net/qede/base: reduce verbosity in HW init log
[dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include <rte_string_fns.h>
10
11 #include "bcm_osal.h"
12 #include "ecore.h"
13 #include "ecore_spq.h"
14 #include "ecore_gtt_reg_addr.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_int.h"
18 #include "reg_addr.h"
19 #include "ecore_hw.h"
20 #include "ecore_sriov.h"
21 #include "ecore_vf.h"
22 #include "ecore_hw_defs.h"
23 #include "ecore_hsi_common.h"
24 #include "ecore_mcp.h"
25
26 struct ecore_pi_info {
27         ecore_int_comp_cb_t comp_cb;
28         void *cookie;           /* Will be sent to the compl cb function */
29 };
30
31 struct ecore_sb_sp_info {
32         struct ecore_sb_info sb_info;
33         /* per protocol index data */
34         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
35 };
36
37 enum ecore_attention_type {
38         ECORE_ATTN_TYPE_ATTN,
39         ECORE_ATTN_TYPE_PARITY,
40 };
41
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44
45 struct aeu_invert_reg_bit {
46         char bit_name[30];
47
48 #define ATTENTION_PARITY                (1 << 0)
49
50 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
51 #define ATTENTION_LENGTH_SHIFT          (4)
52 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
53                                          ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
55 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
56 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
57                                          ATTENTION_PARITY)
58
59 /* Multiple bits start with this offset */
60 #define ATTENTION_OFFSET_MASK           (0x000ff000)
61 #define ATTENTION_OFFSET_SHIFT          (12)
62
63 #define ATTENTION_BB_MASK               (0x00700000)
64 #define ATTENTION_BB_SHIFT              (20)
65 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
66 #define ATTENTION_BB_DIFFERENT          (1 << 23)
67
68 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
69         unsigned int flags;
70
71         /* Callback to call if attention will be triggered */
72         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
73
74         enum block_id block_index;
75 };
76
77 struct aeu_invert_reg {
78         struct aeu_invert_reg_bit bits[32];
79 };
80
81 #define MAX_ATTN_GRPS           (8)
82 #define NUM_ATTN_REGS           (9)
83
84 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
85 {
86         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
87
88         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
89         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
90
91         return ECORE_SUCCESS;
92 }
93
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
102 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
103 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
104 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
117 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
118 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
119 {
120         u32 tmp =
121             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
122                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
123
124         /* Disabled VF access */
125         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
126                 u32 addr, data;
127
128                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
130                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
131                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
132                 DP_INFO(p_hwfn->p_dev,
133                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
134                         " Write [0x%02x] Addr [0x%08x]\n",
135                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
136                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
137                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
138                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
139                         (u8)((data &
140                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
141                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
142                         (u8)((data &
143                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
144                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
145                         (u8)((data &
146                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
147                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
148                         addr);
149         }
150
151         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                        PSWHST_REG_INCORRECT_ACCESS_VALID);
153         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
154                 u32 addr, data, length;
155
156                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
158                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
160                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
161                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
162
163                 DP_INFO(p_hwfn->p_dev,
164                         "Incorrect access to %08x of length %08x - PF [%02x]"
165                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
166                         " Byte-Enable [%04x] [%08x]\n",
167                         addr, length,
168                         (u8)((data &
169                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
170                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
171                         (u8)((data &
172                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
173                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
174                         (u8)((data &
175                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
176                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
177                         (u8)((data &
178                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
179                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
180                         (u8)((data &
181                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
182                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
183                         (u8)((data &
184                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
185                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
186                         data);
187         }
188
189         /* TODO - We know 'some' of these are legal due to virtualization,
190          * but is it true for all of them?
191          */
192         return ECORE_SUCCESS;
193 }
194
195 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
196 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
197 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
198 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
199 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
200 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
201 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
202 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
203 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
204 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
205 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
206 static const char *grc_timeout_attn_master_to_str(u8 master)
207 {
208         switch (master) {
209         case 1:
210                 return "PXP";
211         case 2:
212                 return "MCP";
213         case 3:
214                 return "MSDM";
215         case 4:
216                 return "PSDM";
217         case 5:
218                 return "YSDM";
219         case 6:
220                 return "USDM";
221         case 7:
222                 return "TSDM";
223         case 8:
224                 return "XSDM";
225         case 9:
226                 return "DBU";
227         case 10:
228                 return "DMAE";
229         default:
230                 return "Unknown";
231         }
232 }
233
234 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
235 {
236         u32 tmp, tmp2;
237
238         /* We've already cleared the timeout interrupt register, so we learn
239          * of interrupts via the validity register
240          */
241         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
244                 goto out;
245
246         /* Read the GRC timeout information */
247         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
249         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
251
252         DP_NOTICE(p_hwfn->p_dev, false,
253                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
254                   tmp2, tmp,
255                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
256                                                        : "Read from",
257                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
258                   grc_timeout_attn_master_to_str(
259                         (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
260                          ECORE_GRC_ATTENTION_MASTER_SHIFT),
261                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
262                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
263                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
264                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
265                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
266                   ECORE_GRC_ATTENTION_VF_SHIFT);
267
268 out:
269         /* Regardles of anything else, clean the validity bit */
270         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
271                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
272         return ECORE_SUCCESS;
273 }
274
275 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
276 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
286 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
287 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
288
289 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
290                                                    struct ecore_ptt *p_ptt,
291                                                    bool is_hw_init)
292 {
293         u32 tmp;
294         char str[512] = {0};
295
296         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
297         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
298                 u32 addr_lo, addr_hi, details;
299
300                 addr_lo = ecore_rd(p_hwfn, p_ptt,
301                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
302                 addr_hi = ecore_rd(p_hwfn, p_ptt,
303                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
304                 details = ecore_rd(p_hwfn, p_ptt,
305                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
306                 OSAL_SNPRINTF(str, 512,
307                          "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308                           addr_hi, addr_lo, details,
309                           (u8)((details &
310                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
311                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
312                           (u8)((details &
313                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
314                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
315                           (u8)((details &
316                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
317                           tmp,
318                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
319                                 1 : 0),
320                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
321                                 1 : 0),
322                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
323                                 1 : 0));
324                 if (is_hw_init)
325                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
326                 else
327                         DP_NOTICE(p_hwfn, false, "%s", str);
328         }
329
330         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
331         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
332                 u32 addr_lo, addr_hi, details;
333
334                 addr_lo = ecore_rd(p_hwfn, p_ptt,
335                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
336                 addr_hi = ecore_rd(p_hwfn, p_ptt,
337                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
338                 details = ecore_rd(p_hwfn, p_ptt,
339                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
340
341                 DP_NOTICE(p_hwfn, false,
342                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
343                           addr_hi, addr_lo, details,
344                           (u8)((details &
345                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
346                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
347                           (u8)((details &
348                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
349                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
350                           (u8)((details &
351                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
352                           tmp,
353                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
354                                 1 : 0),
355                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
356                                 1 : 0),
357                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
358                                 1 : 0));
359         }
360
361         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
362         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
363                 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
364
365         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
366         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
367                 u32 addr_hi, addr_lo;
368
369                 addr_lo = ecore_rd(p_hwfn, p_ptt,
370                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
371                 addr_hi = ecore_rd(p_hwfn, p_ptt,
372                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
373
374                 DP_NOTICE(p_hwfn, false,
375                           "ICPL erorr - %08x [Address %08x:%08x]\n",
376                           tmp, addr_hi, addr_lo);
377         }
378
379         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
380         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
381                 u32 addr_hi, addr_lo, details;
382
383                 addr_lo = ecore_rd(p_hwfn, p_ptt,
384                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
385                 addr_hi = ecore_rd(p_hwfn, p_ptt,
386                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
387                 details = ecore_rd(p_hwfn, p_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
389
390                 DP_NOTICE(p_hwfn, false,
391                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
392                           details, tmp, addr_hi, addr_lo);
393         }
394
395         /* Clear the indications */
396         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
397
398         return ECORE_SUCCESS;
399 }
400
401 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
402 {
403         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
404 }
405
406 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
407 {
408         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
409
410         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
411
412         return ECORE_INVAL;
413 }
414
415 static enum _ecore_status_t
416 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
417 {
418         DP_INFO(p_hwfn, "General attention 35!\n");
419
420         return ECORE_SUCCESS;
421 }
422
423 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
424 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
425 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
426 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
427 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
428
429 #define ECORE_DB_REC_COUNT                      10
430 #define ECORE_DB_REC_INTERVAL                   100
431
432 /* assumes sticky overflow indication was set for this PF */
433 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
434                                               struct ecore_ptt *p_ptt)
435 {
436         u8 count = ECORE_DB_REC_COUNT;
437         u32 usage = 1;
438
439         /* wait for usage to zero or count to run out. This is necessary since
440          * EDPM doorbell transactions can take multiple 64b cycles, and as such
441          * can "split" over the pci. Possibly, the doorbell drop can happen with
442          * half an EDPM in the queue and other half dropped. Another EDPM
443          * doorbell to the same address (from doorbell recovery mechanism or
444          * from the doorbelling entity) could have first half dropped and second
445          * half interperted as continuation of the first. To prevent such
446          * malformed doorbells from reaching the device, flush the queue before
447          * releaseing the overflow sticky indication.
