net/pcap: build on Windows
[dpdk.git] / drivers / net / pcap / pcap_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <pcap.h>
10
11 #include <rte_cycles.h>
12 #include <ethdev_driver.h>
13 #include <ethdev_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_malloc.h>
16 #include <rte_mbuf.h>
17 #include <rte_mbuf_dyn.h>
18 #include <rte_bus_vdev.h>
19 #include <rte_os_shim.h>
20
21 #include "pcap_osdep.h"
22
23 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
24 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
25 #define RTE_ETH_PCAP_PROMISC 1
26 #define RTE_ETH_PCAP_TIMEOUT -1
27
28 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
29 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
30 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
31 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
32 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
33 #define ETH_PCAP_IFACE_ARG    "iface"
34 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
35 #define ETH_PCAP_INFINITE_RX_ARG  "infinite_rx"
36
37 #define ETH_PCAP_ARG_MAXLEN     64
38
39 #define RTE_PMD_PCAP_MAX_QUEUES 16
40
41 static char errbuf[PCAP_ERRBUF_SIZE];
42 static struct timespec start_time;
43 static uint64_t start_cycles;
44 static uint64_t hz;
45 static uint8_t iface_idx;
46
47 static uint64_t timestamp_rx_dynflag;
48 static int timestamp_dynfield_offset = -1;
49
50 struct queue_stat {
51         volatile unsigned long pkts;
52         volatile unsigned long bytes;
53         volatile unsigned long err_pkts;
54 };
55
56 struct queue_missed_stat {
57         /* last value retrieved from pcap */
58         unsigned int pcap;
59         /* stores values lost by pcap stop or rollover */
60         unsigned long mnemonic;
61         /* value on last reset */
62         unsigned long reset;
63 };
64
65 struct pcap_rx_queue {
66         uint16_t port_id;
67         uint16_t queue_id;
68         struct rte_mempool *mb_pool;
69         struct queue_stat rx_stat;
70         struct queue_missed_stat missed_stat;
71         char name[PATH_MAX];
72         char type[ETH_PCAP_ARG_MAXLEN];
73
74         /* Contains pre-generated packets to be looped through */
75         struct rte_ring *pkts;
76 };
77
78 struct pcap_tx_queue {
79         uint16_t port_id;
80         uint16_t queue_id;
81         struct queue_stat tx_stat;
82         char name[PATH_MAX];
83         char type[ETH_PCAP_ARG_MAXLEN];
84 };
85
86 struct pmd_internals {
87         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
88         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
89         char devargs[ETH_PCAP_ARG_MAXLEN];
90         struct rte_ether_addr eth_addr;
91         int if_index;
92         int single_iface;
93         int phy_mac;
94         unsigned int infinite_rx;
95 };
96
97 struct pmd_process_private {
98         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
99         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
100         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
101 };
102
103 struct pmd_devargs {
104         unsigned int num_of_queue;
105         struct devargs_queue {
106                 pcap_dumper_t *dumper;
107                 pcap_t *pcap;
108                 const char *name;
109                 const char *type;
110         } queue[RTE_PMD_PCAP_MAX_QUEUES];
111         int phy_mac;
112 };
113
114 struct pmd_devargs_all {
115         struct pmd_devargs rx_queues;
116         struct pmd_devargs tx_queues;
117         int single_iface;
118         unsigned int is_tx_pcap;
119         unsigned int is_tx_iface;
120         unsigned int is_rx_pcap;
121         unsigned int is_rx_iface;
122         unsigned int infinite_rx;
123 };
124
125 static const char *valid_arguments[] = {
126         ETH_PCAP_RX_PCAP_ARG,
127         ETH_PCAP_TX_PCAP_ARG,
128         ETH_PCAP_RX_IFACE_ARG,
129         ETH_PCAP_RX_IFACE_IN_ARG,
130         ETH_PCAP_TX_IFACE_ARG,
131         ETH_PCAP_IFACE_ARG,
132         ETH_PCAP_PHY_MAC_ARG,
133         ETH_PCAP_INFINITE_RX_ARG,
134         NULL
135 };
136
137 static struct rte_eth_link pmd_link = {
138                 .link_speed = ETH_SPEED_NUM_10G,
139                 .link_duplex = ETH_LINK_FULL_DUPLEX,
140                 .link_status = ETH_LINK_DOWN,
141                 .link_autoneg = ETH_LINK_FIXED,
142 };
143
144 RTE_LOG_REGISTER(eth_pcap_logtype, pmd.net.pcap, NOTICE);
145
146 static struct queue_missed_stat*
147 queue_missed_stat_update(struct rte_eth_dev *dev, unsigned int qid)
148 {
149         struct pmd_internals *internals = dev->data->dev_private;
150         struct queue_missed_stat *missed_stat =
151                         &internals->rx_queue[qid].missed_stat;
152         const struct pmd_process_private *pp = dev->process_private;
153         pcap_t *pcap = pp->rx_pcap[qid];
154         struct pcap_stat stat;
155
156         if (!pcap || (pcap_stats(pcap, &stat) != 0))
157                 return missed_stat;
158
159         /* rollover check - best effort fixup assuming single rollover */
160         if (stat.ps_drop < missed_stat->pcap)
161                 missed_stat->mnemonic += UINT_MAX;
162         missed_stat->pcap = stat.ps_drop;
163
164         return missed_stat;
165 }
166
167 static void
168 queue_missed_stat_on_stop_update(struct rte_eth_dev *dev, unsigned int qid)
169 {
170         struct queue_missed_stat *missed_stat =
171                         queue_missed_stat_update(dev, qid);
172
173         missed_stat->mnemonic += missed_stat->pcap;
174         missed_stat->pcap = 0;
175 }
176
177 static void
178 queue_missed_stat_reset(struct rte_eth_dev *dev, unsigned int qid)
179 {
180         struct queue_missed_stat *missed_stat =
181                         queue_missed_stat_update(dev, qid);
182
183         missed_stat->reset = missed_stat->pcap;
184         missed_stat->mnemonic = 0;
185 }
186
187 static unsigned long
188 queue_missed_stat_get(struct rte_eth_dev *dev, unsigned int qid)
189 {
190         const struct queue_missed_stat *missed_stat =
191                         queue_missed_stat_update(dev, qid);
192
193         return missed_stat->pcap + missed_stat->mnemonic - missed_stat->reset;
194 }
195
196 static int
197 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
198                 const u_char *data, uint16_t data_len)
199 {
200         /* Copy the first segment. */
201         uint16_t len = rte_pktmbuf_tailroom(mbuf);
202         struct rte_mbuf *m = mbuf;
203
204         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
205         data_len -= len;
206         data += len;
207
208         while (data_len > 0) {
209                 /* Allocate next mbuf and point to that. */
210                 m->next = rte_pktmbuf_alloc(mb_pool);
211
212                 if (unlikely(!m->next))
213                         return -1;
214
215                 m = m->next;
216
217                 /* Headroom is not needed in chained mbufs. */
218                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
219                 m->pkt_len = 0;
220                 m->data_len = 0;
221
