net/qede/base: code cleanup
[dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "reg_addr.h"
13 #include "ecore_gtt_reg_addr.h"
14 #include "ecore_init_ops.h"
15 #include "ecore_rt_defs.h"
16 #include "ecore_int.h"
17 #include "reg_addr.h"
18 #include "ecore_hw.h"
19 #include "ecore_sriov.h"
20 #include "ecore_vf.h"
21 #include "ecore_hw_defs.h"
22 #include "ecore_hsi_common.h"
23 #include "ecore_mcp.h"
24
25 struct ecore_pi_info {
26         ecore_int_comp_cb_t comp_cb;
27         void *cookie;           /* Will be sent to the compl cb function */
28 };
29
30 struct ecore_sb_sp_info {
31         struct ecore_sb_info sb_info;
32         /* per protocol index data */
33         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
34 };
35
36 enum ecore_attention_type {
37         ECORE_ATTN_TYPE_ATTN,
38         ECORE_ATTN_TYPE_PARITY,
39 };
40
41 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
42         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
43
44 struct aeu_invert_reg_bit {
45         char bit_name[30];
46
47 #define ATTENTION_PARITY                (1 << 0)
48
49 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
50 #define ATTENTION_LENGTH_SHIFT          (4)
51 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
52                                          ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
55 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
56                                          ATTENTION_PARITY)
57
58 /* Multiple bits start with this offset */
59 #define ATTENTION_OFFSET_MASK           (0x000ff000)
60 #define ATTENTION_OFFSET_SHIFT          (12)
61
62 #define ATTENTION_BB_MASK               (0x00700000)
63 #define ATTENTION_BB_SHIFT              (20)
64 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
65 #define ATTENTION_BB_DIFFERENT          (1 << 23)
66
67 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
68         unsigned int flags;
69
70         /* Callback to call if attention will be triggered */
71         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
72
73         enum block_id block_index;
74 };
75
76 struct aeu_invert_reg {
77         struct aeu_invert_reg_bit bits[32];
78 };
79
80 #define MAX_ATTN_GRPS           (8)
81 #define NUM_ATTN_REGS           (9)
82
83 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
84 {
85         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
86
87         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
88         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
89
90         return ECORE_SUCCESS;
91 }
92
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
102 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
103 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
117 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
118 {
119         u32 tmp =
120             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
121                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
122
123         /* Disabled VF access */
124         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
125                 u32 addr, data;
126
127                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
128                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
129                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
130                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
131                 DP_INFO(p_hwfn->p_dev,
132                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
133                         " Write [0x%02x] Addr [0x%08x]\n",
134                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
135                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
136                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
137                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
138                         (u8)((data &
139                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
140                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
141                         (u8)((data &
142                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
143                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
144                         (u8)((data &
145                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
146                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
147                         addr);
148         }
149
150         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
151                        PSWHST_REG_INCORRECT_ACCESS_VALID);
152         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
153                 u32 addr, data, length;
154
155                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
157                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
158                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
159                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
160                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
161
162                 DP_INFO(p_hwfn->p_dev,
163                         "Incorrect access to %08x of length %08x - PF [%02x]"
164                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
165                         " Byte-Enable [%04x] [%08x]\n",
166                         addr, length,
167                         (u8)((data &
168                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
169                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
170                         (u8)((data &
171                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
172                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
173                         (u8)((data &
174                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
175                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
176                         (u8)((data &
177                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
178                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
179                         (u8)((data &
180                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
181                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
182                         (u8)((data &
183                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
184                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
185                         data);
186         }
187
188         /* TODO - We know 'some' of these are legal due to virtualization,
189          * but is it true for all of them?
190          */
191         return ECORE_SUCCESS;
192 }
193
194 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
195 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
196 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
197 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
198 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
199 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
200 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
201 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
202 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
203 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
204 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
205 static const char *grc_timeout_attn_master_to_str(u8 master)
206 {
207         switch (master) {
208         case 1:
209                 return "PXP";
210         case 2:
211                 return "MCP";
212         case 3:
213                 return "MSDM";
214         case 4:
215                 return "PSDM";
216         case 5:
217                 return "YSDM";
218         case 6:
219                 return "USDM";
220         case 7:
221                 return "TSDM";
222         case 8:
223                 return "XSDM";
224         case 9:
225                 return "DBU";
226         case 10:
227                 return "DMAE";
228         default:
229                 return "Unknown";
230         }
231 }
232
233 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
234 {
235         u32 tmp, tmp2;
236
237         /* We've already cleared the timeout interrupt register, so we learn
238          * of interrupts via the validity register
239          */
240         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
241                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
242         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
243                 goto out;
244
245         /* Read the GRC timeout information */
246         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
247                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
248         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
249                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
250
251         DP_NOTICE(p_hwfn->p_dev, false,
252                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
253                   tmp2, tmp,
254                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
255                                                        : "Read from",
256                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
257                   grc_timeout_attn_master_to_str(
258                         (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
259                          ECORE_GRC_ATTENTION_MASTER_SHIFT),
260                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
261                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
262                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
263                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
264                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
265                   ECORE_GRC_ATTENTION_VF_SHIFT);
266
267 out:
268         /* Regardles of anything else, clean the validity bit */
269         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
270                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
271         return ECORE_SUCCESS;
272 }
273
274 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
275 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
276 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
284 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
286 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
287
288 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
289                                                    struct ecore_ptt *p_ptt)
290 {
291         u32 tmp;
292
293         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
294         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = ecore_rd(p_hwfn, p_ptt,
298                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
299                 addr_hi = ecore_rd(p_hwfn, p_ptt,
300                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
301                 details = ecore_rd(p_hwfn, p_ptt,
302                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
303
304                 DP_NOTICE(p_hwfn, false,
305                           "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
306                           addr_hi, addr_lo, details,
307                           (u8)((details &
308                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
309                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
310                           (u8)((details &
311                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
312                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
313                           (u8)((details &
314                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
315                           tmp,
316                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
317                                 1 : 0),
318                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
319                                 1 : 0),
320                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
321                                 1 : 0));
322         }
323
324         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
325         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
326                 u32 addr_lo, addr_hi, details;
327
328                 addr_lo = ecore_rd(p_hwfn, p_ptt,
329                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
330                 addr_hi = ecore_rd(p_hwfn, p_ptt,
331                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
332                 details = ecore_rd(p_hwfn, p_ptt,
333                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
334
335                 DP_NOTICE(p_hwfn, false,
336                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
337                           addr_hi, addr_lo, details,
338                           (u8)((details &
339                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
340                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
341                           (u8)((details &
342                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
343                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
344                           (u8)((details &
345                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
346                           tmp,
347                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
348                                 1 : 0),
349                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
350                                 1 : 0),
351                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
352                                 1 : 0));
353         }
354
355         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
356         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
357                 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
358
359         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
360         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
361                 u32 addr_hi, addr_lo;
362
363                 addr_lo = ecore_rd(p_hwfn, p_ptt,
364                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
365                 addr_hi = ecore_rd(p_hwfn, p_ptt,
366                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
367
368                 DP_NOTICE(p_hwfn, false,
369                           "ICPL erorr - %08x [Address %08x:%08x]\n",
370                           tmp, addr_hi, addr_lo);
371         }
372
373         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
374         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
375                 u32 addr_hi, addr_lo, details;
376
377                 addr_lo = ecore_rd(p_hwfn, p_ptt,
378                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
379                 addr_hi = ecore_rd(p_hwfn, p_ptt,
380                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
381                 details = ecore_rd(p_hwfn, p_ptt,
382                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
383
384                 DP_NOTICE(p_hwfn, false,
385                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
386                           details, tmp, addr_hi, addr_lo);
387         }
388
389         /* Clear the indications */
390         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
391
392         return ECORE_SUCCESS;
393 }
394
395 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
396 {
397         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
398 }
399
400 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
401 {
402         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
403
404         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
405
406         return ECORE_INVAL;
407 }
408
409 static enum _ecore_status_t
410 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
411 {
412         DP_INFO(p_hwfn, "General attention 35!\n");
413
414         return ECORE_SUCCESS;
415 }
416
417 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
418 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
419 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
420 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
421 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
422
423 #define ECORE_DB_REC_COUNT                      10
424 #define ECORE_DB_REC_INTERVAL                   100
425
426 /* assumes sticky overflow indication was set for this PF */
427 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
428                                               struct ecore_ptt *p_ptt)
429 {
430         u8 count = ECORE_DB_REC_COUNT;
431         u32 usage = 1;
432
433         /* wait for usage to zero or count to run out. This is necessary since
434          * EDPM doorbell transactions can take multiple 64b cycles, and as such
435          * can "split" over the pci. Possibly, the doorbell drop can happen with
436          * half an EDPM in the queue and other half dropped. Another EDPM
437          * doorbell to the same address (from doorbell recovery mechanism or
438          * from the doorbelling entity) could have first half dropped and second
439          * half interperted as continuation of the first. To prevent such
440          * malformed doorbells from reaching the device, flush the queue before
441          * releaseing the overflow sticky indication.
