7253b9adf6b077bd6714ff152954fdea46a09f13
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <time.h>
36
37 #include <net/if.h>
38
39 #include <pcap.h>
40
41 #include <rte_cycles.h>
42 #include <rte_ethdev.h>
43 #include <rte_kvargs.h>
44 #include <rte_malloc.h>
45 #include <rte_mbuf.h>
46 #include <rte_vdev.h>
47
48 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
49 #define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN
50 #define RTE_ETH_PCAP_PROMISC 1
51 #define RTE_ETH_PCAP_TIMEOUT -1
52
53 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
54 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
55 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
56 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
57 #define ETH_PCAP_IFACE_ARG    "iface"
58
59 #define ETH_PCAP_ARG_MAXLEN     64
60
61 #define RTE_PMD_PCAP_MAX_QUEUES 16
62
63 static char errbuf[PCAP_ERRBUF_SIZE];
64 static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
65 static struct timeval start_time;
66 static uint64_t start_cycles;
67 static uint64_t hz;
68
69 struct queue_stat {
70         volatile unsigned long pkts;
71         volatile unsigned long bytes;
72         volatile unsigned long err_pkts;
73 };
74
75 struct pcap_rx_queue {
76         pcap_t *pcap;
77         uint8_t in_port;
78         struct rte_mempool *mb_pool;
79         struct queue_stat rx_stat;
80         char name[PATH_MAX];
81         char type[ETH_PCAP_ARG_MAXLEN];
82 };
83
84 struct pcap_tx_queue {
85         pcap_dumper_t *dumper;
86         pcap_t *pcap;
87         struct queue_stat tx_stat;
88         char name[PATH_MAX];
89         char type[ETH_PCAP_ARG_MAXLEN];
90 };
91
92 struct pmd_internals {
93         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
94         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
95         int if_index;
96         int single_iface;
97 };
98
99 struct pmd_devargs {
100         unsigned int num_of_queue;
101         struct devargs_queue {
102                 pcap_dumper_t *dumper;
103                 pcap_t *pcap;
104                 const char *name;
105                 const char *type;
106         } queue[RTE_PMD_PCAP_MAX_QUEUES];
107 };
108
109 static const char *valid_arguments[] = {
110         ETH_PCAP_RX_PCAP_ARG,
111         ETH_PCAP_TX_PCAP_ARG,
112         ETH_PCAP_RX_IFACE_ARG,
113         ETH_PCAP_TX_IFACE_ARG,
114         ETH_PCAP_IFACE_ARG,
115         NULL
116 };
117
118 static struct ether_addr eth_addr = {
119         .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 }
120 };
121
122 static const char *drivername = "Pcap PMD";
123 static struct rte_eth_link pmd_link = {
124                 .link_speed = ETH_SPEED_NUM_10G,
125                 .link_duplex = ETH_LINK_FULL_DUPLEX,
126                 .link_status = ETH_LINK_DOWN,
127                 .link_autoneg = ETH_LINK_SPEED_FIXED,
128 };
129
130 static int
131 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
132                 const u_char *data, uint16_t data_len)
133 {
134         /* Copy the first segment. */
135         uint16_t len = rte_pktmbuf_tailroom(mbuf);
136         struct rte_mbuf *m = mbuf;
137
138         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
139         data_len -= len;
140         data += len;
141
142         while (data_len > 0) {
143                 /* Allocate next mbuf and point to that. */
144                 m->next = rte_pktmbuf_alloc(mb_pool);
145
146                 if (unlikely(!m->next))
147                         return -1;
148
149                 m = m->next;
150
151                 /* Headroom is not needed in chained mbufs. */
152                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
153                 m->pkt_len = 0;
154                 m->data_len = 0;
155
156                 /* Copy next segment. */
157                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
158                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
159
160                 mbuf->nb_segs++;
161                 data_len -= len;
162                 data += len;
163         }
164
165         return mbuf->nb_segs;
166 }
167
168 /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
169 static void
170 eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
171 {
172         uint16_t data_len = 0;
173
174         while (mbuf) {
175                 rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
176                         mbuf->data_len);
177
178                 data_len += mbuf->data_len;
179                 mbuf = mbuf->next;
180         }
181 }
182
183 static uint16_t
184 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
185 {
186         unsigned int i;
187         struct pcap_pkthdr header;
188         const u_char *packet;
189         struct rte_mbuf *mbuf;
190         struct pcap_rx_queue *pcap_q = queue;
191         uint16_t num_rx = 0;
192         uint16_t buf_size;
193         uint32_t rx_bytes = 0;
194
195         if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
196                 return 0;
197
198         /* Reads the given number of packets from the pcap file one by one
199          * and copies the packet data into a newly allocated mbuf to return.