222                 /* Copy next segment. */
223                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
224                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
225
226                 mbuf->nb_segs++;
227                 data_len -= len;
228                 data += len;
229         }
230
231         return mbuf->nb_segs;
232 }
233
234 static uint16_t
235 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
236 {
237         int i;
238         struct pcap_rx_queue *pcap_q = queue;
239         uint32_t rx_bytes = 0;
240
241         if (unlikely(nb_pkts == 0))
242                 return 0;
243
244         if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
245                 return 0;
246
247         for (i = 0; i < nb_pkts; i++) {
248                 struct rte_mbuf *pcap_buf;
249                 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
250                 if (err)
251                         return i;
252
253                 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
254                                 rte_pktmbuf_mtod(pcap_buf, void *),
255                                 pcap_buf->data_len);
256                 bufs[i]->data_len = pcap_buf->data_len;
257                 bufs[i]->pkt_len = pcap_buf->pkt_len;
258                 bufs[i]->port = pcap_q->port_id;
259                 rx_bytes += pcap_buf->data_len;
260
261                 /* Enqueue packet back on ring to allow infinite rx. */
262                 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
263         }
264
265         pcap_q->rx_stat.pkts += i;
266         pcap_q->rx_stat.bytes += rx_bytes;
267
268         return i;
269 }
270
271 static uint16_t
272 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
273 {
274         unsigned int i;
275         struct pcap_pkthdr header;
276         struct pmd_process_private *pp;
277         const u_char *packet;
278         struct rte_mbuf *mbuf;
279         struct pcap_rx_queue *pcap_q = queue;
280         uint16_t num_rx = 0;
281         uint32_t rx_bytes = 0;
282         pcap_t *pcap;
283
284         pp = rte_eth_devices[pcap_q->port_id].process_private;
285         pcap = pp->rx_pcap[pcap_q->queue_id];
286
287         if (unlikely(pcap == NULL || nb_pkts == 0))
288                 return 0;
289
290         /* Reads the given number of packets from the pcap file one by one
291          * and copies the packet data into a newly allocated mbuf to return.
292          */
293         for (i = 0; i < nb_pkts; i++) {
294                 /* Get the next PCAP packet */
295                 packet = pcap_next(pcap, &header);
296                 if (unlikely(packet == NULL))
297                         break;
298
299                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
300                 if (unlikely(mbuf == NULL))
301                         break;
302
303                 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
304                         /* pcap packet will fit in the mbuf, can copy it */
305                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
306                                         header.caplen);
307                         mbuf->data_len = (uint16_t)header.caplen;
308                 } else {
309                         /* Try read jumbo frame into multi mbufs. */
310                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
311                                                        mbuf,
312                                                        packet,
313                                                        header.caplen) == -1)) {
314                                 rte_pktmbuf_free(mbuf);
315                                 break;
316                         }
317                 }
318
319                 mbuf->pkt_len = (uint16_t)header.caplen;
320                 *RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset,
321                         rte_mbuf_timestamp_t *) =
322                                 (uint64_t)header.ts.tv_sec * 1000000 +
323                                 header.ts.tv_usec;
324                 mbuf->ol_flags |= timestamp_rx_dynflag;
325                 mbuf->port = pcap_q->port_id;
326                 bufs[num_rx] = mbuf;
327                 num_rx++;
328                 rx_bytes += header.caplen;
329         }
330         pcap_q->rx_stat.pkts += num_rx;
331         pcap_q->rx_stat.bytes += rx_bytes;
332
333         return num_rx;
334 }
335
336 static uint16_t
337 eth_null_rx(void *queue __rte_unused,
338                 struct rte_mbuf **bufs __rte_unused,
339                 uint16_t nb_pkts __rte_unused)
340 {
341         return 0;
342 }
343
344 #define NSEC_PER_SEC    1000000000L
345
346 /*
347  * This function stores nanoseconds in `tv_usec` field of `struct timeval`,
348  * because `ts` goes directly to nanosecond-precision dump.
349  */
350 static inline void
351 calculate_timestamp(struct timeval *ts) {
352         uint64_t cycles;
353         struct timespec cur_time;
354
355         cycles = rte_get_timer_cycles() - start_cycles;
356         cur_time.tv_sec = cycles / hz;
357         cur_time.tv_nsec = (cycles % hz) * NSEC_PER_SEC / hz;
358
359         ts->tv_sec = start_time.tv_sec + cur_time.tv_sec;
360         ts->tv_usec = start_time.tv_nsec + cur_time.tv_nsec;
361         if (ts->tv_usec >= NSEC_PER_SEC) {
362                 ts->tv_usec -= NSEC_PER_SEC;
363                 ts->tv_sec += 1;
364         }
365 }
366
367 /*
368  * Callback to handle writing packets to a pcap file.
369  */
370 static uint16_t
371 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
372 {
373         unsigned int i;
374         struct rte_mbuf *mbuf;
375         struct pmd_process_private *pp;
376         struct pcap_tx_queue *dumper_q = queue;
377         uint16_t num_tx = 0;
378         uint32_t tx_bytes = 0;
379         struct pcap_pkthdr header;
380         pcap_dumper_t *dumper;
381         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
382         size_t len, caplen;
383
384         pp = rte_eth_devices[dumper_q->port_id].process_private;
385         dumper = pp->tx_dumper[dumper_q->queue_id];
386
387         if (dumper == NULL || nb_pkts == 0)
388                 return 0;
389
390         /* writes the nb_pkts packets to the previously opened pcap file
391          * dumper */
392         for (i = 0; i < nb_pkts; i++) {
393                 mbuf = bufs[i];
394                 len = caplen = rte_pktmbuf_pkt_len(mbuf);
395                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
396                                 len > sizeof(temp_data))) {
397                         caplen = sizeof(temp_data);
398                 }
399
400                 calculate_timestamp(&header.ts);
401                 header.len = len;
402                 header.caplen = caplen;
403                 /* rte_pktmbuf_read() returns a pointer to the data directly
404                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
405                  * a pointer to temp_data after copying into it.