442          */
443         while (count-- && usage) {
444                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
445                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
446         }
447
448         /* should have been depleted by now */
449         if (usage) {
450                 DP_NOTICE(p_hwfn->p_dev, false,
451                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
452                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
453                 return ECORE_TIMEOUT;
454         }
455
456         /* flush any pedning (e)dpm as they may never arrive */
457         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
458
459         /* release overflow sticky indication (stop silently dropping
460          * everything)
461          */
462         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
463
464         /* repeat all last doorbells (doorbell drop recovery) */
465         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
466
467         return ECORE_SUCCESS;
468 }
469
470 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
471 {
472         u32 int_sts, first_drop_reason, details, address, overflow,
473                 all_drops_reason;
474         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
475         enum _ecore_status_t rc;
476
477         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
478         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
479                   int_sts);
480
481         /* int_sts may be zero since all PFs were interrupted for doorbell
482          * overflow but another one already handled it. Can abort here. If
483          * This PF also requires overflow recovery we will be interrupted again
484          */
485         if (!int_sts)
486                 return ECORE_SUCCESS;
487
488         /* check if db_drop or overflow happened */
489         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
490                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
491                 /* obtain data about db drop/overflow */
492                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
493                                   DORQ_REG_DB_DROP_REASON) &
494                                   ECORE_DORQ_ATTENTION_REASON_MASK;
495                 details = ecore_rd(p_hwfn, p_ptt,
496                                    DORQ_REG_DB_DROP_DETAILS);
497                 address = ecore_rd(p_hwfn, p_ptt,
498                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
499                 overflow = ecore_rd(p_hwfn, p_ptt,
500                                     DORQ_REG_PF_OVFL_STICKY);
501                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
502                                             DORQ_REG_DB_DROP_DETAILS_REASON);
503
504                 /* log info */
505                 DP_NOTICE(p_hwfn->p_dev, false,
506                           "Doorbell drop occurred\n"
507                           "Address\t\t0x%08x\t(second BAR address)\n"
508                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
509                           "Size\t\t0x%04x\t\t(in bytes)\n"
510                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
511                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
512                           "Overflow\t0x%x\t\t(a per PF indication)\n",
513                           address,
514                           GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
515                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
516                           first_drop_reason, all_drops_reason, overflow);
517
518                 /* if this PF caused overflow, initiate recovery */
519                 if (overflow) {
520                         rc = ecore_db_rec_attn(p_hwfn, p_ptt);
521                         if (rc != ECORE_SUCCESS)
522                                 return rc;
523                 }
524
525                 /* clear the doorbell drop details and prepare for next drop */
526                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
527
528                 /* mark interrupt as handeld (note: even if drop was due to a
529                  * different reason than overflow we mark as handled)
530                  */
531                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
532                          DORQ_REG_INT_STS_DB_DROP |
533                          DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
534
535                 /* if there are no indications otherthan drop indications,
536                  * success
537                  */
538                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
539                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
540                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
541                         return ECORE_SUCCESS;
542         }
543
544         /* some other indication was present - non recoverable */
545         DP_INFO(p_hwfn, "DORQ fatal attention\n");
546
547         return ECORE_INVAL;
548 }
549
550 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
551 {
552 #ifndef ASIC_ONLY
553         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
554                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
555                                    TM_REG_INT_STS_1);
556
557                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
558                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
559                         return ECORE_INVAL;
560
561                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
562                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
563                         DP_INFO(p_hwfn,
564                                 "TM attention on emulation - most likely"
565                                 " results of clock-ratios\n");
566                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
567                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
568                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
569                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
570
571                 return ECORE_SUCCESS;
572         }
573 #endif
574
575         return ECORE_INVAL;
576 }
577
578 /* Instead of major changes to the data-structure, we have a some 'special'
579  * identifiers for sources that changed meaning between adapters.
580  */
581 enum aeu_invert_reg_special_type {
582         AEU_INVERT_REG_SPECIAL_CNIG_0,
583         AEU_INVERT_REG_SPECIAL_CNIG_1,
584         AEU_INVERT_REG_SPECIAL_CNIG_2,
585         AEU_INVERT_REG_SPECIAL_CNIG_3,
586         AEU_INVERT_REG_SPECIAL_MAX,
587 };
588
589 static struct aeu_invert_reg_bit
590 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
591         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
592         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
593         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
594         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595 };
596
597 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
598 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
599         {
600          {                      /* After Invert 1 */
601           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
602            MAX_BLOCK_ID},
603           }
604          },
605
606         {
607          {                      /* After Invert 2 */
608           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
609           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
610           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
611            BLOCK_PGLUE_B},
612           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616           {"SW timers #%d",
617            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
618            OSAL_NULL, MAX_BLOCK_ID},
619           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
620            BLOCK_PGLCS},
621           }
622          },
623
624         {
625          {                      /* After Invert 3 */
626           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
627            MAX_BLOCK_ID},
628           }
629          },
630
631         {
632          {                      /* After Invert 4 */
633           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
634            ecore_fw_assertion, MAX_BLOCK_ID},
635           {"General Attention %d",
636            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
637            OSAL_NULL, MAX_BLOCK_ID},
638           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
639            ecore_general_attention_35, MAX_BLOCK_ID},
640           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
641                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
642                          OSAL_NULL, BLOCK_NWS},
643           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
644                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
645                             OSAL_NULL, BLOCK_NWS},
646           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
647                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
648                          OSAL_NULL, BLOCK_NWM},
649           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
650                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
651                             OSAL_NULL, BLOCK_NWM},
652           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
653           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
654           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
655           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
656           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
657           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
658           {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
659            MAX_BLOCK_ID},
660           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
661           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
662           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
663           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
664           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
665           }
666          },
667
668         {
669          {                      /* After Invert 5 */
670           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
671           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
672           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
673           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
674           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
675           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
676           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
677           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
678           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
679           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
680           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
681           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
682           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
683           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
684           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
685           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
686           }
687          },
688
689         {
690          {                      /* After Invert 6 */
691           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
692           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
693           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
694           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
695           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
696           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
697           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
698           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
699           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
700           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
701           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
702           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
703           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
704           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
705           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
706           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
707           }
708          },
709
710         {
711          {                      /* After Invert 7 */
712           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
713           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
714           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
715           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
716           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
717           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
718           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
719           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
720           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
721           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
722           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
723           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
724           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
725           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
726           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
727           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
728           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
729           }
730          },
731
732         {
733          {                      /* After Invert 8 */
734           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
735           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
736           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
737           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
738           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
739           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
740           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
741           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
742           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
743           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
744           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
745           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
746           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
747           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
748           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
749           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
751           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
752           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
753           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
754           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
755            MAX_BLOCK_ID},
756           }
757          },
758
759         {
760          {                      /* After Invert 9 */
761           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
762           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
763            MAX_BLOCK_ID},
764           {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
765           {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
766           {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
767            MAX_BLOCK_ID},
768           }
769          },
770
771 };
772
773 static struct aeu_invert_reg_bit *
774 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
775                         struct aeu_invert_reg_bit *p_bit)
776 {
777         if (!ECORE_IS_BB(p_hwfn->p_dev))
778                 return p_bit;
779
780         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
781                 return p_bit;
782
783         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
784                                   ATTENTION_BB_SHIFT];
785 }
786
787 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
788                                      struct aeu_invert_reg_bit *p_bit)
789 {
790         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
791                   ATTENTION_PARITY);
792 }
793
794 #define ATTN_STATE_BITS         (0xfff)
795 #define ATTN_BITS_MASKABLE      (0x3ff)
796 struct ecore_sb_attn_info {
797         /* Virtual & Physical address of the SB */
798         struct atten_status_block *sb_attn;
799         dma_addr_t sb_phys;
800
801         /* Last seen running index */
802         u16 index;
803
804         /* A mask of the AEU bits resulting in a parity error */
805         u32 parity_mask[NUM_ATTN_REGS];
806
807         /* A pointer to the attention description structure */
808         struct aeu_invert_reg *p_aeu_desc;
809
810         /* Previously asserted attentions, which are still unasserted */
811         u16 known_attn;
812
813         /* Cleanup address for the link's general hw attention */
814         u32 mfw_attn_addr;
815 };
816
817 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
818                                  struct ecore_sb_attn_info *p_sb_desc)
819 {
820         u16 rc = 0, index;
821
822         OSAL_MMIOWB(p_hwfn->p_dev);
823
824         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
825         if (p_sb_desc->index != index) {
826                 p_sb_desc->index = index;
827                 rc = ECORE_SB_ATT_IDX;
828         }
829
830         OSAL_MMIOWB(p_hwfn->p_dev);
831
832         return rc;
833 }
834
835 /**
836  * @brief ecore_int_assertion - handles asserted attention bits
837  *
838  * @param p_hwfn
839  * @param asserted_bits newly asserted bits
840  * @return enum _ecore_status_t
841  */
842 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
843                                                 u16 asserted_bits)
844 {
845         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
846         u32 igu_mask;
847
848         /* Mask the source of the attention in the IGU */
849         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
850                             IGU_REG_ATTENTION_ENABLE);
851         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
852                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
853         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
854         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
855
856         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
857                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
858                    sb_attn_sw->known_attn,
859                    sb_attn_sw->known_attn | asserted_bits);
860         sb_attn_sw->known_attn |= asserted_bits;
861
862         /* Handle MCP events */
863         if (asserted_bits & 0x100) {
864                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
865                 /* Clean the MCP attention */
866                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
867                          sb_attn_sw->mfw_attn_addr, 0);
868         }
869
870         /* FIXME - this will change once we'll have GOOD gtt definitions */
871         DIRECT_REG_WR(p_hwfn,
872                       (u8 OSAL_IOMEM *) p_hwfn->regview +
873                       GTT_BAR0_MAP_REG_IGU_CMD +
874                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
875                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
876
877         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
878                    asserted_bits);
879
880         return ECORE_SUCCESS;
881 }
882
883 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
884                                  enum block_id id, enum dbg_attn_type type,
885                                  bool b_clear)
886 {
887         /* @DPDK */
888         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
889 }
890
891 /**
892  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
893  * cause of the attention
894  *
895  * @param p_hwfn
896  * @param p_aeu - descriptor of an AEU bit which caused the attention
897  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
898  *  this bit to this group.