200          */
201         for (i = 0; i < nb_pkts; i++) {
202                 /* Get the next PCAP packet */
203                 packet = pcap_next(pcap_q->pcap, &header);
204                 if (unlikely(packet == NULL))
205                         break;
206
207                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
208                 if (unlikely(mbuf == NULL))
209                         break;
210
211                 /* Now get the space available for data in the mbuf */
212                 buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
213                                 RTE_PKTMBUF_HEADROOM;
214
215                 if (header.caplen <= buf_size) {
216                         /* pcap packet will fit in the mbuf, can copy it */
217                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
218                                         header.caplen);
219                         mbuf->data_len = (uint16_t)header.caplen;
220                 } else {
221                         /* Try read jumbo frame into multi mbufs. */
222                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
223                                                        mbuf,
224                                                        packet,
225                                                        header.caplen) == -1)) {
226                                 rte_pktmbuf_free(mbuf);
227                                 break;
228                         }
229                 }
230
231                 mbuf->pkt_len = (uint16_t)header.caplen;
232                 mbuf->port = pcap_q->in_port;
233                 bufs[num_rx] = mbuf;
234                 num_rx++;
235                 rx_bytes += header.caplen;
236         }
237         pcap_q->rx_stat.pkts += num_rx;
238         pcap_q->rx_stat.bytes += rx_bytes;
239
240         return num_rx;
241 }
242
243 static inline void
244 calculate_timestamp(struct timeval *ts) {
245         uint64_t cycles;
246         struct timeval cur_time;
247
248         cycles = rte_get_timer_cycles() - start_cycles;
249         cur_time.tv_sec = cycles / hz;
250         cur_time.tv_usec = (cycles % hz) * 10e6 / hz;
251         timeradd(&start_time, &cur_time, ts);
252 }
253
254 /*
255  * Callback to handle writing packets to a pcap file.
256  */
257 static uint16_t
258 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
259 {
260         unsigned int i;
261         struct rte_mbuf *mbuf;
262         struct pcap_tx_queue *dumper_q = queue;
263         uint16_t num_tx = 0;
264         uint32_t tx_bytes = 0;
265         struct pcap_pkthdr header;
266
267         if (dumper_q->dumper == NULL || nb_pkts == 0)
268                 return 0;
269
270         /* writes the nb_pkts packets to the previously opened pcap file
271          * dumper */
272         for (i = 0; i < nb_pkts; i++) {
273                 mbuf = bufs[i];
274                 calculate_timestamp(&header.ts);
275                 header.len = mbuf->pkt_len;
276                 header.caplen = header.len;
277
278                 if (likely(mbuf->nb_segs == 1)) {
279                         pcap_dump((u_char *)dumper_q->dumper, &header,
280                                   rte_pktmbuf_mtod(mbuf, void*));
281                 } else {
282                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
283                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
284                                 pcap_dump((u_char *)dumper_q->dumper, &header,
285                                           tx_pcap_data);
286                         } else {
287                                 RTE_LOG(ERR, PMD,
288                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
289                                         mbuf->pkt_len,
290                                         ETHER_MAX_JUMBO_FRAME_LEN);
291
292                                 rte_pktmbuf_free(mbuf);
293                                 break;
294                         }
295                 }
296
297                 rte_pktmbuf_free(mbuf);
298                 num_tx++;
299                 tx_bytes += mbuf->pkt_len;
300         }
301
302         /*
303          * Since there's no place to hook a callback when the forwarding
304          * process stops and to make sure the pcap file is actually written,
305          * we flush the pcap dumper within each burst.