406                  */
407                 pcap_dump((u_char *)dumper, &header,
408                         rte_pktmbuf_read(mbuf, 0, caplen, temp_data));
409
410                 num_tx++;
411                 tx_bytes += caplen;
412                 rte_pktmbuf_free(mbuf);
413         }
414
415         /*
416          * Since there's no place to hook a callback when the forwarding
417          * process stops and to make sure the pcap file is actually written,
418          * we flush the pcap dumper within each burst.
419          */
420         pcap_dump_flush(dumper);
421         dumper_q->tx_stat.pkts += num_tx;
422         dumper_q->tx_stat.bytes += tx_bytes;
423         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
424
425         return nb_pkts;
426 }
427
428 /*
429  * Callback to handle dropping packets in the infinite rx case.
430  */
431 static uint16_t
432 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
433 {
434         unsigned int i;
435         uint32_t tx_bytes = 0;
436         struct pcap_tx_queue *tx_queue = queue;
437
438         if (unlikely(nb_pkts == 0))
439                 return 0;
440
441         for (i = 0; i < nb_pkts; i++) {
442                 tx_bytes += bufs[i]->pkt_len;
443                 rte_pktmbuf_free(bufs[i]);
444         }
445
446         tx_queue->tx_stat.pkts += nb_pkts;
447         tx_queue->tx_stat.bytes += tx_bytes;
448
449         return i;
450 }
451
452 /*
453  * Callback to handle sending packets through a real NIC.
454  */
455 static uint16_t
456 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
457 {
458         unsigned int i;
459         int ret;
460         struct rte_mbuf *mbuf;
461         struct pmd_process_private *pp;
462         struct pcap_tx_queue *tx_queue = queue;
463         uint16_t num_tx = 0;
464         uint32_t tx_bytes = 0;
465         pcap_t *pcap;
466         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
467         size_t len;
468
469         pp = rte_eth_devices[tx_queue->port_id].process_private;
470         pcap = pp->tx_pcap[tx_queue->queue_id];
471
472         if (unlikely(nb_pkts == 0 || pcap == NULL))
473                 return 0;
474
475         for (i = 0; i < nb_pkts; i++) {
476                 mbuf = bufs[i];
477                 len = rte_pktmbuf_pkt_len(mbuf);
478                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
479                                 len > sizeof(temp_data))) {
480                         PMD_LOG(ERR,
481                                 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
482                                 len, sizeof(temp_data));
483                         rte_pktmbuf_free(mbuf);
484                         continue;
485                 }
486
487                 /* rte_pktmbuf_read() returns a pointer to the data directly
488                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
489                  * a pointer to temp_data after copying into it.
490                  */
491                 ret = pcap_sendpacket(pcap,
492                         rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
493                 if (unlikely(ret != 0))
494                         break;
495                 num_tx++;
496                 tx_bytes += len;
497                 rte_pktmbuf_free(mbuf);
498         }
499
500         tx_queue->tx_stat.pkts += num_tx;
501         tx_queue->tx_stat.bytes += tx_bytes;
502         tx_queue->tx_stat.err_pkts += i - num_tx;
503
504         return i;
505 }
506
507 /*
508  * pcap_open_live wrapper function
509  */
510 static inline int
511 open_iface_live(const char *iface, pcap_t **pcap) {
512         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
513                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
514
515         if (*pcap == NULL) {
516                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
517                 return -1;
518         }
519
520         return 0;
521 }
522
523 static int
524 open_single_iface(const char *iface, pcap_t **pcap)
525 {
526         if (open_iface_live(iface, pcap) < 0) {
527                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
528                 return -1;
529         }
530
531         return 0;
532 }
533
534 static int
535 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
536 {
537         pcap_t *tx_pcap;
538
539         /*
540          * We need to create a dummy empty pcap_t to use it
541          * with pcap_dump_open(). We create big enough an Ethernet
542          * pcap holder.
543          */
544         tx_pcap = pcap_open_dead_with_tstamp_precision(DLT_EN10MB,
545                         RTE_ETH_PCAP_SNAPSHOT_LEN, PCAP_TSTAMP_PRECISION_NANO);
546         if (tx_pcap == NULL) {
547                 PMD_LOG(ERR, "Couldn't create dead pcap");
548                 return -1;
549         }
550
551         /* The dumper is created using the previous pcap_t reference */
552         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
553         if (*dumper == NULL) {
554                 pcap_close(tx_pcap);
555                 PMD_LOG(ERR, "Couldn't open %s for writing.",
556                         pcap_filename);
557                 return -1;
558         }
559
560         pcap_close(tx_pcap);
561         return 0;
562 }
563
564 static int
565 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
566 {
567         *pcap = pcap_open_offline(pcap_filename, errbuf);
568         if (*pcap == NULL) {
569                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
570                         errbuf);
571                 return -1;
572         }
573
574         return 0;
575 }
576
577 static uint64_t
578 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
579 {
580         const u_char *packet;
581         struct pcap_pkthdr header;
582         uint64_t pcap_pkt_count = 0;
583
584         while ((packet = pcap_next(*pcap, &header)))
585                 pcap_pkt_count++;
586
587         /* The pcap is reopened so it can be used as normal later. */
588         pcap_close(*pcap);
589         *pcap = NULL;
590         open_single_rx_pcap(pcap_q->name, pcap);
591
592         return pcap_pkt_count;
593 }
594
595 static int
596 eth_dev_start(struct rte_eth_dev *dev)
597 {
598         unsigned int i;
599         struct pmd_internals *internals = dev->data->dev_private;
600         struct pmd_process_private *pp = dev->process_private;
601         struct pcap_tx_queue *tx;
602         struct pcap_rx_queue *rx;
603
604         /* Special iface case. Single pcap is open and shared between tx/rx. */
605         if (internals->single_iface) {
606                 tx = &internals->tx_queue[0];
607                 rx = &internals->rx_queue[0];
608
609                 if (!pp->tx_pcap[0] &&
610                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
611                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
612                                 return -1;
613                         pp->rx_pcap[0] = pp->tx_pcap[0];
614                 }
615
616                 goto status_up;
617         }
618
619         /* If not open already, open tx pcaps/dumpers */
620         for (i = 0; i < dev->data->nb_tx_queues; i++) {
621                 tx = &internals->tx_queue[i];
622
623                 if (!pp->tx_dumper[i] &&
624                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
625                         if (open_single_tx_pcap(tx->name,
626                                 &pp->tx_dumper[i]) < 0)
627                                 return -1;
628                 } else if (!pp->tx_pcap[i] &&
629                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
630                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
631                                 return -1;
632                 }
633         }
634
635         /* If not open already, open rx pcaps */
636         for (i = 0; i < dev->data->nb_rx_queues; i++) {
637                 rx = &internals->rx_queue[i];
638
639                 if (pp->rx_pcap[i] != NULL)
640                         continue;
641
642                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
643                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
644                                 return -1;
645                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
646                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
647                                 return -1;
648                 }
649         }
650
651 status_up:
652         for (i = 0; i < dev->data->nb_rx_queues; i++)
653                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
654
655         for (i = 0; i < dev->data->nb_tx_queues; i++)
656                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
657
658         dev->data->dev_link.link_status = ETH_LINK_UP;
659
660         return 0;
661 }
662
663 /*
664  * This function gets called when the current port gets stopped.