899  * @param bit_index - index of this bit in the aeu_en_reg
900  *
901  * @return enum _ecore_status_t
902  */
903 static enum _ecore_status_t
904 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
905                               struct aeu_invert_reg_bit *p_aeu,
906                               u32 aeu_en_reg,
907                               const char *p_bit_name,
908                               u32 bitmask)
909 {
910         enum _ecore_status_t rc = ECORE_INVAL;
911         bool b_fatal = false;
912
913         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
914                 p_bit_name, bitmask);
915
916         /* Call callback before clearing the interrupt status */
917         if (p_aeu->cb) {
918                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
919                         p_bit_name);
920                 rc = p_aeu->cb(p_hwfn);
921         }
922
923         if (rc != ECORE_SUCCESS)
924                 b_fatal = true;
925
926         /* Print HW block interrupt registers */
927         if (p_aeu->block_index != MAX_BLOCK_ID) {
928                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
929                                      ATTN_TYPE_INTERRUPT, !b_fatal);
930 }
931
932         /* @DPDK */
933         /* Reach assertion if attention is fatal */
934         if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
935                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
936                           p_bit_name);
937
938                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
939         }
940
941         /* Prevent this Attention from being asserted in the future */
942         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
943             p_hwfn->p_dev->attn_clr_en) {
944                 u32 val;
945                 u32 mask = ~bitmask;
946                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
947                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
948                 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
949                         p_bit_name);
950         }
951
952         return rc;
953 }
954
955 /**
956  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
957  *
958  * @param p_hwfn
959  * @param p_aeu - descriptor of an AEU bit which caused the parity
960  * @param aeu_en_reg - address of the AEU enable register
961  * @param bit_index
962  */
963 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
964                                          struct aeu_invert_reg_bit *p_aeu,
965                                          u32 aeu_en_reg, u8 bit_index)
966 {
967         u32 block_id = p_aeu->block_index, mask, val;
968
969         DP_NOTICE(p_hwfn->p_dev, false,
970                   "%s parity attention is set [address 0x%08x, bit %d]\n",
971                   p_aeu->bit_name, aeu_en_reg, bit_index);
972
973         if (block_id != MAX_BLOCK_ID) {
974                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
975
976                 /* In A0, there's a single parity bit for several blocks */
977                 if (block_id == BLOCK_BTB) {
978                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
979                                              ATTN_TYPE_PARITY, false);
980                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
981                                              ATTN_TYPE_PARITY, false);
982                 }
983         }
984
985         /* Prevent this parity error from being re-asserted */
986         mask = ~(0x1 << bit_index);
987         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
988         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
989         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
990                 p_aeu->bit_name);
991 }
992
993 /**
994  * @brief - handles deassertion of previously asserted attentions.
995  *
996  * @param p_hwfn
997  * @param deasserted_bits - newly deasserted bits
998  * @return enum _ecore_status_t
999  *
1000  */
1001 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1002                                                   u16 deasserted_bits)
1003 {
1004         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1005         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1006         u8 i, j, k, bit_idx;
1007         enum _ecore_status_t rc = ECORE_SUCCESS;
1008
1009         /* Read the attention registers in the AEU */
1010         for (i = 0; i < NUM_ATTN_REGS; i++) {
1011                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1012                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
1013                                           i * 0x4);
1014                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1015                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1016         }
1017
1018         /* Handle parity attentions first */
1019         for (i = 0; i < NUM_ATTN_REGS; i++) {
1020                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1021                 u32 parities;
1022
1023                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1024                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1025                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1026
1027                 /* Skip register in which no parity bit is currently set */
1028                 if (!parities)
1029                         continue;
1030
1031                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1032                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1033
1034                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1035                             !!(parities & (1 << bit_idx)))
1036                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1037                                                              aeu_en, bit_idx);
1038
1039                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1040                 }
1041         }
1042
1043         /* Find non-parity cause for attention and act */
1044         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1045                 struct aeu_invert_reg_bit *p_aeu;
1046
1047                 /* Handle only groups whose attention is currently deasserted */
1048                 if (!(deasserted_bits & (1 << k)))
1049                         continue;
1050
1051                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1052                         u32 bits;
1053
1054                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1055                                  i * sizeof(u32) +
1056                                  k * sizeof(u32) * NUM_ATTN_REGS;
1057                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1058                         bits = aeu_inv_arr[i] & en;
1059
1060                         /* Skip if no bit from this group is currently set */
1061                         if (!bits)
1062                                 continue;
1063
1064                         /* Find all set bits from current register which belong
1065                          * to current group, making them responsible for the
1066                          * previous assertion.
1067                          */
1068                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1069                                 unsigned long int bitmask;
1070                                 u8 bit, bit_len;
1071
1072                                 /* Need to account bits with changed meaning */
1073                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1074
1075                                 bit = bit_idx;
1076                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1077                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1078                                         /* Skip Parity */
1079                                         bit++;
1080                                         bit_len--;
1081                                 }
1082
1083                                 /* Find the bits relating to HW-block, then
1084                                  * shift so they'll become LSB.
1085                                  */
1086                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1087                                 bitmask >>= bit;
1088
1089                                 if (bitmask) {
1090                                         u32 flags = p_aeu->flags;
1091                                         char bit_name[30];
1092                                         u8 num;
1093
1094                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1095                                                                 bit_len);
1096
1097                                         /* Some bits represent more than a
1098                                          * a single interrupt. Correctly print
1099                                          * their name.
1100                                          */
1101                                         if (ATTENTION_LENGTH(flags) > 2 ||
1102                                             ((flags & ATTENTION_PAR_INT) &&
1103                                             ATTENTION_LENGTH(flags) > 1))
1104                                                 OSAL_SNPRINTF(bit_name, 30,
1105                                                               p_aeu->bit_name,
1106                                                               num);
1107                                         else
1108                                                 OSAL_STRNCPY(bit_name,
1109                                                              p_aeu->bit_name,
1110                                                              30);
1111
1112                                         /* We now need to pass bitmask in its
1113                                          * correct position.