306          */
307         pcap_dump_flush(dumper_q->dumper);
308         dumper_q->tx_stat.pkts += num_tx;
309         dumper_q->tx_stat.bytes += tx_bytes;
310         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
311
312         return num_tx;
313 }
314
315 /*
316  * Callback to handle sending packets through a real NIC.
317  */
318 static uint16_t
319 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
320 {
321         unsigned int i;
322         int ret;
323         struct rte_mbuf *mbuf;
324         struct pcap_tx_queue *tx_queue = queue;
325         uint16_t num_tx = 0;
326         uint32_t tx_bytes = 0;
327
328         if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
329                 return 0;
330
331         for (i = 0; i < nb_pkts; i++) {
332                 mbuf = bufs[i];
333
334                 if (likely(mbuf->nb_segs == 1)) {
335                         ret = pcap_sendpacket(tx_queue->pcap,
336                                         rte_pktmbuf_mtod(mbuf, u_char *),
337                                         mbuf->pkt_len);
338                 } else {
339                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
340                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
341                                 ret = pcap_sendpacket(tx_queue->pcap,
342                                                 tx_pcap_data, mbuf->pkt_len);
343                         } else {
344                                 RTE_LOG(ERR, PMD,
345                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
346                                         mbuf->pkt_len,
347                                         ETHER_MAX_JUMBO_FRAME_LEN);
348
349                                 rte_pktmbuf_free(mbuf);
350                                 break;
351                         }
352                 }
353
354                 if (unlikely(ret != 0))
355                         break;
356                 num_tx++;
357                 tx_bytes += mbuf->pkt_len;
358                 rte_pktmbuf_free(mbuf);
359         }
360
361         tx_queue->tx_stat.pkts += num_tx;
362         tx_queue->tx_stat.bytes += tx_bytes;
363         tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
364
365         return num_tx;
366 }
367
368 /*
369  * pcap_open_live wrapper function
370  */
371 static inline int
372 open_iface_live(const char *iface, pcap_t **pcap) {
373         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
374                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
375
376         if (*pcap == NULL) {
377                 RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf);
378                 return -1;
379         }
380
381         return 0;
382 }
383
384 static int
385 open_single_iface(const char *iface, pcap_t **pcap)
386 {
387         if (open_iface_live(iface, pcap) < 0) {
388                 RTE_LOG(ERR, PMD, "Couldn't open interface %s\n", iface);
389                 return -1;
390         }
391
392         return 0;
393 }
394
395 static int
396 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
397 {
398         pcap_t *tx_pcap;
399
400         /*
401          * We need to create a dummy empty pcap_t to use it
402          * with pcap_dump_open(). We create big enough an Ethernet
403          * pcap holder.