665  * Is the only place for us to close all the tx streams dumpers.
666  * If not called the dumpers will be flushed within each tx burst.
667  */
668 static int
669 eth_dev_stop(struct rte_eth_dev *dev)
670 {
671         unsigned int i;
672         struct pmd_internals *internals = dev->data->dev_private;
673         struct pmd_process_private *pp = dev->process_private;
674
675         /* Special iface case. Single pcap is open and shared between tx/rx. */
676         if (internals->single_iface) {
677                 queue_missed_stat_on_stop_update(dev, 0);
678                 if (pp->tx_pcap[0] != NULL) {
679                         pcap_close(pp->tx_pcap[0]);
680                         pp->tx_pcap[0] = NULL;
681                         pp->rx_pcap[0] = NULL;
682                 }
683                 goto status_down;
684         }
685
686         for (i = 0; i < dev->data->nb_tx_queues; i++) {
687                 if (pp->tx_dumper[i] != NULL) {
688                         pcap_dump_close(pp->tx_dumper[i]);
689                         pp->tx_dumper[i] = NULL;
690                 }
691
692                 if (pp->tx_pcap[i] != NULL) {
693                         pcap_close(pp->tx_pcap[i]);
694                         pp->tx_pcap[i] = NULL;
695                 }
696         }
697
698         for (i = 0; i < dev->data->nb_rx_queues; i++) {
699                 if (pp->rx_pcap[i] != NULL) {
700                         queue_missed_stat_on_stop_update(dev, i);
701                         pcap_close(pp->rx_pcap[i]);
702                         pp->rx_pcap[i] = NULL;
703                 }
704         }
705
706 status_down:
707         for (i = 0; i < dev->data->nb_rx_queues; i++)
708                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
709
710         for (i = 0; i < dev->data->nb_tx_queues; i++)
711                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
712
713         dev->data->dev_link.link_status = ETH_LINK_DOWN;
714
715         return 0;
716 }
717
718 static int
719 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
720 {
721         return 0;
722 }
723
724 static int
725 eth_dev_info(struct rte_eth_dev *dev,
726                 struct rte_eth_dev_info *dev_info)
727 {
728         struct pmd_internals *internals = dev->data->dev_private;
729
730         dev_info->if_index = internals->if_index;
731         dev_info->max_mac_addrs = 1;
732         dev_info->max_rx_pktlen = (uint32_t) -1;
733         dev_info->max_rx_queues = dev->data->nb_rx_queues;
734         dev_info->max_tx_queues = dev->data->nb_tx_queues;
735         dev_info->min_rx_bufsize = 0;
736
737         return 0;
738 }
739
740 static int
741 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
742 {
743         unsigned int i;
744         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
745         unsigned long rx_missed_total = 0;
746         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
747         unsigned long tx_packets_err_total = 0;
748         const struct pmd_internals *internal = dev->data->dev_private;
749
750         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
751                         i < dev->data->nb_rx_queues; i++) {
752                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
753                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
754                 rx_packets_total += stats->q_ipackets[i];
755                 rx_bytes_total += stats->q_ibytes[i];
756                 rx_missed_total += queue_missed_stat_get(dev, i);
757         }
758
759         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
760                         i < dev->data->nb_tx_queues; i++) {
761                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
762                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
763                 tx_packets_total += stats->q_opackets[i];
764                 tx_bytes_total += stats->q_obytes[i];
765                 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
766         }
767
768         stats->ipackets = rx_packets_total;
769         stats->ibytes = rx_bytes_total;
770         stats->imissed = rx_missed_total;
771         stats->opackets = tx_packets_total;
772         stats->obytes = tx_bytes_total;
773         stats->oerrors = tx_packets_err_total;
774
775         return 0;
776 }
777
778 static int
779 eth_stats_reset(struct rte_eth_dev *dev)
780 {
781         unsigned int i;
782         struct pmd_internals *internal = dev->data->dev_private;
783
784         for (i = 0; i < dev->data->nb_rx_queues; i++) {
785                 internal->rx_queue[i].rx_stat.pkts = 0;
786                 internal->rx_queue[i].rx_stat.bytes = 0;
787                 queue_missed_stat_reset(dev, i);
788         }
789
790         for (i = 0; i < dev->data->nb_tx_queues; i++) {
791                 internal->tx_queue[i].tx_stat.pkts = 0;
792                 internal->tx_queue[i].tx_stat.bytes = 0;
793                 internal->tx_queue[i].tx_stat.err_pkts = 0;
794         }
795
796         return 0;
797 }
798
799 static inline void
800 infinite_rx_ring_free(struct rte_ring *pkts)
801 {
802         struct rte_mbuf *bufs;
803
804         while (!rte_ring_dequeue(pkts, (void **)&bufs))
805                 rte_pktmbuf_free(bufs);
806
807         rte_ring_free(pkts);
808 }
809
810 static int
811 eth_dev_close(struct rte_eth_dev *dev)
812 {
813         unsigned int i;
814         struct pmd_internals *internals = dev->data->dev_private;
815
816         PMD_LOG(INFO, "Closing pcap ethdev on NUMA socket %d",
817                         rte_socket_id());
818
819         eth_dev_stop(dev);
820
821         rte_free(dev->process_private);
822
823         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
824                 return 0;
825
826         /* Device wide flag, but cleanup must be performed per queue. */
827         if (internals->infinite_rx) {
828                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
829                         struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
830
831                         /*
832                          * 'pcap_q->pkts' can be NULL if 'eth_dev_close()'
833                          * called before 'eth_rx_queue_setup()' has been called
834                          */
835                         if (pcap_q->pkts == NULL)
836                                 continue;
837
838                         infinite_rx_ring_free(pcap_q->pkts);
839                 }
840         }
841
842         if (internals->phy_mac == 0)
