net: add rte prefix to ether structures
[dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_net.h>
8 #include "qede_rxtx.h"
9
10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
11 {
12         struct rte_mbuf *new_mb = NULL;
13         struct eth_rx_bd *rx_bd;
14         dma_addr_t mapping;
15         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
16
17         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
18         if (unlikely(!new_mb)) {
19                 PMD_RX_LOG(ERR, rxq,
20                            "Failed to allocate rx buffer "
21                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
22                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
23                            rte_mempool_avail_count(rxq->mb_pool),
24                            rte_mempool_in_use_count(rxq->mb_pool));
25                 return -ENOMEM;
26         }
27         rxq->sw_rx_ring[idx].mbuf = new_mb;
28         rxq->sw_rx_ring[idx].page_offset = 0;
29         mapping = rte_mbuf_data_iova_default(new_mb);
30         /* Advance PROD and get BD pointer */
31         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
32         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
33         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
34         rxq->sw_rx_prod++;
35         return 0;
36 }
37
38 #define QEDE_MAX_BULK_ALLOC_COUNT 512
39
40 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
41 {
42         void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
43         struct rte_mbuf *mbuf = NULL;
44         struct eth_rx_bd *rx_bd;
45         dma_addr_t mapping;
46         int i, ret = 0;
47         uint16_t idx;
48
49         idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
50
51         if (count > QEDE_MAX_BULK_ALLOC_COUNT)
52                 count = QEDE_MAX_BULK_ALLOC_COUNT;
53
54         ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
55         if (unlikely(ret)) {
56                 PMD_RX_LOG(ERR, rxq,
57                            "Failed to allocate %d rx buffers "
58                             "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
59                             count, idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
60                             rte_mempool_avail_count(rxq->mb_pool),
61                             rte_mempool_in_use_count(rxq->mb_pool));
62                 return -ENOMEM;
63         }
64
65         for (i = 0; i < count; i++) {
66                 mbuf = obj_p[i];
67                 if (likely(i < count - 1))
68                         rte_prefetch0(obj_p[i + 1]);
69
70                 idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
71                 rxq->sw_rx_ring[idx].mbuf = mbuf;
72                 rxq->sw_rx_ring[idx].page_offset = 0;
73                 mapping = rte_mbuf_data_iova_default(mbuf);
74                 rx_bd = (struct eth_rx_bd *)
75                         ecore_chain_produce(&rxq->rx_bd_ring);
76                 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
77                 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
78                 rxq->sw_rx_prod++;
79         }
80
81         return 0;
82 }
83
84 /* Criterias for calculating Rx buffer size -
85  * 1) rx_buf_size should not exceed the size of mbuf
86  * 2) In scattered_rx mode - minimum rx_buf_size should be
87  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
88  * 3) In regular mode - minimum rx_buf_size should be
89  *    (MTU + Maximum L2 Header Size + 2)
90  *    In above cases +2 corrosponds to 2 bytes padding in front of L2
91  *    header.
92  * 4) rx_buf_size should be cacheline-size aligned. So considering
93  *    criteria 1, we need to adjust the size to floor instead of ceil,
94  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
95  */
96 int
97 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
98                       uint16_t max_frame_size)
99 {
100         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
101         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
102         int rx_buf_size;
103
104         if (dev->data->scattered_rx) {
105                 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
106                  * bufferes can be used for single packet. So need to make sure
107                  * mbuf size is sufficient enough for this.
108                  */
109                 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
110                      (max_frame_size + QEDE_ETH_OVERHEAD)) {
111                         DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
112                                mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
113                         return -EINVAL;
114                 }
115
116                 rx_buf_size = RTE_MAX(mbufsz,
117                                       (max_frame_size + QEDE_ETH_OVERHEAD) /
118                                        ETH_RX_MAX_BUFF_PER_PKT);
119         } else {
120                 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
121         }
122
123         /* Align to cache-line size if needed */
124         return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
125 }
126
127 int
128 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
129                     uint16_t nb_desc, unsigned int socket_id,
130                     __rte_unused const struct rte_eth_rxconf *rx_conf,
131                     struct rte_mempool *mp)
132 {
133         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
134         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
135         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
136         struct qede_rx_queue *rxq;
137         uint16_t max_rx_pkt_len;
138         uint16_t bufsz;
139         size_t size;
140         int rc;
141
142         PMD_INIT_FUNC_TRACE(edev);
143
144         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
145         if (!rte_is_power_of_2(nb_desc)) {
146                 DP_ERR(edev, "Ring size %u is not power of 2\n",
147                           nb_desc);
148                 return -EINVAL;
149         }
150
151         /* Free memory prior to re-allocation if needed... */
152         if (dev->data->rx_queues[queue_idx] != NULL) {
153                 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
154                 dev->data->rx_queues[queue_idx] = NULL;
155         }
156
157         /* First allocate the rx queue data structure */
158         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
159                                  RTE_CACHE_LINE_SIZE, socket_id);
160
161         if (!rxq) {
162                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
163                           socket_id);
164                 return -ENOMEM;
165         }
166
167         rxq->qdev = qdev;
168         rxq->mb_pool = mp;
169         rxq->nb_rx_desc = nb_desc;
170         rxq->queue_id = queue_idx;
171         rxq->port_id = dev->data->port_id;
172
173         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
174
175         /* Fix up RX buffer size */
176         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
177         /* cache align the mbuf size to simplfy rx_buf_size calculation */
178         bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
179         if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
180             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
181                 if (!dev->data->scattered_rx) {
182                         DP_INFO(edev, "Forcing scatter-gather mode\n");
183                         dev->data->scattered_rx = 1;
184                 }
185         }
186
187         rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
188         if (rc < 0) {
189                 rte_free(rxq);
190                 return rc;
191         }
192
193         rxq->rx_buf_size = rc;
194
195         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
196                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
197
198         /* Allocate the parallel driver ring for Rx buffers */
199         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
200         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
201                                              RTE_CACHE_LINE_SIZE, socket_id);
202         if (!rxq->sw_rx_ring) {
203                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
204                        " socket %u\n", socket_id);
205                 rte_free(rxq);
206                 return -ENOMEM;
207         }
208
209         /* Allocate FW Rx ring  */
210         rc = qdev->ops->common->chain_alloc(edev,
211                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
212                                             ECORE_CHAIN_MODE_NEXT_PTR,
213                                             ECORE_CHAIN_CNT_TYPE_U16,
214                                             rxq->nb_rx_desc,
215                                             sizeof(struct eth_rx_bd),
216                                             &rxq->rx_bd_ring,
217                                             NULL);
218
219         if (rc != ECORE_SUCCESS) {
220                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
221                        " on socket %u\n", socket_id);
222                 rte_free(rxq->sw_rx_ring);
223                 rte_free(rxq);
224                 return -ENOMEM;
225         }
226
227         /* Allocate FW completion ring */
228         rc = qdev->ops->common->chain_alloc(edev,
229                                             ECORE_CHAIN_USE_TO_CONSUME,
230                                             ECORE_CHAIN_MODE_PBL,
231                                             ECORE_CHAIN_CNT_TYPE_U16,
232                                             rxq->nb_rx_desc,
233                                             sizeof(union eth_rx_cqe),
234                                             &rxq->rx_comp_ring,
235                                             NULL);
236
237         if (rc != ECORE_SUCCESS) {
238                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
239                        " on socket %u\n", socket_id);
240                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
241                 rte_free(rxq->sw_rx_ring);
242                 rte_free(rxq);
243                 return -ENOMEM;
244         }
245
246         dev->data->rx_queues[queue_idx] = rxq;
247         qdev->fp_array[queue_idx].rxq = rxq;
248
249         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
250                   queue_idx, nb_desc, rxq->rx_buf_size, socket_id);
251
252         return 0;
253 }
254
255 static void
256 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
257                     struct qede_rx_queue *rxq)
258 {
259         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
260         ecore_chain_reset(&rxq->rx_bd_ring);
261         ecore_chain_reset(&rxq->rx_comp_ring);
262         rxq->sw_rx_prod = 0;
263         rxq->sw_rx_cons = 0;
264         *rxq->hw_cons_ptr = 0;
265 }
266
267 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
268 {
269         uint16_t i;
270
271         if (rxq->sw_rx_ring) {
272                 for (i = 0; i < rxq->nb_rx_desc; i++) {
273                         if (rxq->sw_rx_ring[i].mbuf) {
274                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
275                                 rxq->sw_rx_ring[i].mbuf = NULL;
276                         }
277                 }
278         }
279 }
280
281 void qede_rx_queue_release(void *rx_queue)
282 {
283         struct qede_rx_queue *rxq = rx_queue;
284         struct qede_dev *qdev;
285         struct ecore_dev *edev;
286
287         if (rxq) {
288                 qdev = rxq->qdev;
289                 edev = QEDE_INIT_EDEV(qdev);
290                 PMD_INIT_FUNC_TRACE(edev);
291                 qede_rx_queue_release_mbufs(rxq);
292                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