404          */
405         tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
406         if (tx_pcap == NULL) {
407                 RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n");
408                 return -1;
409         }
410
411         /* The dumper is created using the previous pcap_t reference */
412         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
413         if (*dumper == NULL) {
414                 RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n",
415                         pcap_filename);
416                 return -1;
417         }
418
419         return 0;
420 }
421
422 static int
423 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
424 {
425         *pcap = pcap_open_offline(pcap_filename, errbuf);
426         if (*pcap == NULL) {
427                 RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename,
428                         errbuf);
429                 return -1;
430         }
431
432         return 0;
433 }
434
435 static int
436 eth_dev_start(struct rte_eth_dev *dev)
437 {
438         unsigned int i;
439         struct pmd_internals *internals = dev->data->dev_private;
440         struct pcap_tx_queue *tx;
441         struct pcap_rx_queue *rx;
442
443         /* Special iface case. Single pcap is open and shared between tx/rx. */
444         if (internals->single_iface) {
445                 tx = &internals->tx_queue[0];
446                 rx = &internals->rx_queue[0];
447
448                 if (!tx->pcap && strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
449                         if (open_single_iface(tx->name, &tx->pcap) < 0)
450                                 return -1;
451                         rx->pcap = tx->pcap;
452                 }
453                 goto status_up;
454         }
455
456         /* If not open already, open tx pcaps/dumpers */
457         for (i = 0; i < dev->data->nb_tx_queues; i++) {
458                 tx = &internals->tx_queue[i];
459
460                 if (!tx->dumper &&
461                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
462                         if (open_single_tx_pcap(tx->name, &tx->dumper) < 0)
463                                 return -1;
464                 } else if (!tx->pcap &&
465                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
466                         if (open_single_iface(tx->name, &tx->pcap) < 0)
467                                 return -1;
468                 }
469         }
470
471         /* If not open already, open rx pcaps */
472         for (i = 0; i < dev->data->nb_rx_queues; i++) {
473                 rx = &internals->rx_queue[i];
474
475                 if (rx->pcap != NULL)
476                         continue;
477
478                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
479                         if (open_single_rx_pcap(rx->name, &rx->pcap) < 0)
480                                 return -1;
481                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
482                         if (open_single_iface(rx->name, &rx->pcap) < 0)
483                                 return -1;
484                 }
485         }
486
487 status_up:
488         dev->data->dev_link.link_status = ETH_LINK_UP;
489
490         return 0;
491 }
492
493 /*
494  * This function gets called when the current port gets stopped.
495  * Is the only place for us to close all the tx streams dumpers.
496  * If not called the dumpers will be flushed within each tx burst.
497  */
498 static void
499 eth_dev_stop(struct rte_eth_dev *dev)
500 {
501         unsigned int i;
502         struct pmd_internals *internals = dev->data->dev_private;
503         struct pcap_tx_queue *tx;
504         struct pcap_rx_queue *rx;
505
506         /* Special iface case. Single pcap is open and shared between tx/rx. */
507         if (internals->single_iface) {
508                 tx = &internals->tx_queue[0];
509                 rx = &internals->rx_queue[0];
510                 pcap_close(tx->pcap);
511                 tx->pcap = NULL;
512                 rx->pcap = NULL;
513                 goto status_down;
514         }
515
516         for (i = 0; i < dev->data->nb_tx_queues; i++) {
517                 tx = &internals->tx_queue[i];
518
519                 if (tx->dumper != NULL) {
520                         pcap_dump_close(tx->dumper);
521                         tx->dumper = NULL;
522                 }
523
524                 if (tx->pcap != NULL) {
525                         pcap_close(tx->pcap);
526                         tx->pcap = NULL;
527                 }
528         }
529
530         for (i = 0; i < dev->data->nb_rx_queues; i++) {
531                 rx = &internals->rx_queue[i];
532
533                 if (rx->pcap != NULL) {
534                         pcap_close(rx->pcap);
535                         rx->pcap = NULL;
536                 }
537         }
538
539 status_down:
540         dev->data->dev_link.link_status = ETH_LINK_DOWN;
541 }
542
543 static int
