net/qede: refactor Rx and Tx queue setup
[dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_net.h>
8 #include "qede_rxtx.h"
9
10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
11 {
12         struct rte_mbuf *new_mb = NULL;
13         struct eth_rx_bd *rx_bd;
14         dma_addr_t mapping;
15         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
16
17         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
18         if (unlikely(!new_mb)) {
19                 PMD_RX_LOG(ERR, rxq,
20                            "Failed to allocate rx buffer "
21                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
22                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
23                            rte_mempool_avail_count(rxq->mb_pool),
24                            rte_mempool_in_use_count(rxq->mb_pool));
25                 return -ENOMEM;
26         }
27         rxq->sw_rx_ring[idx].mbuf = new_mb;
28         rxq->sw_rx_ring[idx].page_offset = 0;
29         mapping = rte_mbuf_data_iova_default(new_mb);
30         /* Advance PROD and get BD pointer */
31         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
32         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
33         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
34         rxq->sw_rx_prod++;
35         return 0;
36 }
37
38 #define QEDE_MAX_BULK_ALLOC_COUNT 512
39
40 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
41 {
42         void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
43         struct rte_mbuf *mbuf = NULL;
44         struct eth_rx_bd *rx_bd;
45         dma_addr_t mapping;
46         int i, ret = 0;
47         uint16_t idx;
48
49         idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
50
51         if (count > QEDE_MAX_BULK_ALLOC_COUNT)
52                 count = QEDE_MAX_BULK_ALLOC_COUNT;
53
54         ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
55         if (unlikely(ret)) {
56                 PMD_RX_LOG(ERR, rxq,
57                            "Failed to allocate %d rx buffers "
58                             "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
59                             count, idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
60                             rte_mempool_avail_count(rxq->mb_pool),
61                             rte_mempool_in_use_count(rxq->mb_pool));
62                 return -ENOMEM;
63         }
64
65         for (i = 0; i < count; i++) {
66                 mbuf = obj_p[i];
67                 if (likely(i < count - 1))
68                         rte_prefetch0(obj_p[i + 1]);
69
70                 idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
71                 rxq->sw_rx_ring[idx].mbuf = mbuf;
72                 rxq->sw_rx_ring[idx].page_offset = 0;
73                 mapping = rte_mbuf_data_iova_default(mbuf);
74                 rx_bd = (struct eth_rx_bd *)
75                         ecore_chain_produce(&rxq->rx_bd_ring);
76                 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
77                 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
78                 rxq->sw_rx_prod++;
79         }
80
81         return 0;
82 }
83
84 /* Criterias for calculating Rx buffer size -
85  * 1) rx_buf_size should not exceed the size of mbuf
86  * 2) In scattered_rx mode - minimum rx_buf_size should be
87  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
88  * 3) In regular mode - minimum rx_buf_size should be
89  *    (MTU + Maximum L2 Header Size + 2)
90  *    In above cases +2 corrosponds to 2 bytes padding in front of L2
91  *    header.
92  * 4) rx_buf_size should be cacheline-size aligned. So considering
93  *    criteria 1, we need to adjust the size to floor instead of ceil,
94  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
95  */
96 int
97 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
98                       uint16_t max_frame_size)
99 {
100         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
101         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
102         int rx_buf_size;
103
104         if (dev->data->scattered_rx) {
105                 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
106                  * bufferes can be used for single packet. So need to make sure
107                  * mbuf size is sufficient enough for this.