293                 qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
294                 rte_free(rxq->sw_rx_ring);
295                 rte_free(rxq);
296         }
297 }
298
299 /* Stops a given RX queue in the HW */
300 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
301 {
302         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
303         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
304         struct ecore_hwfn *p_hwfn;
305         struct qede_rx_queue *rxq;
306         int hwfn_index;
307         int rc;
308
309         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
310                 rxq = eth_dev->data->rx_queues[rx_queue_id];
311                 hwfn_index = rx_queue_id % edev->num_hwfns;
312                 p_hwfn = &edev->hwfns[hwfn_index];
313                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
314                                 true, false);
315                 if (rc != ECORE_SUCCESS) {
316                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
317                         return -1;
318                 }
319                 qede_rx_queue_release_mbufs(rxq);
320                 qede_rx_queue_reset(qdev, rxq);
321                 eth_dev->data->rx_queue_state[rx_queue_id] =
322                         RTE_ETH_QUEUE_STATE_STOPPED;
323                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
324         } else {
325                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
326                 rc = -EINVAL;
327         }
328
329         return rc;
330 }
331
332 int
333 qede_tx_queue_setup(struct rte_eth_dev *dev,
334                     uint16_t queue_idx,
335                     uint16_t nb_desc,
336                     unsigned int socket_id,
337                     const struct rte_eth_txconf *tx_conf)
338 {
339         struct qede_dev *qdev = dev->data->dev_private;
340         struct ecore_dev *edev = &qdev->edev;
341         struct qede_tx_queue *txq;
342         int rc;
343
344         PMD_INIT_FUNC_TRACE(edev);
345
346         if (!rte_is_power_of_2(nb_desc)) {
347                 DP_ERR(edev, "Ring size %u is not power of 2\n",
348                        nb_desc);
349                 return -EINVAL;
350         }
351
352         /* Free memory prior to re-allocation if needed... */
353         if (dev->data->tx_queues[queue_idx] != NULL) {
354                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
355                 dev->data->tx_queues[queue_idx] = NULL;
356         }
357
358         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
359                                  RTE_CACHE_LINE_SIZE, socket_id);
360
361         if (txq == NULL) {
362                 DP_ERR(edev,
363                        "Unable to allocate memory for txq on socket %u",
364                        socket_id);
365                 return -ENOMEM;
366         }
367
368         txq->nb_tx_desc = nb_desc;
369         txq->qdev = qdev;
370         txq->port_id = dev->data->port_id;
371
372         rc = qdev->ops->common->chain_alloc(edev,
373                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
374                                             ECORE_CHAIN_MODE_PBL,
375                                             ECORE_CHAIN_CNT_TYPE_U16,
376                                             txq->nb_tx_desc,
377                                             sizeof(union eth_tx_bd_types),
378                                             &txq->tx_pbl,
379                                             NULL);
380         if (rc != ECORE_SUCCESS) {
381                 DP_ERR(edev,
382                        "Unable to allocate memory for txbd ring on socket %u",
383                        socket_id);
384                 qede_tx_queue_release(txq);
385                 return -ENOMEM;
386         }
387
388         /* Allocate software ring */
389         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
390                                              (sizeof(struct qede_tx_entry) *
391                                               txq->nb_tx_desc),
392                                              RTE_CACHE_LINE_SIZE, socket_id);
393
394         if (!txq->sw_tx_ring) {
395                 DP_ERR(edev,
396                        "Unable to allocate memory for txbd ring on socket %u",
397                        socket_id);
398                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
399                 qede_tx_queue_release(txq);
400                 return -ENOMEM;
401         }
402
403         txq->queue_id = queue_idx;
404
405         txq->nb_tx_avail = txq->nb_tx_desc;
406
407         txq->tx_free_thresh =
408             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
409             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
410
411         dev->data->tx_queues[queue_idx] = txq;
412         qdev->fp_array[queue_idx].txq = txq;
413
414         DP_INFO(edev,
415                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
416                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
417
418         return 0;
419 }
420
421 static void
422 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
423                     struct qede_tx_queue *txq)
424 {
425         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
426         ecore_chain_reset(&txq->tx_pbl);
427         txq->sw_tx_cons = 0;
428         txq->sw_tx_prod = 0;
429         *txq->hw_cons_ptr = 0;
430 }
431
432 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
433 {
434         uint16_t i;
435
436         if (txq->sw_tx_ring) {
437                 for (i = 0; i < txq->nb_tx_desc; i++) {
438                         if (txq->sw_tx_ring[i].mbuf) {
439                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
440                                 txq->sw_tx_ring[i].mbuf = NULL;
441                         }
442                 }
443         }
444 }
445
446 void qede_tx_queue_release(void *tx_queue)
447 {
448         struct qede_tx_queue *txq = tx_queue;
449         struct qede_dev *qdev;
450         struct ecore_dev *edev;
451
452         if (txq) {
453                 qdev = txq->qdev;
454                 edev = QEDE_INIT_EDEV(qdev);
455                 PMD_INIT_FUNC_TRACE(edev);
456                 qede_tx_queue_release_mbufs(txq);
457                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
458                 rte_free(txq->sw_tx_ring);
459                 rte_free(txq);
460         }
461 }
462
463 /* This function allocates fast-path status block memory */
464 static int
465 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
466                   uint16_t sb_id)
467 {
468         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
469         struct status_block_e4 *sb_virt;
470         dma_addr_t sb_phys;
471         int rc;
472
473         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
474                                           sizeof(struct status_block_e4));
475         if (!sb_virt) {
476                 DP_ERR(edev, "Status block allocation failed\n");
477                 return -ENOMEM;
478         }
479         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
480                                         sb_phys, sb_id);
481         if (rc) {
482                 DP_ERR(edev, "Status block initialization failed\n");
483                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
484                                        sizeof(struct status_block_e4));
485                 return rc;
486         }
487
488         return 0;
489 }
490
491 int qede_alloc_fp_resc(struct qede_dev *qdev)
492 {
493         struct ecore_dev *edev = &qdev->edev;
494         struct qede_fastpath *fp;
495         uint32_t num_sbs;
496         uint16_t sb_idx;
497
498         if (IS_VF(edev))
499                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
500         else
501                 num_sbs = ecore_cxt_get_proto_cid_count
502                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
503
504         if (num_sbs == 0) {
505                 DP_ERR(edev, "No status blocks available\n");
506                 return -EINVAL;
507         }
508
509         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
510                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
511
512         if (!qdev->fp_array) {
513                 DP_ERR(edev, "fp array allocation failed\n");
514                 return -ENOMEM;
515         }
516
517         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
518                         sizeof(*qdev->fp_array));
519
520         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
521                 fp = &qdev->fp_array[sb_idx];
522                 if (!fp)
523                         continue;
524                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
525                                 RTE_CACHE_LINE_SIZE);
526                 if (!fp->sb_info) {
527                         DP_ERR(edev, "FP sb_info allocation fails\n");
528                         return -1;
529                 }
530                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
531                         DP_ERR(edev, "FP status block allocation fails\n");
532                         return -1;
533                 }
534                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
535                                 fp->sb_info->igu_sb_id);
536         }
537
538         return 0;
539 }
540
541 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
542 {
543         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
544         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
545         struct qede_fastpath *fp;
546         uint16_t sb_idx;
547         uint8_t i;
548
549         PMD_INIT_FUNC_TRACE(edev);
550
551         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
552                 fp = &qdev->fp_array[sb_idx];
553                 if (!fp)
554                         continue;
555                 DP_INFO(edev, "Free sb_info index 0x%x\n",
556                                 fp->sb_info->igu_sb_id);
557                 if (fp->sb_info) {
558                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
559                                 fp->sb_info->sb_phys,
560                                 sizeof(struct status_block_e4));
561                         rte_free(fp->sb_info);
562                         fp->sb_info = NULL;
563                 }
564         }
565
566         /* Free packet buffers and ring memories */
567         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
568                 if (eth_dev->data->rx_queues[i]) {
569                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
570                         eth_dev->data->rx_queues[i] = NULL;
571                 }
572         }
573
574         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
575                 if (eth_dev->data->tx_queues[i]) {
576                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
577                         eth_dev->data->tx_queues[i] = NULL;
578                 }
579         }
580
581         if (qdev->fp_array)
582                 rte_free(qdev->fp_array);
583         qdev->fp_array = NULL;
584 }
585
586 static inline void
587 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
588                     struct qede_rx_queue *rxq)
589 {
590         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
591         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
592         struct eth_rx_prod_data rx_prods = { 0 };
593
594         /* Update producers */
595         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
596         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
597
598         /* Make sure that the BD and SGE data is updated before updating the
599          * producers since FW might read the BD/SGE right after the producer
600          * is updated.