843                 /* not dynamically allocated, must not be freed */
844                 dev->data->mac_addrs = NULL;
845
846         return 0;
847 }
848
849 static void
850 eth_queue_release(void *q __rte_unused)
851 {
852 }
853
854 static int
855 eth_link_update(struct rte_eth_dev *dev __rte_unused,
856                 int wait_to_complete __rte_unused)
857 {
858         return 0;
859 }
860
861 static int
862 eth_rx_queue_setup(struct rte_eth_dev *dev,
863                 uint16_t rx_queue_id,
864                 uint16_t nb_rx_desc __rte_unused,
865                 unsigned int socket_id __rte_unused,
866                 const struct rte_eth_rxconf *rx_conf __rte_unused,
867                 struct rte_mempool *mb_pool)
868 {
869         struct pmd_internals *internals = dev->data->dev_private;
870         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
871
872         pcap_q->mb_pool = mb_pool;
873         pcap_q->port_id = dev->data->port_id;
874         pcap_q->queue_id = rx_queue_id;
875         dev->data->rx_queues[rx_queue_id] = pcap_q;
876
877         if (internals->infinite_rx) {
878                 struct pmd_process_private *pp;
879                 char ring_name[RTE_RING_NAMESIZE];
880                 static uint32_t ring_number;
881                 uint64_t pcap_pkt_count = 0;
882                 struct rte_mbuf *bufs[1];
883                 pcap_t **pcap;
884
885                 pp = rte_eth_devices[pcap_q->port_id].process_private;
886                 pcap = &pp->rx_pcap[pcap_q->queue_id];
887
888                 if (unlikely(*pcap == NULL))
889                         return -ENOENT;
890
891                 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
892
893                 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu32,
894                                 ring_number);
895
896                 pcap_q->pkts = rte_ring_create(ring_name,
897                                 rte_align64pow2(pcap_pkt_count + 1), 0,
898                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
899                 ring_number++;
900                 if (!pcap_q->pkts)
901                         return -ENOENT;
902
903                 /* Fill ring with packets from PCAP file one by one. */
904                 while (eth_pcap_rx(pcap_q, bufs, 1)) {
905                         /* Check for multiseg mbufs. */
906                         if (bufs[0]->nb_segs != 1) {
907                                 infinite_rx_ring_free(pcap_q->pkts);
908                                 PMD_LOG(ERR,
909                                         "Multiseg mbufs are not supported in infinite_rx mode.");
910                                 return -EINVAL;
911                         }
912
913                         rte_ring_enqueue_bulk(pcap_q->pkts,
914                                         (void * const *)bufs, 1, NULL);
915                 }
916
917                 if (rte_ring_count(pcap_q->pkts) < pcap_pkt_count) {
918                         infinite_rx_ring_free(pcap_q->pkts);
919                         PMD_LOG(ERR,
920                                 "Not enough mbufs to accommodate packets in pcap file. "
921                                 "At least %" PRIu64 " mbufs per queue is required.",
922                                 pcap_pkt_count);
923                         return -EINVAL;
924                 }
925
926                 /*
927                  * Reset the stats for this queue since eth_pcap_rx calls above
928                  * didn't result in the application receiving packets.
929                  */
930                 pcap_q->rx_stat.pkts = 0;
931                 pcap_q->rx_stat.bytes = 0;
932         }
933
934         return 0;
935 }
936
937 static int
938 eth_tx_queue_setup(struct rte_eth_dev *dev,
939                 uint16_t tx_queue_id,
940                 uint16_t nb_tx_desc __rte_unused,
941                 unsigned int socket_id __rte_unused,
942                 const struct rte_eth_txconf *tx_conf __rte_unused)
943 {
944         struct pmd_internals *internals = dev->data->dev_private;
945         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
946
947         pcap_q->port_id = dev->data->port_id;
948         pcap_q->queue_id = tx_queue_id;
949         dev->data->tx_queues[tx_queue_id] = pcap_q;
950
951         return 0;
952 }
953
954 static int
955 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
956 {
957         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
958
959         return 0;
960 }
961
962 static int
963 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
964 {
965         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
966
967         return 0;
968 }
969
970 static int
971 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
972 {
973         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
974
975         return 0;
976 }
977
978 static int
979 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
980 {
981         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
982
983         return 0;
984 }
985
986 static const struct eth_dev_ops ops = {
987         .dev_start = eth_dev_start,
988         .dev_stop = eth_dev_stop,
989         .dev_close = eth_dev_close,
990         .dev_configure = eth_dev_configure,
991         .dev_infos_get = eth_dev_info,
992         .rx_queue_setup = eth_rx_queue_setup,
993         .tx_queue_setup = eth_tx_queue_setup,
994         .rx_queue_start = eth_rx_queue_start,
995         .tx_queue_start = eth_tx_queue_start,
996         .rx_queue_stop = eth_rx_queue_stop,
997         .tx_queue_stop = eth_tx_queue_stop,
998         .rx_queue_release = eth_queue_release,
999         .tx_queue_release = eth_queue_release,
1000         .link_update = eth_link_update,
1001         .stats_get = eth_stats_get,
1002         .stats_reset = eth_stats_reset,
1003 };
1004
1005 static int
1006 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
1007                 pcap_t *pcap, pcap_dumper_t *dumper)
1008 {
1009         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
1010                 return -1;
1011         if (pcap)
1012                 pmd->queue[pmd->num_of_queue].pcap = pcap;
1013         if (dumper)
1014                 pmd->queue[pmd->num_of_queue].dumper = dumper;
1015         pmd->queue[pmd->num_of_queue].name = name;
1016         pmd->queue[pmd->num_of_queue].type = type;
1017         pmd->num_of_queue++;
1018         return 0;
1019 }
1020
1021 /*
1022  * Function handler that opens the pcap file for reading a stores a
1023  * reference of it for use it later on.