108                  */
109                 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
110                      (max_frame_size + QEDE_ETH_OVERHEAD)) {
111                         DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
112                                mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
113                         return -EINVAL;
114                 }
115
116                 rx_buf_size = RTE_MAX(mbufsz,
117                                       (max_frame_size + QEDE_ETH_OVERHEAD) /
118                                        ETH_RX_MAX_BUFF_PER_PKT);
119         } else {
120                 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
121         }
122
123         /* Align to cache-line size if needed */
124         return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
125 }
126
127 static struct qede_rx_queue *
128 qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
129                         uint16_t queue_idx,
130                         uint16_t nb_desc,
131                         unsigned int socket_id,
132                         struct rte_mempool *mp,
133                         uint16_t bufsz)
134 {
135         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
136         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
137         struct qede_rx_queue *rxq;
138         size_t size;
139         int rc;
140
141         /* First allocate the rx queue data structure */
142         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
143                                  RTE_CACHE_LINE_SIZE, socket_id);
144
145         if (!rxq) {
146                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
147                           socket_id);
148                 return NULL;
149         }
150
151         rxq->qdev = qdev;
152         rxq->mb_pool = mp;
153         rxq->nb_rx_desc = nb_desc;
154         rxq->queue_id = queue_idx;
155         rxq->port_id = dev->data->port_id;
156
157
158         rxq->rx_buf_size = bufsz;
159
160         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
161                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
162
163         /* Allocate the parallel driver ring for Rx buffers */
164         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
165         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
166                                              RTE_CACHE_LINE_SIZE, socket_id);
167         if (!rxq->sw_rx_ring) {
168                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
169                        " socket %u\n", socket_id);
170                 rte_free(rxq);
171                 return NULL;
172         }
173
174         /* Allocate FW Rx ring  */
175         rc = qdev->ops->common->chain_alloc(edev,
176                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
177                                             ECORE_CHAIN_MODE_NEXT_PTR,
178                                             ECORE_CHAIN_CNT_TYPE_U16,
179                                             rxq->nb_rx_desc,
180                                             sizeof(struct eth_rx_bd),
181                                             &rxq->rx_bd_ring,
182                                             NULL);
183
184         if (rc != ECORE_SUCCESS) {
185                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
186                        " on socket %u\n", socket_id);
187                 rte_free(rxq->sw_rx_ring);
188                 rte_free(rxq);
189                 return NULL;
190         }
191
192         /* Allocate FW completion ring */
193         rc = qdev->ops->common->chain_alloc(edev,
194                                             ECORE_CHAIN_USE_TO_CONSUME,
195                                             ECORE_CHAIN_MODE_PBL,
196                                             ECORE_CHAIN_CNT_TYPE_U16,
197                                             rxq->nb_rx_desc,
198                                             sizeof(union eth_rx_cqe),
199                                             &rxq->rx_comp_ring,
200                                             NULL);
201
202         if (rc != ECORE_SUCCESS) {
203                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
204                        " on socket %u\n", socket_id);
205                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
206                 rte_free(rxq->sw_rx_ring);
207                 rte_free(rxq);
208                 return NULL;
209         }
210
211         return rxq;
212 }
213
214 int
215 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
216                     uint16_t nb_desc, unsigned int socket_id,
217                     __rte_unused const struct rte_eth_rxconf *rx_conf,
218                     struct rte_mempool *mp)
219 {
220         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
221         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
222         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
223         struct qede_rx_queue *rxq;
224         uint16_t max_rx_pkt_len;
225         uint16_t bufsz;
226         int rc;
227
228         PMD_INIT_FUNC_TRACE(edev);
229
230         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
