         pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
472         /* Not to cross queue end. */
473         pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
474         pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
475         if (!pkts_n)
476                 return rcvd_pkt;
477         /* At this point, there shouldn't be any remained packets. */
478         MLX5_ASSERT(rxq->decompressed == 0);
479         /*
480          * A. load first Qword (8bytes) in one loop.
481          * B. copy 4 mbuf pointers from elts ring to returing pkts.
482          * C. load remained CQE data and extract necessary fields.
483          *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
484          *    following structure:
485          *        struct {
486          *          uint8_t  pkt_info;
487          *          uint8_t  flow_tag[3];
488          *          uint16_t byte_cnt;
489          *          uint8_t  rsvd4;
490          *          uint8_t  op_own;
491          *          uint16_t hdr_type_etc;
492          *          uint16_t vlan_info;
493          *          uint32_t rx_has_res;
494          *        } c;
495          * D. fill in mbuf.
496          * E. get valid CQEs.
497          * F. find compressed CQE.
498          */
499         for (pos = 0;
500              pos < pkts_n;
501              pos += MLX5_VPMD_DESCS_PER_LOOP) {
502                 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
503                 __m128i cqe_tmp1, cqe_tmp2;
504                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
505                 __m128i op_own, op_own_tmp1, op_own_tmp2;
506                 __m128i opcode, owner_mask, invalid_mask;
507                 __m128i comp_mask;
508                 __m128i mask;
509 #ifdef MLX5_PMD_SOFT_COUNTERS
510                 __m128i byte_cnt;
511 #endif
512                 __m128i mbp1, mbp2;
513                 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
514                 unsigned int p1, p2, p3;
515
516                 /* Prefetch next 4 CQEs. */
517                 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
518                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
519                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
520                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
521                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
522                 }
523                 /* A.0 do not cross the end of CQ. */
524                 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
525                 mask = _mm_sll_epi64(ones, mask);
526                 p = _mm_andnot_si128(mask, p);
527                 /* A.1 load cqes. */
528                 p3 = _mm_extract_epi16(p, 3);
529                 cqes[3] = _mm_loadl_epi64((__m128i *)
530                                            &cq[pos + p3].sop_drop_qpn);
531                 rte_compiler_barrier();
532                 p2 = _mm_extract_epi16(p, 2);
533                 cqes[2] = _mm_loadl_epi64((__m128i *)
534                                            &cq[pos + p2].sop_drop_qpn);
535                 rte_compiler_barrier();
536                 /* B.1 load mbuf pointers. */
537                 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
538                 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
539                 /* A.1 load a block having op_own. */
540                 p1 = _mm_extract_epi16(p, 1);
541                 cqes[1] = _mm_loadl_epi64((__m128i *)
542                                            &cq[pos + p1].sop_drop_qpn);
543                 rte_compiler_barrier();
544                 cqes[0] = _mm_loadl_epi64((__m128i *)
545                                            &cq[pos].sop_drop_qpn);
546                 /* B.2 copy mbuf pointers. */
547                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
548                 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
549                 rte_cio_rmb();
550                 /* C.1 load remained CQE data and extract necessary fields. */
551                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
552                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
553                 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
554                 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
555                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
556                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
557                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
558                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
559                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
560                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
561                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
562                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
563                 /* C.2 generate final structure for mbuf with swapping bytes. */
564                 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
565                 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
566                 /* C.3 adjust CRC length. */
567                 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
568                 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
569                 /* C.4 adjust flow mark. */
570                 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
571                 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
572                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
573                 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
574                 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
575                 /* E.1 extract op_own field. */
576                 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
577                 /* C.1 load remained CQE data and extract necessary fields. */
578                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
579                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
580                 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
581                 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
582                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
583                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
584                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
585                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
586                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
587                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
588                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
589                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
590                 /* C.2 generate final structure for mbuf with swapping bytes. */
591                 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
592                 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
593                 /* C.3 adjust CRC length. */
594                 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
595                 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
596                 /* C.4 adjust flow mark. */
597                 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
598                 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
599                 /* E.1 extract op_own byte. */
600                 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
601                 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
602                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
603                 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
604                 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
605                 /* E.2 flip owner bit to mark CQEs from last round. */
606                 owner_mask = _mm_and_si128(op_own, owner_check);
607                 if (ownership)
608                         owner_mask = _mm_xor_si128(owner_mask, owner_check);
609                 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
610                 owner_mask = _mm_packs_epi32(owner_mask, zero);
611                 /* E.3 get mask for invalidated CQEs. */
612                 opcode = _mm_and_si128(op_own, opcode_check);
613                 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
614                 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
615                 /* E.4 mask out beyond boundary. */
616                 invalid_mask = _mm_or_si128(invalid_mask, mask);
617                 /* E.5 merge invalid_mask with invalid owner. */
618                 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
619                 /* F.1 find compressed CQE format. */
620                 comp_mask = _mm_and_si128(op_own, format_check);
621                 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
622                 comp_mask = _mm_packs_epi32(comp_mask, zero);
623                 /* F.2 mask out invalid entries. */
624                 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
625                 comp_idx = _mm_cvtsi128_si64(comp_mask);
626                 /* F.3 get the first compressed CQE. */
627                 comp_idx = comp_idx ?