544 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
545 {
546         return 0;
547 }
548
549 static void
550 eth_dev_info(struct rte_eth_dev *dev,
551                 struct rte_eth_dev_info *dev_info)
552 {
553         struct pmd_internals *internals = dev->data->dev_private;
554
555         dev_info->driver_name = drivername;
556         dev_info->if_index = internals->if_index;
557         dev_info->max_mac_addrs = 1;
558         dev_info->max_rx_pktlen = (uint32_t) -1;
559         dev_info->max_rx_queues = dev->data->nb_rx_queues;
560         dev_info->max_tx_queues = dev->data->nb_tx_queues;
561         dev_info->min_rx_bufsize = 0;
562 }
563
564 static void
565 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
566 {
567         unsigned int i;
568         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
569         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
570         unsigned long tx_packets_err_total = 0;
571         const struct pmd_internals *internal = dev->data->dev_private;
572
573         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
574                         i < dev->data->nb_rx_queues; i++) {
575                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
576                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
577                 rx_packets_total += stats->q_ipackets[i];
578                 rx_bytes_total += stats->q_ibytes[i];
579         }
580
581         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
582                         i < dev->data->nb_tx_queues; i++) {
583                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
584                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
585                 stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts;
586                 tx_packets_total += stats->q_opackets[i];
587                 tx_bytes_total += stats->q_obytes[i];
588                 tx_packets_err_total += stats->q_errors[i];
589         }
590
591         stats->ipackets = rx_packets_total;
592         stats->ibytes = rx_bytes_total;
593         stats->opackets = tx_packets_total;
594         stats->obytes = tx_bytes_total;
595         stats->oerrors = tx_packets_err_total;
596 }
597
598 static void
599 eth_stats_reset(struct rte_eth_dev *dev)
600 {
601         unsigned int i;
602         struct pmd_internals *internal = dev->data->dev_private;
603
604         for (i = 0; i < dev->data->nb_rx_queues; i++) {
605                 internal->rx_queue[i].rx_stat.pkts = 0;
606                 internal->rx_queue[i].rx_stat.bytes = 0;
607         }
608
609         for (i = 0; i < dev->data->nb_tx_queues; i++) {
610                 internal->tx_queue[i].tx_stat.pkts = 0;
611                 internal->tx_queue[i].tx_stat.bytes = 0;
612                 internal->tx_queue[i].tx_stat.err_pkts = 0;
613         }
614 }
615
616 static void
617 eth_dev_close(struct rte_eth_dev *dev __rte_unused)
618 {
619 }
620
621 static void
622 eth_queue_release(void *q __rte_unused)
623 {
624 }
625
626 static int
627 eth_link_update(struct rte_eth_dev *dev __rte_unused,
628                 int wait_to_complete __rte_unused)
629 {
630         return 0;
631 }
632
633 static int
634 eth_rx_queue_setup(struct rte_eth_dev *dev,
635                 uint16_t rx_queue_id,
636                 uint16_t nb_rx_desc __rte_unused,
637                 unsigned int socket_id __rte_unused,
638                 const struct rte_eth_rxconf *rx_conf __rte_unused,
639                 struct rte_mempool *mb_pool)
640 {
641         struct pmd_internals *internals = dev->data->dev_private;
642         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
643
644         pcap_q->mb_pool = mb_pool;
645         dev->data->rx_queues[rx_queue_id] = pcap_q;
646         pcap_q->in_port = dev->data->port_id;
647
648         return 0;
649 }
650
651 static int
652 eth_tx_queue_setup(struct rte_eth_dev *dev,
653                 uint16_t tx_queue_id,
654                 uint16_t nb_tx_desc __rte_unused,
655                 unsigned int socket_id __rte_unused,
656                 const struct rte_eth_txconf *tx_conf __rte_unused)
657 {
658         struct pmd_internals *internals = dev->data->dev_private;
659
660         dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
661
662         return 0;
663 }
664
665 static const struct eth_dev_ops ops = {
666         .dev_start = eth_dev_start,
667         .dev_stop = eth_dev_stop,
668         .dev_close = eth_dev_close,
669         .dev_configure = eth_dev_configure,
670         .dev_infos_get = eth_dev_info,
671         .rx_queue_setup = eth_rx_queue_setup,
672         .tx_queue_setup = eth_tx_queue_setup,
673         .rx_queue_release = eth_queue_release,
674         .tx_queue_release = eth_queue_release,
675         .link_update = eth_link_update,
676         .stats_get = eth_stats_get,
677         .stats_reset = eth_stats_reset,
678 };
679
680 /*
681  * Function handler that opens the pcap file for reading a stores a
682  * reference of it for use it later on.
