net: add rte prefix to ether structures
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10 #include <sys/socket.h>
11 #include <sys/ioctl.h>
12 #include <unistd.h>
13
14 #if defined(RTE_EXEC_ENV_FREEBSD)
15 #include <sys/sysctl.h>
16 #include <net/if_dl.h>
17 #endif
18
19 #include <pcap.h>
20
21 #include <rte_cycles.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_vdev.h>
24 #include <rte_kvargs.h>
25 #include <rte_malloc.h>
26 #include <rte_mbuf.h>
27 #include <rte_bus_vdev.h>
28 #include <rte_string_fns.h>
29
30 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
31 #define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN
32 #define RTE_ETH_PCAP_PROMISC 1
33 #define RTE_ETH_PCAP_TIMEOUT -1
34
35 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
36 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
37 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
38 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
39 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
40 #define ETH_PCAP_IFACE_ARG    "iface"
41 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
42
43 #define ETH_PCAP_ARG_MAXLEN     64
44
45 #define RTE_PMD_PCAP_MAX_QUEUES 16
46
47 static char errbuf[PCAP_ERRBUF_SIZE];
48 static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
49 static struct timeval start_time;
50 static uint64_t start_cycles;
51 static uint64_t hz;
52 static uint8_t iface_idx;
53
54 struct queue_stat {
55         volatile unsigned long pkts;
56         volatile unsigned long bytes;
57         volatile unsigned long err_pkts;
58 };
59
60 struct pcap_rx_queue {
61         uint16_t port_id;
62         uint16_t queue_id;
63         struct rte_mempool *mb_pool;
64         struct queue_stat rx_stat;
65         char name[PATH_MAX];
66         char type[ETH_PCAP_ARG_MAXLEN];
67 };
68
69 struct pcap_tx_queue {
70         uint16_t port_id;
71         uint16_t queue_id;
72         struct queue_stat tx_stat;
73         char name[PATH_MAX];
74         char type[ETH_PCAP_ARG_MAXLEN];
75 };
76
77 struct pmd_internals {
78         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
79         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
80         char devargs[ETH_PCAP_ARG_MAXLEN];
81         struct rte_ether_addr eth_addr;
82         int if_index;
83         int single_iface;
84         int phy_mac;
85 };
86
87 struct pmd_process_private {
88         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
89         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
90         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
91 };
92
93 struct pmd_devargs {
94         unsigned int num_of_queue;
95         struct devargs_queue {
96                 pcap_dumper_t *dumper;
97                 pcap_t *pcap;
98                 const char *name;
99                 const char *type;
100         } queue[RTE_PMD_PCAP_MAX_QUEUES];
101         int phy_mac;
102 };
103
104 static const char *valid_arguments[] = {
105         ETH_PCAP_RX_PCAP_ARG,
106         ETH_PCAP_TX_PCAP_ARG,
107         ETH_PCAP_RX_IFACE_ARG,
108         ETH_PCAP_RX_IFACE_IN_ARG,
109         ETH_PCAP_TX_IFACE_ARG,
110         ETH_PCAP_IFACE_ARG,
111         ETH_PCAP_PHY_MAC_ARG,
112         NULL
113 };
114
115 static struct rte_eth_link pmd_link = {
116                 .link_speed = ETH_SPEED_NUM_10G,
117                 .link_duplex = ETH_LINK_FULL_DUPLEX,
118                 .link_status = ETH_LINK_DOWN,
119                 .link_autoneg = ETH_LINK_FIXED,
120 };
121
122 static int eth_pcap_logtype;
123
124 #define PMD_LOG(level, fmt, args...) \
125         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
126                 "%s(): " fmt "\n", __func__, ##args)
127
128 static int
129 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
130                 const u_char *data, uint16_t data_len)
131 {
132         /* Copy the first segment. */
133         uint16_t len = rte_pktmbuf_tailroom(mbuf);
134         struct rte_mbuf *m = mbuf;
135
136         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
137         data_len -= len;
138         data += len;
139
140         while (data_len > 0) {
141                 /* Allocate next mbuf and point to that. */
142                 m->next = rte_pktmbuf_alloc(mb_pool);
143
144                 if (unlikely(!m->next))
145                         return -1;
146
147                 m = m->next;
148
149                 /* Headroom is not needed in chained mbufs. */
150                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
151                 m->pkt_len = 0;
152                 m->data_len = 0;
153
154                 /* Copy next segment. */
155                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
156                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
157
158                 mbuf->nb_segs++;
159                 data_len -= len;
160                 data += len;
161         }
162
163         return mbuf->nb_segs;
164 }
165
166 /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
167 static void
168 eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
169 {
170         uint16_t data_len = 0;
171
172         while (mbuf) {
173                 rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
174                         mbuf->data_len);
175
176                 data_len += mbuf->data_len;
177                 mbuf = mbuf->next;
178         }
179 }
180
181 static uint16_t
182 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
183 {
184         unsigned int i;
185         struct pcap_pkthdr header;
186         struct pmd_process_private *pp;
187         const u_char *packet;
188         struct rte_mbuf *mbuf;
189         struct pcap_rx_queue *pcap_q = queue;
190         uint16_t num_rx = 0;
191         uint16_t buf_size;
192         uint32_t rx_bytes = 0;
193         pcap_t *pcap;
194
195         pp = rte_eth_devices[pcap_q->port_id].process_private;
196         pcap = pp->rx_pcap[pcap_q->queue_id];
197
198         if (unlikely(pcap == NULL || nb_pkts == 0))
199                 return 0;
200
201         /* Reads the given number of packets from the pcap file one by one
202          * and copies the packet data into a newly allocated mbuf to return.