1114                                          */
1115                                         bitmask <<= bit;
1116
1117                                         /* Handle source of the attention */
1118                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1119                                                                       p_aeu,
1120                                                                       aeu_en,
1121                                                                       bit_name,
1122                                                                       bitmask);
1123                                 }
1124
1125                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1126                         }
1127                 }
1128         }
1129
1130         /* Clear IGU indication for the deasserted bits */
1131         /* FIXME - this will change once we'll have GOOD gtt definitions */
1132         DIRECT_REG_WR(p_hwfn,
1133                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1134                       GTT_BAR0_MAP_REG_IGU_CMD +
1135                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1136                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1137
1138         /* Unmask deasserted attentions in IGU */
1139         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1140                             IGU_REG_ATTENTION_ENABLE);
1141         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1142         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1143
1144         /* Clear deassertion from inner state */
1145         sb_attn_sw->known_attn &= ~deasserted_bits;
1146
1147         return rc;
1148 }
1149
1150 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1151 {
1152         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1153         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1154         u16 index = 0, asserted_bits, deasserted_bits;
1155         u32 attn_bits = 0, attn_acks = 0;
1156         enum _ecore_status_t rc = ECORE_SUCCESS;
1157
1158         /* Read current attention bits/acks - safeguard against attentions
1159          * by guaranting work on a synchronized timeframe
1160          */
1161         do {
1162                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1163                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1164                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1165         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1166         p_sb_attn->sb_index = index;
1167
1168         /* Attention / Deassertion are meaningful (and in correct state)
1169          * only when they differ and consistent with known state - deassertion
1170          * when previous attention & current ack, and assertion when current
1171          * attention with no previous attention
1172          */
1173         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1174             ~p_sb_attn_sw->known_attn;
1175         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1176             p_sb_attn_sw->known_attn;
1177
1178         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1179                 DP_INFO(p_hwfn,
1180                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1181                         index, attn_bits, attn_acks, asserted_bits,
1182                         deasserted_bits, p_sb_attn_sw->known_attn);
1183         else if (asserted_bits == 0x100)
1184                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1185         else
1186                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1187                            "MFW indication [deassertion]\n");
1188
1189         if (asserted_bits) {
1190                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1191                 if (rc)
1192                         return rc;
1193         }
1194
1195         if (deasserted_bits)
1196                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1197
1198         return rc;
1199 }
1200
1201 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1202                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1203 {
1204         struct igu_prod_cons_update igu_ack = { 0 };
1205
1206         igu_ack.sb_id_and_flags =
1207             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1208              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1209              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1210              (IGU_SEG_ACCESS_ATTN <<
1211               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1212
1213         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1214
1215         /* Both segments (interrupts & acks) are written to same place address;
1216          * Need to guarantee all commands will be received (in-order) by HW.
1217          */
1218         OSAL_MMIOWB(p_hwfn->p_dev);
1219         OSAL_BARRIER(p_hwfn->p_dev);
1220 }
1221
1222 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1223 {
1224         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1225         struct ecore_pi_info *pi_info = OSAL_NULL;
1226         struct ecore_sb_attn_info *sb_attn;
1227         struct ecore_sb_info *sb_info;
1228         int arr_size;
1229         u16 rc = 0;
1230
1231         if (!p_hwfn)
1232                 return;
1233
1234         if (!p_hwfn->p_sp_sb) {
1235                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1236                 return;
1237         }
1238
1239         sb_info = &p_hwfn->p_sp_sb->sb_info;
1240         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1241         if (!sb_info) {
1242                 DP_ERR(p_hwfn->p_dev,
1243                        "Status block is NULL - cannot ack interrupts\n");
1244                 return;
1245         }
1246
1247         if (!p_hwfn->p_sb_attn) {
1248                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1249                 return;
1250         }
1251         sb_attn = p_hwfn->p_sb_attn;
1252
1253         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1254                    p_hwfn, p_hwfn->my_id);
1255
1256         /* Disable ack for def status block. Required both for msix +
1257          * inta in non-mask mode, in inta does no harm.
1258          */
1259         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1260
1261         /* Gather Interrupts/Attentions information */
1262         if (!sb_info->sb_virt) {
1263                 DP_ERR(p_hwfn->p_dev,
1264                        "Interrupt Status block is NULL -"
1265                        " cannot check for new interrupts!\n");
1266         } else {
1267                 u32 tmp_index = sb_info->sb_ack;
1268                 rc = ecore_sb_update_sb_idx(sb_info);
1269                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1270                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1271                            tmp_index, sb_info->sb_ack);
1272         }
1273
1274         if (!sb_attn || !sb_attn->sb_attn) {
1275                 DP_ERR(p_hwfn->p_dev,
1276                        "Attentions Status block is NULL -"
1277                        " cannot check for new attentions!\n");
1278         } else {
1279                 u16 tmp_index = sb_attn->index;
1280
1281                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1282                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1283                            "Attention indices: 0x%08x --> 0x%08x\n",
1284                            tmp_index, sb_attn->index);
1285         }
1286
1287         /* Check if we expect interrupts at this time. if not just ack them */
1288         if (!(rc & ECORE_SB_EVENT_MASK)) {
1289                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290                 return;
1291         }
1292
1293 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1294
1295         if (!p_hwfn->p_dpc_ptt) {
1296                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1297                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1298                 return;
1299         }
1300
1301         if (rc & ECORE_SB_ATT_IDX)
1302                 ecore_int_attentions(p_hwfn);
1303
1304         if (rc & ECORE_SB_IDX) {
1305                 int pi;
1306
1307                 /* Since we only looked at the SB index, it's possible more
1308                  * than a single protocol-index on the SB incremented.
1309                  * Iterate over all configured protocol indices and check
1310                  * whether something happened for each.
1311                  */
1312                 for (pi = 0; pi < arr_size; pi++) {
1313                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1314                         if (pi_info->comp_cb != OSAL_NULL)
1315                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1316                 }
1317         }
1318
1319         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1320                 /* This should be done before the interrupts are enabled,
1321                  * since otherwise a new attention will be generated.
1322                  */
1323                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1324         }
1325
1326         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1327 }
1328
1329 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1330 {
1331         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1332
1333         if (!p_sb)
1334                 return;
1335
1336         if (p_sb->sb_attn) {
1337                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1338                                        p_sb->sb_phys,
1339                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1340         }
1341         OSAL_FREE(p_hwfn->p_dev, p_sb);
1342 }
1343
1344 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1345                                     struct ecore_ptt *p_ptt)
1346 {
1347         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1348
1349         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1350
1351         sb_info->index = 0;
1352         sb_info->known_attn = 0;
1353
1354         /* Configure Attention Status Block in IGU */
1355         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1356                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1357         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1358                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1359 }
1360
1361 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1362                                    struct ecore_ptt *p_ptt,
1363                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1364 {
1365         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1366         int i, j, k;
1367
1368         sb_info->sb_attn = sb_virt_addr;
1369         sb_info->sb_phys = sb_phy_addr;
1370
1371         /* Set the pointer to the AEU descriptors */
1372         sb_info->p_aeu_desc = aeu_descs;
1373
1374         /* Calculate Parity Masks */
1375         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1376         for (i = 0; i < NUM_ATTN_REGS; i++) {
1377                 /* j is array index, k is bit index */
1378                 for (j = 0, k = 0; k < 32; j++) {
1379                         struct aeu_invert_reg_bit *p_aeu;
1380
1381                         p_aeu = &aeu_descs[i].bits[j];
1382                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1383                                 sb_info->parity_mask[i] |= 1 << k;
1384
1385                         k += ATTENTION_LENGTH(p_aeu->flags);
1386                 }
1387                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1388                            "Attn Mask [Reg %d]: 0x%08x\n",
1389                            i, sb_info->parity_mask[i]);
1390         }
1391
1392         /* Set the address of cleanup for the mcp attention */
1393         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1394             MISC_REG_AEU_GENERAL_ATTN_0;
1395
1396         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1397 }
1398
1399 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1400                                                     struct ecore_ptt *p_ptt)
1401 {
1402         struct ecore_dev *p_dev = p_hwfn->p_dev;
1403         struct ecore_sb_attn_info *p_sb;
1404         dma_addr_t p_phys = 0;
1405         void *p_virt;
1406
1407         /* SB struct */
1408         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1409         if (!p_sb) {
1410                 DP_NOTICE(p_dev, true,
1411                           "Failed to allocate `struct ecore_sb_attn_info'\n");
1412                 return ECORE_NOMEM;
1413         }
1414
1415         /* SB ring  */
1416         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1417                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1418         if (!p_virt) {
1419                 DP_NOTICE(p_dev, true,
1420                           "Failed to allocate status block (attentions)\n");
1421                 OSAL_FREE(p_dev, p_sb);
1422                 return ECORE_NOMEM;
1423         }
1424
1425         /* Attention setup */
1426         p_hwfn->p_sb_attn = p_sb;
1427         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1428
1429         return ECORE_SUCCESS;
1430 }
1431
1432 /* coalescing timeout = timeset << (timer_res + 1) */
1433 #define ECORE_CAU_DEF_RX_USECS 24
1434 #define ECORE_CAU_DEF_TX_USECS 48
1435
1436 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1437                              struct cau_sb_entry *p_sb_entry,
1438                              u8 pf_id, u16 vf_number, u8 vf_valid)
1439 {