601          */
602         rte_wmb();
603
604         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
605                         (uint32_t *)&rx_prods);
606
607         /* mmiowb is needed to synchronize doorbell writes from more than one
608          * processor. It guarantees that the write arrives to the device before
609          * the napi lock is released and another qede_poll is called (possibly
610          * on another CPU). Without this barrier, the next doorbell can bypass
611          * this doorbell. This is applicable to IA64/Altix systems.
612          */
613         rte_wmb();
614
615         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
616 }
617
618 /* Starts a given RX queue in HW */
619 static int
620 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
621 {
622         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
623         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
624         struct ecore_queue_start_common_params params;
625         struct ecore_rxq_start_ret_params ret_params;
626         struct qede_rx_queue *rxq;
627         struct qede_fastpath *fp;
628         struct ecore_hwfn *p_hwfn;
629         dma_addr_t p_phys_table;
630         uint16_t page_cnt;
631         uint16_t j;
632         int hwfn_index;
633         int rc;
634
635         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
636                 fp = &qdev->fp_array[rx_queue_id];
637                 rxq = eth_dev->data->rx_queues[rx_queue_id];
638                 /* Allocate buffers for the Rx ring */
639                 for (j = 0; j < rxq->nb_rx_desc; j++) {
640                         rc = qede_alloc_rx_buffer(rxq);
641                         if (rc) {
642                                 DP_ERR(edev, "RX buffer allocation failed"
643                                                 " for rxq = %u\n", rx_queue_id);
644                                 return -ENOMEM;
645                         }
646                 }
647                 /* disable interrupts */
648                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
649                 /* Prepare ramrod */
650                 memset(&params, 0, sizeof(params));
651                 params.queue_id = rx_queue_id / edev->num_hwfns;
652                 params.vport_id = 0;
653                 params.stats_id = params.vport_id;
654                 params.p_sb = fp->sb_info;
655                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
656                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
657                 params.sb_idx = RX_PI;
658                 hwfn_index = rx_queue_id % edev->num_hwfns;
659                 p_hwfn = &edev->hwfns[hwfn_index];
660                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
661                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
662                 memset(&ret_params, 0, sizeof(ret_params));
663                 rc = ecore_eth_rx_queue_start(p_hwfn,
664                                 p_hwfn->hw_info.opaque_fid,
665                                 &params, fp->rxq->rx_buf_size,
666                                 fp->rxq->rx_bd_ring.p_phys_addr,
667                                 p_phys_table, page_cnt,
668                                 &ret_params);
669                 if (rc) {
670                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
671                                         rx_queue_id, rc);
672                         return -1;
673                 }
674                 /* Update with the returned parameters */
675                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
676                 fp->rxq->handle = ret_params.p_handle;
677
678                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
679                 qede_update_rx_prod(qdev, fp->rxq);
680                 eth_dev->data->rx_queue_state[rx_queue_id] =
681                         RTE_ETH_QUEUE_STATE_STARTED;
682                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
683         } else {
684                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
685                 rc = -EINVAL;
686         }
687
688         return rc;
689 }
690
691 static int
692 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
693 {
694         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
695         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
696         struct ecore_queue_start_common_params params;
697         struct ecore_txq_start_ret_params ret_params;
698         struct ecore_hwfn *p_hwfn;
699         dma_addr_t p_phys_table;
700         struct qede_tx_queue *txq;
701         struct qede_fastpath *fp;
702         uint16_t page_cnt;
703         int hwfn_index;
704         int rc;
705
706         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
707                 txq = eth_dev->data->tx_queues[tx_queue_id];
708                 fp = &qdev->fp_array[tx_queue_id];
709                 memset(&params, 0, sizeof(params));
710                 params.queue_id = tx_queue_id / edev->num_hwfns;
711                 params.vport_id = 0;
712                 params.stats_id = params.vport_id;
713                 params.p_sb = fp->sb_info;
714                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
715                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
716                 params.sb_idx = TX_PI(0); /* tc = 0 */
717                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
718                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
719                 hwfn_index = tx_queue_id % edev->num_hwfns;
720                 p_hwfn = &edev->hwfns[hwfn_index];
721                 if (qdev->dev_info.is_legacy)
722                         fp->txq->is_legacy = true;
723                 rc = ecore_eth_tx_queue_start(p_hwfn,
724                                 p_hwfn->hw_info.opaque_fid,
725                                 &params, 0 /* tc */,
726                                 p_phys_table, page_cnt,
727                                 &ret_params);
728                 if (rc != ECORE_SUCCESS) {
729                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
730                                         tx_queue_id, rc);
731                         return -1;
732                 }
733                 txq->doorbell_addr = ret_params.p_doorbell;
734                 txq->handle = ret_params.p_handle;
735
736                 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
737                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
738                                 DB_DEST_XCM);
739                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
740                                 DB_AGG_CMD_SET);
741                 SET_FIELD(txq->tx_db.data.params,
742                                 ETH_DB_DATA_AGG_VAL_SEL,
743                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
744                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
745                 eth_dev->data->tx_queue_state[tx_queue_id] =
746                         RTE_ETH_QUEUE_STATE_STARTED;
747                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
748         } else {
749                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
750                 rc = -EINVAL;
751         }
752
753         return rc;
754 }
755
756 static inline void
757 qede_free_tx_pkt(struct qede_tx_queue *txq)
758 {
759         struct rte_mbuf *mbuf;
760         uint16_t nb_segs;
761         uint16_t idx;
762
763         idx = TX_CONS(txq);
764         mbuf = txq->sw_tx_ring[idx].mbuf;
765         if (mbuf) {
766                 nb_segs = mbuf->nb_segs;
767                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
768                 while (nb_segs) {
769                         /* It's like consuming rxbuf in recv() */
770                         ecore_chain_consume(&txq->tx_pbl);
771                         txq->nb_tx_avail++;
772                         nb_segs--;
773                 }
774                 rte_pktmbuf_free(mbuf);
775                 txq->sw_tx_ring[idx].mbuf = NULL;
776                 txq->sw_tx_cons++;
777                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
778         } else {
779                 ecore_chain_consume(&txq->tx_pbl);
780                 txq->nb_tx_avail++;
781         }
782 }
783
784 static inline void
785 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
786                       struct qede_tx_queue *txq)
787 {
788         uint16_t hw_bd_cons;
789 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
790         uint16_t sw_tx_cons;
791 #endif
792
793         rte_compiler_barrier();
794         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
795 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
796         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
797         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
798                    abs(hw_bd_cons - sw_tx_cons));
799 #endif
800         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
801                 qede_free_tx_pkt(txq);
802 }
803
804 static int qede_drain_txq(struct qede_dev *qdev,
805                           struct qede_tx_queue *txq, bool allow_drain)
806 {
807         struct ecore_dev *edev = &qdev->edev;
808         int rc, cnt = 1000;
809
810         while (txq->sw_tx_cons != txq->sw_tx_prod) {
811                 qede_process_tx_compl(edev, txq);
812                 if (!cnt) {
813                         if (allow_drain) {
814                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
815                                           "requesting MCP to drain\n",
816                                           txq->queue_id);
817                                 rc = qdev->ops->common->drain(edev);
818                                 if (rc)
819                                         return rc;
820                                 return qede_drain_txq(qdev, txq, false);
821                         }
822                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
823                                   "PROD=%d, CONS=%d\n",
824                                   txq->queue_id, txq->sw_tx_prod,
825                                   txq->sw_tx_cons);
826                         return -1;
827                 }
828                 cnt--;
829                 DELAY(1000);
830                 rte_compiler_barrier();
831         }
832
833         /* FW finished processing, wait for HW to transmit all tx packets */
834         DELAY(2000);
835
836         return 0;
837 }
838
839 /* Stops a given TX queue in the HW */
840 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
841 {
842         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
843         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
844         struct ecore_hwfn *p_hwfn;
845         struct qede_tx_queue *txq;
846         int hwfn_index;
847         int rc;
848
849         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
850                 txq = eth_dev->data->tx_queues[tx_queue_id];
851                 /* Drain txq */
852                 if (qede_drain_txq(qdev, txq, true))
853                         return -1; /* For the lack of retcodes */
854                 /* Stop txq */
855                 hwfn_index = tx_queue_id % edev->num_hwfns;
856                 p_hwfn = &edev->hwfns[hwfn_index];
857                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
858                 if (rc != ECORE_SUCCESS) {
859                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
860                         return -1;
861                 }
862                 qede_tx_queue_release_mbufs(txq);
863                 qede_tx_queue_reset(qdev, txq);
864                 eth_dev->data->tx_queue_state[tx_queue_id] =
865                         RTE_ETH_QUEUE_STATE_STOPPED;
866                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
867         } else {
868                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
869                 rc = -EINVAL;
870         }
871
872         return rc;
873 }
874
875 int qede_start_queues(struct rte_eth_dev *eth_dev)
876 {
877         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
878         uint8_t id;
879         int rc = -1;
880
881         for_each_rss(id) {
882                 rc = qede_rx_queue_start(eth_dev, id);
883                 if (rc != ECORE_SUCCESS)
884                         return -1;
885         }
886
887         for_each_tss(id) {
888                 rc = qede_tx_queue_start(eth_dev, id);
889                 if (rc != ECORE_SUCCESS)
890                         return -1;
891         }
892
893         return rc;
894 }
895
896 void qede_stop_queues(struct rte_eth_dev *eth_dev)
897 {
898         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
899         uint8_t id;
900
901         /* Stopping RX/TX queues */
902         for_each_tss(id) {
903                 qede_tx_queue_stop(eth_dev, id);
904         }
905
906         for_each_rss(id) {
907                 qede_rx_queue_stop(eth_dev, id);
908         }
909 }
910
911 static inline bool qede_tunn_exist(uint16_t flag)
912 {
913         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
914                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
915 }
916
917 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
918 {
919         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
920                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
921 }
922
923 /*
924  * qede_check_tunn_csum_l4:
925  * Returns:
926  * 1 : If L4 csum is enabled AND if the validation has failed.