203          */
204         for (i = 0; i < nb_pkts; i++) {
205                 /* Get the next PCAP packet */
206                 packet = pcap_next(pcap, &header);
207                 if (unlikely(packet == NULL))
208                         break;
209
210                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
211                 if (unlikely(mbuf == NULL))
212                         break;
213
214                 /* Now get the space available for data in the mbuf */
215                 buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
216                                 RTE_PKTMBUF_HEADROOM;
217
218                 if (header.caplen <= buf_size) {
219                         /* pcap packet will fit in the mbuf, can copy it */
220                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
221                                         header.caplen);
222                         mbuf->data_len = (uint16_t)header.caplen;
223                 } else {
224                         /* Try read jumbo frame into multi mbufs. */
225                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
226                                                        mbuf,
227                                                        packet,
228                                                        header.caplen) == -1)) {
229                                 rte_pktmbuf_free(mbuf);
230                                 break;
231                         }
232                 }
233
234                 mbuf->pkt_len = (uint16_t)header.caplen;
235                 mbuf->port = pcap_q->port_id;
236                 bufs[num_rx] = mbuf;
237                 num_rx++;
238                 rx_bytes += header.caplen;
239         }
240         pcap_q->rx_stat.pkts += num_rx;
241         pcap_q->rx_stat.bytes += rx_bytes;
242
243         return num_rx;
244 }
245
246 static inline void
247 calculate_timestamp(struct timeval *ts) {
248         uint64_t cycles;
249         struct timeval cur_time;
250
251         cycles = rte_get_timer_cycles() - start_cycles;
252         cur_time.tv_sec = cycles / hz;
253         cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
254         timeradd(&start_time, &cur_time, ts);
255 }
256
257 /*
258  * Callback to handle writing packets to a pcap file.
259  */
260 static uint16_t
261 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
262 {
263         unsigned int i;
264         struct rte_mbuf *mbuf;
265         struct pmd_process_private *pp;
266         struct pcap_tx_queue *dumper_q = queue;
267         uint16_t num_tx = 0;
268         uint32_t tx_bytes = 0;
269         struct pcap_pkthdr header;
270         pcap_dumper_t *dumper;
271
272         pp = rte_eth_devices[dumper_q->port_id].process_private;
273         dumper = pp->tx_dumper[dumper_q->queue_id];
274
275         if (dumper == NULL || nb_pkts == 0)
276                 return 0;
277
278         /* writes the nb_pkts packets to the previously opened pcap file
279          * dumper */
280         for (i = 0; i < nb_pkts; i++) {
281                 mbuf = bufs[i];
282                 calculate_timestamp(&header.ts);
283                 header.len = mbuf->pkt_len;
284                 header.caplen = header.len;
285
286                 if (likely(mbuf->nb_segs == 1)) {
287                         pcap_dump((u_char *)dumper, &header,
288                                   rte_pktmbuf_mtod(mbuf, void*));
289                 } else {
290                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
291                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
292                                 pcap_dump((u_char *)dumper, &header,
293                                           tx_pcap_data);
294                         } else {
295                                 PMD_LOG(ERR,
296                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
297                                         mbuf->pkt_len,
298                                         ETHER_MAX_JUMBO_FRAME_LEN);
299
300                                 rte_pktmbuf_free(mbuf);
301                                 break;
302                         }
303                 }
304
305                 num_tx++;
306                 tx_bytes += mbuf->pkt_len;
307                 rte_pktmbuf_free(mbuf);
308         }
309
310         /*
311          * Since there's no place to hook a callback when the forwarding
312          * process stops and to make sure the pcap file is actually written,
313          * we flush the pcap dumper within each burst.
314          */
315         pcap_dump_flush(dumper);
316         dumper_q->tx_stat.pkts += num_tx;
317         dumper_q->tx_stat.bytes += tx_bytes;
318         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
319
320         return num_tx;
321 }
322
323 /*
324  * Callback to handle sending packets through a real NIC.