448          */
449         while (count-- && usage) {
450                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
451                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
452         }
453
454         /* should have been depleted by now */
455         if (usage) {
456                 DP_NOTICE(p_hwfn->p_dev, false,
457                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
458                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
459                 return ECORE_TIMEOUT;
460         }
461
462         /* flush any pedning (e)dpm as they may never arrive */
463         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
464
465         /* release overflow sticky indication (stop silently dropping
466          * everything)
467          */
468         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
469
470         /* repeat all last doorbells (doorbell drop recovery) */
471         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
472
473         return ECORE_SUCCESS;
474 }
475
476 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
477 {
478         u32 int_sts, first_drop_reason, details, address, overflow,
479                 all_drops_reason;
480         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
481         enum _ecore_status_t rc;
482
483         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
484         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
485                   int_sts);
486
487         /* int_sts may be zero since all PFs were interrupted for doorbell
488          * overflow but another one already handled it. Can abort here. If
489          * This PF also requires overflow recovery we will be interrupted again
490          */
491         if (!int_sts)
492                 return ECORE_SUCCESS;
493
494         /* check if db_drop or overflow happened */
495         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
496                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
497                 /* obtain data about db drop/overflow */
498                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
499                                   DORQ_REG_DB_DROP_REASON) &
500                                   ECORE_DORQ_ATTENTION_REASON_MASK;
501                 details = ecore_rd(p_hwfn, p_ptt,
502                                    DORQ_REG_DB_DROP_DETAILS);
503                 address = ecore_rd(p_hwfn, p_ptt,
504                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
505                 overflow = ecore_rd(p_hwfn, p_ptt,
506                                     DORQ_REG_PF_OVFL_STICKY);
507                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
508                                             DORQ_REG_DB_DROP_DETAILS_REASON);
509
510                 /* log info */
511                 DP_NOTICE(p_hwfn->p_dev, false,
512                           "Doorbell drop occurred\n"
513                           "Address\t\t0x%08x\t(second BAR address)\n"
514                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
515                           "Size\t\t0x%04x\t\t(in bytes)\n"
516                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
517                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
518                           "Overflow\t0x%x\t\t(a per PF indication)\n",
519                           address,
520                           GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
521                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
522                           first_drop_reason, all_drops_reason, overflow);
523
524                 /* if this PF caused overflow, initiate recovery */
525                 if (overflow) {
526                         rc = ecore_db_rec_attn(p_hwfn, p_ptt);
527                         if (rc != ECORE_SUCCESS)
528                                 return rc;
529                 }
530
531                 /* clear the doorbell drop details and prepare for next drop */
532                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
533
534                 /* mark interrupt as handeld (note: even if drop was due to a
535                  * different reason than overflow we mark as handled)
536                  */
537                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
538                          DORQ_REG_INT_STS_DB_DROP |
539                          DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
540
541                 /* if there are no indications otherthan drop indications,
542                  * success
543                  */
544                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
545                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
546                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
547                         return ECORE_SUCCESS;
548         }
549
550         /* some other indication was present - non recoverable */
551         DP_INFO(p_hwfn, "DORQ fatal attention\n");
552
553         return ECORE_INVAL;
554 }
555
556 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
557 {
558 #ifndef ASIC_ONLY
559         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
560                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
561                                    TM_REG_INT_STS_1);
562
563                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
564                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
565                         return ECORE_INVAL;
566
567                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
568                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
569                         DP_INFO(p_hwfn,
570                                 "TM attention on emulation - most likely"
571                                 " results of clock-ratios\n");
572                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
573                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
574                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
575                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
576
577                 return ECORE_SUCCESS;
578         }
579 #endif
580
581         return ECORE_INVAL;
582 }
583
584 /* Instead of major changes to the data-structure, we have a some 'special'
585  * identifiers for sources that changed meaning between adapters.
586  */
587 enum aeu_invert_reg_special_type {
588         AEU_INVERT_REG_SPECIAL_CNIG_0,
589         AEU_INVERT_REG_SPECIAL_CNIG_1,
590         AEU_INVERT_REG_SPECIAL_CNIG_2,
591         AEU_INVERT_REG_SPECIAL_CNIG_3,
592         AEU_INVERT_REG_SPECIAL_MAX,
593 };
594
595 static struct aeu_invert_reg_bit
596 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
597         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
600         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
601 };
602
603 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
604 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
605         {
606          {                      /* After Invert 1 */
607           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
608            MAX_BLOCK_ID},
609           }
610          },
611
612         {
613          {                      /* After Invert 2 */
614           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
617            BLOCK_PGLUE_B},
618           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
620           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
621           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
622           {"SW timers #%d",
623            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
624            OSAL_NULL, MAX_BLOCK_ID},
625           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
626            BLOCK_PGLCS},
627           }
628          },
629
630         {
631          {                      /* After Invert 3 */
632           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
633            MAX_BLOCK_ID},
634           }
635          },
636
637         {
638          {                      /* After Invert 4 */
639           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
640            ecore_fw_assertion, MAX_BLOCK_ID},
641           {"General Attention %d",
642            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
643            OSAL_NULL, MAX_BLOCK_ID},
644           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
645            ecore_general_attention_35, MAX_BLOCK_ID},
646           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
647                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
648                          OSAL_NULL, BLOCK_NWS},
649           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
650                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
651                             OSAL_NULL, BLOCK_NWS},
652           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
653                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
654                          OSAL_NULL, BLOCK_NWM},
655           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
656                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
657                             OSAL_NULL, BLOCK_NWM},
658           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
659           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
660           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
661           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
662           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
663           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
664           {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
665            MAX_BLOCK_ID},
666           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
667           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
668           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
669           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
670           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
671           }
672          },
673
674         {
675          {                      /* After Invert 5 */
676           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
677           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
678           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
679           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
680           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
681           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
682           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
683           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
684           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
685           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
686           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
687           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
688           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
689           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
690           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
691           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
692           }
693          },
694
695         {
696          {                      /* After Invert 6 */
697           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
698           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
699           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
700           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
701           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
702           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
703           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
704           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
705           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
706           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
707           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
708           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
709           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
710           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
711           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
712           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
713           }
714          },
715
716         {
717          {                      /* After Invert 7 */
718           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
719           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
720           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
721           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
722           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
723           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
724           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
725           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
726           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
727           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
728           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
729           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
730           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
731           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
732           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
733           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
734           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
735           }
736          },
737
738         {
739          {                      /* After Invert 8 */
740           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
741           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
742           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
743           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
744           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
745           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
746           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
747           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
748           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
749           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
750           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
752           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
755           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
756           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
757           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
758           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
759           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
760           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
761            MAX_BLOCK_ID},
762           }
763          },
764
765         {
766          {                      /* After Invert 9 */
767           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
768           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
769            MAX_BLOCK_ID},
770           {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
771           {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
772           {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
773            MAX_BLOCK_ID},
774           }
775          },
776
777 };
778
779 static struct aeu_invert_reg_bit *
780 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
781                         struct aeu_invert_reg_bit *p_bit)
782 {
783         if (!ECORE_IS_BB(p_hwfn->p_dev))
784                 return p_bit;
785
786         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
787                 return p_bit;
788
789         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
790                                   ATTENTION_BB_SHIFT];
791 }
792
793 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
794                                      struct aeu_invert_reg_bit *p_bit)
795 {
796         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
797                   ATTENTION_PARITY);
798 }
799
800 #define ATTN_STATE_BITS         (0xfff)
801 #define ATTN_BITS_MASKABLE      (0x3ff)
802 struct ecore_sb_attn_info {
803         /* Virtual & Physical address of the SB */
804         struct atten_status_block *sb_attn;
805         dma_addr_t sb_phys;
806
807         /* Last seen running index */
808         u16 index;
809
810         /* A mask of the AEU bits resulting in a parity error */
811         u32 parity_mask[NUM_ATTN_REGS];
812
813         /* A pointer to the attention description structure */
814         struct aeu_invert_reg *p_aeu_desc;
815
816         /* Previously asserted attentions, which are still unasserted */
817         u16 known_attn;
818
819         /* Cleanup address for the link's general hw attention */
820         u32 mfw_attn_addr;
821 };
822
823 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
824                                  struct ecore_sb_attn_info *p_sb_desc)
825 {
826         u16 rc = 0, index;
827
828         OSAL_MMIOWB(p_hwfn->p_dev);
829
830         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
831         if (p_sb_desc->index != index) {
832                 p_sb_desc->index = index;
833                 rc = ECORE_SB_ATT_IDX;
834         }
835
836         OSAL_MMIOWB(p_hwfn->p_dev);
837
838         return rc;
839 }
840
841 /**
842  * @brief ecore_int_assertion - handles asserted attention bits
843  *
844  * @param p_hwfn
845  * @param asserted_bits newly asserted bits
846  * @return enum _ecore_status_t
847  */
848 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
849                                                 u16 asserted_bits)
850 {
851         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
852         u32 igu_mask;
853
854         /* Mask the source of the attention in the IGU */
855         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
856                             IGU_REG_ATTENTION_ENABLE);
857         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
858                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
859         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
860         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
861
862         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
863                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
864                    sb_attn_sw->known_attn,
865                    sb_attn_sw->known_attn | asserted_bits);
866         sb_attn_sw->known_attn |= asserted_bits;
867
868         /* Handle MCP events */
869         if (asserted_bits & 0x100) {
870                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
871                 /* Clean the MCP attention */
872                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
873                          sb_attn_sw->mfw_attn_addr, 0);
874         }
875
876         /* FIXME - this will change once we'll have GOOD gtt definitions */
877         DIRECT_REG_WR(p_hwfn,
878                       (u8 OSAL_IOMEM *) p_hwfn->regview +
879                       GTT_BAR0_MAP_REG_IGU_CMD +
880                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
881                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
882
883         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
884                    asserted_bits);
885
886         return ECORE_SUCCESS;
887 }
888
889 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
890                                  enum block_id id, enum dbg_attn_type type,
891                                  bool b_clear)
892 {
893         /* @DPDK */
894         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
895 }
896
897 /**
898  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
899  * cause of the attention
900  *
901  * @param p_hwfn
902  * @param p_aeu - descriptor of an AEU bit which caused the attention
903  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
904  *  this bit to this group.