1440         struct ecore_dev *p_dev = p_hwfn->p_dev;
1441         u32 cau_state;
1442         u8 timer_res;
1443
1444         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1445
1446         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1447         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1448         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1449         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1450         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1451
1452         cau_state = CAU_HC_DISABLE_STATE;
1453
1454         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1455                 cau_state = CAU_HC_ENABLE_STATE;
1456                 if (!p_dev->rx_coalesce_usecs)
1457                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1458                 if (!p_dev->tx_coalesce_usecs)
1459                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1460         }
1461
1462         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1463         if (p_dev->rx_coalesce_usecs <= 0x7F)
1464                 timer_res = 0;
1465         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1466                 timer_res = 1;
1467         else
1468                 timer_res = 2;
1469         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1470
1471         if (p_dev->tx_coalesce_usecs <= 0x7F)
1472                 timer_res = 0;
1473         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1474                 timer_res = 1;
1475         else
1476                 timer_res = 2;
1477         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1478
1479         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1480         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1481 }
1482
1483 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1484                                    struct ecore_ptt *p_ptt,
1485                                    u16 igu_sb_id, u32 pi_index,
1486                                    enum ecore_coalescing_fsm coalescing_fsm,
1487                                    u8 timeset)
1488 {
1489         struct cau_pi_entry pi_entry;
1490         u32 sb_offset, pi_offset;
1491
1492         if (IS_VF(p_hwfn->p_dev))
1493                 return;/* @@@TBD MichalK- VF CAU... */
1494
1495         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1496         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1497
1498         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1499         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1500                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1501         else
1502                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1503
1504         pi_offset = sb_offset + pi_index;
1505         if (p_hwfn->hw_init_done) {
1506                 ecore_wr(p_hwfn, p_ptt,
1507                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1508                          *((u32 *)&(pi_entry)));
1509         } else {
1510                 STORE_RT_REG(p_hwfn,
1511                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1512                              *((u32 *)&(pi_entry)));
1513         }
1514 }
1515
1516 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1517                            struct ecore_ptt *p_ptt,
1518                            struct ecore_sb_info *p_sb, u32 pi_index,
1519                            enum ecore_coalescing_fsm coalescing_fsm,
1520                            u8 timeset)
1521 {
1522         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1523                                pi_index, coalescing_fsm, timeset);
1524 }
1525
1526 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1527                            struct ecore_ptt *p_ptt,
1528                            dma_addr_t sb_phys, u16 igu_sb_id,
1529                            u16 vf_number, u8 vf_valid)
1530 {
1531         struct cau_sb_entry sb_entry;
1532
1533         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1534                                 vf_number, vf_valid);
1535
1536         if (p_hwfn->hw_init_done) {
1537                 /* Wide-bus, initialize via DMAE */
1538                 u64 phys_addr = (u64)sb_phys;
1539
1540                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1541                                     (u64)(osal_uintptr_t)&phys_addr,
1542                                     CAU_REG_SB_ADDR_MEMORY +
1543                                     igu_sb_id * sizeof(u64), 2, 0);
1544                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1545                                     (u64)(osal_uintptr_t)&sb_entry,
1546                                     CAU_REG_SB_VAR_MEMORY +
1547                                     igu_sb_id * sizeof(u64), 2, 0);
1548         } else {
1549                 /* Initialize Status Block Address */
1550                 STORE_RT_REG_AGG(p_hwfn,
1551                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1552                                  igu_sb_id * 2, sb_phys);
1553
1554                 STORE_RT_REG_AGG(p_hwfn,
1555                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1556                                  igu_sb_id * 2, sb_entry);
1557         }
1558
1559         /* Configure pi coalescing if set */
1560         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1561                 /* eth will open queues for all tcs, so configure all of them
1562                  * properly, rather than just the active ones
1563                  */
1564                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1565
1566                 u8 timeset, timer_res;
1567                 u8 i;
1568
1569                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1570                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1571                         timer_res = 0;
1572                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1573                         timer_res = 1;
1574                 else
1575                         timer_res = 2;
1576                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1577                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1578                                        ECORE_COAL_RX_STATE_MACHINE,
1579                                        timeset);
1580
1581                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1582                         timer_res = 0;
1583                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1584                         timer_res = 1;
1585                 else
1586                         timer_res = 2;
1587                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1588                 for (i = 0; i < num_tc; i++) {
1589                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1590                                                igu_sb_id, TX_PI(i),
1591                                                ECORE_COAL_TX_STATE_MACHINE,
1592                                                timeset);
1593                 }
1594         }
1595 }
1596
1597 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1598                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1599 {
1600         /* zero status block and ack counter */
1601         sb_info->sb_ack = 0;
1602         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1603
1604         if (IS_PF(p_hwfn->p_dev))
1605                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1606                                       sb_info->igu_sb_id, 0, 0);
1607 }
1608
1609 struct ecore_igu_block *
1610 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1611 {
1612         struct ecore_igu_block *p_block;
1613         u16 igu_id;
1614
1615         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1616              igu_id++) {
1617                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1618
1619                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1620                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1621                         continue;
1622
1623                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1624                     b_is_pf)
1625                         return p_block;
1626         }
1627
1628         return OSAL_NULL;
1629 }
1630
1631 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1632                                   u16 vector_id)
1633 {
1634         struct ecore_igu_block *p_block;
1635         u16 igu_id;
1636
1637         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1638              igu_id++) {
1639                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1640
1641                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1642                     !p_block->is_pf ||
1643                     p_block->vector_number != vector_id)
1644                         continue;
1645
1646                 return igu_id;
1647         }
1648
1649         return ECORE_SB_INVALID_IDX;
1650 }
1651
1652 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1653 {
1654         u16 igu_sb_id;
1655
1656         /* Assuming continuous set of IGU SBs dedicated for given PF */
1657         if (sb_id == ECORE_SP_SB_ID)
1658                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1659         else if (IS_PF(p_hwfn->p_dev))
1660                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1661         else
1662                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1663
1664         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1665                 DP_NOTICE(p_hwfn, true,
1666                           "Slowpath SB vector %04x doesn't exist\n",
1667                           sb_id);
1668         else if (sb_id == ECORE_SP_SB_ID)
1669                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1670                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1671         else
1672                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1673                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1674
1675         return igu_sb_id;
1676 }
1677
1678 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1679                                        struct ecore_ptt *p_ptt,
1680                                        struct ecore_sb_info *sb_info,
1681                                        void *sb_virt_addr,
1682                                        dma_addr_t sb_phy_addr, u16 sb_id)
1683 {
1684         sb_info->sb_virt = sb_virt_addr;
1685         sb_info->sb_phys = sb_phy_addr;
1686
1687         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1688
1689         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1690                 return ECORE_INVAL;
1691
1692         /* Let the igu info reference the client's SB info */
1693         if (sb_id != ECORE_SP_SB_ID) {
1694                 if (IS_PF(p_hwfn->p_dev)) {
1695                         struct ecore_igu_info *p_info;
1696                         struct ecore_igu_block *p_block;
1697
1698                         p_info = p_hwfn->hw_info.p_igu_info;
1699                         p_block = &p_info->entry[sb_info->igu_sb_id];
1700
1701                         p_block->sb_info = sb_info;
1702                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1703                         p_info->usage.free_cnt--;
1704                 } else {
1705                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1706                 }
1707         }
1708 #ifdef ECORE_CONFIG_DIRECT_HWFN
1709         sb_info->p_hwfn = p_hwfn;
1710 #endif
1711         sb_info->p_dev = p_hwfn->p_dev;
1712
1713         /* The igu address will hold the absolute address that needs to be
1714          * written to for a specific status block
1715          */
1716         if (IS_PF(p_hwfn->p_dev)) {
1717                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1718                     GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1719
1720         } else {
1721                 sb_info->igu_addr =
1722                     (u8 OSAL_IOMEM *)p_hwfn->regview +
1723                     PXP_VF_BAR0_START_IGU +
1724                     ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1725         }
1726
1727         sb_info->flags |= ECORE_SB_INFO_INIT;
1728
1729         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1730
1731         return ECORE_SUCCESS;
1732 }
1733
1734 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1735                                           struct ecore_sb_info *sb_info,
1736                                           u16 sb_id)
1737 {
1738         struct ecore_igu_info *p_info;
1739         struct ecore_igu_block *p_block;
1740
1741         if (sb_info == OSAL_NULL)
1742                 return ECORE_SUCCESS;
1743
1744         /* zero status block and ack counter */
1745         sb_info->sb_ack = 0;
1746         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1747
1748         if (IS_VF(p_hwfn->p_dev)) {
1749                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1750                 return ECORE_SUCCESS;
1751         }
1752
1753         p_info = p_hwfn->hw_info.p_igu_info;
1754         p_block = &p_info->entry[sb_info->igu_sb_id];
1755
1756         /* Vector 0 is reserved to Default SB */
1757         if (p_block->vector_number == 0) {
1758                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1759                 return ECORE_INVAL;
1760         }
1761
1762         /* Lose reference to client's SB info, and fix counters */
1763         p_block->sb_info = OSAL_NULL;
1764         p_block->status |= ECORE_IGU_STATUS_FREE;
1765         p_info->usage.free_cnt++;