231         if (!rte_is_power_of_2(nb_desc)) {
232                 DP_ERR(edev, "Ring size %u is not power of 2\n",
233                           nb_desc);
234                 return -EINVAL;
235         }
236
237         /* Free memory prior to re-allocation if needed... */
238         if (dev->data->rx_queues[qid] != NULL) {
239                 qede_rx_queue_release(dev->data->rx_queues[qid]);
240                 dev->data->rx_queues[qid] = NULL;
241         }
242
243         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
244
245         /* Fix up RX buffer size */
246         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
247         /* cache align the mbuf size to simplfy rx_buf_size calculation */
248         bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
249         if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
251                 if (!dev->data->scattered_rx) {
252                         DP_INFO(edev, "Forcing scatter-gather mode\n");
253                         dev->data->scattered_rx = 1;
254                 }
255         }
256
257         rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
258         if (rc < 0)
259                 return rc;
260
261         bufsz = rc;
262
263         rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
264                                       socket_id, mp, bufsz);
265         if (!rxq)
266                 return -ENOMEM;
267
268         dev->data->rx_queues[qid] = rxq;
269         qdev->fp_array[qid].rxq = rxq;
270
271         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
272                   qid, nb_desc, rxq->rx_buf_size, socket_id);
273
274         return 0;
275 }
276
277 static void
278 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
279                     struct qede_rx_queue *rxq)
280 {
281         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
282         ecore_chain_reset(&rxq->rx_bd_ring);
283         ecore_chain_reset(&rxq->rx_comp_ring);
284         rxq->sw_rx_prod = 0;
285         rxq->sw_rx_cons = 0;
286         *rxq->hw_cons_ptr = 0;
287 }
288
289 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
290 {
291         uint16_t i;
292
293         if (rxq->sw_rx_ring) {
294                 for (i = 0; i < rxq->nb_rx_desc; i++) {
295                         if (rxq->sw_rx_ring[i].mbuf) {
296                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
297                                 rxq->sw_rx_ring[i].mbuf = NULL;
298                         }
299                 }
300         }
301 }
302
303 static void _qede_rx_queue_release(struct qede_dev *qdev,
304                                    struct ecore_dev *edev,
305                                    struct qede_rx_queue *rxq)
306 {
307         qede_rx_queue_release_mbufs(rxq);
308         qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
309         qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
310         rte_free(rxq->sw_rx_ring);
311         rte_free(rxq);
312 }
313
314 void qede_rx_queue_release(void *rx_queue)
315 {
316         struct qede_rx_queue *rxq = rx_queue;
317         struct qede_dev *qdev;
318         struct ecore_dev *edev;
319
320         if (rxq) {
321                 qdev = rxq->qdev;
322                 edev = QEDE_INIT_EDEV(qdev);
323                 PMD_INIT_FUNC_TRACE(edev);
324                 _qede_rx_queue_release(qdev, edev, rxq);
325         }
326 }
327
328 /* Stops a given RX queue in the HW */
329 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
330 {
331         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
332         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
333         struct ecore_hwfn *p_hwfn;
334         struct qede_rx_queue *rxq;
335         int hwfn_index;
336         int rc;
337
338         if (rx_queue_id < qdev->num_rx_queues) {
339                 rxq = qdev->fp_array[rx_queue_id].rxq;
340                 hwfn_index = rx_queue_id % edev->num_hwfns;
341                 p_hwfn = &edev->hwfns[hwfn_index];
342                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
343                                 true, false);
344                 if (rc != ECORE_SUCCESS) {
345                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
346                         return -1;
347                 }
348                 qede_rx_queue_release_mbufs(rxq);
349                 qede_rx_queue_reset(qdev, rxq);
350                 eth_dev->data->rx_queue_state[rx_queue_id] =
351                         RTE_ETH_QUEUE_STATE_STOPPED;
352                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
353         } else {
354                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
355                 rc = -EINVAL;
356         }
357
358         return rc;
359 }
360
361 static struct qede_tx_queue *
362 qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
363                         uint16_t queue_idx,
364                         uint16_t nb_desc,
365                         unsigned int socket_id,
366                         const struct rte_eth_txconf *tx_conf)
367 {
368         struct qede_dev *qdev = dev->data->dev_private;
369         struct ecore_dev *edev = &qdev->edev;
370         struct qede_tx_queue *txq;
371         int rc;
372