1024  */
1025 static int
1026 open_rx_pcap(const char *key, const char *value, void *extra_args)
1027 {
1028         const char *pcap_filename = value;
1029         struct pmd_devargs *rx = extra_args;
1030         pcap_t *pcap = NULL;
1031
1032         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
1033                 return -1;
1034
1035         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
1036                 pcap_close(pcap);
1037                 return -1;
1038         }
1039
1040         return 0;
1041 }
1042
1043 /*
1044  * Opens a pcap file for writing and stores a reference to it
1045  * for use it later on.
1046  */
1047 static int
1048 open_tx_pcap(const char *key, const char *value, void *extra_args)
1049 {
1050         const char *pcap_filename = value;
1051         struct pmd_devargs *dumpers = extra_args;
1052         pcap_dumper_t *dumper;
1053
1054         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
1055                 return -1;
1056
1057         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
1058                 pcap_dump_close(dumper);
1059                 return -1;
1060         }
1061
1062         return 0;
1063 }
1064
1065 /*
1066  * Opens an interface for reading and writing
1067  */
1068 static inline int
1069 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
1070 {
1071         const char *iface = value;
1072         struct pmd_devargs *tx = extra_args;
1073         pcap_t *pcap = NULL;
1074
1075         if (open_single_iface(iface, &pcap) < 0)
1076                 return -1;
1077
1078         tx->queue[0].pcap = pcap;
1079         tx->queue[0].name = iface;
1080         tx->queue[0].type = key;
1081
1082         return 0;
1083 }
1084
1085 static inline int
1086 set_iface_direction(const char *iface, pcap_t *pcap,
1087                 pcap_direction_t direction)
1088 {
1089         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
1090         if (pcap_setdirection(pcap, direction) < 0) {
1091                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
1092                                 iface, direction_str, pcap_geterr(pcap));
1093                 return -1;
1094         }
1095         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
1096                         iface, direction_str);
1097         return 0;
1098 }
1099
1100 static inline int
1101 open_iface(const char *key, const char *value, void *extra_args)
1102 {
1103         const char *iface = value;
1104         struct pmd_devargs *pmd = extra_args;
1105         pcap_t *pcap = NULL;
1106
1107         if (open_single_iface(iface, &pcap) < 0)
1108                 return -1;
1109         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1110                 pcap_close(pcap);
1111                 return -1;
1112         }
1113
1114         return 0;
1115 }
1116
1117 /*
1118  * Opens a NIC for reading packets from it
1119  */
1120 static inline int
1121 open_rx_iface(const char *key, const char *value, void *extra_args)
1122 {
1123         int ret = open_iface(key, value, extra_args);
1124         if (ret < 0)
1125                 return ret;
1126         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1127                 struct pmd_devargs *pmd = extra_args;
1128                 unsigned int qid = pmd->num_of_queue - 1;
1129
1130                 set_iface_direction(pmd->queue[qid].name,
1131                                 pmd->queue[qid].pcap,
1132                                 PCAP_D_IN);
1133         }
1134
1135         return 0;
1136 }
1137
1138 static inline int
1139 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1140 {
1141         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1142                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1143                 return open_rx_iface(key, value, extra_args);
1144
1145         return 0;
1146 }
1147
1148 /*
1149  * Opens a NIC for writing packets to it
1150  */
1151 static int
1152 open_tx_iface(const char *key, const char *value, void *extra_args)
1153 {
1154         return open_iface(key, value, extra_args);
1155 }
1156
1157 static int
1158 select_phy_mac(const char *key __rte_unused, const char *value,
1159                 void *extra_args)
1160 {
1161         if (extra_args) {
1162                 const int phy_mac = atoi(value);
1163                 int *enable_phy_mac = extra_args;
1164
1165                 if (phy_mac)
1166                         *enable_phy_mac = 1;
1167         }
1168         return 0;
1169 }
1170
1171 static int
1172 get_infinite_rx_arg(const char *key __rte_unused,
1173                 const char *value, void *extra_args)
1174 {
1175         if (extra_args) {
1176                 const int infinite_rx = atoi(value);
1177                 int *enable_infinite_rx = extra_args;
1178
1179                 if (infinite_rx > 0)
1180                         *enable_infinite_rx = 1;
1181         }
1182         return 0;
1183 }
1184
1185 static int
1186 pmd_init_internals(struct rte_vdev_device *vdev,
1187                 const unsigned int nb_rx_queues,
1188                 const unsigned int nb_tx_queues,
1189                 struct pmd_internals **internals,
1190                 struct rte_eth_dev **eth_dev)
1191 {
1192         struct rte_eth_dev_data *data;
1193         struct pmd_process_private *pp;
1194         unsigned int numa_node = vdev->device.numa_node;
1195
1196         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1197                 numa_node);
1198
1199         pp = (struct pmd_process_private *)
1200                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1201                                 RTE_CACHE_LINE_SIZE);
1202
1203         if (pp == NULL) {
1204                 PMD_LOG(ERR,
1205                         "Failed to allocate memory for process private");
1206                 return -1;
1207         }
1208
1209         /* reserve an ethdev entry */
1210         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1211         if (!(*eth_dev)) {
1212                 rte_free(pp);
1213                 return -1;
1214         }
1215         (*eth_dev)->process_private = pp;
1216         /* now put it all together
1217          * - store queue data in internals,
1218          * - store numa_node info in eth_dev
1219          * - point eth_dev_data to internals
1220          * - and point eth_dev structure to new eth_dev_data structure
1221          */
1222         *internals = (*eth_dev)->data->dev_private;
1223         /*
1224          * Interface MAC = 02:70:63:61:70:<iface_idx>
1225          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1226          * where the middle 4 characters are converted to hex.