905  * @param bit_index - index of this bit in the aeu_en_reg
906  *
907  * @return enum _ecore_status_t
908  */
909 static enum _ecore_status_t
910 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
911                               struct aeu_invert_reg_bit *p_aeu,
912                               u32 aeu_en_reg,
913                               const char *p_bit_name,
914                               u32 bitmask)
915 {
916         enum _ecore_status_t rc = ECORE_INVAL;
917         bool b_fatal = false;
918
919         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
920                 p_bit_name, bitmask);
921
922         /* Call callback before clearing the interrupt status */
923         if (p_aeu->cb) {
924                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
925                         p_bit_name);
926                 rc = p_aeu->cb(p_hwfn);
927         }
928
929         if (rc != ECORE_SUCCESS)
930                 b_fatal = true;
931
932         /* Print HW block interrupt registers */
933         if (p_aeu->block_index != MAX_BLOCK_ID) {
934                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
935                                      ATTN_TYPE_INTERRUPT, !b_fatal);
936 }
937
938         /* @DPDK */
939         /* Reach assertion if attention is fatal */
940         if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
941                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
942                           p_bit_name);
943
944                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
945         }
946
947         /* Prevent this Attention from being asserted in the future */
948         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
949             p_hwfn->p_dev->attn_clr_en) {
950                 u32 val;
951                 u32 mask = ~bitmask;
952                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
953                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
954                 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
955                         p_bit_name);
956         }
957
958         return rc;
959 }
960
961 /**
962  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
963  *
964  * @param p_hwfn
965  * @param p_aeu - descriptor of an AEU bit which caused the parity
966  * @param aeu_en_reg - address of the AEU enable register
967  * @param bit_index
968  */
969 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
970                                          struct aeu_invert_reg_bit *p_aeu,
971                                          u32 aeu_en_reg, u8 bit_index)
972 {
973         u32 block_id = p_aeu->block_index, mask, val;
974
975         DP_NOTICE(p_hwfn->p_dev, false,
976                   "%s parity attention is set [address 0x%08x, bit %d]\n",
977                   p_aeu->bit_name, aeu_en_reg, bit_index);
978
979         if (block_id != MAX_BLOCK_ID) {
980                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
981
982                 /* In A0, there's a single parity bit for several blocks */
983                 if (block_id == BLOCK_BTB) {
984                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
985                                              ATTN_TYPE_PARITY, false);
986                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
987                                              ATTN_TYPE_PARITY, false);
988                 }
989         }
990
991         /* Prevent this parity error from being re-asserted */
992         mask = ~(0x1 << bit_index);
993         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
994         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
995         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
996                 p_aeu->bit_name);
997 }
998
999 /**
1000  * @brief - handles deassertion of previously asserted attentions.
1001  *
1002  * @param p_hwfn
1003  * @param deasserted_bits - newly deasserted bits
1004  * @return enum _ecore_status_t
1005  *
1006  */
1007 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1008                                                   u16 deasserted_bits)
1009 {
1010         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1011         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1012         u8 i, j, k, bit_idx;
1013         enum _ecore_status_t rc = ECORE_SUCCESS;
1014
1015         /* Read the attention registers in the AEU */
1016         for (i = 0; i < NUM_ATTN_REGS; i++) {
1017                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1018                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
1019                                           i * 0x4);
1020                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1021                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1022         }
1023
1024         /* Handle parity attentions first */
1025         for (i = 0; i < NUM_ATTN_REGS; i++) {
1026                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1027                 u32 parities;
1028
1029                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1030                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1031                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1032
1033                 /* Skip register in which no parity bit is currently set */
1034                 if (!parities)
1035                         continue;
1036
1037                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1038                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1039
1040                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1041                             !!(parities & (1 << bit_idx)))
1042                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1043                                                              aeu_en, bit_idx);
1044
1045                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1046                 }
1047         }
1048
1049         /* Find non-parity cause for attention and act */
1050         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1051                 struct aeu_invert_reg_bit *p_aeu;
1052
1053                 /* Handle only groups whose attention is currently deasserted */
1054                 if (!(deasserted_bits & (1 << k)))
1055                         continue;
1056
1057                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1058                         u32 bits;
1059
1060                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1061                                  i * sizeof(u32) +
1062                                  k * sizeof(u32) * NUM_ATTN_REGS;
1063                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1064                         bits = aeu_inv_arr[i] & en;
1065
1066                         /* Skip if no bit from this group is currently set */
1067                         if (!bits)
1068                                 continue;
1069
1070                         /* Find all set bits from current register which belong
1071                          * to current group, making them responsible for the
1072                          * previous assertion.
1073                          */
1074                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1075                                 unsigned long int bitmask;
1076                                 u8 bit, bit_len;
1077
1078                                 /* Need to account bits with changed meaning */
1079                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1080
1081                                 bit = bit_idx;
1082                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1083                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1084                                         /* Skip Parity */
1085                                         bit++;
1086                                         bit_len--;
1087                                 }
1088
1089                                 /* Find the bits relating to HW-block, then
1090                                  * shift so they'll become LSB.
1091                                  */
1092                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1093                                 bitmask >>= bit;
1094
1095                                 if (bitmask) {
1096                                         u32 flags = p_aeu->flags;
1097                                         char bit_name[30];
1098                                         u8 num;
1099
1100                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1101                                                                 bit_len);
1102
1103                                         /* Some bits represent more than a
1104                                          * a single interrupt. Correctly print
1105                                          * their name.
1106                                          */
1107                                         if (ATTENTION_LENGTH(flags) > 2 ||
1108                                             ((flags & ATTENTION_PAR_INT) &&
1109                                             ATTENTION_LENGTH(flags) > 1))
1110                                                 OSAL_SNPRINTF(bit_name, 30,
1111                                                               p_aeu->bit_name,
1112                                                               num);
1113                                         else
1114                                                 strlcpy(bit_name,
1115                                                         p_aeu->bit_name,
1116                                                         sizeof(bit_name));
1117
1118                                         /* We now need to pass bitmask in its
1119                                          * correct position.