325  */
326 static uint16_t
327 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
328 {
329         unsigned int i;
330         int ret;
331         struct rte_mbuf *mbuf;
332         struct pmd_process_private *pp;
333         struct pcap_tx_queue *tx_queue = queue;
334         uint16_t num_tx = 0;
335         uint32_t tx_bytes = 0;
336         pcap_t *pcap;
337
338         pp = rte_eth_devices[tx_queue->port_id].process_private;
339         pcap = pp->tx_pcap[tx_queue->queue_id];
340
341         if (unlikely(nb_pkts == 0 || pcap == NULL))
342                 return 0;
343
344         for (i = 0; i < nb_pkts; i++) {
345                 mbuf = bufs[i];
346
347                 if (likely(mbuf->nb_segs == 1)) {
348                         ret = pcap_sendpacket(pcap,
349                                         rte_pktmbuf_mtod(mbuf, u_char *),
350                                         mbuf->pkt_len);
351                 } else {
352                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
353                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
354                                 ret = pcap_sendpacket(pcap,
355                                                 tx_pcap_data, mbuf->pkt_len);
356                         } else {
357                                 PMD_LOG(ERR,
358                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
359                                         mbuf->pkt_len,
360                                         ETHER_MAX_JUMBO_FRAME_LEN);
361
362                                 rte_pktmbuf_free(mbuf);
363                                 break;
364                         }
365                 }
366
367                 if (unlikely(ret != 0))
368                         break;
369                 num_tx++;
370                 tx_bytes += mbuf->pkt_len;
371                 rte_pktmbuf_free(mbuf);
372         }
373
374         tx_queue->tx_stat.pkts += num_tx;
375         tx_queue->tx_stat.bytes += tx_bytes;
376         tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
377
378         return num_tx;
379 }
380
381 /*
382  * pcap_open_live wrapper function
383  */
384 static inline int
385 open_iface_live(const char *iface, pcap_t **pcap) {
386         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
387                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
388
389         if (*pcap == NULL) {
390                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
391                 return -1;
392         }
393
394         return 0;
395 }
396
397 static int
398 open_single_iface(const char *iface, pcap_t **pcap)
399 {
400         if (open_iface_live(iface, pcap) < 0) {
401                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
402                 return -1;
403         }
404
405         return 0;
406 }
407
408 static int
409 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
410 {
411         pcap_t *tx_pcap;
412
413         /*
414          * We need to create a dummy empty pcap_t to use it
415          * with pcap_dump_open(). We create big enough an Ethernet
416          * pcap holder.
417          */
418         tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
419         if (tx_pcap == NULL) {
420                 PMD_LOG(ERR, "Couldn't create dead pcap");
421                 return -1;
422         }
423
424         /* The dumper is created using the previous pcap_t reference */
425         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
426         if (*dumper == NULL) {
427                 pcap_close(tx_pcap);
428                 PMD_LOG(ERR, "Couldn't open %s for writing.",
429                         pcap_filename);
430                 return -1;
431         }
432
433         pcap_close(tx_pcap);
434         return 0;
435 }
436
437 static int
438 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
439 {
440         *pcap = pcap_open_offline(pcap_filename, errbuf);
441         if (*pcap == NULL) {
442                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
443                         errbuf);
444                 return -1;
445         }
446
447         return 0;
448 }
449
450 static int
451 eth_dev_start(struct rte_eth_dev *dev)
452 {
453         unsigned int i;
454         struct pmd_internals *internals = dev->data->dev_private;
455         struct pmd_process_private *pp = dev->process_private;
456         struct pcap_tx_queue *tx;
457         struct pcap_rx_queue *rx;
458
459         /* Special iface case. Single pcap is open and shared between tx/rx. */
460         if (internals->single_iface) {
461                 tx = &internals->tx_queue[0];
462                 rx = &internals->rx_queue[0];
463
464                 if (!pp->tx_pcap[0] &&
465                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
466                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
467                                 return -1;
468                         pp->rx_pcap[0] = pp->tx_pcap[0];
469                 }
470
471                 goto status_up;
472         }
473
474         /* If not open already, open tx pcaps/dumpers */
475         for (i = 0; i < dev->data->nb_tx_queues; i++) {
476                 tx = &internals->tx_queue[i];
477
478                 if (!pp->tx_dumper[i] &&
479                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
480                         if (open_single_tx_pcap(tx->name,
481                                 &pp->tx_dumper[i]) < 0)
482                                 return -1;
483                 } else if (!pp->tx_pcap[i] &&
484                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
485                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
486                                 return -1;
487                 }
488         }
489
490         /* If not open already, open rx pcaps */
491         for (i = 0; i < dev->data->nb_rx_queues; i++) {
492                 rx = &internals->rx_queue[i];
493
494                 if (pp->rx_pcap[i] != NULL)
495                         continue;
496
497                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
498                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
499                                 return -1;
500                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
501                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
502                                 return -1;
503                 }
504         }
505
506 status_up:
507         for (i = 0; i < dev->data->nb_rx_queues; i++)
508                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
509
510         for (i = 0; i < dev->data->nb_tx_queues; i++)
511                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
512
513         dev->data->dev_link.link_status = ETH_LINK_UP;
514
515         return 0;
516 }
517
518 /*
519  * This function gets called when the current port gets stopped.