1227          */
1228         (*internals)->eth_addr = (struct rte_ether_addr) {
1229                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1230         };
1231         (*internals)->phy_mac = 0;
1232         data = (*eth_dev)->data;
1233         data->nb_rx_queues = (uint16_t)nb_rx_queues;
1234         data->nb_tx_queues = (uint16_t)nb_tx_queues;
1235         data->dev_link = pmd_link;
1236         data->mac_addrs = &(*internals)->eth_addr;
1237         data->promiscuous = 1;
1238         data->all_multicast = 1;
1239         data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1240
1241         /*
1242          * NOTE: we'll replace the data element, of originally allocated
1243          * eth_dev so the rings are local per-process
1244          */
1245         (*eth_dev)->dev_ops = &ops;
1246
1247         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1248                         ETH_PCAP_ARG_MAXLEN);
1249
1250         return 0;
1251 }
1252
1253 static int
1254 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1255                 const unsigned int numa_node)
1256 {
1257         void *mac_addrs;
1258         struct rte_ether_addr mac;
1259
1260         if (osdep_iface_mac_get(if_name, &mac) < 0)
1261                 return -1;
1262
1263         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1264         if (mac_addrs == NULL)
1265                 return -1;
1266
1267         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1268         rte_memcpy(mac_addrs, mac.addr_bytes, RTE_ETHER_ADDR_LEN);
1269         eth_dev->data->mac_addrs = mac_addrs;
1270         return 0;
1271 }
1272
1273 static int
1274 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1275                 struct pmd_devargs_all *devargs_all,
1276                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1277 {
1278         struct pmd_process_private *pp;
1279         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1280         struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1281         const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1282         const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1283         unsigned int i;
1284
1285         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1286                         eth_dev) < 0)
1287                 return -1;
1288
1289         pp = (*eth_dev)->process_private;
1290         for (i = 0; i < nb_rx_queues; i++) {
1291                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1292                 struct devargs_queue *queue = &rx_queues->queue[i];
1293
1294                 pp->rx_pcap[i] = queue->pcap;
1295                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1296                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1297         }
1298
1299         for (i = 0; i < nb_tx_queues; i++) {
1300                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1301                 struct devargs_queue *queue = &tx_queues->queue[i];
1302
1303                 pp->tx_dumper[i] = queue->dumper;
1304                 pp->tx_pcap[i] = queue->pcap;
1305                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1306                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1307         }
1308
1309         return 0;
1310 }
1311
1312 static int
1313 eth_from_pcaps(struct rte_vdev_device *vdev,
1314                 struct pmd_devargs_all *devargs_all)
1315 {
1316         struct pmd_internals *internals = NULL;
1317         struct rte_eth_dev *eth_dev = NULL;
1318         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1319         int single_iface = devargs_all->single_iface;
1320         unsigned int infinite_rx = devargs_all->infinite_rx;
1321         int ret;
1322
1323         ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
1324
1325         if (ret < 0)
1326                 return ret;
1327
1328         /* store weather we are using a single interface for rx/tx or not */
1329         internals->single_iface = single_iface;
1330
1331         if (single_iface) {
1332                 internals->if_index =
1333                         osdep_iface_index_get(rx_queues->queue[0].name);
1334
1335                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1336                 if (rx_queues->phy_mac) {
1337                         if (eth_pcap_update_mac(rx_queues->queue[0].name,
1338                                         eth_dev, vdev->device.numa_node) == 0)
1339                                 internals->phy_mac = 1;
1340                 }
1341         }
1342
1343         internals->infinite_rx = infinite_rx;
1344         /* Assign rx ops. */
1345         if (infinite_rx)
1346                 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1347         else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1348                         single_iface)
1349                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1350         else
1351                 eth_dev->rx_pkt_burst = eth_null_rx;
1352
1353         /* Assign tx ops. */
1354         if (devargs_all->is_tx_pcap)
1355                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1356         else if (devargs_all->is_tx_iface || single_iface)
1357                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1358         else
1359                 eth_dev->tx_pkt_burst = eth_tx_drop;
1360
1361         rte_eth_dev_probing_finish(eth_dev);
1362         return 0;
1363 }
1364
1365 static int
1366 pmd_pcap_probe(struct rte_vdev_device *dev)
1367 {
1368         const char *name;
1369         struct rte_kvargs *kvlist;
1370         struct pmd_devargs pcaps = {0};
1371         struct pmd_devargs dumpers = {0};
1372         struct rte_eth_dev *eth_dev =  NULL;
1373         struct pmd_internals *internal;
1374         int ret = 0;
1375
1376         struct pmd_devargs_all devargs_all = {
1377                 .single_iface = 0,
1378                 .is_tx_pcap = 0,
1379                 .is_tx_iface = 0,
1380                 .infinite_rx = 0,
1381         };
1382
1383         name = rte_vdev_device_name(dev);
1384         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1385
1386         timespec_get(&start_time, TIME_UTC);
1387         start_cycles = rte_get_timer_cycles();
1388         hz = rte_get_timer_hz();
1389
1390         ret = rte_mbuf_dyn_rx_timestamp_register(&timestamp_dynfield_offset,
1391                         &timestamp_rx_dynflag);
1392         if (ret != 0) {
1393                 PMD_LOG(ERR, "Failed to register Rx timestamp field/flag");
1394                 return -1;
1395         }
1396
1397         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1398                 eth_dev = rte_eth_dev_attach_secondary(name);
1399                 if (!eth_dev) {
1400                         PMD_LOG(ERR, "Failed to probe %s", name);
1401                         return -1;
1402                 }
1403
1404                 internal = eth_dev->data->dev_private;
1405
1406                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1407                 if (kvlist == NULL)
1408                         return -1;
1409         } else {
1410                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1411                                 valid_arguments);
1412                 if (kvlist == NULL)
1413                         return -1;
1414         }
1415
1416         /*
1417          * If iface argument is passed we open the NICs and use them for
1418          * reading / writing
1419          */
1420         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1421
1422                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1423                                 &open_rx_tx_iface, &pcaps);
1424                 if (ret < 0)
1425                         goto free_kvlist;
1426
1427                 dumpers.queue[0] = pcaps.queue[0];
1428
1429                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1430                                 &select_phy_mac, &pcaps.phy_mac);
1431                 if (ret < 0)
1432                         goto free_kvlist;
1433
1434                 dumpers.phy_mac = pcaps.phy_mac;
1435
1436                 devargs_all.single_iface = 1;
1437                 pcaps.num_of_queue = 1;
1438                 dumpers.num_of_queue = 1;
1439
1440                 goto create_eth;
1441         }
1442
1443         /*
1444          * We check whether we want to open a RX stream from a real NIC, a
1445          * pcap file or open a dummy RX stream
1446          */
1447         devargs_all.is_rx_pcap =
1448                 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1449         devargs_all.is_rx_iface =
1450                 (rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) +
1451                  rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_IN_ARG)) ? 1 : 0;
1452         pcaps.num_of_queue = 0;
1453
1454         devargs_all.is_tx_pcap =
1455                 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1456         devargs_all.is_tx_iface =
1457                 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1458         dumpers.num_of_queue = 0;
1459
1460         if (devargs_all.is_rx_pcap) {
1461                 /*
1462                  * We check whether we want to infinitely rx the pcap file.