1766
1767         return ECORE_SUCCESS;
1768 }
1769
1770 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1771 {
1772         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1773
1774         if (!p_sb)
1775                 return;
1776
1777         if (p_sb->sb_info.sb_virt) {
1778                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1779                                        p_sb->sb_info.sb_virt,
1780                                        p_sb->sb_info.sb_phys,
1781                                        SB_ALIGNED_SIZE(p_hwfn));
1782         }
1783
1784         OSAL_FREE(p_hwfn->p_dev, p_sb);
1785 }
1786
1787 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1788                                                   struct ecore_ptt *p_ptt)
1789 {
1790         struct ecore_sb_sp_info *p_sb;
1791         dma_addr_t p_phys = 0;
1792         void *p_virt;
1793
1794         /* SB struct */
1795         p_sb =
1796             OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1797                        sizeof(*p_sb));
1798         if (!p_sb) {
1799                 DP_NOTICE(p_hwfn, true,
1800                           "Failed to allocate `struct ecore_sb_info'\n");
1801                 return ECORE_NOMEM;
1802         }
1803
1804         /* SB ring  */
1805         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1806                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1807         if (!p_virt) {
1808                 DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1809                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1810                 return ECORE_NOMEM;
1811         }
1812
1813         /* Status Block setup */
1814         p_hwfn->p_sp_sb = p_sb;
1815         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1816                           p_virt, p_phys, ECORE_SP_SB_ID);
1817
1818         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1819
1820         return ECORE_SUCCESS;
1821 }
1822
1823 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1824                                            ecore_int_comp_cb_t comp_cb,
1825                                            void *cookie,
1826                                            u8 *sb_idx, __le16 **p_fw_cons)
1827 {
1828         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1829         enum _ecore_status_t rc = ECORE_NOMEM;
1830         u8 pi;
1831
1832         /* Look for a free index */
1833         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1834                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1835                         continue;
1836
1837                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1838                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1839                 *sb_idx = pi;
1840                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1841                 rc = ECORE_SUCCESS;
1842                 break;
1843         }
1844
1845         return rc;
1846 }
1847
1848 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1849 {
1850         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1851
1852         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1853                 return ECORE_NOMEM;
1854
1855         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1856         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1857         return ECORE_SUCCESS;
1858 }
1859
1860 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1861 {
1862         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1863 }
1864
1865 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1866                               struct ecore_ptt *p_ptt,
1867                               enum ecore_int_mode int_mode)
1868 {
1869         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1870
1871 #ifndef ASIC_ONLY
1872         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1873                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1874                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1875         }
1876 #endif
1877
1878         p_hwfn->p_dev->int_mode = int_mode;
1879         switch (p_hwfn->p_dev->int_mode) {
1880         case ECORE_INT_MODE_INTA:
1881                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1882                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1883                 break;
1884
1885         case ECORE_INT_MODE_MSI:
1886                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1887                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1888                 break;
1889
1890         case ECORE_INT_MODE_MSIX:
1891                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1892                 break;
1893         case ECORE_INT_MODE_POLL:
1894                 break;
1895         }
1896
1897         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1898 }
1899
1900 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1901                                       struct ecore_ptt *p_ptt)
1902 {
1903 #ifndef ASIC_ONLY
1904         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1905                 DP_INFO(p_hwfn,
1906                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1907                 return;
1908         }
1909 #endif
1910
1911         /* Configure AEU signal change to produce attentions */
1912         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1913         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1914         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1915         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1916
1917         /* Flush the writes to IGU */
1918         OSAL_MMIOWB(p_hwfn->p_dev);
1919
1920         /* Unmask AEU signals toward IGU */
1921         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1922 }
1923
1924 enum _ecore_status_t
1925 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1926                           enum ecore_int_mode int_mode)
1927 {
1928         enum _ecore_status_t rc = ECORE_SUCCESS;
1929
1930         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1931
1932         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1933                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1934                 if (rc != ECORE_SUCCESS) {
1935                         DP_NOTICE(p_hwfn, true,
1936                                   "Slowpath IRQ request failed\n");
1937                         return ECORE_NORESOURCES;
1938                 }
1939                 p_hwfn->b_int_requested = true;
1940         }
1941
1942         /* Enable interrupt Generation */
1943         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1944
1945         p_hwfn->b_int_enabled = 1;
1946
1947         return rc;
1948 }
1949
1950 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1951                                struct ecore_ptt *p_ptt)
1952 {
1953         p_hwfn->b_int_enabled = 0;
1954
1955         if (IS_VF(p_hwfn->p_dev))
1956                 return;
1957
1958         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1959 }
1960
1961 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1962 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1963                                      struct ecore_ptt *p_ptt,
1964                                      u32 igu_sb_id,
1965                                      bool cleanup_set,
1966                                      u16 opaque_fid)
1967 {
1968         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1969         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1970         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1971         u8 type = 0;            /* FIXME MichalS type??? */
1972
1973         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1974                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1975
1976         /* USE Control Command Register to perform cleanup. There is an
1977          * option to do this using IGU bar, but then it can't be used for VFs.
1978          */
1979
1980         /* Set the data field */
1981         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1982         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1983         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1984
1985         /* Set the control register */
1986         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1987         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1988         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1989
1990         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1991
1992         OSAL_BARRIER(p_hwfn->p_dev);
1993
1994         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1995
1996         /* Flush the write to IGU */
1997         OSAL_MMIOWB(p_hwfn->p_dev);
1998
1999         /* calculate where to read the status bit from */
2000         sb_bit = 1 << (igu_sb_id % 32);
2001         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2002
2003         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2004
2005         /* Now wait for the command to complete */
2006         while (--sleep_cnt) {
2007                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2008                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2009                         break;
2010                 OSAL_MSLEEP(5);
2011         }
2012
2013         if (!sleep_cnt)
2014                 DP_NOTICE(p_hwfn, true,
2015                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2016                           val, igu_sb_id);
2017 }
2018
2019 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2020                                        struct ecore_ptt *p_ptt,
2021                                        u16 igu_sb_id, u16 opaque, bool b_set)
2022 {
2023         struct ecore_igu_block *p_block;
2024         int pi, i;
2025
2026         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2027         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2028                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2029                    igu_sb_id, p_block->function_id, p_block->is_pf,
2030                    p_block->vector_number);
2031
2032         /* Set */
2033         if (b_set)
2034                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2035
2036         /* Clear */
2037         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2038
2039         /* Wait for the IGU SB to cleanup */
2040         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2041                 u32 val;
2042
2043                 val = ecore_rd(p_hwfn, p_ptt,
2044                                IGU_REG_WRITE_DONE_PENDING +
2045                                ((igu_sb_id / 32) * 4));
2046                 if (val & (1 << (igu_sb_id % 32)))
2047                         OSAL_UDELAY(10);
2048                 else
2049                         break;
2050         }
2051         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2052                 DP_NOTICE(p_hwfn, true,
2053                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2054                           igu_sb_id);
2055
2056         /* Clear the CAU for the SB */
2057         for (pi = 0; pi < 12; pi++)
2058                 ecore_wr(p_hwfn, p_ptt,
2059                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2060 }
2061
2062 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2063                                 struct ecore_ptt *p_ptt,
2064                                 bool b_set, bool b_slowpath)
2065 {
2066         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2067         struct ecore_igu_block *p_block;
2068         u16 igu_sb_id = 0;
2069         u32 val = 0;
2070
2071         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2072         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2073         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2074         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2075         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2076         /* end temporary */
2077
2078         for (igu_sb_id = 0;
2079              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2080              igu_sb_id++) {
2081                 p_block = &p_info->entry[igu_sb_id];
2082
2083                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2084                     !p_block->is_pf ||
2085                     (p_block->status & ECORE_IGU_STATUS_DSB))
2086                         continue;
2087
2088                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2089                                                   p_hwfn->hw_info.opaque_fid,
2090                                                   b_set);
2091         }
2092
2093         if (b_slowpath)
2094                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2095                                                   p_info->igu_dsb_id,
2096                                                   p_hwfn->hw_info.opaque_fid,
2097                                                   b_set);
2098 }
2099
2100 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2101                             struct ecore_ptt *p_ptt)
2102 {
2103         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2104         struct ecore_igu_block *p_block;
2105         int pf_sbs, vf_sbs;
2106         u16 igu_sb_id;
2107         u32 val, rval;
2108
2109         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2110                 /* We're using an old MFW - have to prevent any switching
2111                  * of SBs between PF and VFs as later driver wouldn't be
2112                  * able to tell which belongs to which.