520  * Is the only place for us to close all the tx streams dumpers.
521  * If not called the dumpers will be flushed within each tx burst.
522  */
523 static void
524 eth_dev_stop(struct rte_eth_dev *dev)
525 {
526         unsigned int i;
527         struct pmd_internals *internals = dev->data->dev_private;
528         struct pmd_process_private *pp = dev->process_private;
529
530         /* Special iface case. Single pcap is open and shared between tx/rx. */
531         if (internals->single_iface) {
532                 pcap_close(pp->tx_pcap[0]);
533                 pp->tx_pcap[0] = NULL;
534                 pp->rx_pcap[0] = NULL;
535                 goto status_down;
536         }
537
538         for (i = 0; i < dev->data->nb_tx_queues; i++) {
539                 if (pp->tx_dumper[i] != NULL) {
540                         pcap_dump_close(pp->tx_dumper[i]);
541                         pp->tx_dumper[i] = NULL;
542                 }
543
544                 if (pp->tx_pcap[i] != NULL) {
545                         pcap_close(pp->tx_pcap[i]);
546                         pp->tx_pcap[i] = NULL;
547                 }
548         }
549
550         for (i = 0; i < dev->data->nb_rx_queues; i++) {
551                 if (pp->rx_pcap[i] != NULL) {
552                         pcap_close(pp->rx_pcap[i]);
553                         pp->rx_pcap[i] = NULL;
554                 }
555         }
556
557 status_down:
558         for (i = 0; i < dev->data->nb_rx_queues; i++)
559                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
560
561         for (i = 0; i < dev->data->nb_tx_queues; i++)
562                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
563
564         dev->data->dev_link.link_status = ETH_LINK_DOWN;
565 }
566
567 static int
568 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
569 {
570         return 0;
571 }
572
573 static void
574 eth_dev_info(struct rte_eth_dev *dev,
575                 struct rte_eth_dev_info *dev_info)
576 {
577         struct pmd_internals *internals = dev->data->dev_private;
578
579         dev_info->if_index = internals->if_index;
580         dev_info->max_mac_addrs = 1;
581         dev_info->max_rx_pktlen = (uint32_t) -1;
582         dev_info->max_rx_queues = dev->data->nb_rx_queues;
583         dev_info->max_tx_queues = dev->data->nb_tx_queues;
584         dev_info->min_rx_bufsize = 0;
585 }
586
587 static int
588 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
589 {
590         unsigned int i;
591         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
592         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
593         unsigned long tx_packets_err_total = 0;
594         const struct pmd_internals *internal = dev->data->dev_private;
595
596         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
597                         i < dev->data->nb_rx_queues; i++) {
598                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
599                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
600                 rx_packets_total += stats->q_ipackets[i];
601                 rx_bytes_total += stats->q_ibytes[i];
602         }
603
604         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
605                         i < dev->data->nb_tx_queues; i++) {
606                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
607                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
608                 stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts;
609                 tx_packets_total += stats->q_opackets[i];
610                 tx_bytes_total += stats->q_obytes[i];
611                 tx_packets_err_total += stats->q_errors[i];
612         }
613
614         stats->ipackets = rx_packets_total;
615         stats->ibytes = rx_bytes_total;
616         stats->opackets = tx_packets_total;
617         stats->obytes = tx_bytes_total;
618         stats->oerrors = tx_packets_err_total;
619
620         return 0;
621 }
622
623 static void
624 eth_stats_reset(struct rte_eth_dev *dev)
625 {
626         unsigned int i;
627         struct pmd_internals *internal = dev->data->dev_private;
628
629         for (i = 0; i < dev->data->nb_rx_queues; i++) {
630                 internal->rx_queue[i].rx_stat.pkts = 0;
631                 internal->rx_queue[i].rx_stat.bytes = 0;
632         }
633
634         for (i = 0; i < dev->data->nb_tx_queues; i++) {
635                 internal->tx_queue[i].tx_stat.pkts = 0;
636                 internal->tx_queue[i].tx_stat.bytes = 0;
637                 internal->tx_queue[i].tx_stat.err_pkts = 0;
638         }
639 }
640
641 static void
642 eth_dev_close(struct rte_eth_dev *dev __rte_unused)
643 {
644 }
645
646 static void
647 eth_queue_release(void *q __rte_unused)
648 {
649 }
650
651 static int
652 eth_link_update(struct rte_eth_dev *dev __rte_unused,
653                 int wait_to_complete __rte_unused)
654 {
655         return 0;
656 }
657
658 static int
659 eth_rx_queue_setup(struct rte_eth_dev *dev,
660                 uint16_t rx_queue_id,
661                 uint16_t nb_rx_desc __rte_unused,
662                 unsigned int socket_id __rte_unused,
663                 const struct rte_eth_rxconf *rx_conf __rte_unused,
664                 struct rte_mempool *mb_pool)
665 {
666         struct pmd_internals *internals = dev->data->dev_private;
667         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
668
669         pcap_q->mb_pool = mb_pool;
670         pcap_q->port_id = dev->data->port_id;
671         pcap_q->queue_id = rx_queue_id;
672         dev->data->rx_queues[rx_queue_id] = pcap_q;
673
674         return 0;
675 }
676
677 static int
678 eth_tx_queue_setup(struct rte_eth_dev *dev,
679                 uint16_t tx_queue_id,
680                 uint16_t nb_tx_desc __rte_unused,