1463                  */
1464                 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1465                                 ETH_PCAP_INFINITE_RX_ARG);
1466
1467                 if (infinite_rx_arg_cnt == 1) {
1468                         ret = rte_kvargs_process(kvlist,
1469                                         ETH_PCAP_INFINITE_RX_ARG,
1470                                         &get_infinite_rx_arg,
1471                                         &devargs_all.infinite_rx);
1472                         if (ret < 0)
1473                                 goto free_kvlist;
1474                         PMD_LOG(INFO, "infinite_rx has been %s for %s",
1475                                         devargs_all.infinite_rx ? "enabled" : "disabled",
1476                                         name);
1477
1478                 } else if (infinite_rx_arg_cnt > 1) {
1479                         PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1480                                         "argument has been provided more than once "
1481                                         "for %s", name);
1482                 }
1483
1484                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1485                                 &open_rx_pcap, &pcaps);
1486         } else if (devargs_all.is_rx_iface) {
1487                 ret = rte_kvargs_process(kvlist, NULL,
1488                                 &rx_iface_args_process, &pcaps);
1489         } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1490                 unsigned int i;
1491
1492                 /* Count number of tx queue args passed before dummy rx queue
1493                  * creation so a dummy rx queue can be created for each tx queue
1494                  */
1495                 unsigned int num_tx_queues =
1496                         (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1497                         rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1498
1499                 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1500
1501                 /* Creating a dummy rx queue for each tx queue passed */
1502                 for (i = 0; i < num_tx_queues; i++)
1503                         ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1504                                         NULL);
1505         } else {
1506                 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1507                 ret = -ENOENT;
1508         }
1509         if (ret < 0)
1510                 goto free_kvlist;
1511
1512         /*
1513          * We check whether we want to open a TX stream to a real NIC,
1514          * a pcap file, or drop packets on tx
1515          */
1516         if (devargs_all.is_tx_pcap) {
1517                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1518                                 &open_tx_pcap, &dumpers);
1519         } else if (devargs_all.is_tx_iface) {
1520                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1521                                 &open_tx_iface, &dumpers);
1522         } else {
1523                 unsigned int i;
1524
1525                 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1526
1527                 /* Add 1 dummy queue per rxq which counts and drops packets. */
1528                 for (i = 0; i < pcaps.num_of_queue; i++)
1529                         ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1530                                         NULL);
1531         }
1532
1533         if (ret < 0)
1534                 goto free_kvlist;
1535
1536 create_eth:
1537         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1538                 struct pmd_process_private *pp;
1539                 unsigned int i;
1540
1541                 internal = eth_dev->data->dev_private;
1542                         pp = (struct pmd_process_private *)
1543                                 rte_zmalloc(NULL,
1544                                         sizeof(struct pmd_process_private),
1545                                         RTE_CACHE_LINE_SIZE);
1546
1547                 if (pp == NULL) {
1548                         PMD_LOG(ERR,
1549                                 "Failed to allocate memory for process private");
1550                         ret = -1;
1551                         goto free_kvlist;
1552                 }
1553
1554                 eth_dev->dev_ops = &ops;
1555                 eth_dev->device = &dev->device;
1556
1557                 /* setup process private */
1558                 for (i = 0; i < pcaps.num_of_queue; i++)
1559                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1560
1561                 for (i = 0; i < dumpers.num_of_queue; i++) {
1562                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1563                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1564                 }
1565
1566                 eth_dev->process_private = pp;
1567                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1568                 if (devargs_all.is_tx_pcap)
1569                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1570                 else
1571                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1572
1573                 rte_eth_dev_probing_finish(eth_dev);
1574                 goto free_kvlist;
1575         }
1576
1577         devargs_all.rx_queues = pcaps;
1578         devargs_all.tx_queues = dumpers;
1579
1580         ret = eth_from_pcaps(dev, &devargs_all);
1581
1582 free_kvlist:
1583         rte_kvargs_free(kvlist);
1584
1585         return ret;
1586 }
1587
1588 static int
1589 pmd_pcap_remove(struct rte_vdev_device *dev)
1590 {
1591         struct rte_eth_dev *eth_dev = NULL;
1592
1593         if (!dev)
1594                 return -1;
1595
1596         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1597         if (eth_dev == NULL)
1598                 return 0; /* port already released */
1599
1600         eth_dev_close(eth_dev);
1601         rte_eth_dev_release_port(eth_dev);
1602
1603         return 0;
1604 }
1605
1606 static struct rte_vdev_driver pmd_pcap_drv = {
1607         .probe = pmd_pcap_probe,
1608         .remove = pmd_pcap_remove,
1609 };
1610
1611 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1612 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1613 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1614         ETH_PCAP_RX_PCAP_ARG "=<string> "
1615         ETH_PCAP_TX_PCAP_ARG "=<string> "
1616         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1617         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1618         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1619         ETH_PCAP_IFACE_ARG "=<ifc> "
1620         ETH_PCAP_PHY_MAC_ARG "=<int>"
1621         ETH_PCAP_INFINITE_RX_ARG "=<0|1>");