2113                  */
2114                 p_info->b_allow_pf_vf_change = false;
2115         } else {
2116                 /* Use the numbers the MFW have provided -
2117                  * don't forget MFW accounts for the default SB as well.
2118                  */
2119                 p_info->b_allow_pf_vf_change = true;
2120
2121                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2122                         DP_INFO(p_hwfn,
2123                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2124                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2125                                 p_info->usage.cnt);
2126                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2127                 }
2128
2129                 /* TODO - how do we learn about VF SBs from MFW? */
2130                 if (IS_PF_SRIOV(p_hwfn)) {
2131                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2132
2133                         if (vfs != p_info->usage.iov_cnt)
2134                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2135                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2136                                            p_info->usage.iov_cnt, vfs);
2137
2138                         /* At this point we know how many SBs we have totally
2139                          * in IGU + number of PF SBs. So we can validate that
2140                          * we'd have sufficient for VF.
2141                          */
2142                         if (vfs > p_info->usage.free_cnt +
2143                                   p_info->usage.free_cnt_iov -
2144                                   p_info->usage.cnt) {
2145                                 DP_NOTICE(p_hwfn, true,
2146                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2147                                           p_info->usage.free_cnt +
2148                                           p_info->usage.free_cnt_iov,
2149                                           p_info->usage.cnt, vfs);
2150                                 return ECORE_INVAL;
2151                         }
2152                 }
2153         }
2154
2155         /* Cap the number of VFs SBs by the number of VFs */
2156         if (IS_PF_SRIOV(p_hwfn))
2157                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2158
2159         /* Mark all SBs as free, now in the right PF/VFs division */
2160         p_info->usage.free_cnt = p_info->usage.cnt;
2161         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2162         p_info->usage.orig = p_info->usage.cnt;
2163         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2164
2165         /* We now proceed to re-configure the IGU cam to reflect the initial
2166          * configuration. We can start with the Default SB.
2167          */
2168         pf_sbs = p_info->usage.cnt;
2169         vf_sbs = p_info->usage.iov_cnt;
2170
2171         for (igu_sb_id = p_info->igu_dsb_id;
2172              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2173              igu_sb_id++) {
2174                 p_block = &p_info->entry[igu_sb_id];
2175                 val = 0;
2176
2177                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2178                         continue;
2179
2180                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2181                         p_block->function_id = p_hwfn->rel_pf_id;
2182                         p_block->is_pf = 1;
2183                         p_block->vector_number = 0;
2184                         p_block->status = ECORE_IGU_STATUS_VALID |
2185                                           ECORE_IGU_STATUS_PF |
2186                                           ECORE_IGU_STATUS_DSB;
2187                 } else if (pf_sbs) {
2188                         pf_sbs--;
2189                         p_block->function_id = p_hwfn->rel_pf_id;
2190                         p_block->is_pf = 1;
2191                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2192                         p_block->status = ECORE_IGU_STATUS_VALID |
2193                                           ECORE_IGU_STATUS_PF |
2194                                           ECORE_IGU_STATUS_FREE;
2195                 } else if (vf_sbs) {
2196                         p_block->function_id =
2197                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2198                                 p_info->usage.iov_cnt - vf_sbs;
2199                         p_block->is_pf = 0;
2200                         p_block->vector_number = 0;
2201                         p_block->status = ECORE_IGU_STATUS_VALID |
2202                                           ECORE_IGU_STATUS_FREE;
2203                         vf_sbs--;
2204                 } else {
2205                         p_block->function_id = 0;
2206                         p_block->is_pf = 0;
2207                         p_block->vector_number = 0;
2208                 }
2209
2210                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2211                           p_block->function_id);
2212                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2213                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2214                           p_block->vector_number);
2215
2216                 /* VF entries would be enabled when VF is initializaed */
2217                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2218
2219                 rval = ecore_rd(p_hwfn, p_ptt,
2220                                 IGU_REG_MAPPING_MEMORY +
2221                                 sizeof(u32) * igu_sb_id);
2222
2223                 if (rval != val) {
2224                         ecore_wr(p_hwfn, p_ptt,
2225                                  IGU_REG_MAPPING_MEMORY +
2226                                  sizeof(u32) * igu_sb_id,
2227                                  val);
2228
2229                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2230                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2231                                    igu_sb_id, p_block->function_id,
2232                                    p_block->is_pf, p_block->vector_number,
2233                                    rval, val);
2234                 }
2235         }
2236
2237         return 0;
2238 }
2239
2240 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2241                                     struct ecore_ptt *p_ptt)
2242 {
2243         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2244
2245         /* Return all the usage indications to default prior to the reset;
2246          * The reset expects the !orig to reflect the initial status of the
2247          * SBs, and would re-calculate the originals based on those.
2248          */
2249         p_cnt->cnt = p_cnt->orig;
2250         p_cnt->free_cnt = p_cnt->orig;
2251         p_cnt->iov_cnt = p_cnt->iov_orig;
2252         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2253         p_cnt->orig = 0;
2254         p_cnt->iov_orig = 0;
2255
2256         /* TODO - we probably need to re-configure the CAU as well... */
2257         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2258 }
2259
2260 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2261                                          struct ecore_ptt *p_ptt,
2262                                          u16 igu_sb_id)
2263 {
2264         u32 val = ecore_rd(p_hwfn, p_ptt,
2265                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2266         struct ecore_igu_block *p_block;
2267
2268         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2269
2270         /* Fill the block information */
2271         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2272         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2273         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2274
2275         p_block->igu_sb_id = igu_sb_id;
2276 }
2277
2278 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2279                                             struct ecore_ptt *p_ptt)
2280 {
2281         struct ecore_igu_info *p_igu_info;
2282         struct ecore_igu_block *p_block;
2283         u32 min_vf = 0, max_vf = 0;
2284         u16 igu_sb_id;
2285
2286         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2287                                                  GFP_KERNEL,
2288                                                  sizeof(*p_igu_info));
2289         if (!p_hwfn->hw_info.p_igu_info)
2290                 return ECORE_NOMEM;
2291         p_igu_info = p_hwfn->hw_info.p_igu_info;
2292
2293         /* Distinguish between existent and onn-existent default SB */
2294         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2295
2296         /* Find the range of VF ids whose SB belong to this PF */
2297         if (p_hwfn->p_dev->p_iov_info) {
2298                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2299
2300                 min_vf = p_iov->first_vf_in_pf;
2301                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2302         }
2303
2304         for (igu_sb_id = 0;
2305              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2306              igu_sb_id++) {
2307                 /* Read current entry; Notice it might not belong to this PF */
2308                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2309                 p_block = &p_igu_info->entry[igu_sb_id];
2310
2311                 if ((p_block->is_pf) &&
2312                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2313                         p_block->status = ECORE_IGU_STATUS_PF |
2314                                           ECORE_IGU_STATUS_VALID |
2315                                           ECORE_IGU_STATUS_FREE;
2316
2317                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2318                                 p_igu_info->usage.cnt++;
2319                 } else if (!(p_block->is_pf) &&
2320                            (p_block->function_id >= min_vf) &&
2321                            (p_block->function_id < max_vf)) {
2322                         /* Available for VFs of this PF */
2323                         p_block->status = ECORE_IGU_STATUS_VALID |
2324                                           ECORE_IGU_STATUS_FREE;
2325
2326                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2327                                 p_igu_info->usage.iov_cnt++;
2328                 }
2329
2330                 /* Mark the First entry belonging to the PF or its VFs
2331                  * as the default SB [we'll reset IGU prior to first usage].
2332                  */
2333                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2334                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2335                         p_igu_info->igu_dsb_id = igu_sb_id;
2336                         p_block->status |= ECORE_IGU_STATUS_DSB;
2337                 }
2338
2339                 /* While this isn't suitable for all clients, limit number
2340                  * of prints by having each PF print only its entries with the
2341                  * exception of PF0 which would print everything.