681                 unsigned int socket_id __rte_unused,
682                 const struct rte_eth_txconf *tx_conf __rte_unused)
683 {
684         struct pmd_internals *internals = dev->data->dev_private;
685         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
686
687         pcap_q->port_id = dev->data->port_id;
688         pcap_q->queue_id = tx_queue_id;
689         dev->data->tx_queues[tx_queue_id] = pcap_q;
690
691         return 0;
692 }
693
694 static int
695 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
696 {
697         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
698
699         return 0;
700 }
701
702 static int
703 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
704 {
705         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
706
707         return 0;
708 }
709
710 static int
711 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
712 {
713         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
714
715         return 0;
716 }
717
718 static int
719 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
720 {
721         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
722
723         return 0;
724 }
725
726 static const struct eth_dev_ops ops = {
727         .dev_start = eth_dev_start,
728         .dev_stop = eth_dev_stop,
729         .dev_close = eth_dev_close,
730         .dev_configure = eth_dev_configure,
731         .dev_infos_get = eth_dev_info,
732         .rx_queue_setup = eth_rx_queue_setup,
733         .tx_queue_setup = eth_tx_queue_setup,
734         .rx_queue_start = eth_rx_queue_start,
735         .tx_queue_start = eth_tx_queue_start,
736         .rx_queue_stop = eth_rx_queue_stop,
737         .tx_queue_stop = eth_tx_queue_stop,
738         .rx_queue_release = eth_queue_release,
739         .tx_queue_release = eth_queue_release,
740         .link_update = eth_link_update,
741         .stats_get = eth_stats_get,
742         .stats_reset = eth_stats_reset,
743 };
744
745 static int
746 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
747                 pcap_t *pcap, pcap_dumper_t *dumper)
748 {
749         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
750                 return -1;
751         if (pcap)
752                 pmd->queue[pmd->num_of_queue].pcap = pcap;
753         if (dumper)
754                 pmd->queue[pmd->num_of_queue].dumper = dumper;
755         pmd->queue[pmd->num_of_queue].name = name;
756         pmd->queue[pmd->num_of_queue].type = type;
757         pmd->num_of_queue++;
758         return 0;
759 }
760
761 /*
762  * Function handler that opens the pcap file for reading a stores a
763  * reference of it for use it later on.
764  */
765 static int
766 open_rx_pcap(const char *key, const char *value, void *extra_args)
767 {
768         const char *pcap_filename = value;
769         struct pmd_devargs *rx = extra_args;
770         pcap_t *pcap = NULL;
771
772         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
773                 return -1;
774
775         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
776                 pcap_close(pcap);
777                 return -1;
778         }
779
780         return 0;
781 }
782
783 /*
784  * Opens a pcap file for writing and stores a reference to it
785  * for use it later on.
786  */
787 static int
788 open_tx_pcap(const char *key, const char *value, void *extra_args)
789 {
790         const char *pcap_filename = value;
791         struct pmd_devargs *dumpers = extra_args;
792         pcap_dumper_t *dumper;
793
794         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
795                 return -1;
796
797         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
798                 pcap_dump_close(dumper);
799                 return -1;
800         }
801
802         return 0;
803 }
804
805 /*
806  * Opens an interface for reading and writing
807  */
808 static inline int
809 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
810 {
811         const char *iface = value;
812         struct pmd_devargs *tx = extra_args;
813         pcap_t *pcap = NULL;
814
815         if (open_single_iface(iface, &pcap) < 0)
816                 return -1;
817
818         tx->queue[0].pcap = pcap;
819         tx->queue[0].name = iface;
820         tx->queue[0].type = key;
821
822         return 0;
823 }
824
825 static inline int
826 set_iface_direction(const char *iface, pcap_t *pcap,
827                 pcap_direction_t direction)
828 {
829         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
830         if (pcap_setdirection(pcap, direction) < 0) {
831                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
832                                 iface, direction_str, pcap_geterr(pcap));
833                 return -1;
834         }
835         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
836                         iface, direction_str);
837         return 0;
838 }
839
840 static inline int
841 open_iface(const char *key, const char *value, void *extra_args)
842 {
843         const char *iface = value;
844         struct pmd_devargs *pmd = extra_args;
845         pcap_t *pcap = NULL;
846
847         if (open_single_iface(iface, &pcap) < 0)
848                 return -1;
849         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
850                 pcap_close(pcap);
851                 return -1;
852         }
853
854         return 0;
855 }
856
857 /*
858  * Opens a NIC for reading packets from it
859  */
860 static inline int
861 open_rx_iface(const char *key, const char *value, void *extra_args)
862 {
863         int ret = open_iface(key, value, extra_args);
864         if (ret < 0)
865                 return ret;
866         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
867                 struct pmd_devargs *pmd = extra_args;
868                 unsigned int qid = pmd->num_of_queue - 1;