683  */
684 static int
685 open_rx_pcap(const char *key, const char *value, void *extra_args)
686 {
687         unsigned int i;
688         const char *pcap_filename = value;
689         struct pmd_devargs *rx = extra_args;
690         pcap_t *pcap = NULL;
691
692         for (i = 0; i < rx->num_of_queue; i++) {
693                 if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
694                         return -1;
695
696                 rx->queue[i].pcap = pcap;
697                 rx->queue[i].name = pcap_filename;
698                 rx->queue[i].type = key;
699         }
700
701         return 0;
702 }
703
704 /*
705  * Opens a pcap file for writing and stores a reference to it
706  * for use it later on.
707  */
708 static int
709 open_tx_pcap(const char *key, const char *value, void *extra_args)
710 {
711         unsigned int i;
712         const char *pcap_filename = value;
713         struct pmd_devargs *dumpers = extra_args;
714         pcap_dumper_t *dumper;
715
716         for (i = 0; i < dumpers->num_of_queue; i++) {
717                 if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
718                         return -1;
719
720                 dumpers->queue[i].dumper = dumper;
721                 dumpers->queue[i].name = pcap_filename;
722                 dumpers->queue[i].type = key;
723         }
724
725         return 0;
726 }
727
728 /*
729  * Opens an interface for reading and writing
730  */
731 static inline int
732 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
733 {
734         const char *iface = value;
735         struct pmd_devargs *tx = extra_args;
736         pcap_t *pcap = NULL;
737
738         if (open_single_iface(iface, &pcap) < 0)
739                 return -1;
740
741         tx->queue[0].pcap = pcap;
742         tx->queue[0].name = iface;
743         tx->queue[0].type = key;
744
745         return 0;
746 }
747
748 /*
749  * Opens a NIC for reading packets from it
750  */
751 static inline int
752 open_rx_iface(const char *key, const char *value, void *extra_args)
753 {
754         unsigned int i;
755         const char *iface = value;
756         struct pmd_devargs *rx = extra_args;
757         pcap_t *pcap = NULL;
758
759         for (i = 0; i < rx->num_of_queue; i++) {
760                 if (open_single_iface(iface, &pcap) < 0)
761                         return -1;
762                 rx->queue[i].pcap = pcap;
763                 rx->queue[i].name = iface;
764                 rx->queue[i].type = key;
765         }
766
767         return 0;
768 }
769
770 /*
771  * Opens a NIC for writing packets to it
772  */
773 static int
774 open_tx_iface(const char *key, const char *value, void *extra_args)
775 {
776         unsigned int i;
777         const char *iface = value;
778         struct pmd_devargs *tx = extra_args;
779         pcap_t *pcap;
780
781         for (i = 0; i < tx->num_of_queue; i++) {
782                 if (open_single_iface(iface, &pcap) < 0)
783                         return -1;
784                 tx->queue[i].pcap = pcap;
785                 tx->queue[i].name = iface;
786                 tx->queue[i].type = key;
787         }
788
789         return 0;
790 }
791
792 static int
793 pmd_init_internals(const char *name, const unsigned int nb_rx_queues,
794                 const unsigned int nb_tx_queues,
795                 struct pmd_internals **internals,
796                 struct rte_eth_dev **eth_dev)
797 {
798         struct rte_eth_dev_data *data = NULL;
799         unsigned int numa_node = rte_socket_id();
800
801         RTE_LOG(INFO, PMD, "Creating pcap-backed ethdev on numa socket %u\n",
802                 numa_node);
803
804         /* now do all data allocation - for eth_dev structure
805          * and internal (private) data
806          */
807         data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
808         if (data == NULL)
809                 goto error;
810
811         *internals = rte_zmalloc_socket(name, sizeof(**internals), 0,
812                         numa_node);
813         if (*internals == NULL)
814                 goto error;
815
816         /* reserve an ethdev entry */
817         *eth_dev = rte_eth_dev_allocate(name);
818         if (*eth_dev == NULL)
819                 goto error;
820
821         /* now put it all together
822          * - store queue data in internals,
823          * - store numa_node info in eth_dev
824          * - point eth_dev_data to internals
825          * - and point eth_dev structure to new eth_dev_data structure