1120                                          */
1121                                         bitmask <<= bit;
1122
1123                                         /* Handle source of the attention */
1124                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1125                                                                       p_aeu,
1126                                                                       aeu_en,
1127                                                                       bit_name,
1128                                                                       bitmask);
1129                                 }
1130
1131                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1132                         }
1133                 }
1134         }
1135
1136         /* Clear IGU indication for the deasserted bits */
1137         /* FIXME - this will change once we'll have GOOD gtt definitions */
1138         DIRECT_REG_WR(p_hwfn,
1139                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1140                       GTT_BAR0_MAP_REG_IGU_CMD +
1141                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1142                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1143
1144         /* Unmask deasserted attentions in IGU */
1145         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1146                             IGU_REG_ATTENTION_ENABLE);
1147         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1148         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1149
1150         /* Clear deassertion from inner state */
1151         sb_attn_sw->known_attn &= ~deasserted_bits;
1152
1153         return rc;
1154 }
1155
1156 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1157 {
1158         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1159         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1160         u16 index = 0, asserted_bits, deasserted_bits;
1161         u32 attn_bits = 0, attn_acks = 0;
1162         enum _ecore_status_t rc = ECORE_SUCCESS;
1163
1164         /* Read current attention bits/acks - safeguard against attentions
1165          * by guaranting work on a synchronized timeframe
1166          */
1167         do {
1168                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1169                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1170                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1171         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1172         p_sb_attn->sb_index = index;
1173
1174         /* Attention / Deassertion are meaningful (and in correct state)
1175          * only when they differ and consistent with known state - deassertion
1176          * when previous attention & current ack, and assertion when current
1177          * attention with no previous attention
1178          */
1179         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1180             ~p_sb_attn_sw->known_attn;
1181         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1182             p_sb_attn_sw->known_attn;
1183
1184         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1185                 DP_INFO(p_hwfn,
1186                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1187                         index, attn_bits, attn_acks, asserted_bits,
1188                         deasserted_bits, p_sb_attn_sw->known_attn);
1189         else if (asserted_bits == 0x100)
1190                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1191         else
1192                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1193                            "MFW indication [deassertion]\n");
1194
1195         if (asserted_bits) {
1196                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1197                 if (rc)
1198                         return rc;
1199         }
1200
1201         if (deasserted_bits)
1202                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1203
1204         return rc;
1205 }
1206
1207 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1208                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1209 {
1210         struct igu_prod_cons_update igu_ack = { 0 };
1211
1212         igu_ack.sb_id_and_flags =
1213             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1214              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1215              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1216              (IGU_SEG_ACCESS_ATTN <<
1217               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1218
1219         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1220
1221         /* Both segments (interrupts & acks) are written to same place address;
1222          * Need to guarantee all commands will be received (in-order) by HW.
1223          */
1224         OSAL_MMIOWB(p_hwfn->p_dev);
1225         OSAL_BARRIER(p_hwfn->p_dev);
1226 }
1227
1228 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1229 {
1230         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1231         struct ecore_pi_info *pi_info = OSAL_NULL;
1232         struct ecore_sb_attn_info *sb_attn;
1233         struct ecore_sb_info *sb_info;
1234         int arr_size;
1235         u16 rc = 0;
1236
1237         if (!p_hwfn)
1238                 return;
1239
1240         if (!p_hwfn->p_sp_sb) {
1241                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1242                 return;
1243         }
1244
1245         sb_info = &p_hwfn->p_sp_sb->sb_info;
1246         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1247         if (!sb_info) {
1248                 DP_ERR(p_hwfn->p_dev,
1249                        "Status block is NULL - cannot ack interrupts\n");
1250                 return;
1251         }
1252
1253         if (!p_hwfn->p_sb_attn) {
1254                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1255                 return;
1256         }
1257         sb_attn = p_hwfn->p_sb_attn;
1258
1259         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1260                    p_hwfn, p_hwfn->my_id);
1261
1262         /* Disable ack for def status block. Required both for msix +
1263          * inta in non-mask mode, in inta does no harm.
1264          */
1265         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1266
1267         /* Gather Interrupts/Attentions information */
1268         if (!sb_info->sb_virt) {
1269                 DP_ERR(p_hwfn->p_dev,
1270                        "Interrupt Status block is NULL -"
1271                        " cannot check for new interrupts!\n");
1272         } else {
1273                 u32 tmp_index = sb_info->sb_ack;
1274                 rc = ecore_sb_update_sb_idx(sb_info);
1275                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1276                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1277                            tmp_index, sb_info->sb_ack);
1278         }
1279
1280         if (!sb_attn || !sb_attn->sb_attn) {
1281                 DP_ERR(p_hwfn->p_dev,
1282                        "Attentions Status block is NULL -"
1283                        " cannot check for new attentions!\n");
1284         } else {
1285                 u16 tmp_index = sb_attn->index;
1286
1287                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1288                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1289                            "Attention indices: 0x%08x --> 0x%08x\n",
1290                            tmp_index, sb_attn->index);
1291         }
1292
1293         /* Check if we expect interrupts at this time. if not just ack them */
1294         if (!(rc & ECORE_SB_EVENT_MASK)) {
1295                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1296                 return;
1297         }
1298
1299 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1300
1301         if (!p_hwfn->p_dpc_ptt) {
1302                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1303                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1304                 return;
1305         }
1306
1307         if (rc & ECORE_SB_ATT_IDX)
1308                 ecore_int_attentions(p_hwfn);
1309
1310         if (rc & ECORE_SB_IDX) {
1311                 int pi;
1312
1313                 /* Since we only looked at the SB index, it's possible more
1314                  * than a single protocol-index on the SB incremented.
1315                  * Iterate over all configured protocol indices and check
1316                  * whether something happened for each.
1317                  */
1318                 for (pi = 0; pi < arr_size; pi++) {
1319                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1320                         if (pi_info->comp_cb != OSAL_NULL)
1321                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1322                 }
1323         }
1324
1325         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1326                 /* This should be done before the interrupts are enabled,
1327                  * since otherwise a new attention will be generated.
1328                  */
1329                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1330         }
1331
1332         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1333 }
1334
1335 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1336 {
1337         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1338
1339         if (!p_sb)
1340                 return;
1341
1342         if (p_sb->sb_attn) {
1343                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1344                                        p_sb->sb_phys,
1345                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1346         }
1347         OSAL_FREE(p_hwfn->p_dev, p_sb);
1348 }
1349
1350 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1351                                     struct ecore_ptt *p_ptt)
1352 {
1353         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1354
1355         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1356
1357         sb_info->index = 0;
1358         sb_info->known_attn = 0;
1359
1360         /* Configure Attention Status Block in IGU */
1361         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1362                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1363         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1364                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1365 }
1366
1367 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1368                                    struct ecore_ptt *p_ptt,
1369                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1370 {
1371         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1372         int i, j, k;
1373
1374         sb_info->sb_attn = sb_virt_addr;
1375         sb_info->sb_phys = sb_phy_addr;
1376
1377         /* Set the pointer to the AEU descriptors */
1378         sb_info->p_aeu_desc = aeu_descs;
1379
1380         /* Calculate Parity Masks */
1381         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1382         for (i = 0; i < NUM_ATTN_REGS; i++) {
1383                 /* j is array index, k is bit index */
1384                 for (j = 0, k = 0; k < 32; j++) {
1385                         struct aeu_invert_reg_bit *p_aeu;
1386
1387                         p_aeu = &aeu_descs[i].bits[j];
1388                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1389                                 sb_info->parity_mask[i] |= 1 << k;
1390
1391                         k += ATTENTION_LENGTH(p_aeu->flags);
1392                 }
1393                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1394                            "Attn Mask [Reg %d]: 0x%08x\n",
1395                            i, sb_info->parity_mask[i]);
1396         }
1397
1398         /* Set the address of cleanup for the mcp attention */
1399         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1400             MISC_REG_AEU_GENERAL_ATTN_0;
1401
1402         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1403 }
1404
1405 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1406                                                     struct ecore_ptt *p_ptt)
1407 {
1408         struct ecore_dev *p_dev = p_hwfn->p_dev;
1409         struct ecore_sb_attn_info *p_sb;
1410         dma_addr_t p_phys = 0;
1411         void *p_virt;
1412
1413         /* SB struct */
1414         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1415         if (!p_sb) {
1416                 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1417                 return ECORE_NOMEM;
1418         }
1419
1420         /* SB ring  */
1421         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1422                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1423         if (!p_virt) {
1424                 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1425                 OSAL_FREE(p_dev, p_sb);
1426                 return ECORE_NOMEM;
1427         }
1428
1429         /* Attention setup */
1430         p_hwfn->p_sb_attn = p_sb;
1431         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432
1433         return ECORE_SUCCESS;
1434 }
1435
1436 /* coalescing timeout = timeset << (timer_res + 1) */
1437 #define ECORE_CAU_DEF_RX_USECS 24
1438 #define ECORE_CAU_DEF_TX_USECS 48
1439
1440 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1441                              struct cau_sb_entry *p_sb_entry,