869
870                 set_iface_direction(pmd->queue[qid].name,
871                                 pmd->queue[qid].pcap,
872                                 PCAP_D_IN);
873         }
874
875         return 0;
876 }
877
878 static inline int
879 rx_iface_args_process(const char *key, const char *value, void *extra_args)
880 {
881         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
882                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
883                 return open_rx_iface(key, value, extra_args);
884
885         return 0;
886 }
887
888 /*
889  * Opens a NIC for writing packets to it
890  */
891 static int
892 open_tx_iface(const char *key, const char *value, void *extra_args)
893 {
894         return open_iface(key, value, extra_args);
895 }
896
897 static int
898 select_phy_mac(const char *key __rte_unused, const char *value,
899                 void *extra_args)
900 {
901         if (extra_args) {
902                 const int phy_mac = atoi(value);
903                 int *enable_phy_mac = extra_args;
904
905                 if (phy_mac)
906                         *enable_phy_mac = 1;
907         }
908         return 0;
909 }
910
911 static struct rte_vdev_driver pmd_pcap_drv;
912
913 static int
914 pmd_init_internals(struct rte_vdev_device *vdev,
915                 const unsigned int nb_rx_queues,
916                 const unsigned int nb_tx_queues,
917                 struct pmd_internals **internals,
918                 struct rte_eth_dev **eth_dev)
919 {
920         struct rte_eth_dev_data *data;
921         struct pmd_process_private *pp;
922         unsigned int numa_node = vdev->device.numa_node;
923
924         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
925                 numa_node);
926
927         pp = (struct pmd_process_private *)
928                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
929                                 RTE_CACHE_LINE_SIZE);
930
931         if (pp == NULL) {
932                 PMD_LOG(ERR,
933                         "Failed to allocate memory for process private");
934                 return -1;
935         }
936
937         /* reserve an ethdev entry */
938         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
939         if (!(*eth_dev)) {
940                 rte_free(pp);
941                 return -1;
942         }
943         (*eth_dev)->process_private = pp;
944         /* now put it all together
945          * - store queue data in internals,
946          * - store numa_node info in eth_dev
947          * - point eth_dev_data to internals
948          * - and point eth_dev structure to new eth_dev_data structure
949          */
950         *internals = (*eth_dev)->data->dev_private;
951         /*
952          * Interface MAC = 02:70:63:61:70:<iface_idx>
953          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
954          * where the middle 4 characters are converted to hex.
955          */
956         (*internals)->eth_addr = (struct rte_ether_addr) {
957                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
958         };
959         (*internals)->phy_mac = 0;
960         data = (*eth_dev)->data;
961         data->nb_rx_queues = (uint16_t)nb_rx_queues;
962         data->nb_tx_queues = (uint16_t)nb_tx_queues;
963         data->dev_link = pmd_link;
964         data->mac_addrs = &(*internals)->eth_addr;
965
966         /*
967          * NOTE: we'll replace the data element, of originally allocated
968          * eth_dev so the rings are local per-process
969          */
970         (*eth_dev)->dev_ops = &ops;
971
972         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
973                         ETH_PCAP_ARG_MAXLEN);
974
975         return 0;
976 }
977
978 static int
979 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
980                 const unsigned int numa_node)
981 {
982 #if defined(RTE_EXEC_ENV_LINUX)
983         void *mac_addrs;
984         struct ifreq ifr;
985         int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
986
987         if (if_fd == -1)
988                 return -1;
989
990         rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
991         if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
992                 close(if_fd);
993                 return -1;
994         }
995
996         mac_addrs = rte_zmalloc_socket(NULL, ETHER_ADDR_LEN, 0, numa_node);
997         if (!mac_addrs) {
998                 close(if_fd);
999                 return -1;
1000         }
1001
1002         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1003         eth_dev->data->mac_addrs = mac_addrs;
1004         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1005                         ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN);
1006
1007         close(if_fd);
1008
1009         return 0;
1010
1011 #elif defined(RTE_EXEC_ENV_FREEBSD)
1012         void *mac_addrs;
1013         struct if_msghdr *ifm;
1014         struct sockaddr_dl *sdl;
1015         int mib[6];
1016         size_t len = 0;
1017         char *buf;
1018
1019         mib[0] = CTL_NET;
1020         mib[1] = AF_ROUTE;
1021         mib[2] = 0;
1022         mib[3] = AF_LINK;
1023         mib[4] = NET_RT_IFLIST;
1024         mib[5] = if_nametoindex(if_name);
1025
1026         if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
1027                 return -1;
1028
1029         if (len == 0)
1030                 return -1;
1031
1032         buf = rte_malloc(NULL, len, 0);
1033         if (!buf)
1034                 return -1;
1035
1036         if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
1037                 rte_free(buf);
1038                 return -1;
1039         }
1040         ifm = (struct if_msghdr *)buf;
1041         sdl = (struct sockaddr_dl *)(ifm + 1);
1042