826          */
827         data->dev_private = *internals;
828         data->port_id = (*eth_dev)->data->port_id;
829         snprintf(data->name, sizeof(data->name), "%s", (*eth_dev)->data->name);
830         data->nb_rx_queues = (uint16_t)nb_rx_queues;
831         data->nb_tx_queues = (uint16_t)nb_tx_queues;
832         data->dev_link = pmd_link;
833         data->mac_addrs = &eth_addr;
834
835         /*
836          * NOTE: we'll replace the data element, of originally allocated
837          * eth_dev so the rings are local per-process
838          */
839         (*eth_dev)->data = data;
840         (*eth_dev)->dev_ops = &ops;
841         (*eth_dev)->driver = NULL;
842         data->dev_flags = RTE_ETH_DEV_DETACHABLE;
843         data->kdrv = RTE_KDRV_NONE;
844         data->drv_name = drivername;
845         data->numa_node = numa_node;
846
847         return 0;
848
849 error:
850         rte_free(data);
851         rte_free(*internals);
852
853         return -1;
854 }
855
856 static int
857 eth_from_pcaps_common(const char *name, struct pmd_devargs *rx_queues,
858                 const unsigned int nb_rx_queues, struct pmd_devargs *tx_queues,
859                 const unsigned int nb_tx_queues, struct rte_kvargs *kvlist,
860                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
861 {
862         struct rte_kvargs_pair *pair = NULL;
863         unsigned int k_idx;
864         unsigned int i;
865
866         /* do some parameter checking */
867         if (rx_queues == NULL && nb_rx_queues > 0)
868                 return -1;
869         if (tx_queues == NULL && nb_tx_queues > 0)
870                 return -1;
871
872         if (pmd_init_internals(name, nb_rx_queues, nb_tx_queues, internals,
873                         eth_dev) < 0)
874                 return -1;
875
876         for (i = 0; i < nb_rx_queues; i++) {
877                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
878                 struct devargs_queue *queue = &rx_queues->queue[i];
879
880                 rx->pcap = queue->pcap;
881                 snprintf(rx->name, sizeof(rx->name), "%s", queue->name);
882                 snprintf(rx->type, sizeof(rx->type), "%s", queue->type);
883         }
884
885         for (i = 0; i < nb_tx_queues; i++) {
886                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
887                 struct devargs_queue *queue = &tx_queues->queue[i];
888
889                 tx->dumper = queue->dumper;
890                 tx->pcap = queue->pcap;
891                 snprintf(tx->name, sizeof(tx->name), "%s", queue->name);
892                 snprintf(tx->type, sizeof(tx->type), "%s", queue->type);
893         }
894
895         for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
896                 pair = &kvlist->pairs[k_idx];
897                 if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
898                         break;
899         }
900
901         if (pair == NULL)
902                 (*internals)->if_index = 0;
903         else
904                 (*internals)->if_index = if_nametoindex(pair->value);
905
906         return 0;
907 }
908
909 static int
910 eth_from_pcaps(const char *name, struct pmd_devargs *rx_queues,
911                 const unsigned int nb_rx_queues, struct pmd_devargs *tx_queues,
912                 const unsigned int nb_tx_queues, struct rte_kvargs *kvlist,
913                 int single_iface, unsigned int using_dumpers)
914 {
915         struct pmd_internals *internals = NULL;
916         struct rte_eth_dev *eth_dev = NULL;
917         int ret;
918
919         ret = eth_from_pcaps_common(name, rx_queues, nb_rx_queues,
920                 tx_queues, nb_tx_queues, kvlist, &internals, &eth_dev);
921
922         if (ret < 0)
923                 return ret;
924
925         /* store weather we are using a single interface for rx/tx or not */
926         internals->single_iface = single_iface;
927
928         eth_dev->rx_pkt_burst = eth_pcap_rx;
929
930         if (using_dumpers)
931                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
932         else
933                 eth_dev->tx_pkt_burst = eth_pcap_tx;
934
935         return 0;
936 }
937
938 static int
939 pmd_pcap_probe(const char *name, const char *params)
940 {
941         unsigned int is_rx_pcap = 0, is_tx_pcap = 0;
942         struct rte_kvargs *kvlist;
943         struct pmd_devargs pcaps = {0};
944         struct pmd_devargs dumpers = {0};
945         int single_iface = 0;
946         int ret;