2342                  */
2343                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2344                     (p_hwfn->abs_pf_id == 0))
2345                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2346                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2347                                    igu_sb_id, p_block->function_id,
2348                                    p_block->is_pf, p_block->vector_number);
2349         }
2350
2351         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2352                 DP_NOTICE(p_hwfn, true,
2353                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2354                           p_igu_info->igu_dsb_id);
2355                 return ECORE_INVAL;
2356         }
2357
2358         /* All non default SB are considered free at this point */
2359         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2360         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2361
2362         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2363                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2364                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2365                    p_igu_info->usage.iov_cnt);
2366
2367         return ECORE_SUCCESS;
2368 }
2369
2370 enum _ecore_status_t
2371 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2372                           u16 sb_id, bool b_to_vf)
2373 {
2374         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2375         struct ecore_igu_block *p_block = OSAL_NULL;
2376         u16 igu_sb_id = 0, vf_num = 0;
2377         u32 val = 0;
2378
2379         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2380                 return ECORE_INVAL;
2381
2382         if (sb_id == ECORE_SP_SB_ID)
2383                 return ECORE_INVAL;
2384
2385         if (!p_info->b_allow_pf_vf_change) {
2386                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2387                 return ECORE_INVAL;
2388         }
2389
2390         /* If we're moving a SB from PF to VF, the client had to specify
2391          * which vector it wants to move.
2392          */
2393         if (b_to_vf) {
2394                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2395                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2396                         return ECORE_INVAL;
2397         }
2398
2399         /* If we're moving a SB from VF to PF, need to validate there isn't
2400          * already a line configured for that vector.
2401          */
2402         if (!b_to_vf) {
2403                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2404                     ECORE_SB_INVALID_IDX)
2405                         return ECORE_INVAL;
2406         }
2407
2408         /* We need to validate that the SB can actually be relocated.
2409          * This would also handle the previous case where we've explicitly
2410          * stated which IGU SB needs to move.
2411          */
2412         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2413              igu_sb_id++) {
2414                 p_block = &p_info->entry[igu_sb_id];
2415
2416                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2417                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2418                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2419                         if (b_to_vf)
2420                                 return ECORE_INVAL;
2421                         else
2422                                 continue;
2423                 }
2424
2425                 break;
2426         }
2427
2428         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2429                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2430                            "Failed to find a free SB to move\n");
2431                 return ECORE_INVAL;
2432         }
2433
2434         /* At this point, p_block points to the SB we want to relocate */
2435         if (b_to_vf) {
2436                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2437
2438                 /* It doesn't matter which VF number we choose, since we're
2439                  * going to disable the line; But let's keep it in range.
2440                  */
2441                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2442
2443                 p_block->function_id = (u8)vf_num;
2444                 p_block->is_pf = 0;
2445                 p_block->vector_number = 0;
2446
2447                 p_info->usage.cnt--;
2448                 p_info->usage.free_cnt--;
2449                 p_info->usage.iov_cnt++;
2450                 p_info->usage.free_cnt_iov++;
2451
2452                 /* TODO - if SBs aren't really the limiting factor,
2453                  * then it might not be accurate [in the since that
2454                  * we might not need decrement the feature].
2455                  */
2456                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2457                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2458         } else {
2459                 p_block->status |= ECORE_IGU_STATUS_PF;
2460                 p_block->function_id = p_hwfn->rel_pf_id;
2461                 p_block->is_pf = 1;
2462                 p_block->vector_number = sb_id + 1;
2463
2464                 p_info->usage.cnt++;
2465                 p_info->usage.free_cnt++;
2466                 p_info->usage.iov_cnt--;
2467                 p_info->usage.free_cnt_iov--;
2468
2469                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2470                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2471         }
2472
2473         /* Update the IGU and CAU with the new configuration */
2474         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2475                   p_block->function_id);
2476         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2477         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2478         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2479                   p_block->vector_number);
2480
2481         ecore_wr(p_hwfn, p_ptt,
2482                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2483                  val);
2484
2485         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2486                               igu_sb_id, vf_num,
2487                               p_block->is_pf ? 0 : 1);
2488
2489         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2490                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2491                    igu_sb_id, p_block->function_id,
2492                    p_block->is_pf, p_block->vector_number);
2493
2494         return ECORE_SUCCESS;
2495 }
2496
2497 /**
2498  * @brief Initialize igu runtime registers
2499  *
2500  * @param p_hwfn
2501  */
2502 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2503 {
2504         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2505
2506         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2507 }
2508
2509 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2510                           IGU_CMD_INT_ACK_BASE)
2511 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2512                           IGU_CMD_INT_ACK_BASE)
2513 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2514 {
2515         u32 intr_status_hi = 0, intr_status_lo = 0;
2516         u64 intr_status = 0;
2517
2518         intr_status_lo = REG_RD(p_hwfn,
2519                                 GTT_BAR0_MAP_REG_IGU_CMD +
2520                                 LSB_IGU_CMD_ADDR * 8);
2521         intr_status_hi = REG_RD(p_hwfn,
2522                                 GTT_BAR0_MAP_REG_IGU_CMD +
2523                                 MSB_IGU_CMD_ADDR * 8);
2524         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2525
2526         return intr_status;
2527 }
2528
2529 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2530 {
2531         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2532         p_hwfn->b_sp_dpc_enabled = true;
2533 }
2534
2535 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2536 {
2537         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2538         if (!p_hwfn->sp_dpc)
2539                 return ECORE_NOMEM;
2540
2541         return ECORE_SUCCESS;
2542 }
2543
2544 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2545 {
2546         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2547 }
2548
2549 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2550                                      struct ecore_ptt *p_ptt)
2551 {
2552         enum _ecore_status_t rc = ECORE_SUCCESS;
2553
2554         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2555         if (rc != ECORE_SUCCESS) {
2556                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2557                 return rc;
2558         }
2559
2560         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2561         if (rc != ECORE_SUCCESS) {
2562                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2563                 return rc;
2564         }
2565
2566         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2567         if (rc != ECORE_SUCCESS)
2568                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2569
2570         return rc;
2571 }
2572
2573 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2574 {
2575         ecore_int_sp_sb_free(p_hwfn);
2576         ecore_int_sb_attn_free(p_hwfn);
2577         ecore_int_sp_dpc_free(p_hwfn);
2578 }
2579
2580 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2581 {
2582         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2583                 return;
2584
2585         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2586         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2587         ecore_int_sp_dpc_setup(p_hwfn);
2588 }
2589
2590 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2591                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2592 {
2593         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2594
2595         if (!p_igu_info || !p_sb_cnt_info)
2596                 return;
2597
2598         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2599                     sizeof(*p_sb_cnt_info));
2600 }
2601
2602 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2603 {
2604         int i;
2605
2606         for_each_hwfn(p_dev, i)
2607                 p_dev->hwfns[i].b_int_requested = false;
2608 }
2609
2610 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2611 {
2612         p_dev->attn_clr_en = clr_enable;
2613 }
2614
2615 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2616                                              struct ecore_ptt *p_ptt,
2617                                              u8 timer_res, u16 sb_id, bool tx)
2618 {
2619         struct cau_sb_entry sb_entry;
2620         enum _ecore_status_t rc;
2621
2622         if (!p_hwfn->hw_init_done) {
2623                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2624                 return ECORE_INVAL;
2625         }
2626
2627         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2628                                  sb_id * sizeof(u64),
2629                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2630         if (rc != ECORE_SUCCESS) {
2631                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2632                 return rc;
2633         }
2634
2635         if (tx)
2636                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2637         else
2638                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2639
2640         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2641                                  (u64)(osal_uintptr_t)&sb_entry,
2642                                  CAU_REG_SB_VAR_MEMORY +
2643                                  sb_id * sizeof(u64), 2, 0);
2644         if (rc != ECORE_SUCCESS) {
2645                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2646                 return rc;
2647         }
2648
2649         return rc;
2650 }
2651
2652 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2653                                           struct ecore_ptt *p_ptt,
2654                                           struct ecore_sb_info *p_sb,
2655                                           struct ecore_sb_info_dbg *p_info)
2656 {
2657         u16 sbid = p_sb->igu_sb_id;
2658         int i;
2659
2660         if (IS_VF(p_hwfn->p_dev))
2661                 return ECORE_INVAL;
2662
2663         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2664                 return ECORE_INVAL;
2665
2666         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2667                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2668         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2669                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2670
2671         for (i = 0; i < PIS_PER_SB_E4; i++)
2672                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2673                                               CAU_REG_PI_MEMORY +
2674                                               sbid * 4 * PIS_PER_SB_E4 +
2675                                               i * 4);
2676
2677         return ECORE_SUCCESS;
2678 }