1442                              u8 pf_id, u16 vf_number, u8 vf_valid)
1443 {
1444         struct ecore_dev *p_dev = p_hwfn->p_dev;
1445         u32 cau_state;
1446         u8 timer_res;
1447
1448         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1449
1450         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1455
1456         cau_state = CAU_HC_DISABLE_STATE;
1457
1458         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1459                 cau_state = CAU_HC_ENABLE_STATE;
1460                 if (!p_dev->rx_coalesce_usecs)
1461                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1462                 if (!p_dev->tx_coalesce_usecs)
1463                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1464         }
1465
1466         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467         if (p_dev->rx_coalesce_usecs <= 0x7F)
1468                 timer_res = 0;
1469         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1470                 timer_res = 1;
1471         else
1472                 timer_res = 2;
1473         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1474
1475         if (p_dev->tx_coalesce_usecs <= 0x7F)
1476                 timer_res = 0;
1477         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1478                 timer_res = 1;
1479         else
1480                 timer_res = 2;
1481         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1482
1483         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1484         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1485 }
1486
1487 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1488                                    struct ecore_ptt *p_ptt,
1489                                    u16 igu_sb_id, u32 pi_index,
1490                                    enum ecore_coalescing_fsm coalescing_fsm,
1491                                    u8 timeset)
1492 {
1493         struct cau_pi_entry pi_entry;
1494         u32 sb_offset, pi_offset;
1495
1496         if (IS_VF(p_hwfn->p_dev))
1497                 return;/* @@@TBD MichalK- VF CAU... */
1498
1499         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1500         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1501
1502         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1503         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1504                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1505         else
1506                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1507
1508         pi_offset = sb_offset + pi_index;
1509         if (p_hwfn->hw_init_done) {
1510                 ecore_wr(p_hwfn, p_ptt,
1511                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1512                          *((u32 *)&(pi_entry)));
1513         } else {
1514                 STORE_RT_REG(p_hwfn,
1515                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1516                              *((u32 *)&(pi_entry)));
1517         }
1518 }
1519
1520 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1521                            struct ecore_ptt *p_ptt,
1522                            struct ecore_sb_info *p_sb, u32 pi_index,
1523                            enum ecore_coalescing_fsm coalescing_fsm,
1524                            u8 timeset)
1525 {
1526         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1527                                pi_index, coalescing_fsm, timeset);
1528 }
1529
1530 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1531                            struct ecore_ptt *p_ptt,
1532                            dma_addr_t sb_phys, u16 igu_sb_id,
1533                            u16 vf_number, u8 vf_valid)
1534 {
1535         struct cau_sb_entry sb_entry;
1536
1537         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1538                                 vf_number, vf_valid);
1539
1540         if (p_hwfn->hw_init_done) {
1541                 /* Wide-bus, initialize via DMAE */
1542                 u64 phys_addr = (u64)sb_phys;
1543
1544                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1545                                     (u64)(osal_uintptr_t)&phys_addr,
1546                                     CAU_REG_SB_ADDR_MEMORY +
1547                                     igu_sb_id * sizeof(u64), 2, 0);
1548                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1549                                     (u64)(osal_uintptr_t)&sb_entry,
1550                                     CAU_REG_SB_VAR_MEMORY +
1551                                     igu_sb_id * sizeof(u64), 2, 0);
1552         } else {
1553                 /* Initialize Status Block Address */
1554                 STORE_RT_REG_AGG(p_hwfn,
1555                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1556                                  igu_sb_id * 2, sb_phys);
1557
1558                 STORE_RT_REG_AGG(p_hwfn,
1559                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1560                                  igu_sb_id * 2, sb_entry);
1561         }
1562
1563         /* Configure pi coalescing if set */
1564         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1565                 /* eth will open queues for all tcs, so configure all of them
1566                  * properly, rather than just the active ones
1567                  */
1568                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1569
1570                 u8 timeset, timer_res;
1571                 u8 i;
1572
1573                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1574                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1575                         timer_res = 0;
1576                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1577                         timer_res = 1;
1578                 else
1579                         timer_res = 2;
1580                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1581                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1582                                        ECORE_COAL_RX_STATE_MACHINE,
1583                                        timeset);
1584
1585                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1586                         timer_res = 0;
1587                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1588                         timer_res = 1;
1589                 else
1590                         timer_res = 2;
1591                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1592                 for (i = 0; i < num_tc; i++) {
1593                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1594                                                igu_sb_id, TX_PI(i),
1595                                                ECORE_COAL_TX_STATE_MACHINE,
1596                                                timeset);
1597                 }
1598         }
1599 }
1600
1601 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1602                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1603 {
1604         /* zero status block and ack counter */
1605         sb_info->sb_ack = 0;
1606         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1607
1608         if (IS_PF(p_hwfn->p_dev))
1609                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1610                                       sb_info->igu_sb_id, 0, 0);
1611 }
1612
1613 struct ecore_igu_block *
1614 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1615 {
1616         struct ecore_igu_block *p_block;
1617         u16 igu_id;
1618
1619         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1620              igu_id++) {
1621                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1622
1623                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1624                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1625                         continue;
1626
1627                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1628                     b_is_pf)
1629                         return p_block;
1630         }
1631
1632         return OSAL_NULL;
1633 }
1634
1635 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1636                                   u16 vector_id)
1637 {
1638         struct ecore_igu_block *p_block;
1639         u16 igu_id;
1640
1641         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1642              igu_id++) {
1643                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1644
1645                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1646                     !p_block->is_pf ||
1647                     p_block->vector_number != vector_id)
1648                         continue;
1649
1650                 return igu_id;
1651         }
1652
1653         return ECORE_SB_INVALID_IDX;
1654 }
1655
1656 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1657 {
1658         u16 igu_sb_id;
1659
1660         /* Assuming continuous set of IGU SBs dedicated for given PF */
1661         if (sb_id == ECORE_SP_SB_ID)
1662                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1663         else if (IS_PF(p_hwfn->p_dev))
1664                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1665         else
1666                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1667
1668         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1669                 DP_NOTICE(p_hwfn, true,
1670                           "Slowpath SB vector %04x doesn't exist\n",
1671                           sb_id);
1672         else if (sb_id == ECORE_SP_SB_ID)
1673                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1674                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1675         else
1676                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1678
1679         return igu_sb_id;
1680 }
1681
1682 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1683                                        struct ecore_ptt *p_ptt,
1684                                        struct ecore_sb_info *sb_info,
1685                                        void *sb_virt_addr,
1686                                        dma_addr_t sb_phy_addr, u16 sb_id)
1687 {
1688         sb_info->sb_virt = sb_virt_addr;
1689         sb_info->sb_phys = sb_phy_addr;
1690
1691         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1692
1693         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1694                 return ECORE_INVAL;
1695
1696         /* Let the igu info reference the client's SB info */
1697         if (sb_id != ECORE_SP_SB_ID) {
1698                 if (IS_PF(p_hwfn->p_dev)) {
1699                         struct ecore_igu_info *p_info;
1700                         struct ecore_igu_block *p_block;
1701
1702                         p_info = p_hwfn->hw_info.p_igu_info;
1703                         p_block = &p_info->entry[sb_info->igu_sb_id];
1704
1705                         p_block->sb_info = sb_info;
1706                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1707                         p_info->usage.free_cnt--;
1708                 } else {
1709                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1710                 }
1711         }
1712 #ifdef ECORE_CONFIG_DIRECT_HWFN
1713         sb_info->p_hwfn = p_hwfn;
1714 #endif
1715         sb_info->p_dev = p_hwfn->p_dev;
1716
1717         /* The igu address will hold the absolute address that needs to be
1718          * written to for a specific status block
1719          */
1720         if (IS_PF(p_hwfn->p_dev)) {
1721                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1722                     GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1723
1724         } else {
1725                 sb_info->igu_addr =
1726                     (u8 OSAL_IOMEM *)p_hwfn->regview +
1727                     PXP_VF_BAR0_START_IGU +
1728                     ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1729         }
1730
1731         sb_info->flags |= ECORE_SB_INFO_INIT;
1732
1733         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1734
1735         return ECORE_SUCCESS;
1736 }
1737
1738 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1739                                           struct ecore_sb_info *sb_info,
1740                                           u16 sb_id)
1741 {
1742         struct ecore_igu_info *p_info;
1743         struct ecore_igu_block *p_block;
1744
1745         if (sb_info == OSAL_NULL)
1746                 return ECORE_SUCCESS;
1747
1748         /* zero status block and ack counter */
1749         sb_info->sb_ack = 0;
1750         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1751
1752         if (IS_VF(p_hwfn->p_dev)) {
1753                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1754                 return ECORE_SUCCESS;
1755         }
1756
1757         p_info = p_hwfn->hw_info.p_igu_info;
1758         p_block = &p_info->entry[sb_info->igu_sb_id];
1759
1760         /* Vector 0 is reserved to Default SB */
1761         if (p_block->vector_number == 0) {
1762                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1763                 return ECORE_INVAL;
1764         }
1765
1766         /* Lose reference to client's SB info, and fix counters */
1767         p_block->sb_info = OSAL_NULL;
1768         p_block->status |= ECORE_IGU_STATUS_FREE;
1769         p_info->usage.free_cnt++;
1770
1771         return ECORE_SUCCESS;
1772 }
1773
1774 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1775 {