1043         mac_addrs = rte_zmalloc_socket(NULL, ETHER_ADDR_LEN, 0, numa_node);
1044         if (!mac_addrs) {
1045                 rte_free(buf);
1046                 return -1;
1047         }
1048
1049         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1050         eth_dev->data->mac_addrs = mac_addrs;
1051         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1052                         LLADDR(sdl), ETHER_ADDR_LEN);
1053
1054         rte_free(buf);
1055
1056         return 0;
1057 #else
1058         return -1;
1059 #endif
1060 }
1061
1062 static int
1063 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1064                 struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
1065                 struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
1066                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1067 {
1068         struct pmd_process_private *pp;
1069         unsigned int i;
1070
1071         /* do some parameter checking */
1072         if (rx_queues == NULL && nb_rx_queues > 0)
1073                 return -1;
1074         if (tx_queues == NULL && nb_tx_queues > 0)
1075                 return -1;
1076
1077         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1078                         eth_dev) < 0)
1079                 return -1;
1080
1081         pp = (*eth_dev)->process_private;
1082         for (i = 0; i < nb_rx_queues; i++) {
1083                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1084                 struct devargs_queue *queue = &rx_queues->queue[i];
1085
1086                 pp->rx_pcap[i] = queue->pcap;
1087                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1088                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1089         }
1090
1091         for (i = 0; i < nb_tx_queues; i++) {
1092                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1093                 struct devargs_queue *queue = &tx_queues->queue[i];
1094
1095                 pp->tx_dumper[i] = queue->dumper;
1096                 pp->tx_pcap[i] = queue->pcap;
1097                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1098                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1099         }
1100
1101         return 0;
1102 }
1103
1104 static int
1105 eth_from_pcaps(struct rte_vdev_device *vdev,
1106                 struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
1107                 struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
1108                 int single_iface, unsigned int using_dumpers)
1109 {
1110         struct pmd_internals *internals = NULL;
1111         struct rte_eth_dev *eth_dev = NULL;
1112         int ret;
1113
1114         ret = eth_from_pcaps_common(vdev, rx_queues, nb_rx_queues,
1115                 tx_queues, nb_tx_queues, &internals, &eth_dev);
1116
1117         if (ret < 0)
1118                 return ret;
1119
1120         /* store weather we are using a single interface for rx/tx or not */
1121         internals->single_iface = single_iface;
1122
1123         if (single_iface) {
1124                 internals->if_index = if_nametoindex(rx_queues->queue[0].name);
1125
1126                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1127                 if (rx_queues->phy_mac) {
1128                         int ret = eth_pcap_update_mac(rx_queues->queue[0].name,
1129                                         eth_dev, vdev->device.numa_node);
1130                         if (ret == 0)
1131                                 internals->phy_mac = 1;
1132                 }
1133         }
1134
1135         eth_dev->rx_pkt_burst = eth_pcap_rx;
1136
1137         if (using_dumpers)
1138                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1139         else
1140                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1141
1142         rte_eth_dev_probing_finish(eth_dev);
1143         return 0;
1144 }
1145
1146 static int
1147 pmd_pcap_probe(struct rte_vdev_device *dev)
1148 {
1149         const char *name;
1150         unsigned int is_rx_pcap = 0, is_tx_pcap = 0;
1151         struct rte_kvargs *kvlist;
1152         struct pmd_devargs pcaps = {0};
1153         struct pmd_devargs dumpers = {0};
1154         struct rte_eth_dev *eth_dev =  NULL;
1155         struct pmd_internals *internal;
1156         int single_iface = 0;
1157         int ret;
1158
1159         name = rte_vdev_device_name(dev);
1160         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1161
1162         gettimeofday(&start_time, NULL);
1163         start_cycles = rte_get_timer_cycles();
1164         hz = rte_get_timer_hz();
1165
1166         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1167                 eth_dev = rte_eth_dev_attach_secondary(name);
1168                 if (!eth_dev) {
1169                         PMD_LOG(ERR, "Failed to probe %s", name);
1170                         return -1;
1171                 }
1172
1173                 internal = eth_dev->data->dev_private;
1174
1175                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1176                 if (kvlist == NULL)
1177                         return -1;
1178         } else {
1179                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1180                                 valid_arguments);
1181                 if (kvlist == NULL)
1182                         return -1;
1183         }
1184
1185         /*
1186          * If iface argument is passed we open the NICs and use them for
1187          * reading / writing
1188          */
1189         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1190
1191                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1192                                 &open_rx_tx_iface, &pcaps);
1193                 if (ret < 0)
1194                         goto free_kvlist;