927  * 0 : Otherwise
928  */
929 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
930 {
931         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
932              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
933                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
934                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
935
936         return 0;
937 }
938
939 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
940 {
941         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
942              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
943                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
944                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
945
946         return 0;
947 }
948
949 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
950 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
951 {
952         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
953         struct rte_ether_hdr *eth_hdr;
954         struct ipv4_hdr *ipv4_hdr;
955         struct ipv6_hdr *ipv6_hdr;
956         struct rte_vlan_hdr *vlan_hdr;
957         uint16_t ethertype;
958         bool vlan_tagged = 0;
959         uint16_t len;
960
961         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
962         len = sizeof(struct rte_ether_hdr);
963         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
964
965          /* Note: Valid only if VLAN stripping is disabled */
966         if (ethertype == ETHER_TYPE_VLAN) {
967                 vlan_tagged = 1;
968                 vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
969                 len += sizeof(struct rte_vlan_hdr);
970                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
971         }
972
973         if (ethertype == ETHER_TYPE_IPv4) {
974                 packet_type |= RTE_PTYPE_L3_IPV4;
975                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
976                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
977                         packet_type |= RTE_PTYPE_L4_TCP;
978                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
979                         packet_type |= RTE_PTYPE_L4_UDP;
980         } else if (ethertype == ETHER_TYPE_IPv6) {
981                 packet_type |= RTE_PTYPE_L3_IPV6;
982                 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
983                 if (ipv6_hdr->proto == IPPROTO_TCP)
984                         packet_type |= RTE_PTYPE_L4_TCP;
985                 else if (ipv6_hdr->proto == IPPROTO_UDP)
986                         packet_type |= RTE_PTYPE_L4_UDP;
987         }
988
989         if (vlan_tagged)
990                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
991         else
992                 packet_type |= RTE_PTYPE_L2_ETHER;
993
994         return packet_type;
995 }
996
997 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
998 {
999         uint16_t val;
1000
1001         /* Lookup table */
1002         static const uint32_t
1003         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1004                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
1005                                        RTE_PTYPE_INNER_L2_ETHER,
1006                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
1007                                        RTE_PTYPE_INNER_L2_ETHER,
1008                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
1009                                            RTE_PTYPE_INNER_L4_TCP       |
1010                                            RTE_PTYPE_INNER_L2_ETHER,
1011                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
1012                                            RTE_PTYPE_INNER_L4_TCP       |
1013                                            RTE_PTYPE_INNER_L2_ETHER,
1014                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
1015                                            RTE_PTYPE_INNER_L4_UDP       |
1016                                            RTE_PTYPE_INNER_L2_ETHER,
1017                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
1018                                            RTE_PTYPE_INNER_L4_UDP       |
1019                                            RTE_PTYPE_INNER_L2_ETHER,
1020                 /* Frags with no VLAN */
1021                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
1022                                             RTE_PTYPE_INNER_L4_FRAG     |
1023                                             RTE_PTYPE_INNER_L2_ETHER,
1024                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
1025                                             RTE_PTYPE_INNER_L4_FRAG     |
1026                                             RTE_PTYPE_INNER_L2_ETHER,
1027                 /* VLANs */
1028                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
1029                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1030                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
1031                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1032                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1033                                                 RTE_PTYPE_INNER_L4_TCP  |
1034                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1035                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1036                                                 RTE_PTYPE_INNER_L4_TCP  |
1037                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1038                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1039                                                 RTE_PTYPE_INNER_L4_UDP  |
1040                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1041                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1042                                                 RTE_PTYPE_INNER_L4_UDP  |
1043                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1044                 /* Frags with VLAN */
1045                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1046                                                  RTE_PTYPE_INNER_L4_FRAG |
1047                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1048                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1049                                                  RTE_PTYPE_INNER_L4_FRAG |
1050                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1051         };
1052
1053         /* Bits (0..3) provides L3/L4 protocol type */
1054         /* Bits (4,5) provides frag and VLAN info */
1055         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1056                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1057                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1058                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1059                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1060                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1061                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1062                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1063
1064         if (val < QEDE_PKT_TYPE_MAX)
1065                 return ptype_lkup_tbl[val];
1066
1067         return RTE_PTYPE_UNKNOWN;
1068 }
1069
1070 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1071 {
1072         uint16_t val;
1073
1074         /* Lookup table */
1075         static const uint32_t
1076         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1077                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1078                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1079                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1080                                            RTE_PTYPE_L4_TCP     |
1081                                            RTE_PTYPE_L2_ETHER,
1082                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1083                                            RTE_PTYPE_L4_TCP     |
1084                                            RTE_PTYPE_L2_ETHER,
1085                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1086                                            RTE_PTYPE_L4_UDP     |
1087                                            RTE_PTYPE_L2_ETHER,
1088                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1089                                            RTE_PTYPE_L4_UDP     |
1090                                            RTE_PTYPE_L2_ETHER,
1091                 /* Frags with no VLAN */
1092                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1093                                             RTE_PTYPE_L4_FRAG   |
1094                                             RTE_PTYPE_L2_ETHER,
1095                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1096                                             RTE_PTYPE_L4_FRAG   |
1097                                             RTE_PTYPE_L2_ETHER,
1098                 /* VLANs */
1099                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1100                                             RTE_PTYPE_L2_ETHER_VLAN,
1101                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1102                                             RTE_PTYPE_L2_ETHER_VLAN,
1103                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1104                                                 RTE_PTYPE_L4_TCP        |
1105                                                 RTE_PTYPE_L2_ETHER_VLAN,
1106                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1107                                                 RTE_PTYPE_L4_TCP        |
1108                                                 RTE_PTYPE_L2_ETHER_VLAN,
1109                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1110                                                 RTE_PTYPE_L4_UDP        |
1111                                                 RTE_PTYPE_L2_ETHER_VLAN,
1112                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1113                                                 RTE_PTYPE_L4_UDP        |
1114                                                 RTE_PTYPE_L2_ETHER_VLAN,
1115                 /* Frags with VLAN */
1116                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1117                                                  RTE_PTYPE_L4_FRAG      |
1118                                                  RTE_PTYPE_L2_ETHER_VLAN,
1119                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1120                                                  RTE_PTYPE_L4_FRAG      |
1121                                                  RTE_PTYPE_L2_ETHER_VLAN,
1122         };
1123
1124         /* Bits (0..3) provides L3/L4 protocol type */
1125         /* Bits (4,5) provides frag and VLAN info */
1126         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1127                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1128                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1129                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1130                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1131                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1132                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1133                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1134
1135         if (val < QEDE_PKT_TYPE_MAX)
1136                 return ptype_lkup_tbl[val];
1137
1138         return RTE_PTYPE_UNKNOWN;
1139 }
1140
1141 static inline uint8_t
1142 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1143 {
1144         struct ipv4_hdr *ip;
1145         uint16_t pkt_csum;
1146         uint16_t calc_csum;
1147         uint16_t val;
1148
1149         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1150                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1151
1152         if (unlikely(val)) {
1153                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1154                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1155                         ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1156                                            sizeof(struct rte_ether_hdr));
1157                         pkt_csum = ip->hdr_checksum;
1158                         ip->hdr_checksum = 0;
1159                         calc_csum = rte_ipv4_cksum(ip);
1160                         ip->hdr_checksum = pkt_csum;
1161                         return (calc_csum != pkt_csum);
1162                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1163                         return 1;
1164                 }
1165         }
1166         return 0;
1167 }
1168
1169 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1170 {
1171         ecore_chain_consume(&rxq->rx_bd_ring);
1172         rxq->sw_rx_cons++;
1173 }
1174
1175 static inline void
1176 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1177                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1178 {
1179         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1180         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1181         struct qede_rx_entry *curr_prod;
1182         dma_addr_t new_mapping;
1183
1184         curr_prod = &rxq->sw_rx_ring[idx];
1185         *curr_prod = *curr_cons;
1186
1187         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1188                       curr_prod->page_offset;
1189
1190         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1191         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1192
1193         rxq->sw_rx_prod++;
1194 }
1195
1196 static inline void
1197 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1198                         struct qede_dev *qdev, uint8_t count)
1199 {
1200         struct qede_rx_entry *curr_cons;
1201
1202         for (; count > 0; count--) {
1203                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1204                 qede_reuse_page(qdev, rxq, curr_cons);
1205                 qede_rx_bd_ring_consume(rxq);
1206         }
1207 }
1208
1209 static inline void
1210 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1211                                      struct qede_rx_queue *rxq,
1212                                      uint8_t agg_index, uint16_t len)
1213 {
1214         struct qede_agg_info *tpa_info;
1215         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1216         uint16_t cons_idx;
1217
1218         /* Under certain conditions it is possible that FW may not consume
1219          * additional or new BD. So decision to consume the BD must be made
1220          * based on len_list[0].
1221          */
1222         if (rte_le_to_cpu_16(len)) {
1223                 tpa_info = &rxq->tpa_info[agg_index];
1224                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1225                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1226                 assert(curr_frag);
1227                 curr_frag->nb_segs = 1;
1228                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1229                 curr_frag->data_len = curr_frag->pkt_len;
1230                 tpa_info->tpa_tail->next = curr_frag;
1231                 tpa_info->tpa_tail = curr_frag;
1232                 qede_rx_bd_ring_consume(rxq);
1233                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1234                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1235                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1236                         rxq->rx_alloc_errors++;
1237                 }
1238         }
1239 }
1240
1241 static inline void
1242 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1243                              struct qede_rx_queue *rxq,
1244                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1245 {
1246         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1247                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1248         /* only len_list[0] will have value */
1249         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1250                                              cqe->len_list[0]);
1251 }
1252
1253 static inline void
1254 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1255                             struct qede_rx_queue *rxq,
1256                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1257 {
1258         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1259
1260         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1261                                              cqe->len_list[0]);
1262         /* Update total length and frags based on end TPA */
1263         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1264         /* TODO:  Add Sanity Checks */
1265         rx_mb->nb_segs = cqe->num_of_bds;
1266         rx_mb->pkt_len = cqe->total_packet_len;
1267
1268         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1269                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1270                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1271                    rx_mb->pkt_len);
1272 }
1273
1274 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1275 {
1276         uint32_t val;
1277
1278         /* Lookup table */
1279         static const uint32_t
1280         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1281                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1282                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1283                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1284                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1285                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1286                                 RTE_PTYPE_TUNNEL_GENEVE,
1287                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1288                                 RTE_PTYPE_TUNNEL_GRE,
1289                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1290                                 RTE_PTYPE_TUNNEL_VXLAN,
1291                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1292                                 RTE_PTYPE_TUNNEL_GENEVE,
1293                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1294                                 RTE_PTYPE_TUNNEL_GRE,
1295                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1296                                 RTE_PTYPE_TUNNEL_VXLAN,
1297                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1298                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1299                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1300                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1301                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1302                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1303                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1304                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1305                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1306                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1307                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1308                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1309                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1310                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1311                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1312                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1313                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1314                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1315                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1316                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1317                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1318                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1319                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1320                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1321         };
1322
1323         /* Cover bits[4-0] to include tunn_type and next protocol */
1324         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1325                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1326                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1327                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1328
1329         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1330                 return ptype_tunn_lkup_tbl[val];
1331         else
1332                 return RTE_PTYPE_UNKNOWN;
1333 }
1334
1335 static inline int
1336 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1337                      uint8_t num_segs, uint16_t pkt_len)
1338 {
1339         struct qede_rx_queue *rxq = p_rxq;
1340         struct qede_dev *qdev = rxq->qdev;
1341         register struct rte_mbuf *seg1 = NULL;
1342         register struct rte_mbuf *seg2 = NULL;
1343         uint16_t sw_rx_index;
1344         uint16_t cur_size;
1345
1346         seg1 = rx_mb;
1347         while (num_segs) {
1348                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1349                                                         pkt_len;
1350                 if (unlikely(!cur_size)) {
1351                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1352                                    " left for mapping jumbo\n", num_segs);
1353                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1354                         return -EINVAL;
1355                 }
1356                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1357                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1358                 qede_rx_bd_ring_consume(rxq);
1359                 pkt_len -= cur_size;
1360                 seg2->data_len = cur_size;
1361                 seg1->next = seg2;
1362                 seg1 = seg1->next;
1363                 num_segs--;
1364                 rxq->rx_segs++;
1365         }
1366
1367         return 0;
1368 }
1369
1370 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1371 static inline void
1372 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1373                  uint8_t bitfield)
1374 {
1375         PMD_RX_LOG(INFO, rxq,
1376                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1377                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1378                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1379                 m->data_len, bitfield, m->hash.rss,
1380                 (unsigned long)m->ol_flags,
1381                 rte_get_ptype_l2_name(m->packet_type),
1382                 rte_get_ptype_l3_name(m->packet_type),
1383                 rte_get_ptype_l4_name(m->packet_type),
1384                 rte_get_ptype_tunnel_name(m->packet_type),
1385                 rte_get_ptype_inner_l2_name(m->packet_type),
1386                 rte_get_ptype_inner_l3_name(m->packet_type),
1387                 rte_get_ptype_inner_l4_name(m->packet_type));
1388 }
1389 #endif
1390
1391 uint16_t
1392 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1393 {
1394         struct qede_rx_queue *rxq = p_rxq;
1395         struct qede_dev *qdev = rxq->qdev;
1396         struct ecore_dev *edev = &qdev->edev;
1397         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1398         uint16_t rx_pkt = 0;
1399         union eth_rx_cqe *cqe;
1400         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1401         register struct rte_mbuf *rx_mb = NULL;
1402         register struct rte_mbuf *seg1 = NULL;
1403         enum eth_rx_cqe_type cqe_type;
1404         uint16_t pkt_len = 0; /* Sum of all BD segments */
1405         uint16_t len; /* Length of first BD */
1406         uint8_t num_segs = 1;
1407         uint16_t preload_idx;
1408         uint16_t parse_flag;
1409 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1410         uint8_t bitfield_val;
1411 #endif
1412         uint8_t tunn_parse_flag;
1413         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1414         uint64_t ol_flags;
1415         uint32_t packet_type;
1416         uint16_t vlan_tci;
1417         bool tpa_start_flg;
1418         uint8_t offset, tpa_agg_idx, flags;
1419         struct qede_agg_info *tpa_info = NULL;
1420         uint32_t rss_hash;
1421         int rx_alloc_count = 0;
1422
1423
1424         /* Allocate buffers that we used in previous loop */
1425         if (rxq->rx_alloc_count) {
1426                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1427                              rxq->rx_alloc_count))) {
1428                         struct rte_eth_dev *dev;
1429
1430                         PMD_RX_LOG(ERR, rxq,
1431                                    "New buffer allocation failed,"
1432                                    "dropping incoming packetn");
1433                         dev = &rte_eth_devices[rxq->port_id];
1434                         dev->data->rx_mbuf_alloc_failed +=
1435                                                         rxq->rx_alloc_count;
1436                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1437                         return 0;
1438                 }
1439                 qede_update_rx_prod(qdev, rxq);
1440                 rxq->rx_alloc_count = 0;
1441         }
1442
1443         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1444         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1445
1446         rte_rmb();
1447
1448         if (hw_comp_cons == sw_comp_cons)
1449                 return 0;
1450
1451         while (sw_comp_cons != hw_comp_cons) {
1452                 ol_flags = 0;
1453                 packet_type = RTE_PTYPE_UNKNOWN;
1454                 vlan_tci = 0;
1455                 tpa_start_flg = false;
1456                 rss_hash = 0;
1457
1458                 /* Get the CQE from the completion ring */
1459                 cqe =
1460                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1461                 cqe_type = cqe->fast_path_regular.type;
1462                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1463
1464                 switch (cqe_type) {
1465                 case ETH_RX_CQE_TYPE_REGULAR:
1466                         fp_cqe = &cqe->fast_path_regular;
1467                 break;
1468                 case ETH_RX_CQE_TYPE_TPA_START:
1469                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1470                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1471                         tpa_start_flg = true;
1472                         /* Mark it as LRO packet */
1473                         ol_flags |= PKT_RX_LRO;
1474                         /* In split mode,  seg_len is same as len_on_first_bd
1475                          * and ext_bd_len_list will be empty since there are
1476                          * no additional buffers
1477                          */
1478                         PMD_RX_LOG(INFO, rxq,
1479                             "TPA start[%d] - len_on_first_bd %d header %d"
1480                             " [bd_list[0] %d], [seg_len %d]\n",
1481                             cqe_start_tpa->tpa_agg_index,
1482                             rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1483                             cqe_start_tpa->header_len,
1484                             rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1485                             rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1486
1487                 break;
1488                 case ETH_RX_CQE_TYPE_TPA_CONT:
1489                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1490                                                      &cqe->fast_path_tpa_cont);
1491                         goto next_cqe;
1492                 case ETH_RX_CQE_TYPE_TPA_END:
1493                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1494                                                     &cqe->fast_path_tpa_end);
1495                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1496                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1497                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1498                         goto tpa_end;
1499                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1500                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1501                         ecore_eth_cqe_completion(
1502                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1503                                 (struct eth_slow_path_rx_cqe *)cqe);
1504                         /* fall-thru */
1505                 default:
1506                         goto next_cqe;
1507                 }
1508
1509                 /* Get the data from the SW ring */
1510                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1511                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1512                 assert(rx_mb != NULL);
1513
1514                 /* Handle regular CQE or TPA start CQE */
1515                 if (!tpa_start_flg) {
1516                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1517                         offset = fp_cqe->placement_offset;
1518                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1519                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1520                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1521                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1522 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1523                         bitfield_val = fp_cqe->bitfields;
1524 #endif
1525                 } else {
1526                         parse_flag =
1527                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1528                         offset = cqe_start_tpa->placement_offset;
1529                         /* seg_len = len_on_first_bd */
1530                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1531                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1532 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1533                         bitfield_val = cqe_start_tpa->bitfields;
1534 #endif
1535                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1536                 }
1537                 if (qede_tunn_exist(parse_flag)) {
1538                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1539                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1540                                 PMD_RX_LOG(ERR, rxq,
1541                                             "L4 csum failed, flags = 0x%x\n",
1542                                             parse_flag);
1543                                 rxq->rx_hw_errors++;
1544                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1545                         } else {
1546                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1547                         }
1548
1549                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1550                                 PMD_RX_LOG(ERR, rxq,
1551                                         "Outer L3 csum failed, flags = 0x%x\n",
1552                                         parse_flag);
1553                                   rxq->rx_hw_errors++;
1554                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1555                         } else {
1556                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1557                         }
1558
1559                         if (tpa_start_flg)
1560                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1561                         else
1562                                 flags = fp_cqe->tunnel_pars_flags.flags;
1563                         tunn_parse_flag = flags;
1564
1565                         /* Tunnel_type */
1566                         packet_type =
1567                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1568
1569                         /* Inner header */
1570                         packet_type |=
1571                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1572
1573                         /* Outer L3/L4 types is not available in CQE */
1574                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1575
1576                         /* Outer L3/L4 types is not available in CQE.
1577                          * Need to add offset to parse correctly,
1578                          */
1579                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1580                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1581                 } else {
1582                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1583                 }
1584
1585                 /* Common handling for non-tunnel packets and for inner
1586                  * headers in the case of tunnel.
1587                  */
1588                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1589                         PMD_RX_LOG(ERR, rxq,
1590                                     "L4 csum failed, flags = 0x%x\n",
1591                                     parse_flag);
1592                         rxq->rx_hw_errors++;
1593                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1594                 } else {
1595                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1596                 }
1597                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1598                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1599                                    parse_flag);
1600                         rxq->rx_hw_errors++;
1601                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1602                 } else {
1603                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1604                 }
1605
1606                 if (CQE_HAS_VLAN(parse_flag) ||
1607                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1608                         /* Note: FW doesn't indicate Q-in-Q packet */
1609                         ol_flags |= PKT_RX_VLAN;
1610                         if (qdev->vlan_strip_flg) {
1611                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1612                                 rx_mb->vlan_tci = vlan_tci;
1613                         }
1614                 }
1615
1616                 /* RSS Hash */
1617                 if (qdev->rss_enable) {
1618                         ol_flags |= PKT_RX_RSS_HASH;
1619                         rx_mb->hash.rss = rss_hash;
1620                 }
1621
1622                 rx_alloc_count++;
1623                 qede_rx_bd_ring_consume(rxq);
1624
1625                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1626                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1627                                    " len on first: %04x Total Len: %04x",
1628                                    fp_cqe->bd_num, len, pkt_len);
1629                         num_segs = fp_cqe->bd_num - 1;
1630                         seg1 = rx_mb;
1631                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1632                                                  pkt_len - len))
1633                                 goto next_cqe;
1634
1635                         rx_alloc_count += num_segs;
1636                         rxq->rx_segs += num_segs;
1637                 }
1638                 rxq->rx_segs++; /* for the first segment */
1639
1640                 /* Prefetch next mbuf while processing current one. */
1641                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1642                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1643
1644                 /* Update rest of the MBUF fields */
1645                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1646                 rx_mb->port = rxq->port_id;
1647                 rx_mb->ol_flags = ol_flags;
1648                 rx_mb->data_len = len;
1649                 rx_mb->packet_type = packet_type;
1650 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1651                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1652 #endif
1653                 if (!tpa_start_flg) {
1654                         rx_mb->nb_segs = fp_cqe->bd_num;
1655                         rx_mb->pkt_len = pkt_len;
1656                 } else {
1657                         /* store ref to the updated mbuf */
1658                         tpa_info->tpa_head = rx_mb;
1659                         tpa_info->tpa_tail = tpa_info->tpa_head;
1660                 }
1661                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1662 tpa_end:
1663                 if (!tpa_start_flg) {
1664                         rx_pkts[rx_pkt] = rx_mb;
1665                         rx_pkt++;
1666                 }
1667 next_cqe:
1668                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1669                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1670                 if (rx_pkt == nb_pkts) {
1671                         PMD_RX_LOG(DEBUG, rxq,
1672                                    "Budget reached nb_pkts=%u received=%u",
1673                                    rx_pkt, nb_pkts);
1674                         break;
1675                 }
1676         }
1677
1678         /* Request number of bufferes to be allocated in next loop */
1679         rxq->rx_alloc_count = rx_alloc_count;
1680
1681         rxq->rcv_pkts += rx_pkt;
1682
1683         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1684
1685         return rx_pkt;
1686 }
1687
1688
1689 /* Populate scatter gather buffer descriptor fields */
1690 static inline uint16_t
1691 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1692                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1693                   uint16_t start_seg)
1694 {
1695         struct qede_tx_queue *txq = p_txq;
1696         struct eth_tx_bd *tx_bd = NULL;
1697         dma_addr_t mapping;
1698         uint16_t nb_segs = 0;
1699
1700         /* Check for scattered buffers */
1701         while (m_seg) {
1702                 if (start_seg == 0) {
1703                         if (!*bd2) {
1704                                 *bd2 = (struct eth_tx_2nd_bd *)
1705                                         ecore_chain_produce(&txq->tx_pbl);
1706                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1707                                 nb_segs++;
1708                         }
1709                         mapping = rte_mbuf_data_iova(m_seg);
1710                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1711                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1712                 } else if (start_seg == 1) {
1713                         if (!*bd3) {
1714                                 *bd3 = (struct eth_tx_3rd_bd *)
1715                                         ecore_chain_produce(&txq->tx_pbl);
1716                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1717                                 nb_segs++;
1718                         }
1719                         mapping = rte_mbuf_data_iova(m_seg);
1720                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1721                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1722                 } else {
1723                         tx_bd = (struct eth_tx_bd *)
1724                                 ecore_chain_produce(&txq->tx_pbl);
1725                         memset(tx_bd, 0, sizeof(*tx_bd));
1726                         nb_segs++;
1727                         mapping = rte_mbuf_data_iova(m_seg);
1728                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1729                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1730                 }
1731                 start_seg++;
1732                 m_seg = m_seg->next;
1733         }
1734
1735         /* Return total scattered buffers */
1736         return nb_segs;
1737 }
1738
1739 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1740 static inline void
1741 print_tx_bd_info(struct qede_tx_queue *txq,
1742                  struct eth_tx_1st_bd *bd1,
1743                  struct eth_tx_2nd_bd *bd2,
1744                  struct eth_tx_3rd_bd *bd3,
1745                  uint64_t tx_ol_flags)
1746 {
1747         char ol_buf[256] = { 0 }; /* for verbose prints */
1748
1749         if (bd1)
1750                 PMD_TX_LOG(INFO, txq,
1751                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1752                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1753                    bd1->data.bd_flags.bitfields,
1754                    rte_cpu_to_le_16(bd1->data.bitfields));
1755         if (bd2)
1756                 PMD_TX_LOG(INFO, txq,
1757                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1758                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1759                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
1760         if (bd3)
1761                 PMD_TX_LOG(INFO, txq,
1762                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1763                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1764                    rte_cpu_to_le_16(bd3->nbytes),
1765                    rte_cpu_to_le_16(bd3->data.bitfields),
1766                    rte_cpu_to_le_16(bd3->data.lso_mss),
1767                    bd3->data.tunn_l4_hdr_start_offset_w,
1768                    bd3->data.tunn_hdr_size_w);
1769
1770         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1771         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1772 }
1773 #endif
1774
1775 /* TX prepare to check packets meets TX conditions */
1776 uint16_t
1777 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1778 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1779                     uint16_t nb_pkts)
1780 {
1781         struct qede_tx_queue *txq = p_txq;
1782 #else
1783 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1784                     uint16_t nb_pkts)
1785 {
1786 #endif
1787         uint64_t ol_flags;
1788         struct rte_mbuf *m;
1789         uint16_t i;
1790 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1791         int ret;
1792 #endif
1793
1794         for (i = 0; i < nb_pkts; i++) {
1795                 m = tx_pkts[i];
1796                 ol_flags = m->ol_flags;
1797                 if (ol_flags & PKT_TX_TCP_SEG) {
1798                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1799                                 rte_errno = -EINVAL;
1800                                 break;
1801                         }
1802                         /* TBD: confirm its ~9700B for both ? */
1803                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1804                                 rte_errno = -EINVAL;
1805                                 break;
1806                         }
1807                 } else {
1808                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1809                                 rte_errno = -EINVAL;
1810                                 break;
1811                         }
1812                 }
1813                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1814                         /* We support only limited tunnel protocols */
1815                         if (ol_flags & PKT_TX_TUNNEL_MASK) {
1816                                 uint64_t temp;
1817
1818                                 temp = ol_flags & PKT_TX_TUNNEL_MASK;
1819                                 if (temp == PKT_TX_TUNNEL_VXLAN ||
1820                                     temp == PKT_TX_TUNNEL_GENEVE ||
1821                                     temp == PKT_TX_TUNNEL_MPLSINUDP ||
1822                                     temp == PKT_TX_TUNNEL_GRE)
1823                                         continue;
1824                         }
1825
1826                         rte_errno = -ENOTSUP;
1827                         break;
1828                 }
1829
1830 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1831                 ret = rte_validate_tx_offload(m);
1832                 if (ret != 0) {
1833                         rte_errno = ret;
1834                         break;
1835                 }
1836 #endif
1837         }
1838
1839 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1840         if (unlikely(i != nb_pkts))
1841                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1842                            nb_pkts - i);
1843 #endif
1844         return i;
1845 }
1846
1847 #define MPLSINUDP_HDR_SIZE                      (12)
1848
1849 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1850 static inline void
1851 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1852                                struct qede_tx_queue *txq)
1853 {
1854         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1855                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1856         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1857                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1858                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1859         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1860                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1861                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1862         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1863                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1864                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1865 }
1866 #endif
1867
1868 uint16_t
1869 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1870 {
1871         struct qede_tx_queue *txq = p_txq;
1872         struct qede_dev *qdev = txq->qdev;
1873         struct ecore_dev *edev = &qdev->edev;
1874         struct rte_mbuf *mbuf;
1875         struct rte_mbuf *m_seg = NULL;
1876         uint16_t nb_tx_pkts;
1877         uint16_t bd_prod;
1878         uint16_t idx;
1879         uint16_t nb_frags;
1880         uint16_t nb_pkt_sent = 0;
1881         uint8_t nbds;
1882         bool lso_flg;
1883         bool mplsoudp_flg;
1884         __rte_unused bool tunn_flg;
1885         bool tunn_ipv6_ext_flg;
1886         struct eth_tx_1st_bd *bd1;
1887         struct eth_tx_2nd_bd *bd2;
1888         struct eth_tx_3rd_bd *bd3;
1889         uint64_t tx_ol_flags;
1890         uint16_t hdr_size;
1891         /* BD1 */
1892         uint16_t bd1_bf;
1893         uint8_t bd1_bd_flags_bf;
1894         uint16_t vlan;
1895         /* BD2 */
1896         uint16_t bd2_bf1;
1897         uint16_t bd2_bf2;
1898         /* BD3 */
1899         uint16_t mss;
1900         uint16_t bd3_bf;
1901
1902         uint8_t tunn_l4_hdr_start_offset;
1903         uint8_t tunn_hdr_size;
1904         uint8_t inner_l2_hdr_size;
1905         uint16_t inner_l4_hdr_offset;
1906
1907         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1908                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1909                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1910                 qede_process_tx_compl(edev, txq);
1911         }
1912
1913         nb_tx_pkts  = nb_pkts;
1914         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1915         while (nb_tx_pkts--) {
1916                 /* Init flags/values */
1917                 tunn_flg = false;
1918                 lso_flg = false;
1919                 nbds = 0;
1920                 vlan = 0;
1921                 bd1 = NULL;
1922                 bd2 = NULL;
1923                 bd3 = NULL;
1924                 hdr_size = 0;
1925                 bd1_bf = 0;
1926                 bd1_bd_flags_bf = 0;
1927                 bd2_bf1 = 0;
1928                 bd2_bf2 = 0;
1929                 mss = 0;
1930                 bd3_bf = 0;
1931                 mplsoudp_flg = false;
1932                 tunn_ipv6_ext_flg = false;
1933                 tunn_hdr_size = 0;
1934                 tunn_l4_hdr_start_offset = 0;
1935
1936                 mbuf = *tx_pkts++;
1937                 assert(mbuf);
1938
1939                 /* Check minimum TX BDS availability against available BDs */
1940                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1941                         break;
1942
1943                 tx_ol_flags = mbuf->ol_flags;
1944                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1945
1946                 /* TX prepare would have already checked supported tunnel Tx
1947                  * offloads. Don't rely on pkt_type marked by Rx, instead use
1948                  * tx_ol_flags to decide.
1949                  */
1950                 tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
1951
1952                 if (tunn_flg) {
1953                         /* Check against max which is Tunnel IPv6 + ext */
1954                         if (unlikely(txq->nb_tx_avail <
1955                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1956                                         break;
1957
1958                         /* First indicate its a tunnel pkt */
1959                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1960                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1961                         /* Legacy FW had flipped behavior in regard to this bit
1962                          * i.e. it needed to set to prevent FW from touching
1963                          * encapsulated packets when it didn't need to.
1964                          */
1965                         if (unlikely(txq->is_legacy)) {
1966                                 bd1_bf ^= 1 <<
1967                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1968                         }
1969
1970                         /* Outer IP checksum offload */
1971                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1972                                            PKT_TX_OUTER_IPV4)) {
1973                                 bd1_bd_flags_bf |=
1974                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1975                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1976                         }
1977
1978                         /**
1979                          * Currently, only inner checksum offload in MPLS-in-UDP
1980                          * tunnel with one MPLS label is supported. Both outer
1981                          * and inner layers  lengths need to be provided in
1982                          * mbuf.
1983                          */
1984                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1985                                                 PKT_TX_TUNNEL_MPLSINUDP) {
1986                                 mplsoudp_flg = true;
1987 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1988                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1989 #endif
1990                                 /* Outer L4 offset in two byte words */
1991                                 tunn_l4_hdr_start_offset =
1992                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1993                                 /* Tunnel header size in two byte words */
1994                                 tunn_hdr_size = (mbuf->outer_l2_len +
1995                                                 mbuf->outer_l3_len +
1996                                                 MPLSINUDP_HDR_SIZE) / 2;
1997                                 /* Inner L2 header size in two byte words */
1998                                 inner_l2_hdr_size = (mbuf->l2_len -
1999                                                 MPLSINUDP_HDR_SIZE) / 2;
2000                                 /* Inner L4 header offset from the beggining
2001                                  * of inner packet in two byte words
2002                                  */
2003                                 inner_l4_hdr_offset = (mbuf->l2_len -
2004                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2005
2006                                 /* Inner L2 size and address type */
2007                                 bd2_bf1 |= (inner_l2_hdr_size &
2008                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2009                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2010                                 bd2_bf1 |= (UNICAST_ADDRESS &
2011                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2012                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2013                                 /* Treated as IPv6+Ext */
2014                                 bd2_bf1 |=
2015                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2016
2017                                 /* Mark inner IPv6 if present */
2018                                 if (tx_ol_flags & PKT_TX_IPV6)
2019                                         bd2_bf1 |=
2020                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2021
2022                                 /* Inner L4 offsets */
2023                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2024                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
2025                                                         PKT_TX_TCP_CKSUM))) {
2026                                         /* Determines if BD3 is needed */
2027                                         tunn_ipv6_ext_flg = true;
2028                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
2029                                                         PKT_TX_UDP_CKSUM) {
2030                                                 bd2_bf1 |=
2031                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2032                                         }
2033
2034                                         /* TODO other pseudo checksum modes are
2035                                          * not supported
2036                                          */
2037                                         bd2_bf1 |=
2038                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2039                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2040                                         bd2_bf2 |= (inner_l4_hdr_offset &
2041                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2042                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2043                                 }
2044                         } /* End MPLSoUDP */
2045                 } /* End Tunnel handling */
2046
2047                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
2048                         lso_flg = true;
2049                         if (unlikely(txq->nb_tx_avail <
2050                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
2051                                 break;
2052                         /* For LSO, packet header and payload must reside on
2053                          * buffers pointed by different BDs. Using BD1 for HDR
2054                          * and BD2 onwards for data.
2055                          */
2056                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2057                         if (tunn_flg)
2058                                 hdr_size += mbuf->outer_l2_len +
2059                                             mbuf->outer_l3_len;
2060
2061                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2062                         bd1_bd_flags_bf |=
2063                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2064                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2065                         bd1_bd_flags_bf |=
2066                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2067                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2068                         /* Using one header BD */
2069                         bd3_bf |= rte_cpu_to_le_16(1 <<
2070                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2071                 } else {
2072                         if (unlikely(txq->nb_tx_avail <
2073                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2074                                 break;
2075                         bd1_bf |=
2076                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2077                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2078                 }
2079
2080                 /* Descriptor based VLAN insertion */
2081                 if (tx_ol_flags & PKT_TX_VLAN_PKT) {
2082                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2083                         bd1_bd_flags_bf |=
2084                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2085                 }
2086
2087                 /* Offload the IP checksum in the hardware */
2088                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2089                         bd1_bd_flags_bf |=
2090                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2091                         /* There's no DPDK flag to request outer-L4 csum
2092                          * offload. But in the case of tunnel if inner L3 or L4
2093                          * csum offload is requested then we need to force
2094                          * recalculation of L4 tunnel header csum also.
2095                          */
2096                         if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
2097                                                         PKT_TX_TUNNEL_GRE)) {
2098                                 bd1_bd_flags_bf |=
2099                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2100                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2101                         }
2102                 }
2103
2104                 /* L4 checksum offload (tcp or udp) */
2105                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2106                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2107                         bd1_bd_flags_bf |=
2108                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2109                         /* There's no DPDK flag to request outer-L4 csum
2110                          * offload. But in the case of tunnel if inner L3 or L4
2111                          * csum offload is requested then we need to force
2112                          * recalculation of L4 tunnel header csum also.
2113                          */
2114                         if (tunn_flg) {
2115                                 bd1_bd_flags_bf |=
2116                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2117                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2118                         }
2119                 }
2120
2121                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2122                 idx = TX_PROD(txq);
2123                 txq->sw_tx_ring[idx].mbuf = mbuf;
2124
2125                 /* BD1 */
2126                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2127                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2128                 nbds++;
2129
2130                 /* Map MBUF linear data for DMA and set in the BD1 */
2131                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2132                                      mbuf->data_len);
2133                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2134                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2135                 bd1->data.vlan = vlan;
2136
2137                 if (lso_flg || mplsoudp_flg) {
2138                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2139                                                         (&txq->tx_pbl);
2140                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2141                         nbds++;
2142
2143                         /* BD1 */
2144                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2145                                              hdr_size);
2146                         /* BD2 */
2147                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2148                                              rte_mbuf_data_iova(mbuf)),
2149                                              mbuf->data_len - hdr_size);
2150                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2151                         if (mplsoudp_flg) {
2152                                 bd2->data.bitfields2 =
2153                                         rte_cpu_to_le_16(bd2_bf2);
2154                                 /* Outer L3 size */
2155                                 bd2->data.tunn_ip_size =
2156                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2157                         }
2158                         /* BD3 */
2159                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2160                                 bd3 = (struct eth_tx_3rd_bd *)
2161                                         ecore_chain_produce(&txq->tx_pbl);
2162                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2163                                 nbds++;
2164                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2165                                 if (lso_flg)
2166                                         bd3->data.lso_mss = mss;
2167                                 if (mplsoudp_flg) {
2168                                         bd3->data.tunn_l4_hdr_start_offset_w =
2169                                                 tunn_l4_hdr_start_offset;
2170                                         bd3->data.tunn_hdr_size_w =
2171                                                 tunn_hdr_size;
2172                                 }
2173                         }
2174                 }
2175
2176                 /* Handle fragmented MBUF */
2177                 m_seg = mbuf->next;
2178
2179                 /* Encode scatter gather buffer descriptors if required */
2180                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2181                 bd1->data.nbds = nbds + nb_frags;
2182
2183                 txq->nb_tx_avail -= bd1->data.nbds;
2184                 txq->sw_tx_prod++;
2185                 bd_prod =
2186                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2187 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2188                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2189 #endif
2190                 nb_pkt_sent++;
2191                 txq->xmit_pkts++;
2192         }
2193
2194         /* Write value of prod idx into bd_prod */
2195         txq->tx_db.data.bd_prod = bd_prod;
2196         rte_wmb();
2197         rte_compiler_barrier();
2198         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2199         rte_wmb();
2200
2201         /* Check again for Tx completions */
2202         qede_process_tx_compl(edev, txq);
2203
2204         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2205                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2206
2207         return nb_pkt_sent;
2208 }
2209
2210 uint16_t
2211 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2212                      __rte_unused struct rte_mbuf **pkts,
2213                      __rte_unused uint16_t nb_pkts)
2214 {
2215         return 0;
2216 }
2217
2218
2219 /* this function does a fake walk through over completion queue
2220  * to calculate number of BDs used by HW.
2221  * At the end, it restores the state of completion queue.
2222  */
2223 static uint16_t
2224 qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2225 {
2226         uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2227         union eth_rx_cqe *cqe, *orig_cqe = NULL;
2228
2229         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2230         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2231
2232         if (hw_comp_cons == sw_comp_cons)
2233                 return 0;
2234
2235         /* Get the CQE from the completion ring */
2236         cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2237         orig_cqe = cqe;
2238
2239         while (sw_comp_cons != hw_comp_cons) {
2240                 switch (cqe->fast_path_regular.type) {
2241                 case ETH_RX_CQE_TYPE_REGULAR:
2242                         bd_count += cqe->fast_path_regular.bd_num;
2243                         break;
2244                 case ETH_RX_CQE_TYPE_TPA_END:
2245                         bd_count += cqe->fast_path_tpa_end.num_of_bds;
2246                         break;
2247                 default:
2248                         break;
2249                 }
2250
2251                 cqe =
2252                 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2253                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2254         }
2255
2256         /* revert comp_ring to original state */
2257         ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2258
2259         return bd_count;
2260 }
2261
2262 int
2263 qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2264 {
2265         uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2266         uint16_t produced, consumed;
2267         struct qede_rx_queue *rxq = p_rxq;
2268
2269         if (offset > rxq->nb_rx_desc)
2270                 return -EINVAL;
2271
2272         sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2273         sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2274
2275         /* find BDs used by HW from completion queue elements */
2276         hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2277
2278         if (hw_bd_cons < sw_bd_cons)
2279                 /* wraparound case */
2280                 consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2281         else
2282                 consumed = hw_bd_cons - sw_bd_cons;
2283
2284         if (offset <= consumed)
2285                 return RTE_ETH_RX_DESC_DONE;
2286
2287         if (sw_bd_prod < sw_bd_cons)
2288                 /* wraparound case */
2289                 produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2290         else
2291                 produced = sw_bd_prod - sw_bd_cons;
2292
2293         if (offset <= produced)
2294                 return RTE_ETH_RX_DESC_AVAIL;
2295
2296         return RTE_ETH_RX_DESC_UNAVAIL;
2297 }