1776         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1777
1778         if (!p_sb)
1779                 return;
1780
1781         if (p_sb->sb_info.sb_virt) {
1782                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1783                                        p_sb->sb_info.sb_virt,
1784                                        p_sb->sb_info.sb_phys,
1785                                        SB_ALIGNED_SIZE(p_hwfn));
1786         }
1787
1788         OSAL_FREE(p_hwfn->p_dev, p_sb);
1789 }
1790
1791 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1792                                                   struct ecore_ptt *p_ptt)
1793 {
1794         struct ecore_sb_sp_info *p_sb;
1795         dma_addr_t p_phys = 0;
1796         void *p_virt;
1797
1798         /* SB struct */
1799         p_sb =
1800             OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1801                        sizeof(*p_sb));
1802         if (!p_sb) {
1803                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1804                 return ECORE_NOMEM;
1805         }
1806
1807         /* SB ring  */
1808         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1809                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1810         if (!p_virt) {
1811                 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1812                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1813                 return ECORE_NOMEM;
1814         }
1815
1816         /* Status Block setup */
1817         p_hwfn->p_sp_sb = p_sb;
1818         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1819                           p_virt, p_phys, ECORE_SP_SB_ID);
1820
1821         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1822
1823         return ECORE_SUCCESS;
1824 }
1825
1826 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1827                                            ecore_int_comp_cb_t comp_cb,
1828                                            void *cookie,
1829                                            u8 *sb_idx, __le16 **p_fw_cons)
1830 {
1831         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1832         enum _ecore_status_t rc = ECORE_NOMEM;
1833         u8 pi;
1834
1835         /* Look for a free index */
1836         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1837                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1838                         continue;
1839
1840                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1841                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1842                 *sb_idx = pi;
1843                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1844                 rc = ECORE_SUCCESS;
1845                 break;
1846         }
1847
1848         return rc;
1849 }
1850
1851 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1852 {
1853         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1854
1855         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1856                 return ECORE_NOMEM;
1857
1858         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1859         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1860         return ECORE_SUCCESS;
1861 }
1862
1863 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1864 {
1865         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1866 }
1867
1868 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1869                               struct ecore_ptt *p_ptt,
1870                               enum ecore_int_mode int_mode)
1871 {
1872         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1873
1874 #ifndef ASIC_ONLY
1875         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1876                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1877                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1878         }
1879 #endif
1880
1881         p_hwfn->p_dev->int_mode = int_mode;
1882         switch (p_hwfn->p_dev->int_mode) {
1883         case ECORE_INT_MODE_INTA:
1884                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1885                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1886                 break;
1887
1888         case ECORE_INT_MODE_MSI:
1889                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1890                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1891                 break;
1892
1893         case ECORE_INT_MODE_MSIX:
1894                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1895                 break;
1896         case ECORE_INT_MODE_POLL:
1897                 break;
1898         }
1899
1900         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1901 }
1902
1903 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1904                                       struct ecore_ptt *p_ptt)
1905 {
1906 #ifndef ASIC_ONLY
1907         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1908                 DP_INFO(p_hwfn,
1909                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1910                 return;
1911         }
1912 #endif
1913
1914         /* Configure AEU signal change to produce attentions */
1915         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1916         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1917         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1918         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1919
1920         /* Flush the writes to IGU */
1921         OSAL_MMIOWB(p_hwfn->p_dev);
1922
1923         /* Unmask AEU signals toward IGU */
1924         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1925 }
1926
1927 enum _ecore_status_t
1928 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1929                           enum ecore_int_mode int_mode)
1930 {
1931         enum _ecore_status_t rc = ECORE_SUCCESS;
1932
1933         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1934
1935         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1936                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1937                 if (rc != ECORE_SUCCESS) {
1938                         DP_NOTICE(p_hwfn, true,
1939                                   "Slowpath IRQ request failed\n");
1940                         return ECORE_NORESOURCES;
1941                 }
1942                 p_hwfn->b_int_requested = true;
1943         }
1944
1945         /* Enable interrupt Generation */
1946         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1947
1948         p_hwfn->b_int_enabled = 1;
1949
1950         return rc;
1951 }
1952
1953 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1954                                struct ecore_ptt *p_ptt)
1955 {
1956         p_hwfn->b_int_enabled = 0;
1957
1958         if (IS_VF(p_hwfn->p_dev))
1959                 return;
1960
1961         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1962 }
1963
1964 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1965 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1966                                      struct ecore_ptt *p_ptt,
1967                                      u32 igu_sb_id,
1968                                      bool cleanup_set,
1969                                      u16 opaque_fid)
1970 {
1971         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1972         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1973         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1974         u8 type = 0;            /* FIXME MichalS type??? */
1975
1976         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1977                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1978
1979         /* USE Control Command Register to perform cleanup. There is an
1980          * option to do this using IGU bar, but then it can't be used for VFs.
1981          */
1982
1983         /* Set the data field */
1984         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1985         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1986         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1987
1988         /* Set the control register */
1989         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1990         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1991         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1992
1993         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1994
1995         OSAL_BARRIER(p_hwfn->p_dev);
1996
1997         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1998
1999         /* Flush the write to IGU */
2000         OSAL_MMIOWB(p_hwfn->p_dev);
2001
2002         /* calculate where to read the status bit from */
2003         sb_bit = 1 << (igu_sb_id % 32);
2004         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2005
2006         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2007
2008         /* Now wait for the command to complete */
2009         while (--sleep_cnt) {
2010                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2011                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2012                         break;
2013                 OSAL_MSLEEP(5);
2014         }
2015
2016         if (!sleep_cnt)
2017                 DP_NOTICE(p_hwfn, true,
2018                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2019                           val, igu_sb_id);
2020 }
2021
2022 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2023                                        struct ecore_ptt *p_ptt,
2024                                        u16 igu_sb_id, u16 opaque, bool b_set)
2025 {
2026         struct ecore_igu_block *p_block;
2027         int pi, i;
2028
2029         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2030         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2031                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2032                    igu_sb_id, p_block->function_id, p_block->is_pf,
2033                    p_block->vector_number);
2034
2035         /* Set */
2036         if (b_set)
2037                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2038
2039         /* Clear */
2040         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2041
2042         /* Wait for the IGU SB to cleanup */
2043         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2044                 u32 val;
2045
2046                 val = ecore_rd(p_hwfn, p_ptt,
2047                                IGU_REG_WRITE_DONE_PENDING +
2048                                ((igu_sb_id / 32) * 4));
2049                 if (val & (1 << (igu_sb_id % 32)))
2050                         OSAL_UDELAY(10);
2051                 else
2052                         break;
2053         }
2054         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2055                 DP_NOTICE(p_hwfn, true,
2056                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2057                           igu_sb_id);
2058
2059         /* Clear the CAU for the SB */
2060         for (pi = 0; pi < 12; pi++)
2061                 ecore_wr(p_hwfn, p_ptt,
2062                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2063 }
2064
2065 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2066                                 struct ecore_ptt *p_ptt,
2067                                 bool b_set, bool b_slowpath)
2068 {
2069         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2070         struct ecore_igu_block *p_block;
2071         u16 igu_sb_id = 0;
2072         u32 val = 0;
2073
2074         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2075         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2076         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2077         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2078         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2079         /* end temporary */
2080
2081         for (igu_sb_id = 0;
2082              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2083              igu_sb_id++) {
2084                 p_block = &p_info->entry[igu_sb_id];
2085
2086                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2087                     !p_block->is_pf ||
2088                     (p_block->status & ECORE_IGU_STATUS_DSB))
2089                         continue;
2090
2091                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2092                                                   p_hwfn->hw_info.opaque_fid,
2093                                                   b_set);
2094         }
2095
2096         if (b_slowpath)
2097                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2098                                                   p_info->igu_dsb_id,
2099                                                   p_hwfn->hw_info.opaque_fid,
2100                                                   b_set);
2101 }
2102
2103 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2104                             struct ecore_ptt *p_ptt)
2105 {
2106         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2107         struct ecore_igu_block *p_block;
2108         int pf_sbs, vf_sbs;
2109         u16 igu_sb_id;
2110         u32 val, rval;
2111
2112         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2113                 /* We're using an old MFW - have to prevent any switching
2114                  * of SBs between PF and VFs as later driver wouldn't be
2115                  * able to tell which belongs to which.