1195
1196                 dumpers.queue[0] = pcaps.queue[0];
1197
1198                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1199                                 &select_phy_mac, &pcaps.phy_mac);
1200                 if (ret < 0)
1201                         goto free_kvlist;
1202
1203                 dumpers.phy_mac = pcaps.phy_mac;
1204
1205                 single_iface = 1;
1206                 pcaps.num_of_queue = 1;
1207                 dumpers.num_of_queue = 1;
1208
1209                 goto create_eth;
1210         }
1211
1212         /*
1213          * We check whether we want to open a RX stream from a real NIC or a
1214          * pcap file
1215          */
1216         is_rx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1217         pcaps.num_of_queue = 0;
1218
1219         if (is_rx_pcap) {
1220                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1221                                 &open_rx_pcap, &pcaps);
1222         } else {
1223                 ret = rte_kvargs_process(kvlist, NULL,
1224                                 &rx_iface_args_process, &pcaps);
1225         }
1226
1227         if (ret < 0)
1228                 goto free_kvlist;
1229
1230         /*
1231          * We check whether we want to open a TX stream to a real NIC or a
1232          * pcap file
1233          */
1234         is_tx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1235         dumpers.num_of_queue = 0;
1236
1237         if (is_tx_pcap)
1238                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1239                                 &open_tx_pcap, &dumpers);
1240         else
1241                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1242                                 &open_tx_iface, &dumpers);
1243
1244         if (ret < 0)
1245                 goto free_kvlist;
1246
1247 create_eth:
1248         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1249                 struct pmd_process_private *pp;
1250                 unsigned int i;
1251
1252                 internal = eth_dev->data->dev_private;
1253                         pp = (struct pmd_process_private *)
1254                                 rte_zmalloc(NULL,
1255                                         sizeof(struct pmd_process_private),
1256                                         RTE_CACHE_LINE_SIZE);
1257
1258                 if (pp == NULL) {
1259                         PMD_LOG(ERR,
1260                                 "Failed to allocate memory for process private");
1261                         ret = -1;
1262                         goto free_kvlist;
1263                 }
1264
1265                 eth_dev->dev_ops = &ops;
1266                 eth_dev->device = &dev->device;
1267
1268                 /* setup process private */
1269                 for (i = 0; i < pcaps.num_of_queue; i++)
1270                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1271
1272                 for (i = 0; i < dumpers.num_of_queue; i++) {
1273                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1274                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1275                 }
1276
1277                 eth_dev->process_private = pp;
1278                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1279                 if (is_tx_pcap)
1280                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1281                 else
1282                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1283
1284                 rte_eth_dev_probing_finish(eth_dev);
1285                 goto free_kvlist;
1286         }
1287
1288         ret = eth_from_pcaps(dev, &pcaps, pcaps.num_of_queue, &dumpers,
1289                 dumpers.num_of_queue, single_iface, is_tx_pcap);
1290
1291 free_kvlist:
1292         rte_kvargs_free(kvlist);
1293
1294         return ret;
1295 }
1296
1297 static int
1298 pmd_pcap_remove(struct rte_vdev_device *dev)
1299 {
1300         struct pmd_internals *internals = NULL;
1301         struct rte_eth_dev *eth_dev = NULL;
1302
1303         PMD_LOG(INFO, "Closing pcap ethdev on numa socket %d",
1304                         rte_socket_id());
1305
1306         if (!dev)
1307                 return -1;
1308
1309         /* reserve an ethdev entry */
1310         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1311         if (eth_dev == NULL)
1312                 return -1;
1313
1314         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1315                 internals = eth_dev->data->dev_private;
1316                 if (internals != NULL && internals->phy_mac == 0)
1317                         /* not dynamically allocated, must not be freed */
1318                         eth_dev->data->mac_addrs = NULL;
1319         }
1320
1321         rte_free(eth_dev->process_private);
1322         rte_eth_dev_release_port(eth_dev);
1323
1324         return 0;
1325 }
1326
1327 static struct rte_vdev_driver pmd_pcap_drv = {
1328         .probe = pmd_pcap_probe,
1329         .remove = pmd_pcap_remove,
1330 };
1331
1332 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1333 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1334 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1335         ETH_PCAP_RX_PCAP_ARG "=<string> "
1336         ETH_PCAP_TX_PCAP_ARG "=<string> "
1337         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1338         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1339         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1340         ETH_PCAP_IFACE_ARG "=<ifc> "
1341         ETH_PCAP_PHY_MAC_ARG "=<int>");
1342
1343 RTE_INIT(eth_pcap_init_log)
1344 {
1345         eth_pcap_logtype = rte_log_register("pmd.net.pcap");
1346         if (eth_pcap_logtype >= 0)
1347                 rte_log_set_level(eth_pcap_logtype, RTE_LOG_NOTICE);
1348 }