947
948         RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name);
949
950         gettimeofday(&start_time, NULL);
951         start_cycles = rte_get_timer_cycles();
952         hz = rte_get_timer_hz();
953
954         kvlist = rte_kvargs_parse(params, valid_arguments);
955         if (kvlist == NULL)
956                 return -1;
957
958         /*
959          * If iface argument is passed we open the NICs and use them for
960          * reading / writing
961          */
962         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
963
964                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
965                                 &open_rx_tx_iface, &pcaps);
966
967                 if (ret < 0)
968                         goto free_kvlist;
969
970                 dumpers.queue[0] = pcaps.queue[0];
971
972                 single_iface = 1;
973                 pcaps.num_of_queue = 1;
974                 dumpers.num_of_queue = 1;
975
976                 goto create_eth;
977         }
978
979         /*
980          * We check whether we want to open a RX stream from a real NIC or a
981          * pcap file
982          */
983         pcaps.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG);
984         if (pcaps.num_of_queue)
985                 is_rx_pcap = 1;
986         else
987                 pcaps.num_of_queue = rte_kvargs_count(kvlist,
988                                 ETH_PCAP_RX_IFACE_ARG);
989
990         if (pcaps.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
991                 pcaps.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
992
993         if (is_rx_pcap)
994                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
995                                 &open_rx_pcap, &pcaps);
996         else
997                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG,
998                                 &open_rx_iface, &pcaps);
999
1000         if (ret < 0)
1001                 goto free_kvlist;
1002
1003         /*
1004          * We check whether we want to open a TX stream to a real NIC or a
1005          * pcap file
1006          */
1007         dumpers.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG);
1008         if (dumpers.num_of_queue)
1009                 is_tx_pcap = 1;
1010         else
1011                 dumpers.num_of_queue = rte_kvargs_count(kvlist,
1012                                 ETH_PCAP_TX_IFACE_ARG);
1013
1014         if (dumpers.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
1015                 dumpers.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
1016
1017         if (is_tx_pcap)
1018                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1019                                 &open_tx_pcap, &dumpers);
1020         else
1021                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1022                                 &open_tx_iface, &dumpers);
1023
1024         if (ret < 0)
1025                 goto free_kvlist;
1026
1027 create_eth:
1028         ret = eth_from_pcaps(name, &pcaps, pcaps.num_of_queue, &dumpers,
1029                 dumpers.num_of_queue, kvlist, single_iface, is_tx_pcap);
1030
1031 free_kvlist:
1032         rte_kvargs_free(kvlist);
1033
1034         return ret;
1035 }
1036
1037 static int
1038 pmd_pcap_remove(const char *name)
1039 {
1040         struct rte_eth_dev *eth_dev = NULL;
1041
1042         RTE_LOG(INFO, PMD, "Closing pcap ethdev on numa socket %u\n",
1043                         rte_socket_id());
1044
1045         if (name == NULL)
1046                 return -1;
1047
1048         /* reserve an ethdev entry */
1049         eth_dev = rte_eth_dev_allocated(name);
1050         if (eth_dev == NULL)
1051                 return -1;
1052
1053         rte_free(eth_dev->data->dev_private);
1054         rte_free(eth_dev->data);
1055
1056         rte_eth_dev_release_port(eth_dev);
1057
1058         return 0;
1059 }
1060
1061 static struct rte_vdev_driver pmd_pcap_drv = {
1062         .probe = pmd_pcap_probe,
1063         .remove = pmd_pcap_remove,
1064 };
1065
1066 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1067 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1068 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1069         ETH_PCAP_RX_PCAP_ARG "=<string> "
1070         ETH_PCAP_TX_PCAP_ARG "=<string> "
1071         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1072         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1073         ETH_PCAP_IFACE_ARG "=<ifc>");