628                                 __builtin_ctzll(comp_idx) /
629                                         (sizeof(uint16_t) * 8) :
630                                 MLX5_VPMD_DESCS_PER_LOOP;
631                 /* E.6 mask out entries after the compressed CQE. */
632                 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
633                 mask = _mm_sll_epi64(ones, mask);
634                 invalid_mask = _mm_or_si128(invalid_mask, mask);
635                 /* E.7 count non-compressed valid CQEs. */
636                 n = _mm_cvtsi128_si64(invalid_mask);
637                 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
638                         MLX5_VPMD_DESCS_PER_LOOP;
639                 nocmp_n += n;
640                 /* D.2 get the final invalid mask. */
641                 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
642                 mask = _mm_sll_epi64(ones, mask);
643                 invalid_mask = _mm_or_si128(invalid_mask, mask);
644                 /* D.3 check error in opcode. */
645                 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
646                 opcode = _mm_packs_epi32(opcode, zero);
647                 opcode = _mm_andnot_si128(invalid_mask, opcode);
648                 /* D.4 mark if any error is set */
649                 *err |= _mm_cvtsi128_si64(opcode);
650                 /* D.5 fill in mbuf - rearm_data and packet_type. */
651                 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
652                 if (rxq->hw_timestamp) {
653                         pkts[pos]->timestamp =
654                                 rte_be_to_cpu_64(cq[pos].timestamp);
655                         pkts[pos + 1]->timestamp =
656                                 rte_be_to_cpu_64(cq[pos + p1].timestamp);
657                         pkts[pos + 2]->timestamp =
658                                 rte_be_to_cpu_64(cq[pos + p2].timestamp);
659                         pkts[pos + 3]->timestamp =
660                                 rte_be_to_cpu_64(cq[pos + p3].timestamp);
661                 }
662                 if (rxq->dynf_meta) {
663                         /* This code is subject for futher optimization. */
664                         int32_t offs = rxq->flow_meta_offset;
665
666                         *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
667                                 cq[pos].flow_table_metadata;
668                         *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
669                                 cq[pos + p1].flow_table_metadata;
670                         *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
671                                 cq[pos + p2].flow_table_metadata;
672                         *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
673                                 cq[pos + p3].flow_table_metadata;
674                         if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
675                                 pkts[pos]->ol_flags |= rxq->flow_meta_mask;
676                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
677                                 pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
678                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
679                                 pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
680                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
681                                 pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
682                 }
683 #ifdef MLX5_PMD_SOFT_COUNTERS
684                 /* Add up received bytes count. */
685                 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
686                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
687                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
688                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
689 #endif
690                 /*
691                  * Break the loop unless more valid CQE is expected, or if
692                  * there's a compressed CQE.
693                  */
694                 if (n != MLX5_VPMD_DESCS_PER_LOOP)
695                         break;
696         }
697         /* If no new CQE seen, return without updating cq_db. */
698         if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
699                 return rcvd_pkt;
700         /* Update the consumer indexes for non-compressed CQEs. */
701         MLX5_ASSERT(nocmp_n <= pkts_n);
702         rxq->cq_ci += nocmp_n;
703         rxq->rq_pi += nocmp_n;
704         rcvd_pkt += nocmp_n;
705 #ifdef MLX5_PMD_SOFT_COUNTERS
706         rxq->stats.ipackets += nocmp_n;
707         rxq->stats.ibytes += rcvd_byte;
708 #endif
709         /* Decompress the last CQE if compressed. */
710         if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
711                 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
712                 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
713                                                         &elts[nocmp_n]);
714                 /* Return more packets if needed. */
715                 if (nocmp_n < pkts_n) {
716                         uint16_t n = rxq->decompressed;
717
718                         n = RTE_MIN(n, pkts_n - nocmp_n);
719                         rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
720                         rxq->rq_pi += n;
721                         rcvd_pkt += n;
722                         rxq->decompressed -= n;
723                 }
724         }
725         rte_compiler_barrier();
726         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
727         return rcvd_pkt;
728 }
729
730 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */