net/qede: remove dead code
[dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_net.h>
8 #include "qede_rxtx.h"
9
10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
11 {
12         struct rte_mbuf *new_mb = NULL;
13         struct eth_rx_bd *rx_bd;
14         dma_addr_t mapping;
15         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
16
17         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
18         if (unlikely(!new_mb)) {
19                 PMD_RX_LOG(ERR, rxq,
20                            "Failed to allocate rx buffer "
21                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
22                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
23                            rte_mempool_avail_count(rxq->mb_pool),
24                            rte_mempool_in_use_count(rxq->mb_pool));
25                 return -ENOMEM;
26         }
27         rxq->sw_rx_ring[idx].mbuf = new_mb;
28         rxq->sw_rx_ring[idx].page_offset = 0;
29         mapping = rte_mbuf_data_iova_default(new_mb);
30         /* Advance PROD and get BD pointer */
31         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
32         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
33         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
34         rxq->sw_rx_prod++;
35         return 0;
36 }
37
38 #define QEDE_MAX_BULK_ALLOC_COUNT 512
39
40 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
41 {
42         void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
43         struct rte_mbuf *mbuf = NULL;
44         struct eth_rx_bd *rx_bd;
45         dma_addr_t mapping;
46         int i, ret = 0;
47         uint16_t idx;
48
49         if (count > QEDE_MAX_BULK_ALLOC_COUNT)
50                 count = QEDE_MAX_BULK_ALLOC_COUNT;
51
52         ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
53         if (unlikely(ret)) {
54                 PMD_RX_LOG(ERR, rxq,
55                            "Failed to allocate %d rx buffers "
56                             "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
57                             count,
58                             rxq->sw_rx_prod & NUM_RX_BDS(rxq),
59                             rxq->sw_rx_cons & NUM_RX_BDS(rxq),
60                             rte_mempool_avail_count(rxq->mb_pool),
61                             rte_mempool_in_use_count(rxq->mb_pool));
62                 return -ENOMEM;
63         }
64
65         for (i = 0; i < count; i++) {
66                 mbuf = obj_p[i];
67                 if (likely(i < count - 1))
68                         rte_prefetch0(obj_p[i + 1]);
69
70                 idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
71                 rxq->sw_rx_ring[idx].mbuf = mbuf;
72                 rxq->sw_rx_ring[idx].page_offset = 0;
73                 mapping = rte_mbuf_data_iova_default(mbuf);
74                 rx_bd = (struct eth_rx_bd *)
75                         ecore_chain_produce(&rxq->rx_bd_ring);
76                 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
77                 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
78                 rxq->sw_rx_prod++;
79         }
80
81         return 0;
82 }
83
84 /* Criterias for calculating Rx buffer size -
85  * 1) rx_buf_size should not exceed the size of mbuf
86  * 2) In scattered_rx mode - minimum rx_buf_size should be
87  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
88  * 3) In regular mode - minimum rx_buf_size should be
89  *    (MTU + Maximum L2 Header Size + 2)
90  *    In above cases +2 corrosponds to 2 bytes padding in front of L2
91  *    header.
92  * 4) rx_buf_size should be cacheline-size aligned. So considering
93  *    criteria 1, we need to adjust the size to floor instead of ceil,
94  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
95  */
96 int
97 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
98                       uint16_t max_frame_size)
99 {
100         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
101         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
102         int rx_buf_size;
103
104         if (dev->data->scattered_rx) {
105                 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
106                  * bufferes can be used for single packet. So need to make sure
107                  * mbuf size is sufficient enough for this.
108                  */
109                 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
110                      (max_frame_size + QEDE_ETH_OVERHEAD)) {
111                         DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
112                                mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
113                         return -EINVAL;
114                 }
115
116                 rx_buf_size = RTE_MAX(mbufsz,
117                                       (max_frame_size + QEDE_ETH_OVERHEAD) /
118                                        ETH_RX_MAX_BUFF_PER_PKT);
119         } else {
120                 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
121         }
122
123         /* Align to cache-line size if needed */
124         return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
125 }
126
127 static struct qede_rx_queue *
128 qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
129                         uint16_t queue_idx,
130                         uint16_t nb_desc,
131                         unsigned int socket_id,
132                         struct rte_mempool *mp,
133                         uint16_t bufsz)
134 {
135         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
136         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
137         struct qede_rx_queue *rxq;
138         size_t size;
139         int rc;
140
141         /* First allocate the rx queue data structure */
142         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
143                                  RTE_CACHE_LINE_SIZE, socket_id);
144
145         if (!rxq) {
146                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
147                           socket_id);
148                 return NULL;
149         }
150
151         rxq->qdev = qdev;
152         rxq->mb_pool = mp;
153         rxq->nb_rx_desc = nb_desc;
154         rxq->queue_id = queue_idx;
155         rxq->port_id = dev->data->port_id;
156
157
158         rxq->rx_buf_size = bufsz;
159
160         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
161                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
162
163         /* Allocate the parallel driver ring for Rx buffers */
164         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
165         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
166                                              RTE_CACHE_LINE_SIZE, socket_id);
167         if (!rxq->sw_rx_ring) {
168                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
169                        " socket %u\n", socket_id);
170                 rte_free(rxq);
171                 return NULL;
172         }
173
174         /* Allocate FW Rx ring  */
175         rc = qdev->ops->common->chain_alloc(edev,
176                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
177                                             ECORE_CHAIN_MODE_NEXT_PTR,
178                                             ECORE_CHAIN_CNT_TYPE_U16,
179                                             rxq->nb_rx_desc,
180                                             sizeof(struct eth_rx_bd),
181                                             &rxq->rx_bd_ring,
182                                             NULL);
183
184         if (rc != ECORE_SUCCESS) {
185                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
186                        " on socket %u\n", socket_id);
187                 rte_free(rxq->sw_rx_ring);
188                 rte_free(rxq);
189                 return NULL;
190         }
191
192         /* Allocate FW completion ring */
193         rc = qdev->ops->common->chain_alloc(edev,
194                                             ECORE_CHAIN_USE_TO_CONSUME,
195                                             ECORE_CHAIN_MODE_PBL,
196                                             ECORE_CHAIN_CNT_TYPE_U16,
197                                             rxq->nb_rx_desc,
198                                             sizeof(union eth_rx_cqe),
199                                             &rxq->rx_comp_ring,
200                                             NULL);
201
202         if (rc != ECORE_SUCCESS) {
203                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
204                        " on socket %u\n", socket_id);
205                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
206                 rte_free(rxq->sw_rx_ring);
207                 rte_free(rxq);
208                 return NULL;
209         }
210
211         return rxq;
212 }
213
214 int
215 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
216                     uint16_t nb_desc, unsigned int socket_id,
217                     __rte_unused const struct rte_eth_rxconf *rx_conf,
218                     struct rte_mempool *mp)
219 {
220         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
221         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
222         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
223         struct qede_rx_queue *rxq;
224         uint16_t max_rx_pkt_len;
225         uint16_t bufsz;
226         int rc;
227
228         PMD_INIT_FUNC_TRACE(edev);
229
230         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
231         if (!rte_is_power_of_2(nb_desc)) {
232                 DP_ERR(edev, "Ring size %u is not power of 2\n",
233                           nb_desc);
234                 return -EINVAL;
235         }
236
237         /* Free memory prior to re-allocation if needed... */
238         if (dev->data->rx_queues[qid] != NULL) {
239                 qede_rx_queue_release(dev->data->rx_queues[qid]);
240                 dev->data->rx_queues[qid] = NULL;
241         }
242
243         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
244
245         /* Fix up RX buffer size */
246         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
247         /* cache align the mbuf size to simplfy rx_buf_size calculation */
248         bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
249         if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
251                 if (!dev->data->scattered_rx) {
252                         DP_INFO(edev, "Forcing scatter-gather mode\n");
253                         dev->data->scattered_rx = 1;
254                 }
255         }
256
257         rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
258         if (rc < 0)
259                 return rc;
260
261         bufsz = rc;
262
263         if (ECORE_IS_CMT(edev)) {
264                 rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc,
265                                               socket_id, mp, bufsz);
266                 if (!rxq)
267                         return -ENOMEM;
268
269                 qdev->fp_array[qid * 2].rxq = rxq;
270                 rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc,
271                                               socket_id, mp, bufsz);
272                 if (!rxq)
273                         return -ENOMEM;
274
275                 qdev->fp_array[qid * 2 + 1].rxq = rxq;
276                 /* provide per engine fp struct as rx queue */
277                 dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid];
278         } else {
279                 rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
280                                               socket_id, mp, bufsz);
281                 if (!rxq)
282                         return -ENOMEM;
283
284                 dev->data->rx_queues[qid] = rxq;
285                 qdev->fp_array[qid].rxq = rxq;
286         }
287
288         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
289                   qid, nb_desc, rxq->rx_buf_size, socket_id);
290
291         return 0;
292 }
293
294 static void
295 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
296                     struct qede_rx_queue *rxq)
297 {
298         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
299         ecore_chain_reset(&rxq->rx_bd_ring);
300         ecore_chain_reset(&rxq->rx_comp_ring);
301         rxq->sw_rx_prod = 0;
302         rxq->sw_rx_cons = 0;
303         *rxq->hw_cons_ptr = 0;
304 }
305
306 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
307 {
308         uint16_t i;
309
310         if (rxq->sw_rx_ring) {
311                 for (i = 0; i < rxq->nb_rx_desc; i++) {
312                         if (rxq->sw_rx_ring[i].mbuf) {
313                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
314                                 rxq->sw_rx_ring[i].mbuf = NULL;
315                         }
316                 }
317         }
318 }
319
320 static void _qede_rx_queue_release(struct qede_dev *qdev,
321                                    struct ecore_dev *edev,
322                                    struct qede_rx_queue *rxq)
323 {
324         qede_rx_queue_release_mbufs(rxq);
325         qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
326         qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
327         rte_free(rxq->sw_rx_ring);
328         rte_free(rxq);
329 }
330
331 void qede_rx_queue_release(void *rx_queue)
332 {
333         struct qede_rx_queue *rxq = rx_queue;
334         struct qede_fastpath_cmt *fp_cmt;
335         struct qede_dev *qdev;
336         struct ecore_dev *edev;
337
338         if (rxq) {
339                 qdev = rxq->qdev;
340                 edev = QEDE_INIT_EDEV(qdev);
341                 PMD_INIT_FUNC_TRACE(edev);
342                 if (ECORE_IS_CMT(edev)) {
343                         fp_cmt = rx_queue;
344                         _qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq);
345                         _qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq);
346                 } else {
347                         _qede_rx_queue_release(qdev, edev, rxq);
348                 }
349         }
350 }
351
352 /* Stops a given RX queue in the HW */
353 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
354 {
355         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
356         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
357         struct ecore_hwfn *p_hwfn;
358         struct qede_rx_queue *rxq;
359         int hwfn_index;
360         int rc;
361
362         if (rx_queue_id < qdev->num_rx_queues) {
363                 rxq = qdev->fp_array[rx_queue_id].rxq;
364                 hwfn_index = rx_queue_id % edev->num_hwfns;
365                 p_hwfn = &edev->hwfns[hwfn_index];
366                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
367                                 true, false);
368                 if (rc != ECORE_SUCCESS) {
369                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
370                         return -1;
371                 }
372                 qede_rx_queue_release_mbufs(rxq);
373                 qede_rx_queue_reset(qdev, rxq);
374                 eth_dev->data->rx_queue_state[rx_queue_id] =
375                         RTE_ETH_QUEUE_STATE_STOPPED;
376                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
377         } else {
378                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
379                 rc = -EINVAL;
380         }
381
382         return rc;
383 }
384
385 static struct qede_tx_queue *
386 qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
387                         uint16_t queue_idx,
388                         uint16_t nb_desc,
389                         unsigned int socket_id,
390                         const struct rte_eth_txconf *tx_conf)
391 {
392         struct qede_dev *qdev = dev->data->dev_private;
393         struct ecore_dev *edev = &qdev->edev;
394         struct qede_tx_queue *txq;
395         int rc;
396
397         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
398                                  RTE_CACHE_LINE_SIZE, socket_id);
399
400         if (txq == NULL) {
401                 DP_ERR(edev,
402                        "Unable to allocate memory for txq on socket %u",
403                        socket_id);
404                 return NULL;
405         }
406
407         txq->nb_tx_desc = nb_desc;
408         txq->qdev = qdev;
409         txq->port_id = dev->data->port_id;
410
411         rc = qdev->ops->common->chain_alloc(edev,
412                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
413                                             ECORE_CHAIN_MODE_PBL,
414                                             ECORE_CHAIN_CNT_TYPE_U16,
415                                             txq->nb_tx_desc,
416                                             sizeof(union eth_tx_bd_types),
417                                             &txq->tx_pbl,
418                                             NULL);
419         if (rc != ECORE_SUCCESS) {
420                 DP_ERR(edev,
421                        "Unable to allocate memory for txbd ring on socket %u",
422                        socket_id);
423                 qede_tx_queue_release(txq);
424                 return NULL;
425         }
426
427         /* Allocate software ring */
428         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
429                                              (sizeof(struct qede_tx_entry) *
430                                               txq->nb_tx_desc),
431                                              RTE_CACHE_LINE_SIZE, socket_id);
432
433         if (!txq->sw_tx_ring) {
434                 DP_ERR(edev,
435                        "Unable to allocate memory for txbd ring on socket %u",
436                        socket_id);
437                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
438                 qede_tx_queue_release(txq);
439                 return NULL;
440         }
441
442         txq->queue_id = queue_idx;
443
444         txq->nb_tx_avail = txq->nb_tx_desc;
445
446         txq->tx_free_thresh =
447             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
448             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
449
450         DP_INFO(edev,
451                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
452                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
453         return txq;
454 }
455
456 int
457 qede_tx_queue_setup(struct rte_eth_dev *dev,
458                     uint16_t queue_idx,
459                     uint16_t nb_desc,
460                     unsigned int socket_id,
461                     const struct rte_eth_txconf *tx_conf)
462 {
463         struct qede_dev *qdev = dev->data->dev_private;
464         struct ecore_dev *edev = &qdev->edev;
465         struct qede_tx_queue *txq;
466
467         PMD_INIT_FUNC_TRACE(edev);
468
469         if (!rte_is_power_of_2(nb_desc)) {
470                 DP_ERR(edev, "Ring size %u is not power of 2\n",
471                        nb_desc);
472                 return -EINVAL;
473         }
474
475         /* Free memory prior to re-allocation if needed... */
476         if (dev->data->tx_queues[queue_idx] != NULL) {
477                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
478                 dev->data->tx_queues[queue_idx] = NULL;
479         }
480
481         if (ECORE_IS_CMT(edev)) {
482                 txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc,
483                                               socket_id, tx_conf);
484                 if (!txq)
485                         return -ENOMEM;
486
487                 qdev->fp_array[queue_idx * 2].txq = txq;
488                 txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc,
489                                               socket_id, tx_conf);
490                 if (!txq)
491                         return -ENOMEM;
492
493                 qdev->fp_array[(queue_idx * 2) + 1].txq = txq;
494                 dev->data->tx_queues[queue_idx] =
495                                         &qdev->fp_array_cmt[queue_idx];
496         } else {
497                 txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
498                                               socket_id, tx_conf);
499                 if (!txq)
500                         return -ENOMEM;
501
502                 dev->data->tx_queues[queue_idx] = txq;
503                 qdev->fp_array[queue_idx].txq = txq;
504         }
505
506         return 0;
507 }
508
509 static void
510 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
511                     struct qede_tx_queue *txq)
512 {
513         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
514         ecore_chain_reset(&txq->tx_pbl);
515         txq->sw_tx_cons = 0;
516         txq->sw_tx_prod = 0;
517         *txq->hw_cons_ptr = 0;
518 }
519
520 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
521 {
522         uint16_t i;
523
524         if (txq->sw_tx_ring) {
525                 for (i = 0; i < txq->nb_tx_desc; i++) {
526                         if (txq->sw_tx_ring[i].mbuf) {
527                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
528                                 txq->sw_tx_ring[i].mbuf = NULL;
529                         }
530                 }
531         }
532 }
533
534 static void _qede_tx_queue_release(struct qede_dev *qdev,
535                                    struct ecore_dev *edev,
536                                    struct qede_tx_queue *txq)
537 {
538         qede_tx_queue_release_mbufs(txq);
539         qdev->ops->common->chain_free(edev, &txq->tx_pbl);
540         rte_free(txq->sw_tx_ring);
541         rte_free(txq);
542 }
543
544 void qede_tx_queue_release(void *tx_queue)
545 {
546         struct qede_tx_queue *txq = tx_queue;
547         struct qede_fastpath_cmt *fp_cmt;
548         struct qede_dev *qdev;
549         struct ecore_dev *edev;
550
551         if (txq) {
552                 qdev = txq->qdev;
553                 edev = QEDE_INIT_EDEV(qdev);
554                 PMD_INIT_FUNC_TRACE(edev);
555
556                 if (ECORE_IS_CMT(edev)) {
557                         fp_cmt = tx_queue;
558                         _qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq);
559                         _qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq);
560                 } else {
561                         _qede_tx_queue_release(qdev, edev, txq);
562                 }
563         }
564 }
565
566 /* This function allocates fast-path status block memory */
567 static int
568 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
569                   uint16_t sb_id)
570 {
571         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
572         struct status_block *sb_virt;
573         dma_addr_t sb_phys;
574         int rc;
575
576         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
577                                           sizeof(struct status_block));
578         if (!sb_virt) {
579                 DP_ERR(edev, "Status block allocation failed\n");
580                 return -ENOMEM;
581         }
582         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
583                                         sb_phys, sb_id);
584         if (rc) {
585                 DP_ERR(edev, "Status block initialization failed\n");
586                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
587                                        sizeof(struct status_block));
588                 return rc;
589         }
590
591         return 0;
592 }
593
594 int qede_alloc_fp_resc(struct qede_dev *qdev)
595 {
596         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
597         struct qede_fastpath *fp;
598         uint32_t num_sbs;
599         uint16_t sb_idx;
600         int i;
601
602         PMD_INIT_FUNC_TRACE(edev);
603
604         if (IS_VF(edev))
605                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
606         else
607                 num_sbs = ecore_cxt_get_proto_cid_count
608                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
609
610         if (num_sbs == 0) {
611                 DP_ERR(edev, "No status blocks available\n");
612                 return -EINVAL;
613         }
614
615         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
616                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
617
618         if (!qdev->fp_array) {
619                 DP_ERR(edev, "fp array allocation failed\n");
620                 return -ENOMEM;
621         }
622
623         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
624                         sizeof(*qdev->fp_array));
625
626         if (ECORE_IS_CMT(edev)) {
627                 qdev->fp_array_cmt = rte_calloc("fp_cmt",
628                                                 QEDE_RXTX_MAX(qdev) / 2,
629                                                 sizeof(*qdev->fp_array_cmt),
630                                                 RTE_CACHE_LINE_SIZE);
631
632                 if (!qdev->fp_array_cmt) {
633                         DP_ERR(edev, "fp array for CMT allocation failed\n");
634                         return -ENOMEM;
635                 }
636
637                 memset((void *)qdev->fp_array_cmt, 0,
638                        (QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt));
639
640                 /* Establish the mapping of fp_array with fp_array_cmt */
641                 for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) {
642                         qdev->fp_array_cmt[i].qdev = qdev;
643                         qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2];
644                         qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1];
645                 }
646         }
647
648         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
649                 fp = &qdev->fp_array[sb_idx];
650                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
651                                 RTE_CACHE_LINE_SIZE);
652                 if (!fp->sb_info) {
653                         DP_ERR(edev, "FP sb_info allocation fails\n");
654                         return -1;
655                 }
656                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
657                         DP_ERR(edev, "FP status block allocation fails\n");
658                         return -1;
659                 }
660                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
661                                 fp->sb_info->igu_sb_id);
662         }
663
664         return 0;
665 }
666
667 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
668 {
669         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
670         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
671         struct qede_fastpath *fp;
672         uint16_t sb_idx;
673         uint8_t i;
674
675         PMD_INIT_FUNC_TRACE(edev);
676
677         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
678                 fp = &qdev->fp_array[sb_idx];
679                 DP_INFO(edev, "Free sb_info index 0x%x\n",
680                                 fp->sb_info->igu_sb_id);
681                 if (fp->sb_info) {
682                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
683                                 fp->sb_info->sb_phys,
684                                 sizeof(struct status_block));
685                         rte_free(fp->sb_info);
686                         fp->sb_info = NULL;
687                 }
688         }
689
690         /* Free packet buffers and ring memories */
691         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
692                 if (eth_dev->data->rx_queues[i]) {
693                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
694                         eth_dev->data->rx_queues[i] = NULL;
695                 }
696         }
697
698         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
699                 if (eth_dev->data->tx_queues[i]) {
700                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
701                         eth_dev->data->tx_queues[i] = NULL;
702                 }
703         }
704
705         if (qdev->fp_array)
706                 rte_free(qdev->fp_array);
707         qdev->fp_array = NULL;
708
709         if (qdev->fp_array_cmt)
710                 rte_free(qdev->fp_array_cmt);
711         qdev->fp_array_cmt = NULL;
712 }
713
714 static inline void
715 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
716                     struct qede_rx_queue *rxq)
717 {
718         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
719         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
720         struct eth_rx_prod_data rx_prods = { 0 };
721
722         /* Update producers */
723         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
724         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
725
726         /* Make sure that the BD and SGE data is updated before updating the
727          * producers since FW might read the BD/SGE right after the producer
728          * is updated.
729          */
730         rte_wmb();
731
732         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
733                         (uint32_t *)&rx_prods);
734
735         /* mmiowb is needed to synchronize doorbell writes from more than one
736          * processor. It guarantees that the write arrives to the device before
737          * the napi lock is released and another qede_poll is called (possibly
738          * on another CPU). Without this barrier, the next doorbell can bypass
739          * this doorbell. This is applicable to IA64/Altix systems.
740          */
741         rte_wmb();
742
743         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
744 }
745
746 /* Starts a given RX queue in HW */
747 static int
748 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
749 {
750         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
751         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
752         struct ecore_queue_start_common_params params;
753         struct ecore_rxq_start_ret_params ret_params;
754         struct qede_rx_queue *rxq;
755         struct qede_fastpath *fp;
756         struct ecore_hwfn *p_hwfn;
757         dma_addr_t p_phys_table;
758         uint16_t page_cnt;
759         uint16_t j;
760         int hwfn_index;
761         int rc;
762
763         if (rx_queue_id < qdev->num_rx_queues) {
764                 fp = &qdev->fp_array[rx_queue_id];
765                 rxq = fp->rxq;
766                 /* Allocate buffers for the Rx ring */
767                 for (j = 0; j < rxq->nb_rx_desc; j++) {
768                         rc = qede_alloc_rx_buffer(rxq);
769                         if (rc) {
770                                 DP_ERR(edev, "RX buffer allocation failed"
771                                                 " for rxq = %u\n", rx_queue_id);
772                                 return -ENOMEM;
773                         }
774                 }
775                 /* disable interrupts */
776                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
777                 /* Prepare ramrod */
778                 memset(&params, 0, sizeof(params));
779                 params.queue_id = rx_queue_id / edev->num_hwfns;
780                 params.vport_id = 0;
781                 params.stats_id = params.vport_id;
782                 params.p_sb = fp->sb_info;
783                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
784                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
785                 params.sb_idx = RX_PI;
786                 hwfn_index = rx_queue_id % edev->num_hwfns;
787                 p_hwfn = &edev->hwfns[hwfn_index];
788                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
789                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
790                 memset(&ret_params, 0, sizeof(ret_params));
791                 rc = ecore_eth_rx_queue_start(p_hwfn,
792                                 p_hwfn->hw_info.opaque_fid,
793                                 &params, fp->rxq->rx_buf_size,
794                                 fp->rxq->rx_bd_ring.p_phys_addr,
795                                 p_phys_table, page_cnt,
796                                 &ret_params);
797                 if (rc) {
798                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
799                                         rx_queue_id, rc);
800                         return -1;
801                 }
802                 /* Update with the returned parameters */
803                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
804                 fp->rxq->handle = ret_params.p_handle;
805
806                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI];
807                 qede_update_rx_prod(qdev, fp->rxq);
808                 eth_dev->data->rx_queue_state[rx_queue_id] =
809                         RTE_ETH_QUEUE_STATE_STARTED;
810                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
811         } else {
812                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
813                 rc = -EINVAL;
814         }
815
816         return rc;
817 }
818
819 static int
820 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
821 {
822         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
823         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
824         struct ecore_queue_start_common_params params;
825         struct ecore_txq_start_ret_params ret_params;
826         struct ecore_hwfn *p_hwfn;
827         dma_addr_t p_phys_table;
828         struct qede_tx_queue *txq;
829         struct qede_fastpath *fp;
830         uint16_t page_cnt;
831         int hwfn_index;
832         int rc;
833
834         if (tx_queue_id < qdev->num_tx_queues) {
835                 fp = &qdev->fp_array[tx_queue_id];
836                 txq = fp->txq;
837                 memset(&params, 0, sizeof(params));
838                 params.queue_id = tx_queue_id / edev->num_hwfns;
839                 params.vport_id = 0;
840                 params.stats_id = params.vport_id;
841                 params.p_sb = fp->sb_info;
842                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
843                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
844                 params.sb_idx = TX_PI(0); /* tc = 0 */
845                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
846                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
847                 hwfn_index = tx_queue_id % edev->num_hwfns;
848                 p_hwfn = &edev->hwfns[hwfn_index];
849                 if (qdev->dev_info.is_legacy)
850                         fp->txq->is_legacy = true;
851                 rc = ecore_eth_tx_queue_start(p_hwfn,
852                                 p_hwfn->hw_info.opaque_fid,
853                                 &params, 0 /* tc */,
854                                 p_phys_table, page_cnt,
855                                 &ret_params);
856                 if (rc != ECORE_SUCCESS) {
857                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
858                                         tx_queue_id, rc);
859                         return -1;
860                 }
861                 txq->doorbell_addr = ret_params.p_doorbell;
862                 txq->handle = ret_params.p_handle;
863
864                 txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)];
865                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
866                                 DB_DEST_XCM);
867                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
868                                 DB_AGG_CMD_SET);
869                 SET_FIELD(txq->tx_db.data.params,
870                                 ETH_DB_DATA_AGG_VAL_SEL,
871                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
872                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
873                 eth_dev->data->tx_queue_state[tx_queue_id] =
874                         RTE_ETH_QUEUE_STATE_STARTED;
875                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
876         } else {
877                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
878                 rc = -EINVAL;
879         }
880
881         return rc;
882 }
883
884 static inline void
885 qede_free_tx_pkt(struct qede_tx_queue *txq)
886 {
887         struct rte_mbuf *mbuf;
888         uint16_t nb_segs;
889         uint16_t idx;
890
891         idx = TX_CONS(txq);
892         mbuf = txq->sw_tx_ring[idx].mbuf;
893         if (mbuf) {
894                 nb_segs = mbuf->nb_segs;
895                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
896                 while (nb_segs) {
897                         /* It's like consuming rxbuf in recv() */
898                         ecore_chain_consume(&txq->tx_pbl);
899                         txq->nb_tx_avail++;
900                         nb_segs--;
901                 }
902                 rte_pktmbuf_free(mbuf);
903                 txq->sw_tx_ring[idx].mbuf = NULL;
904                 txq->sw_tx_cons++;
905                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
906         } else {
907                 ecore_chain_consume(&txq->tx_pbl);
908                 txq->nb_tx_avail++;
909         }
910 }
911
912 static inline void
913 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
914                       struct qede_tx_queue *txq)
915 {
916         uint16_t hw_bd_cons;
917 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
918         uint16_t sw_tx_cons;
919 #endif
920
921         rte_compiler_barrier();
922         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
923 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
924         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
925         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
926                    abs(hw_bd_cons - sw_tx_cons));
927 #endif
928         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
929                 qede_free_tx_pkt(txq);
930 }
931
932 static int qede_drain_txq(struct qede_dev *qdev,
933                           struct qede_tx_queue *txq, bool allow_drain)
934 {
935         struct ecore_dev *edev = &qdev->edev;
936         int rc, cnt = 1000;
937
938         while (txq->sw_tx_cons != txq->sw_tx_prod) {
939                 qede_process_tx_compl(edev, txq);
940                 if (!cnt) {
941                         if (allow_drain) {
942                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
943                                           "requesting MCP to drain\n",
944                                           txq->queue_id);
945                                 rc = qdev->ops->common->drain(edev);
946                                 if (rc)
947                                         return rc;
948                                 return qede_drain_txq(qdev, txq, false);
949                         }
950                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
951                                   "PROD=%d, CONS=%d\n",
952                                   txq->queue_id, txq->sw_tx_prod,
953                                   txq->sw_tx_cons);
954                         return -1;
955                 }
956                 cnt--;
957                 DELAY(1000);
958                 rte_compiler_barrier();
959         }
960
961         /* FW finished processing, wait for HW to transmit all tx packets */
962         DELAY(2000);
963
964         return 0;
965 }
966
967 /* Stops a given TX queue in the HW */
968 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
969 {
970         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
971         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
972         struct ecore_hwfn *p_hwfn;
973         struct qede_tx_queue *txq;
974         int hwfn_index;
975         int rc;
976
977         if (tx_queue_id < qdev->num_tx_queues) {
978                 txq = qdev->fp_array[tx_queue_id].txq;
979                 /* Drain txq */
980                 if (qede_drain_txq(qdev, txq, true))
981                         return -1; /* For the lack of retcodes */
982                 /* Stop txq */
983                 hwfn_index = tx_queue_id % edev->num_hwfns;
984                 p_hwfn = &edev->hwfns[hwfn_index];
985                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
986                 if (rc != ECORE_SUCCESS) {
987                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
988                         return -1;
989                 }
990                 qede_tx_queue_release_mbufs(txq);
991                 qede_tx_queue_reset(qdev, txq);
992                 eth_dev->data->tx_queue_state[tx_queue_id] =
993                         RTE_ETH_QUEUE_STATE_STOPPED;
994                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
995         } else {
996                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
997                 rc = -EINVAL;
998         }
999
1000         return rc;
1001 }
1002
1003 int qede_start_queues(struct rte_eth_dev *eth_dev)
1004 {
1005         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1006         uint8_t id;
1007         int rc = -1;
1008
1009         for (id = 0; id < qdev->num_rx_queues; id++) {
1010                 rc = qede_rx_queue_start(eth_dev, id);
1011                 if (rc != ECORE_SUCCESS)
1012                         return -1;
1013         }
1014
1015         for (id = 0; id < qdev->num_tx_queues; id++) {
1016                 rc = qede_tx_queue_start(eth_dev, id);
1017                 if (rc != ECORE_SUCCESS)
1018                         return -1;
1019         }
1020
1021         return rc;
1022 }
1023
1024 void qede_stop_queues(struct rte_eth_dev *eth_dev)
1025 {
1026         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1027         uint8_t id;
1028
1029         /* Stopping RX/TX queues */
1030         for (id = 0; id < qdev->num_tx_queues; id++)
1031                 qede_tx_queue_stop(eth_dev, id);
1032
1033         for (id = 0; id < qdev->num_rx_queues; id++)
1034                 qede_rx_queue_stop(eth_dev, id);
1035 }
1036
1037 static inline bool qede_tunn_exist(uint16_t flag)
1038 {
1039         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1040                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
1041 }
1042
1043 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
1044 {
1045         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1046                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
1047 }
1048
1049 /*
1050  * qede_check_tunn_csum_l4:
1051  * Returns:
1052  * 1 : If L4 csum is enabled AND if the validation has failed.
1053  * 0 : Otherwise
1054  */
1055 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
1056 {
1057         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1058              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
1059                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1060                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
1061
1062         return 0;
1063 }
1064
1065 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
1066 {
1067         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1068              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
1069                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1070                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
1071
1072         return 0;
1073 }
1074
1075 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
1076 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
1077 {
1078         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
1079         struct rte_ether_hdr *eth_hdr;
1080         struct rte_ipv4_hdr *ipv4_hdr;
1081         struct rte_ipv6_hdr *ipv6_hdr;
1082         struct rte_vlan_hdr *vlan_hdr;
1083         uint16_t ethertype;
1084         bool vlan_tagged = 0;
1085         uint16_t len;
1086
1087         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1088         len = sizeof(struct rte_ether_hdr);
1089         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
1090
1091          /* Note: Valid only if VLAN stripping is disabled */
1092         if (ethertype == RTE_ETHER_TYPE_VLAN) {
1093                 vlan_tagged = 1;
1094                 vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
1095                 len += sizeof(struct rte_vlan_hdr);
1096                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
1097         }
1098
1099         if (ethertype == RTE_ETHER_TYPE_IPV4) {
1100                 packet_type |= RTE_PTYPE_L3_IPV4;
1101                 ipv4_hdr = rte_pktmbuf_mtod_offset(m,
1102                                         struct rte_ipv4_hdr *, len);
1103                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
1104                         packet_type |= RTE_PTYPE_L4_TCP;
1105                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
1106                         packet_type |= RTE_PTYPE_L4_UDP;
1107         } else if (ethertype == RTE_ETHER_TYPE_IPV6) {
1108                 packet_type |= RTE_PTYPE_L3_IPV6;
1109                 ipv6_hdr = rte_pktmbuf_mtod_offset(m,
1110                                                 struct rte_ipv6_hdr *, len);
1111                 if (ipv6_hdr->proto == IPPROTO_TCP)
1112                         packet_type |= RTE_PTYPE_L4_TCP;
1113                 else if (ipv6_hdr->proto == IPPROTO_UDP)
1114                         packet_type |= RTE_PTYPE_L4_UDP;
1115         }
1116
1117         if (vlan_tagged)
1118                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
1119         else
1120                 packet_type |= RTE_PTYPE_L2_ETHER;
1121
1122         return packet_type;
1123 }
1124
1125 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
1126 {
1127         uint16_t val;
1128
1129         /* Lookup table */
1130         static const uint32_t
1131         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1132                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
1133                                        RTE_PTYPE_INNER_L2_ETHER,
1134                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
1135                                        RTE_PTYPE_INNER_L2_ETHER,
1136                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
1137                                            RTE_PTYPE_INNER_L4_TCP       |
1138                                            RTE_PTYPE_INNER_L2_ETHER,
1139                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
1140                                            RTE_PTYPE_INNER_L4_TCP       |
1141                                            RTE_PTYPE_INNER_L2_ETHER,
1142                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
1143                                            RTE_PTYPE_INNER_L4_UDP       |
1144                                            RTE_PTYPE_INNER_L2_ETHER,
1145                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
1146                                            RTE_PTYPE_INNER_L4_UDP       |
1147                                            RTE_PTYPE_INNER_L2_ETHER,
1148                 /* Frags with no VLAN */
1149                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
1150                                             RTE_PTYPE_INNER_L4_FRAG     |
1151                                             RTE_PTYPE_INNER_L2_ETHER,
1152                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
1153                                             RTE_PTYPE_INNER_L4_FRAG     |
1154                                             RTE_PTYPE_INNER_L2_ETHER,
1155                 /* VLANs */
1156                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
1157                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1158                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
1159                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1160                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1161                                                 RTE_PTYPE_INNER_L4_TCP  |
1162                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1163                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1164                                                 RTE_PTYPE_INNER_L4_TCP  |
1165                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1166                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1167                                                 RTE_PTYPE_INNER_L4_UDP  |
1168                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1169                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1170                                                 RTE_PTYPE_INNER_L4_UDP  |
1171                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1172                 /* Frags with VLAN */
1173                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1174                                                  RTE_PTYPE_INNER_L4_FRAG |
1175                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1176                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1177                                                  RTE_PTYPE_INNER_L4_FRAG |
1178                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1179         };
1180
1181         /* Bits (0..3) provides L3/L4 protocol type */
1182         /* Bits (4,5) provides frag and VLAN info */
1183         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1184                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1185                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1186                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1187                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1188                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1189                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1190                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1191
1192         if (val < QEDE_PKT_TYPE_MAX)
1193                 return ptype_lkup_tbl[val];
1194
1195         return RTE_PTYPE_UNKNOWN;
1196 }
1197
1198 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1199 {
1200         uint16_t val;
1201
1202         /* Lookup table */
1203         static const uint32_t
1204         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1205                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1206                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1207                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1208                                            RTE_PTYPE_L4_TCP     |
1209                                            RTE_PTYPE_L2_ETHER,
1210                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1211                                            RTE_PTYPE_L4_TCP     |
1212                                            RTE_PTYPE_L2_ETHER,
1213                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1214                                            RTE_PTYPE_L4_UDP     |
1215                                            RTE_PTYPE_L2_ETHER,
1216                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1217                                            RTE_PTYPE_L4_UDP     |
1218                                            RTE_PTYPE_L2_ETHER,
1219                 /* Frags with no VLAN */
1220                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1221                                             RTE_PTYPE_L4_FRAG   |
1222                                             RTE_PTYPE_L2_ETHER,
1223                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1224                                             RTE_PTYPE_L4_FRAG   |
1225                                             RTE_PTYPE_L2_ETHER,
1226                 /* VLANs */
1227                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1228                                             RTE_PTYPE_L2_ETHER_VLAN,
1229                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1230                                             RTE_PTYPE_L2_ETHER_VLAN,
1231                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1232                                                 RTE_PTYPE_L4_TCP        |
1233                                                 RTE_PTYPE_L2_ETHER_VLAN,
1234                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1235                                                 RTE_PTYPE_L4_TCP        |
1236                                                 RTE_PTYPE_L2_ETHER_VLAN,
1237                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1238                                                 RTE_PTYPE_L4_UDP        |
1239                                                 RTE_PTYPE_L2_ETHER_VLAN,
1240                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1241                                                 RTE_PTYPE_L4_UDP        |
1242                                                 RTE_PTYPE_L2_ETHER_VLAN,
1243                 /* Frags with VLAN */
1244                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1245                                                  RTE_PTYPE_L4_FRAG      |
1246                                                  RTE_PTYPE_L2_ETHER_VLAN,
1247                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1248                                                  RTE_PTYPE_L4_FRAG      |
1249                                                  RTE_PTYPE_L2_ETHER_VLAN,
1250         };
1251
1252         /* Bits (0..3) provides L3/L4 protocol type */
1253         /* Bits (4,5) provides frag and VLAN info */
1254         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1255                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1256                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1257                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1258                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1259                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1260                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1261                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1262
1263         if (val < QEDE_PKT_TYPE_MAX)
1264                 return ptype_lkup_tbl[val];
1265
1266         return RTE_PTYPE_UNKNOWN;
1267 }
1268
1269 static inline uint8_t
1270 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1271 {
1272         struct rte_ipv4_hdr *ip;
1273         uint16_t pkt_csum;
1274         uint16_t calc_csum;
1275         uint16_t val;
1276
1277         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1278                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1279
1280         if (unlikely(val)) {
1281                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1282                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1283                         ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
1284                                            sizeof(struct rte_ether_hdr));
1285                         pkt_csum = ip->hdr_checksum;
1286                         ip->hdr_checksum = 0;
1287                         calc_csum = rte_ipv4_cksum(ip);
1288                         ip->hdr_checksum = pkt_csum;
1289                         return (calc_csum != pkt_csum);
1290                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1291                         return 1;
1292                 }
1293         }
1294         return 0;
1295 }
1296
1297 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1298 {
1299         ecore_chain_consume(&rxq->rx_bd_ring);
1300         rxq->sw_rx_cons++;
1301 }
1302
1303 static inline void
1304 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1305                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1306 {
1307         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1308         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1309         struct qede_rx_entry *curr_prod;
1310         dma_addr_t new_mapping;
1311
1312         curr_prod = &rxq->sw_rx_ring[idx];
1313         *curr_prod = *curr_cons;
1314
1315         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1316                       curr_prod->page_offset;
1317
1318         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1319         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1320
1321         rxq->sw_rx_prod++;
1322 }
1323
1324 static inline void
1325 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1326                         struct qede_dev *qdev, uint8_t count)
1327 {
1328         struct qede_rx_entry *curr_cons;
1329
1330         for (; count > 0; count--) {
1331                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1332                 qede_reuse_page(qdev, rxq, curr_cons);
1333                 qede_rx_bd_ring_consume(rxq);
1334         }
1335 }
1336
1337 static inline void
1338 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1339                                      struct qede_rx_queue *rxq,
1340                                      uint8_t agg_index, uint16_t len)
1341 {
1342         struct qede_agg_info *tpa_info;
1343         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1344         uint16_t cons_idx;
1345
1346         /* Under certain conditions it is possible that FW may not consume
1347          * additional or new BD. So decision to consume the BD must be made
1348          * based on len_list[0].
1349          */
1350         if (rte_le_to_cpu_16(len)) {
1351                 tpa_info = &rxq->tpa_info[agg_index];
1352                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1353                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1354                 assert(curr_frag);
1355                 curr_frag->nb_segs = 1;
1356                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1357                 curr_frag->data_len = curr_frag->pkt_len;
1358                 tpa_info->tpa_tail->next = curr_frag;
1359                 tpa_info->tpa_tail = curr_frag;
1360                 qede_rx_bd_ring_consume(rxq);
1361                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1362                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1363                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1364                         rxq->rx_alloc_errors++;
1365                 }
1366         }
1367 }
1368
1369 static inline void
1370 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1371                              struct qede_rx_queue *rxq,
1372                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1373 {
1374         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1375                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1376         /* only len_list[0] will have value */
1377         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1378                                              cqe->len_list[0]);
1379 }
1380
1381 static inline void
1382 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1383                             struct qede_rx_queue *rxq,
1384                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1385 {
1386         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1387
1388         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1389                                              cqe->len_list[0]);
1390         /* Update total length and frags based on end TPA */
1391         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1392         /* TODO:  Add Sanity Checks */
1393         rx_mb->nb_segs = cqe->num_of_bds;
1394         rx_mb->pkt_len = cqe->total_packet_len;
1395
1396         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1397                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1398                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1399                    rx_mb->pkt_len);
1400 }
1401
1402 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1403 {
1404         uint32_t val;
1405
1406         /* Lookup table */
1407         static const uint32_t
1408         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1409                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1410                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1411                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1412                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1413                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1414                                 RTE_PTYPE_TUNNEL_GENEVE,
1415                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1416                                 RTE_PTYPE_TUNNEL_GRE,
1417                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1418                                 RTE_PTYPE_TUNNEL_VXLAN,
1419                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1420                                 RTE_PTYPE_TUNNEL_GENEVE,
1421                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1422                                 RTE_PTYPE_TUNNEL_GRE,
1423                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1424                                 RTE_PTYPE_TUNNEL_VXLAN,
1425                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1426                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1427                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1428                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1429                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1430                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1431                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1432                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1433                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1434                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1435                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1436                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1437                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1438                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1439                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1440                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1441                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1442                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1443                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1444                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1445                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1446                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1447                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1448                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1449         };
1450
1451         /* Cover bits[4-0] to include tunn_type and next protocol */
1452         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1453                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1454                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1455                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1456
1457         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1458                 return ptype_tunn_lkup_tbl[val];
1459         else
1460                 return RTE_PTYPE_UNKNOWN;
1461 }
1462
1463 static inline int
1464 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1465                      uint8_t num_segs, uint16_t pkt_len)
1466 {
1467         struct qede_rx_queue *rxq = p_rxq;
1468         struct qede_dev *qdev = rxq->qdev;
1469         register struct rte_mbuf *seg1 = NULL;
1470         register struct rte_mbuf *seg2 = NULL;
1471         uint16_t sw_rx_index;
1472         uint16_t cur_size;
1473
1474         seg1 = rx_mb;
1475         while (num_segs) {
1476                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1477                                                         pkt_len;
1478                 if (unlikely(!cur_size)) {
1479                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1480                                    " left for mapping jumbo\n", num_segs);
1481                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1482                         return -EINVAL;
1483                 }
1484                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1485                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1486                 qede_rx_bd_ring_consume(rxq);
1487                 pkt_len -= cur_size;
1488                 seg2->data_len = cur_size;
1489                 seg1->next = seg2;
1490                 seg1 = seg1->next;
1491                 num_segs--;
1492                 rxq->rx_segs++;
1493         }
1494
1495         return 0;
1496 }
1497
1498 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1499 static inline void
1500 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1501                  uint8_t bitfield)
1502 {
1503         PMD_RX_LOG(INFO, rxq,
1504                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1505                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1506                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1507                 m->data_len, bitfield, m->hash.rss,
1508                 (unsigned long)m->ol_flags,
1509                 rte_get_ptype_l2_name(m->packet_type),
1510                 rte_get_ptype_l3_name(m->packet_type),
1511                 rte_get_ptype_l4_name(m->packet_type),
1512                 rte_get_ptype_tunnel_name(m->packet_type),
1513                 rte_get_ptype_inner_l2_name(m->packet_type),
1514                 rte_get_ptype_inner_l3_name(m->packet_type),
1515                 rte_get_ptype_inner_l4_name(m->packet_type));
1516 }
1517 #endif
1518
1519 uint16_t
1520 qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1521 {
1522         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1523         register struct rte_mbuf *rx_mb = NULL;
1524         struct qede_rx_queue *rxq = p_rxq;
1525         struct qede_dev *qdev = rxq->qdev;
1526         struct ecore_dev *edev = &qdev->edev;
1527         union eth_rx_cqe *cqe;
1528         uint64_t ol_flags;
1529         enum eth_rx_cqe_type cqe_type;
1530         int rss_enable = qdev->rss_enable;
1531         int rx_alloc_count = 0;
1532         uint32_t packet_type;
1533         uint32_t rss_hash;
1534         uint16_t vlan_tci, port_id;
1535         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds;
1536         uint16_t rx_pkt = 0;
1537         uint16_t pkt_len = 0;
1538         uint16_t len; /* Length of first BD */
1539         uint16_t preload_idx;
1540         uint16_t parse_flag;
1541 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1542         uint8_t bitfield_val;
1543 #endif
1544         uint8_t offset, flags, bd_num;
1545
1546
1547         /* Allocate buffers that we used in previous loop */
1548         if (rxq->rx_alloc_count) {
1549                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1550                              rxq->rx_alloc_count))) {
1551                         struct rte_eth_dev *dev;
1552
1553                         PMD_RX_LOG(ERR, rxq,
1554                                    "New buffer allocation failed,"
1555                                    "dropping incoming packetn");
1556                         dev = &rte_eth_devices[rxq->port_id];
1557                         dev->data->rx_mbuf_alloc_failed +=
1558                                                         rxq->rx_alloc_count;
1559                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1560                         return 0;
1561                 }
1562                 qede_update_rx_prod(qdev, rxq);
1563                 rxq->rx_alloc_count = 0;
1564         }
1565
1566         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1567         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1568
1569         rte_rmb();
1570
1571         if (hw_comp_cons == sw_comp_cons)
1572                 return 0;
1573
1574         num_rx_bds =  NUM_RX_BDS(rxq);
1575         port_id = rxq->port_id;
1576
1577         while (sw_comp_cons != hw_comp_cons) {
1578                 ol_flags = 0;
1579                 packet_type = RTE_PTYPE_UNKNOWN;
1580                 vlan_tci = 0;
1581                 rss_hash = 0;
1582
1583                 /* Get the CQE from the completion ring */
1584                 cqe =
1585                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1586                 cqe_type = cqe->fast_path_regular.type;
1587                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1588
1589                 if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) {
1590                         fp_cqe = &cqe->fast_path_regular;
1591                 } else {
1592                         if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) {
1593                                 PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1594                                 ecore_eth_cqe_completion
1595                                         (&edev->hwfns[rxq->queue_id %
1596                                                       edev->num_hwfns],
1597                                          (struct eth_slow_path_rx_cqe *)cqe);
1598                         }
1599                         goto next_cqe;
1600                 }
1601
1602                 /* Get the data from the SW ring */
1603                 sw_rx_index = rxq->sw_rx_cons & num_rx_bds;
1604                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1605                 assert(rx_mb != NULL);
1606
1607                 parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1608                 offset = fp_cqe->placement_offset;
1609                 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1610                 pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1611                 vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1612                 rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1613                 bd_num = fp_cqe->bd_num;
1614 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1615                 bitfield_val = fp_cqe->bitfields;
1616 #endif
1617
1618                 if (unlikely(qede_tunn_exist(parse_flag))) {
1619                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1620                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1621                                 PMD_RX_LOG(ERR, rxq,
1622                                             "L4 csum failed, flags = 0x%x\n",
1623                                             parse_flag);
1624                                 rxq->rx_hw_errors++;
1625                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1626                         } else {
1627                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1628                         }
1629
1630                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1631                                 PMD_RX_LOG(ERR, rxq,
1632                                         "Outer L3 csum failed, flags = 0x%x\n",
1633                                         parse_flag);
1634                                 rxq->rx_hw_errors++;
1635                                 ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1636                         } else {
1637                                 ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1638                         }
1639
1640                         flags = fp_cqe->tunnel_pars_flags.flags;
1641
1642                         /* Tunnel_type */
1643                         packet_type =
1644                                 qede_rx_cqe_to_tunn_pkt_type(flags);
1645
1646                         /* Inner header */
1647                         packet_type |=
1648                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1649
1650                         /* Outer L3/L4 types is not available in CQE */
1651                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1652
1653                         /* Outer L3/L4 types is not available in CQE.
1654                          * Need to add offset to parse correctly,
1655                          */
1656                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1657                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1658                 } else {
1659                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1660                 }
1661
1662                 /* Common handling for non-tunnel packets and for inner
1663                  * headers in the case of tunnel.
1664                  */
1665                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1666                         PMD_RX_LOG(ERR, rxq,
1667                                     "L4 csum failed, flags = 0x%x\n",
1668                                     parse_flag);
1669                         rxq->rx_hw_errors++;
1670                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1671                 } else {
1672                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1673                 }
1674                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1675                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1676                                    parse_flag);
1677                         rxq->rx_hw_errors++;
1678                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1679                 } else {
1680                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1681                 }
1682
1683                 if (unlikely(CQE_HAS_VLAN(parse_flag) ||
1684                              CQE_HAS_OUTER_VLAN(parse_flag))) {
1685                         /* Note: FW doesn't indicate Q-in-Q packet */
1686                         ol_flags |= PKT_RX_VLAN;
1687                         if (qdev->vlan_strip_flg) {
1688                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1689                                 rx_mb->vlan_tci = vlan_tci;
1690                         }
1691                 }
1692
1693                 if (rss_enable) {
1694                         ol_flags |= PKT_RX_RSS_HASH;
1695                         rx_mb->hash.rss = rss_hash;
1696                 }
1697
1698                 rx_alloc_count++;
1699                 qede_rx_bd_ring_consume(rxq);
1700
1701                 /* Prefetch next mbuf while processing current one. */
1702                 preload_idx = rxq->sw_rx_cons & num_rx_bds;
1703                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1704
1705                 /* Update rest of the MBUF fields */
1706                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1707                 rx_mb->port = port_id;
1708                 rx_mb->ol_flags = ol_flags;
1709                 rx_mb->data_len = len;
1710                 rx_mb->packet_type = packet_type;
1711 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1712                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1713 #endif
1714                 rx_mb->nb_segs = bd_num;
1715                 rx_mb->pkt_len = pkt_len;
1716
1717                 rx_pkts[rx_pkt] = rx_mb;
1718                 rx_pkt++;
1719
1720 next_cqe:
1721                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1722                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1723                 if (rx_pkt == nb_pkts) {
1724                         PMD_RX_LOG(DEBUG, rxq,
1725                                    "Budget reached nb_pkts=%u received=%u",
1726                                    rx_pkt, nb_pkts);
1727                         break;
1728                 }
1729         }
1730
1731         /* Request number of bufferes to be allocated in next loop */
1732         rxq->rx_alloc_count = rx_alloc_count;
1733
1734         rxq->rcv_pkts += rx_pkt;
1735         rxq->rx_segs += rx_pkt;
1736         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1737
1738         return rx_pkt;
1739 }
1740
1741 uint16_t
1742 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1743 {
1744         struct qede_rx_queue *rxq = p_rxq;
1745         struct qede_dev *qdev = rxq->qdev;
1746         struct ecore_dev *edev = &qdev->edev;
1747         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1748         uint16_t rx_pkt = 0;
1749         union eth_rx_cqe *cqe;
1750         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1751         register struct rte_mbuf *rx_mb = NULL;
1752         register struct rte_mbuf *seg1 = NULL;
1753         enum eth_rx_cqe_type cqe_type;
1754         uint16_t pkt_len = 0; /* Sum of all BD segments */
1755         uint16_t len; /* Length of first BD */
1756         uint8_t num_segs = 1;
1757         uint16_t preload_idx;
1758         uint16_t parse_flag;
1759 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1760         uint8_t bitfield_val;
1761 #endif
1762         uint8_t tunn_parse_flag;
1763         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1764         uint64_t ol_flags;
1765         uint32_t packet_type;
1766         uint16_t vlan_tci;
1767         bool tpa_start_flg;
1768         uint8_t offset, tpa_agg_idx, flags;
1769         struct qede_agg_info *tpa_info = NULL;
1770         uint32_t rss_hash;
1771         int rx_alloc_count = 0;
1772
1773
1774         /* Allocate buffers that we used in previous loop */
1775         if (rxq->rx_alloc_count) {
1776                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1777                              rxq->rx_alloc_count))) {
1778                         struct rte_eth_dev *dev;
1779
1780                         PMD_RX_LOG(ERR, rxq,
1781                                    "New buffer allocation failed,"
1782                                    "dropping incoming packetn");
1783                         dev = &rte_eth_devices[rxq->port_id];
1784                         dev->data->rx_mbuf_alloc_failed +=
1785                                                         rxq->rx_alloc_count;
1786                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1787                         return 0;
1788                 }
1789                 qede_update_rx_prod(qdev, rxq);
1790                 rxq->rx_alloc_count = 0;
1791         }
1792
1793         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1794         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1795
1796         rte_rmb();
1797
1798         if (hw_comp_cons == sw_comp_cons)
1799                 return 0;
1800
1801         while (sw_comp_cons != hw_comp_cons) {
1802                 ol_flags = 0;
1803                 packet_type = RTE_PTYPE_UNKNOWN;
1804                 vlan_tci = 0;
1805                 tpa_start_flg = false;
1806                 rss_hash = 0;
1807
1808                 /* Get the CQE from the completion ring */
1809                 cqe =
1810                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1811                 cqe_type = cqe->fast_path_regular.type;
1812                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1813
1814                 switch (cqe_type) {
1815                 case ETH_RX_CQE_TYPE_REGULAR:
1816                         fp_cqe = &cqe->fast_path_regular;
1817                 break;
1818                 case ETH_RX_CQE_TYPE_TPA_START:
1819                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1820                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1821                         tpa_start_flg = true;
1822                         /* Mark it as LRO packet */
1823                         ol_flags |= PKT_RX_LRO;
1824                         /* In split mode,  seg_len is same as len_on_first_bd
1825                          * and bw_ext_bd_len_list will be empty since there are
1826                          * no additional buffers
1827                          */
1828                         PMD_RX_LOG(INFO, rxq,
1829                          "TPA start[%d] - len_on_first_bd %d header %d"
1830                          " [bd_list[0] %d], [seg_len %d]\n",
1831                          cqe_start_tpa->tpa_agg_index,
1832                          rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1833                          cqe_start_tpa->header_len,
1834                          rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]),
1835                          rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1836
1837                 break;
1838                 case ETH_RX_CQE_TYPE_TPA_CONT:
1839                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1840                                                      &cqe->fast_path_tpa_cont);
1841                         goto next_cqe;
1842                 case ETH_RX_CQE_TYPE_TPA_END:
1843                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1844                                                     &cqe->fast_path_tpa_end);
1845                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1846                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1847                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1848                         goto tpa_end;
1849                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1850                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1851                         ecore_eth_cqe_completion(
1852                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1853                                 (struct eth_slow_path_rx_cqe *)cqe);
1854                         /* fall-thru */
1855                 default:
1856                         goto next_cqe;
1857                 }
1858
1859                 /* Get the data from the SW ring */
1860                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1861                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1862                 assert(rx_mb != NULL);
1863
1864                 /* Handle regular CQE or TPA start CQE */
1865                 if (!tpa_start_flg) {
1866                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1867                         offset = fp_cqe->placement_offset;
1868                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1869                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1870                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1871                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1872 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1873                         bitfield_val = fp_cqe->bitfields;
1874 #endif
1875                 } else {
1876                         parse_flag =
1877                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1878                         offset = cqe_start_tpa->placement_offset;
1879                         /* seg_len = len_on_first_bd */
1880                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1881                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1882 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1883                         bitfield_val = cqe_start_tpa->bitfields;
1884 #endif
1885                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1886                 }
1887                 if (qede_tunn_exist(parse_flag)) {
1888                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1889                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1890                                 PMD_RX_LOG(ERR, rxq,
1891                                             "L4 csum failed, flags = 0x%x\n",
1892                                             parse_flag);
1893                                 rxq->rx_hw_errors++;
1894                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1895                         } else {
1896                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1897                         }
1898
1899                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1900                                 PMD_RX_LOG(ERR, rxq,
1901                                         "Outer L3 csum failed, flags = 0x%x\n",
1902                                         parse_flag);
1903                                   rxq->rx_hw_errors++;
1904                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1905                         } else {
1906                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1907                         }
1908
1909                         if (tpa_start_flg)
1910                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1911                         else
1912                                 flags = fp_cqe->tunnel_pars_flags.flags;
1913                         tunn_parse_flag = flags;
1914
1915                         /* Tunnel_type */
1916                         packet_type =
1917                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1918
1919                         /* Inner header */
1920                         packet_type |=
1921                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1922
1923                         /* Outer L3/L4 types is not available in CQE */
1924                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1925
1926                         /* Outer L3/L4 types is not available in CQE.
1927                          * Need to add offset to parse correctly,
1928                          */
1929                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1930                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1931                 } else {
1932                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1933                 }
1934
1935                 /* Common handling for non-tunnel packets and for inner
1936                  * headers in the case of tunnel.
1937                  */
1938                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1939                         PMD_RX_LOG(ERR, rxq,
1940                                     "L4 csum failed, flags = 0x%x\n",
1941                                     parse_flag);
1942                         rxq->rx_hw_errors++;
1943                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1944                 } else {
1945                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1946                 }
1947                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1948                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1949                                    parse_flag);
1950                         rxq->rx_hw_errors++;
1951                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1952                 } else {
1953                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1954                 }
1955
1956                 if (CQE_HAS_VLAN(parse_flag) ||
1957                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1958                         /* Note: FW doesn't indicate Q-in-Q packet */
1959                         ol_flags |= PKT_RX_VLAN;
1960                         if (qdev->vlan_strip_flg) {
1961                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1962                                 rx_mb->vlan_tci = vlan_tci;
1963                         }
1964                 }
1965
1966                 /* RSS Hash */
1967                 if (qdev->rss_enable) {
1968                         ol_flags |= PKT_RX_RSS_HASH;
1969                         rx_mb->hash.rss = rss_hash;
1970                 }
1971
1972                 rx_alloc_count++;
1973                 qede_rx_bd_ring_consume(rxq);
1974
1975                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1976                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1977                                    " len on first: %04x Total Len: %04x",
1978                                    fp_cqe->bd_num, len, pkt_len);
1979                         num_segs = fp_cqe->bd_num - 1;
1980                         seg1 = rx_mb;
1981                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1982                                                  pkt_len - len))
1983                                 goto next_cqe;
1984
1985                         rx_alloc_count += num_segs;
1986                         rxq->rx_segs += num_segs;
1987                 }
1988                 rxq->rx_segs++; /* for the first segment */
1989
1990                 /* Prefetch next mbuf while processing current one. */
1991                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1992                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1993
1994                 /* Update rest of the MBUF fields */
1995                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1996                 rx_mb->port = rxq->port_id;
1997                 rx_mb->ol_flags = ol_flags;
1998                 rx_mb->data_len = len;
1999                 rx_mb->packet_type = packet_type;
2000 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
2001                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
2002 #endif
2003                 if (!tpa_start_flg) {
2004                         rx_mb->nb_segs = fp_cqe->bd_num;
2005                         rx_mb->pkt_len = pkt_len;
2006                 } else {
2007                         /* store ref to the updated mbuf */
2008                         tpa_info->tpa_head = rx_mb;
2009                         tpa_info->tpa_tail = tpa_info->tpa_head;
2010                 }
2011                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
2012 tpa_end:
2013                 if (!tpa_start_flg) {
2014                         rx_pkts[rx_pkt] = rx_mb;
2015                         rx_pkt++;
2016                 }
2017 next_cqe:
2018                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
2019                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2020                 if (rx_pkt == nb_pkts) {
2021                         PMD_RX_LOG(DEBUG, rxq,
2022                                    "Budget reached nb_pkts=%u received=%u",
2023                                    rx_pkt, nb_pkts);
2024                         break;
2025                 }
2026         }
2027
2028         /* Request number of bufferes to be allocated in next loop */
2029         rxq->rx_alloc_count = rx_alloc_count;
2030
2031         rxq->rcv_pkts += rx_pkt;
2032
2033         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
2034
2035         return rx_pkt;
2036 }
2037
2038 uint16_t
2039 qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2040 {
2041         struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2042         uint16_t eng0_pkts, eng1_pkts;
2043
2044         eng0_pkts = nb_pkts / 2;
2045
2046         eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts);
2047
2048         eng1_pkts = nb_pkts - eng0_pkts;
2049
2050         eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts,
2051                                    eng1_pkts);
2052
2053         return eng0_pkts + eng1_pkts;
2054 }
2055
2056 /* Populate scatter gather buffer descriptor fields */
2057 static inline uint16_t
2058 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
2059                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
2060                   uint16_t start_seg)
2061 {
2062         struct qede_tx_queue *txq = p_txq;
2063         struct eth_tx_bd *tx_bd = NULL;
2064         dma_addr_t mapping;
2065         uint16_t nb_segs = 0;
2066
2067         /* Check for scattered buffers */
2068         while (m_seg) {
2069                 if (start_seg == 0) {
2070                         if (!*bd2) {
2071                                 *bd2 = (struct eth_tx_2nd_bd *)
2072                                         ecore_chain_produce(&txq->tx_pbl);
2073                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
2074                                 nb_segs++;
2075                         }
2076                         mapping = rte_mbuf_data_iova(m_seg);
2077                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
2078                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
2079                 } else if (start_seg == 1) {
2080                         if (!*bd3) {
2081                                 *bd3 = (struct eth_tx_3rd_bd *)
2082                                         ecore_chain_produce(&txq->tx_pbl);
2083                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
2084                                 nb_segs++;
2085                         }
2086                         mapping = rte_mbuf_data_iova(m_seg);
2087                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
2088                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
2089                 } else {
2090                         tx_bd = (struct eth_tx_bd *)
2091                                 ecore_chain_produce(&txq->tx_pbl);
2092                         memset(tx_bd, 0, sizeof(*tx_bd));
2093                         nb_segs++;
2094                         mapping = rte_mbuf_data_iova(m_seg);
2095                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
2096                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
2097                 }
2098                 start_seg++;
2099                 m_seg = m_seg->next;
2100         }
2101
2102         /* Return total scattered buffers */
2103         return nb_segs;
2104 }
2105
2106 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2107 static inline void
2108 print_tx_bd_info(struct qede_tx_queue *txq,
2109                  struct eth_tx_1st_bd *bd1,
2110                  struct eth_tx_2nd_bd *bd2,
2111                  struct eth_tx_3rd_bd *bd3,
2112                  uint64_t tx_ol_flags)
2113 {
2114         char ol_buf[256] = { 0 }; /* for verbose prints */
2115
2116         if (bd1)
2117                 PMD_TX_LOG(INFO, txq,
2118                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
2119                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
2120                    bd1->data.bd_flags.bitfields,
2121                    rte_cpu_to_le_16(bd1->data.bitfields));
2122         if (bd2)
2123                 PMD_TX_LOG(INFO, txq,
2124                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
2125                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
2126                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
2127         if (bd3)
2128                 PMD_TX_LOG(INFO, txq,
2129                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
2130                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
2131                    rte_cpu_to_le_16(bd3->nbytes),
2132                    rte_cpu_to_le_16(bd3->data.bitfields),
2133                    rte_cpu_to_le_16(bd3->data.lso_mss),
2134                    bd3->data.tunn_l4_hdr_start_offset_w,
2135                    bd3->data.tunn_hdr_size_w);
2136
2137         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
2138         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
2139 }
2140 #endif
2141
2142 /* TX prepare to check packets meets TX conditions */
2143 uint16_t
2144 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2145 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
2146                     uint16_t nb_pkts)
2147 {
2148         struct qede_tx_queue *txq = p_txq;
2149 #else
2150 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
2151                     uint16_t nb_pkts)
2152 {
2153 #endif
2154         uint64_t ol_flags;
2155         struct rte_mbuf *m;
2156         uint16_t i;
2157 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2158         int ret;
2159 #endif
2160
2161         for (i = 0; i < nb_pkts; i++) {
2162                 m = tx_pkts[i];
2163                 ol_flags = m->ol_flags;
2164                 if (ol_flags & PKT_TX_TCP_SEG) {
2165                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
2166                                 rte_errno = EINVAL;
2167                                 break;
2168                         }
2169                         /* TBD: confirm its ~9700B for both ? */
2170                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
2171                                 rte_errno = EINVAL;
2172                                 break;
2173                         }
2174                 } else {
2175                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
2176                                 rte_errno = EINVAL;
2177                                 break;
2178                         }
2179                 }
2180                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
2181                         /* We support only limited tunnel protocols */
2182                         if (ol_flags & PKT_TX_TUNNEL_MASK) {
2183                                 uint64_t temp;
2184
2185                                 temp = ol_flags & PKT_TX_TUNNEL_MASK;
2186                                 if (temp == PKT_TX_TUNNEL_VXLAN ||
2187                                     temp == PKT_TX_TUNNEL_GENEVE ||
2188                                     temp == PKT_TX_TUNNEL_MPLSINUDP ||
2189                                     temp == PKT_TX_TUNNEL_GRE)
2190                                         continue;
2191                         }
2192
2193                         rte_errno = ENOTSUP;
2194                         break;
2195                 }
2196
2197 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2198                 ret = rte_validate_tx_offload(m);
2199                 if (ret != 0) {
2200                         rte_errno = -ret;
2201                         break;
2202                 }
2203 #endif
2204         }
2205
2206 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2207         if (unlikely(i != nb_pkts))
2208                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
2209                            nb_pkts - i);
2210 #endif
2211         return i;
2212 }
2213
2214 #define MPLSINUDP_HDR_SIZE                      (12)
2215
2216 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2217 static inline void
2218 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
2219                                struct qede_tx_queue *txq)
2220 {
2221         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
2222                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
2223         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
2224                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
2225                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
2226         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
2227                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
2228                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2229         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
2230                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
2231                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2232 }
2233 #endif
2234
2235 uint16_t
2236 qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2237 {
2238         struct qede_tx_queue *txq = p_txq;
2239         struct qede_dev *qdev = txq->qdev;
2240         struct ecore_dev *edev = &qdev->edev;
2241         struct eth_tx_1st_bd *bd1;
2242         struct eth_tx_2nd_bd *bd2;
2243         struct eth_tx_3rd_bd *bd3;
2244         struct rte_mbuf *m_seg = NULL;
2245         struct rte_mbuf *mbuf;
2246         struct qede_tx_entry *sw_tx_ring;
2247         uint16_t nb_tx_pkts;
2248         uint16_t bd_prod;
2249         uint16_t idx;
2250         uint16_t nb_frags = 0;
2251         uint16_t nb_pkt_sent = 0;
2252         uint8_t nbds;
2253         uint64_t tx_ol_flags;
2254         /* BD1 */
2255         uint16_t bd1_bf;
2256         uint8_t bd1_bd_flags_bf;
2257
2258         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2259                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2260                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2261                 qede_process_tx_compl(edev, txq);
2262         }
2263
2264         nb_tx_pkts  = nb_pkts;
2265         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2266         sw_tx_ring = txq->sw_tx_ring;
2267
2268         while (nb_tx_pkts--) {
2269                 /* Init flags/values */
2270                 nbds = 0;
2271                 bd1 = NULL;
2272                 bd2 = NULL;
2273                 bd3 = NULL;
2274                 bd1_bf = 0;
2275                 bd1_bd_flags_bf = 0;
2276                 nb_frags = 0;
2277
2278                 mbuf = *tx_pkts++;
2279                 assert(mbuf);
2280
2281
2282                 /* Check minimum TX BDS availability against available BDs */
2283                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2284                         break;
2285
2286                 tx_ol_flags = mbuf->ol_flags;
2287                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2288
2289                 if (unlikely(txq->nb_tx_avail <
2290                                 ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2291                         break;
2292                 bd1_bf |=
2293                        (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2294                         << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2295
2296                 /* Offload the IP checksum in the hardware */
2297                 if (tx_ol_flags & PKT_TX_IP_CKSUM)
2298                         bd1_bd_flags_bf |=
2299                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2300
2301                 /* L4 checksum offload (tcp or udp) */
2302                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2303                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM)))
2304                         bd1_bd_flags_bf |=
2305                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2306
2307                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2308                 idx = TX_PROD(txq);
2309                 sw_tx_ring[idx].mbuf = mbuf;
2310
2311                 /* BD1 */
2312                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2313                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2314                 nbds++;
2315
2316                 /* Map MBUF linear data for DMA and set in the BD1 */
2317                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2318                                      mbuf->data_len);
2319                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2320                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2321
2322                 /* Handle fragmented MBUF */
2323                 if (unlikely(mbuf->nb_segs > 1)) {
2324                         m_seg = mbuf->next;
2325
2326                         /* Encode scatter gather buffer descriptors */
2327                         nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3,
2328                                                      nbds - 1);
2329                 }
2330
2331                 bd1->data.nbds = nbds + nb_frags;
2332
2333                 txq->nb_tx_avail -= bd1->data.nbds;
2334                 txq->sw_tx_prod++;
2335                 bd_prod =
2336                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2337 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2338                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2339 #endif
2340                 nb_pkt_sent++;
2341                 txq->xmit_pkts++;
2342         }
2343
2344         /* Write value of prod idx into bd_prod */
2345         txq->tx_db.data.bd_prod = bd_prod;
2346         rte_wmb();
2347         rte_compiler_barrier();
2348         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2349         rte_wmb();
2350
2351         /* Check again for Tx completions */
2352         qede_process_tx_compl(edev, txq);
2353
2354         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2355                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2356
2357         return nb_pkt_sent;
2358 }
2359
2360 uint16_t
2361 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2362 {
2363         struct qede_tx_queue *txq = p_txq;
2364         struct qede_dev *qdev = txq->qdev;
2365         struct ecore_dev *edev = &qdev->edev;
2366         struct rte_mbuf *mbuf;
2367         struct rte_mbuf *m_seg = NULL;
2368         uint16_t nb_tx_pkts;
2369         uint16_t bd_prod;
2370         uint16_t idx;
2371         uint16_t nb_frags;
2372         uint16_t nb_pkt_sent = 0;
2373         uint8_t nbds;
2374         bool lso_flg;
2375         bool mplsoudp_flg;
2376         __rte_unused bool tunn_flg;
2377         bool tunn_ipv6_ext_flg;
2378         struct eth_tx_1st_bd *bd1;
2379         struct eth_tx_2nd_bd *bd2;
2380         struct eth_tx_3rd_bd *bd3;
2381         uint64_t tx_ol_flags;
2382         uint16_t hdr_size;
2383         /* BD1 */
2384         uint16_t bd1_bf;
2385         uint8_t bd1_bd_flags_bf;
2386         uint16_t vlan;
2387         /* BD2 */
2388         uint16_t bd2_bf1;
2389         uint16_t bd2_bf2;
2390         /* BD3 */
2391         uint16_t mss;
2392         uint16_t bd3_bf;
2393
2394         uint8_t tunn_l4_hdr_start_offset;
2395         uint8_t tunn_hdr_size;
2396         uint8_t inner_l2_hdr_size;
2397         uint16_t inner_l4_hdr_offset;
2398
2399         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2400                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2401                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2402                 qede_process_tx_compl(edev, txq);
2403         }
2404
2405         nb_tx_pkts  = nb_pkts;
2406         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2407         while (nb_tx_pkts--) {
2408                 /* Init flags/values */
2409                 tunn_flg = false;
2410                 lso_flg = false;
2411                 nbds = 0;
2412                 vlan = 0;
2413                 bd1 = NULL;
2414                 bd2 = NULL;
2415                 bd3 = NULL;
2416                 hdr_size = 0;
2417                 bd1_bf = 0;
2418                 bd1_bd_flags_bf = 0;
2419                 bd2_bf1 = 0;
2420                 bd2_bf2 = 0;
2421                 mss = 0;
2422                 bd3_bf = 0;
2423                 mplsoudp_flg = false;
2424                 tunn_ipv6_ext_flg = false;
2425                 tunn_hdr_size = 0;
2426                 tunn_l4_hdr_start_offset = 0;
2427
2428                 mbuf = *tx_pkts++;
2429                 assert(mbuf);
2430
2431                 /* Check minimum TX BDS availability against available BDs */
2432                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2433                         break;
2434
2435                 tx_ol_flags = mbuf->ol_flags;
2436                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2437
2438                 /* TX prepare would have already checked supported tunnel Tx
2439                  * offloads. Don't rely on pkt_type marked by Rx, instead use
2440                  * tx_ol_flags to decide.
2441                  */
2442                 tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
2443
2444                 if (tunn_flg) {
2445                         /* Check against max which is Tunnel IPv6 + ext */
2446                         if (unlikely(txq->nb_tx_avail <
2447                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
2448                                         break;
2449
2450                         /* First indicate its a tunnel pkt */
2451                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
2452                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2453                         /* Legacy FW had flipped behavior in regard to this bit
2454                          * i.e. it needed to set to prevent FW from touching
2455                          * encapsulated packets when it didn't need to.
2456                          */
2457                         if (unlikely(txq->is_legacy)) {
2458                                 bd1_bf ^= 1 <<
2459                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2460                         }
2461
2462                         /* Outer IP checksum offload */
2463                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
2464                                            PKT_TX_OUTER_IPV4)) {
2465                                 bd1_bd_flags_bf |=
2466                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
2467                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
2468                         }
2469
2470                         /**
2471                          * Currently, only inner checksum offload in MPLS-in-UDP
2472                          * tunnel with one MPLS label is supported. Both outer
2473                          * and inner layers  lengths need to be provided in
2474                          * mbuf.
2475                          */
2476                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
2477                                                 PKT_TX_TUNNEL_MPLSINUDP) {
2478                                 mplsoudp_flg = true;
2479 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2480                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
2481 #endif
2482                                 /* Outer L4 offset in two byte words */
2483                                 tunn_l4_hdr_start_offset =
2484                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
2485                                 /* Tunnel header size in two byte words */
2486                                 tunn_hdr_size = (mbuf->outer_l2_len +
2487                                                 mbuf->outer_l3_len +
2488                                                 MPLSINUDP_HDR_SIZE) / 2;
2489                                 /* Inner L2 header size in two byte words */
2490                                 inner_l2_hdr_size = (mbuf->l2_len -
2491                                                 MPLSINUDP_HDR_SIZE) / 2;
2492                                 /* Inner L4 header offset from the beggining
2493                                  * of inner packet in two byte words
2494                                  */
2495                                 inner_l4_hdr_offset = (mbuf->l2_len -
2496                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2497
2498                                 /* Inner L2 size and address type */
2499                                 bd2_bf1 |= (inner_l2_hdr_size &
2500                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2501                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2502                                 bd2_bf1 |= (UNICAST_ADDRESS &
2503                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2504                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2505                                 /* Treated as IPv6+Ext */
2506                                 bd2_bf1 |=
2507                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2508
2509                                 /* Mark inner IPv6 if present */
2510                                 if (tx_ol_flags & PKT_TX_IPV6)
2511                                         bd2_bf1 |=
2512                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2513
2514                                 /* Inner L4 offsets */
2515                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2516                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
2517                                                         PKT_TX_TCP_CKSUM))) {
2518                                         /* Determines if BD3 is needed */
2519                                         tunn_ipv6_ext_flg = true;
2520                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
2521                                                         PKT_TX_UDP_CKSUM) {
2522                                                 bd2_bf1 |=
2523                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2524                                         }
2525
2526                                         /* TODO other pseudo checksum modes are
2527                                          * not supported
2528                                          */
2529                                         bd2_bf1 |=
2530                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2531                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2532                                         bd2_bf2 |= (inner_l4_hdr_offset &
2533                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2534                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2535                                 }
2536                         } /* End MPLSoUDP */
2537                 } /* End Tunnel handling */
2538
2539                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
2540                         lso_flg = true;
2541                         if (unlikely(txq->nb_tx_avail <
2542                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
2543                                 break;
2544                         /* For LSO, packet header and payload must reside on
2545                          * buffers pointed by different BDs. Using BD1 for HDR
2546                          * and BD2 onwards for data.
2547                          */
2548                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2549                         if (tunn_flg)
2550                                 hdr_size += mbuf->outer_l2_len +
2551                                             mbuf->outer_l3_len;
2552
2553                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2554                         bd1_bd_flags_bf |=
2555                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2556                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2557                         bd1_bd_flags_bf |=
2558                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2559                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2560                         /* Using one header BD */
2561                         bd3_bf |= rte_cpu_to_le_16(1 <<
2562                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2563                 } else {
2564                         if (unlikely(txq->nb_tx_avail <
2565                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2566                                 break;
2567                         bd1_bf |=
2568                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2569                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2570                 }
2571
2572                 /* Descriptor based VLAN insertion */
2573                 if (tx_ol_flags & PKT_TX_VLAN_PKT) {
2574                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2575                         bd1_bd_flags_bf |=
2576                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2577                 }
2578
2579                 /* Offload the IP checksum in the hardware */
2580                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2581                         bd1_bd_flags_bf |=
2582                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2583                         /* There's no DPDK flag to request outer-L4 csum
2584                          * offload. But in the case of tunnel if inner L3 or L4
2585                          * csum offload is requested then we need to force
2586                          * recalculation of L4 tunnel header csum also.
2587                          */
2588                         if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
2589                                                         PKT_TX_TUNNEL_GRE)) {
2590                                 bd1_bd_flags_bf |=
2591                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2592                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2593                         }
2594                 }
2595
2596                 /* L4 checksum offload (tcp or udp) */
2597                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2598                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2599                         bd1_bd_flags_bf |=
2600                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2601                         /* There's no DPDK flag to request outer-L4 csum
2602                          * offload. But in the case of tunnel if inner L3 or L4
2603                          * csum offload is requested then we need to force
2604                          * recalculation of L4 tunnel header csum also.
2605                          */
2606                         if (tunn_flg) {
2607                                 bd1_bd_flags_bf |=
2608                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2609                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2610                         }
2611                 }
2612
2613                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2614                 idx = TX_PROD(txq);
2615                 txq->sw_tx_ring[idx].mbuf = mbuf;
2616
2617                 /* BD1 */
2618                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2619                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2620                 nbds++;
2621
2622                 /* Map MBUF linear data for DMA and set in the BD1 */
2623                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2624                                      mbuf->data_len);
2625                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2626                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2627                 bd1->data.vlan = vlan;
2628
2629                 if (lso_flg || mplsoudp_flg) {
2630                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2631                                                         (&txq->tx_pbl);
2632                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2633                         nbds++;
2634
2635                         /* BD1 */
2636                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2637                                              hdr_size);
2638                         /* BD2 */
2639                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2640                                              rte_mbuf_data_iova(mbuf)),
2641                                              mbuf->data_len - hdr_size);
2642                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2643                         if (mplsoudp_flg) {
2644                                 bd2->data.bitfields2 =
2645                                         rte_cpu_to_le_16(bd2_bf2);
2646                                 /* Outer L3 size */
2647                                 bd2->data.tunn_ip_size =
2648                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2649                         }
2650                         /* BD3 */
2651                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2652                                 bd3 = (struct eth_tx_3rd_bd *)
2653                                         ecore_chain_produce(&txq->tx_pbl);
2654                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2655                                 nbds++;
2656                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2657                                 if (lso_flg)
2658                                         bd3->data.lso_mss = mss;
2659                                 if (mplsoudp_flg) {
2660                                         bd3->data.tunn_l4_hdr_start_offset_w =
2661                                                 tunn_l4_hdr_start_offset;
2662                                         bd3->data.tunn_hdr_size_w =
2663                                                 tunn_hdr_size;
2664                                 }
2665                         }
2666                 }
2667
2668                 /* Handle fragmented MBUF */
2669                 m_seg = mbuf->next;
2670
2671                 /* Encode scatter gather buffer descriptors if required */
2672                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2673                 bd1->data.nbds = nbds + nb_frags;
2674
2675                 txq->nb_tx_avail -= bd1->data.nbds;
2676                 txq->sw_tx_prod++;
2677                 bd_prod =
2678                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2679 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2680                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2681 #endif
2682                 nb_pkt_sent++;
2683                 txq->xmit_pkts++;
2684         }
2685
2686         /* Write value of prod idx into bd_prod */
2687         txq->tx_db.data.bd_prod = bd_prod;
2688         rte_wmb();
2689         rte_compiler_barrier();
2690         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2691         rte_wmb();
2692
2693         /* Check again for Tx completions */
2694         qede_process_tx_compl(edev, txq);
2695
2696         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2697                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2698
2699         return nb_pkt_sent;
2700 }
2701
2702 uint16_t
2703 qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2704 {
2705         struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2706         uint16_t eng0_pkts, eng1_pkts;
2707
2708         eng0_pkts = nb_pkts / 2;
2709
2710         eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts);
2711
2712         eng1_pkts = nb_pkts - eng0_pkts;
2713
2714         eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts,
2715                                    eng1_pkts);
2716
2717         return eng0_pkts + eng1_pkts;
2718 }
2719
2720 uint16_t
2721 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2722                      __rte_unused struct rte_mbuf **pkts,
2723                      __rte_unused uint16_t nb_pkts)
2724 {
2725         return 0;
2726 }
2727
2728
2729 /* this function does a fake walk through over completion queue
2730  * to calculate number of BDs used by HW.
2731  * At the end, it restores the state of completion queue.
2732  */
2733 static uint16_t
2734 qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2735 {
2736         uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2737         union eth_rx_cqe *cqe, *orig_cqe = NULL;
2738
2739         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2740         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2741
2742         if (hw_comp_cons == sw_comp_cons)
2743                 return 0;
2744
2745         /* Get the CQE from the completion ring */
2746         cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2747         orig_cqe = cqe;
2748
2749         while (sw_comp_cons != hw_comp_cons) {
2750                 switch (cqe->fast_path_regular.type) {
2751                 case ETH_RX_CQE_TYPE_REGULAR:
2752                         bd_count += cqe->fast_path_regular.bd_num;
2753                         break;
2754                 case ETH_RX_CQE_TYPE_TPA_END:
2755                         bd_count += cqe->fast_path_tpa_end.num_of_bds;
2756                         break;
2757                 default:
2758                         break;
2759                 }
2760
2761                 cqe =
2762                 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2763                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2764         }
2765
2766         /* revert comp_ring to original state */
2767         ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2768
2769         return bd_count;
2770 }
2771
2772 int
2773 qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2774 {
2775         uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2776         uint16_t produced, consumed;
2777         struct qede_rx_queue *rxq = p_rxq;
2778
2779         if (offset > rxq->nb_rx_desc)
2780                 return -EINVAL;
2781
2782         sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2783         sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2784
2785         /* find BDs used by HW from completion queue elements */
2786         hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2787
2788         if (hw_bd_cons < sw_bd_cons)
2789                 /* wraparound case */
2790                 consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2791         else
2792                 consumed = hw_bd_cons - sw_bd_cons;
2793
2794         if (offset <= consumed)
2795                 return RTE_ETH_RX_DESC_DONE;
2796
2797         if (sw_bd_prod < sw_bd_cons)
2798                 /* wraparound case */
2799                 produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2800         else
2801                 produced = sw_bd_prod - sw_bd_cons;
2802
2803         if (offset <= produced)
2804                 return RTE_ETH_RX_DESC_AVAIL;
2805
2806         return RTE_ETH_RX_DESC_UNAVAIL;
2807 }