2116                  */
2117                 p_info->b_allow_pf_vf_change = false;
2118         } else {
2119                 /* Use the numbers the MFW have provided -
2120                  * don't forget MFW accounts for the default SB as well.
2121                  */
2122                 p_info->b_allow_pf_vf_change = true;
2123
2124                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2125                         DP_INFO(p_hwfn,
2126                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2127                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2128                                 p_info->usage.cnt);
2129                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2130                 }
2131
2132                 /* TODO - how do we learn about VF SBs from MFW? */
2133                 if (IS_PF_SRIOV(p_hwfn)) {
2134                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2135
2136                         if (vfs != p_info->usage.iov_cnt)
2137                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2138                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2139                                            p_info->usage.iov_cnt, vfs);
2140
2141                         /* At this point we know how many SBs we have totally
2142                          * in IGU + number of PF SBs. So we can validate that
2143                          * we'd have sufficient for VF.
2144                          */
2145                         if (vfs > p_info->usage.free_cnt +
2146                                   p_info->usage.free_cnt_iov -
2147                                   p_info->usage.cnt) {
2148                                 DP_NOTICE(p_hwfn, true,
2149                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2150                                           p_info->usage.free_cnt +
2151                                           p_info->usage.free_cnt_iov,
2152                                           p_info->usage.cnt, vfs);
2153                                 return ECORE_INVAL;
2154                         }
2155                 }
2156         }
2157
2158         /* Cap the number of VFs SBs by the number of VFs */
2159         if (IS_PF_SRIOV(p_hwfn))
2160                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2161
2162         /* Mark all SBs as free, now in the right PF/VFs division */
2163         p_info->usage.free_cnt = p_info->usage.cnt;
2164         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2165         p_info->usage.orig = p_info->usage.cnt;
2166         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2167
2168         /* We now proceed to re-configure the IGU cam to reflect the initial
2169          * configuration. We can start with the Default SB.
2170          */
2171         pf_sbs = p_info->usage.cnt;
2172         vf_sbs = p_info->usage.iov_cnt;
2173
2174         for (igu_sb_id = p_info->igu_dsb_id;
2175              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2176              igu_sb_id++) {
2177                 p_block = &p_info->entry[igu_sb_id];
2178                 val = 0;
2179
2180                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2181                         continue;
2182
2183                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2184                         p_block->function_id = p_hwfn->rel_pf_id;
2185                         p_block->is_pf = 1;
2186                         p_block->vector_number = 0;
2187                         p_block->status = ECORE_IGU_STATUS_VALID |
2188                                           ECORE_IGU_STATUS_PF |
2189                                           ECORE_IGU_STATUS_DSB;
2190                 } else if (pf_sbs) {
2191                         pf_sbs--;
2192                         p_block->function_id = p_hwfn->rel_pf_id;
2193                         p_block->is_pf = 1;
2194                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2195                         p_block->status = ECORE_IGU_STATUS_VALID |
2196                                           ECORE_IGU_STATUS_PF |
2197                                           ECORE_IGU_STATUS_FREE;
2198                 } else if (vf_sbs) {
2199                         p_block->function_id =
2200                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2201                                 p_info->usage.iov_cnt - vf_sbs;
2202                         p_block->is_pf = 0;
2203                         p_block->vector_number = 0;
2204                         p_block->status = ECORE_IGU_STATUS_VALID |
2205                                           ECORE_IGU_STATUS_FREE;
2206                         vf_sbs--;
2207                 } else {
2208                         p_block->function_id = 0;
2209                         p_block->is_pf = 0;
2210                         p_block->vector_number = 0;
2211                 }
2212
2213                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2214                           p_block->function_id);
2215                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2216                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2217                           p_block->vector_number);
2218
2219                 /* VF entries would be enabled when VF is initializaed */
2220                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2221
2222                 rval = ecore_rd(p_hwfn, p_ptt,
2223                                 IGU_REG_MAPPING_MEMORY +
2224                                 sizeof(u32) * igu_sb_id);
2225
2226                 if (rval != val) {
2227                         ecore_wr(p_hwfn, p_ptt,
2228                                  IGU_REG_MAPPING_MEMORY +
2229                                  sizeof(u32) * igu_sb_id,
2230                                  val);
2231
2232                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2233                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2234                                    igu_sb_id, p_block->function_id,
2235                                    p_block->is_pf, p_block->vector_number,
2236                                    rval, val);
2237                 }
2238         }
2239
2240         return 0;
2241 }
2242
2243 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2244                                     struct ecore_ptt *p_ptt)
2245 {
2246         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2247
2248         /* Return all the usage indications to default prior to the reset;
2249          * The reset expects the !orig to reflect the initial status of the
2250          * SBs, and would re-calculate the originals based on those.
2251          */
2252         p_cnt->cnt = p_cnt->orig;
2253         p_cnt->free_cnt = p_cnt->orig;
2254         p_cnt->iov_cnt = p_cnt->iov_orig;
2255         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2256         p_cnt->orig = 0;
2257         p_cnt->iov_orig = 0;
2258
2259         /* TODO - we probably need to re-configure the CAU as well... */
2260         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2261 }
2262
2263 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2264                                          struct ecore_ptt *p_ptt,
2265                                          u16 igu_sb_id)
2266 {
2267         u32 val = ecore_rd(p_hwfn, p_ptt,
2268                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2269         struct ecore_igu_block *p_block;
2270
2271         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2272
2273         /* Fill the block information */
2274         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2275         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2276         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2277
2278         p_block->igu_sb_id = igu_sb_id;
2279 }
2280
2281 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2282                                             struct ecore_ptt *p_ptt)
2283 {
2284         struct ecore_igu_info *p_igu_info;
2285         struct ecore_igu_block *p_block;
2286         u32 min_vf = 0, max_vf = 0;
2287         u16 igu_sb_id;
2288
2289         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2290                                                  GFP_KERNEL,
2291                                                  sizeof(*p_igu_info));
2292         if (!p_hwfn->hw_info.p_igu_info)
2293                 return ECORE_NOMEM;
2294         p_igu_info = p_hwfn->hw_info.p_igu_info;
2295
2296         /* Distinguish between existent and onn-existent default SB */
2297         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2298
2299         /* Find the range of VF ids whose SB belong to this PF */
2300         if (p_hwfn->p_dev->p_iov_info) {
2301                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2302
2303                 min_vf = p_iov->first_vf_in_pf;
2304                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2305         }
2306
2307         for (igu_sb_id = 0;
2308              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2309              igu_sb_id++) {
2310                 /* Read current entry; Notice it might not belong to this PF */
2311                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2312                 p_block = &p_igu_info->entry[igu_sb_id];
2313
2314                 if ((p_block->is_pf) &&
2315                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2316                         p_block->status = ECORE_IGU_STATUS_PF |
2317                                           ECORE_IGU_STATUS_VALID |
2318                                           ECORE_IGU_STATUS_FREE;
2319
2320                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2321                                 p_igu_info->usage.cnt++;
2322                 } else if (!(p_block->is_pf) &&
2323                            (p_block->function_id >= min_vf) &&
2324                            (p_block->function_id < max_vf)) {
2325                         /* Available for VFs of this PF */
2326                         p_block->status = ECORE_IGU_STATUS_VALID |
2327                                           ECORE_IGU_STATUS_FREE;
2328
2329                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2330                                 p_igu_info->usage.iov_cnt++;
2331                 }
2332
2333                 /* Mark the First entry belonging to the PF or its VFs
2334                  * as the default SB [we'll reset IGU prior to first usage].
2335                  */
2336                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2337                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2338                         p_igu_info->igu_dsb_id = igu_sb_id;
2339                         p_block->status |= ECORE_IGU_STATUS_DSB;
2340                 }
2341
2342                 /* While this isn't suitable for all clients, limit number
2343                  * of prints by having each PF print only its entries with the
2344                  * exception of PF0 which would print everything.
2345                  */
2346                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2347                     (p_hwfn->abs_pf_id == 0))
2348                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2349                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2350                                    igu_sb_id, p_block->function_id,
2351                                    p_block->is_pf, p_block->vector_number);
2352         }
2353
2354         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2355                 DP_NOTICE(p_hwfn, true,
2356                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2357                           p_igu_info->igu_dsb_id);
2358                 return ECORE_INVAL;
2359         }
2360
2361         /* All non default SB are considered free at this point */
2362         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2363         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2364
2365         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2366                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2367                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2368                    p_igu_info->usage.iov_cnt);
2369
2370         return ECORE_SUCCESS;
2371 }
2372
2373 enum _ecore_status_t
2374 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2375                           u16 sb_id, bool b_to_vf)
2376 {
2377         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2378         struct ecore_igu_block *p_block = OSAL_NULL;
2379         u16 igu_sb_id = 0, vf_num = 0;
2380         u32 val = 0;
2381
2382         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2383                 return ECORE_INVAL;
2384
2385         if (sb_id == ECORE_SP_SB_ID)
2386                 return ECORE_INVAL;
2387
2388         if (!p_info->b_allow_pf_vf_change) {
2389                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2390                 return ECORE_INVAL;
2391         }
2392
2393         /* If we're moving a SB from PF to VF, the client had to specify
2394          * which vector it wants to move.
2395          */
2396         if (b_to_vf) {
2397                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2398                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2399                         return ECORE_INVAL;
2400         }
2401
2402         /* If we're moving a SB from VF to PF, need to validate there isn't
2403          * already a line configured for that vector.
2404          */
2405         if (!b_to_vf) {
2406                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2407                     ECORE_SB_INVALID_IDX)
2408                         return ECORE_INVAL;
2409         }
2410
2411         /* We need to validate that the SB can actually be relocated.
2412          * This would also handle the previous case where we've explicitly
2413          * stated which IGU SB needs to move.
2414          */
2415         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2416              igu_sb_id++) {
2417                 p_block = &p_info->entry[igu_sb_id];
2418
2419                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2420                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2421                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2422                         if (b_to_vf)
2423                                 return ECORE_INVAL;
2424                         else
2425                                 continue;
2426                 }
2427
2428                 break;
2429         }
2430
2431         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2432                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2433                            "Failed to find a free SB to move\n");
2434                 return ECORE_INVAL;
2435         }
2436
2437         /* At this point, p_block points to the SB we want to relocate */
2438         if (b_to_vf) {
2439                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2440
2441                 /* It doesn't matter which VF number we choose, since we're
2442                  * going to disable the line; But let's keep it in range.
2443                  */
2444                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2445
2446                 p_block->function_id = (u8)vf_num;
2447                 p_block->is_pf = 0;
2448                 p_block->vector_number = 0;
2449
2450                 p_info->usage.cnt--;
2451                 p_info->usage.free_cnt--;
2452                 p_info->usage.iov_cnt++;
2453                 p_info->usage.free_cnt_iov++;
2454
2455                 /* TODO - if SBs aren't really the limiting factor,
2456                  * then it might not be accurate [in the since that
2457                  * we might not need decrement the feature].
2458                  */
2459                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2460                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2461         } else {
2462                 p_block->status |= ECORE_IGU_STATUS_PF;
2463                 p_block->function_id = p_hwfn->rel_pf_id;
2464                 p_block->is_pf = 1;
2465                 p_block->vector_number = sb_id + 1;
2466
2467                 p_info->usage.cnt++;
2468                 p_info->usage.free_cnt++;
2469                 p_info->usage.iov_cnt--;
2470                 p_info->usage.free_cnt_iov--;
2471
2472                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2473                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2474         }
2475
2476         /* Update the IGU and CAU with the new configuration */
2477         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2478                   p_block->function_id);
2479         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2480         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2481         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2482                   p_block->vector_number);
2483
2484         ecore_wr(p_hwfn, p_ptt,
2485                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2486                  val);
2487
2488         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2489                               igu_sb_id, vf_num,
2490                               p_block->is_pf ? 0 : 1);
2491
2492         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2493                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2494                    igu_sb_id, p_block->function_id,
2495                    p_block->is_pf, p_block->vector_number);
2496
2497         return ECORE_SUCCESS;
2498 }
2499
2500 /**
2501  * @brief Initialize igu runtime registers
2502  *
2503  * @param p_hwfn
2504  */
2505 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2506 {
2507         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2508
2509         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2510 }
2511
2512 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2513                           IGU_CMD_INT_ACK_BASE)
2514 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2515                           IGU_CMD_INT_ACK_BASE)
2516 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2517 {
2518         u32 intr_status_hi = 0, intr_status_lo = 0;
2519         u64 intr_status = 0;
2520
2521         intr_status_lo = REG_RD(p_hwfn,
2522                                 GTT_BAR0_MAP_REG_IGU_CMD +
2523                                 LSB_IGU_CMD_ADDR * 8);
2524         intr_status_hi = REG_RD(p_hwfn,
2525                                 GTT_BAR0_MAP_REG_IGU_CMD +
2526                                 MSB_IGU_CMD_ADDR * 8);
2527         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2528
2529         return intr_status;
2530 }
2531
2532 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2533 {
2534         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2535         p_hwfn->b_sp_dpc_enabled = true;
2536 }
2537
2538 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2539 {
2540         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2541         if (!p_hwfn->sp_dpc)
2542                 return ECORE_NOMEM;
2543
2544         return ECORE_SUCCESS;
2545 }
2546
2547 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2548 {
2549         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2550 }
2551
2552 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2553                                      struct ecore_ptt *p_ptt)
2554 {
2555         enum _ecore_status_t rc = ECORE_SUCCESS;
2556
2557         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2558         if (rc != ECORE_SUCCESS) {
2559                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2560                 return rc;
2561         }
2562
2563         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2564         if (rc != ECORE_SUCCESS) {
2565                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2566                 return rc;
2567         }
2568
2569         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2570         if (rc != ECORE_SUCCESS)
2571                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2572
2573         return rc;
2574 }
2575
2576 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2577 {
2578         ecore_int_sp_sb_free(p_hwfn);
2579         ecore_int_sb_attn_free(p_hwfn);
2580         ecore_int_sp_dpc_free(p_hwfn);
2581 }
2582
2583 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2584 {
2585         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2586                 return;
2587
2588         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2589         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2590         ecore_int_sp_dpc_setup(p_hwfn);
2591 }
2592
2593 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2594                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2595 {
2596         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2597
2598         if (!p_igu_info || !p_sb_cnt_info)
2599                 return;
2600
2601         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2602                     sizeof(*p_sb_cnt_info));
2603 }
2604
2605 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2606 {
2607         int i;
2608
2609         for_each_hwfn(p_dev, i)
2610                 p_dev->hwfns[i].b_int_requested = false;
2611 }
2612
2613 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2614 {
2615         p_dev->attn_clr_en = clr_enable;
2616 }
2617
2618 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2619                                              struct ecore_ptt *p_ptt,
2620                                              u8 timer_res, u16 sb_id, bool tx)
2621 {
2622         struct cau_sb_entry sb_entry;
2623         enum _ecore_status_t rc;
2624
2625         if (!p_hwfn->hw_init_done) {
2626                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2627                 return ECORE_INVAL;
2628         }
2629
2630         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2631                                  sb_id * sizeof(u64),
2632                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2633         if (rc != ECORE_SUCCESS) {
2634                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2635                 return rc;
2636         }
2637
2638         if (tx)
2639                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2640         else
2641                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2642
2643         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2644                                  (u64)(osal_uintptr_t)&sb_entry,
2645                                  CAU_REG_SB_VAR_MEMORY +
2646                                  sb_id * sizeof(u64), 2, 0);
2647         if (rc != ECORE_SUCCESS) {
2648                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2649                 return rc;
2650         }
2651
2652         return rc;
2653 }
2654
2655 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2656                                           struct ecore_ptt *p_ptt,
2657                                           struct ecore_sb_info *p_sb,
2658                                           struct ecore_sb_info_dbg *p_info)
2659 {
2660         u16 sbid = p_sb->igu_sb_id;
2661         int i;
2662
2663         if (IS_VF(p_hwfn->p_dev))
2664                 return ECORE_INVAL;
2665
2666         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2667                 return ECORE_INVAL;
2668
2669         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2670                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2671         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2672                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2673
2674         for (i = 0; i < PIS_PER_SB_E4; i++)
2675                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2676                                               CAU_REG_PI_MEMORY +
2677                                               sbid * 4 * PIS_PER_SB_E4 +
2678                                               i * 4);
2679
2680         return ECORE_SUCCESS;
2681 }