373         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
374                                  RTE_CACHE_LINE_SIZE, socket_id);
375
376         if (txq == NULL) {
377                 DP_ERR(edev,
378                        "Unable to allocate memory for txq on socket %u",
379                        socket_id);
380                 return NULL;
381         }
382
383         txq->nb_tx_desc = nb_desc;
384         txq->qdev = qdev;
385         txq->port_id = dev->data->port_id;
386
387         rc = qdev->ops->common->chain_alloc(edev,
388                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
389                                             ECORE_CHAIN_MODE_PBL,
390                                             ECORE_CHAIN_CNT_TYPE_U16,
391                                             txq->nb_tx_desc,
392                                             sizeof(union eth_tx_bd_types),
393                                             &txq->tx_pbl,
394                                             NULL);
395         if (rc != ECORE_SUCCESS) {
396                 DP_ERR(edev,
397                        "Unable to allocate memory for txbd ring on socket %u",
398                        socket_id);
399                 qede_tx_queue_release(txq);
400                 return NULL;
401         }
402
403         /* Allocate software ring */
404         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
405                                              (sizeof(struct qede_tx_entry) *
406                                               txq->nb_tx_desc),
407                                              RTE_CACHE_LINE_SIZE, socket_id);
408
409         if (!txq->sw_tx_ring) {
410                 DP_ERR(edev,
411                        "Unable to allocate memory for txbd ring on socket %u",
412                        socket_id);
413                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
414                 qede_tx_queue_release(txq);
415                 return NULL;
416         }
417
418         txq->queue_id = queue_idx;
419
420         txq->nb_tx_avail = txq->nb_tx_desc;
421
422         txq->tx_free_thresh =
423             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
424             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
425
426         DP_INFO(edev,
427                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
428                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
429         return txq;
430 }
431
432 int
433 qede_tx_queue_setup(struct rte_eth_dev *dev,
434                     uint16_t queue_idx,
435                     uint16_t nb_desc,
436                     unsigned int socket_id,
437                     const struct rte_eth_txconf *tx_conf)
438 {
439         struct qede_dev *qdev = dev->data->dev_private;
440         struct ecore_dev *edev = &qdev->edev;
441         struct qede_tx_queue *txq;
442
443         PMD_INIT_FUNC_TRACE(edev);
444
445         if (!rte_is_power_of_2(nb_desc)) {
446                 DP_ERR(edev, "Ring size %u is not power of 2\n",
447                        nb_desc);
448                 return -EINVAL;
449         }
450
451         /* Free memory prior to re-allocation if needed... */
452         if (dev->data->tx_queues[queue_idx] != NULL) {
453                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
454                 dev->data->tx_queues[queue_idx] = NULL;
455         }
456
457         txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
458                                       socket_id, tx_conf);
459         if (!txq)
460                 return -ENOMEM;
461
462         dev->data->tx_queues[queue_idx] = txq;
463         qdev->fp_array[queue_idx].txq = txq;
464
465         return 0;
466 }
467
468 static void
469 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
470                     struct qede_tx_queue *txq)
471 {
472         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
473         ecore_chain_reset(&txq->tx_pbl);
474         txq->sw_tx_cons = 0;
475         txq->sw_tx_prod = 0;
476         *txq->hw_cons_ptr = 0;
477 }
478
479 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
480 {
481         uint16_t i;
482
483         if (txq->sw_tx_ring) {
484                 for (i = 0; i < txq->nb_tx_desc; i++) {
485                         if (txq->sw_tx_ring[i].mbuf) {
486                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
487                                 txq->sw_tx_ring[i].mbuf = NULL;
488                         }
489                 }
490         }
491 }
492
493 static void _qede_tx_queue_release(struct qede_dev *qdev,
494                                    struct ecore_dev *edev,
495                                    struct qede_tx_queue *txq)
496 {
497         qede_tx_queue_release_mbufs(txq);
498         qdev->ops->common->chain_free(edev, &txq->tx_pbl);
499         rte_free(txq->sw_tx_ring);
500         rte_free(txq);
501 }
502
503 void qede_tx_queue_release(void *tx_queue)
504 {
505         struct qede_tx_queue *txq = tx_queue;
506         struct qede_dev *qdev;
507         struct ecore_dev *edev;
508
509         if (txq) {
510                 qdev = txq->qdev;
511                 edev = QEDE_INIT_EDEV(qdev);
512                 PMD_INIT_FUNC_TRACE(edev);
513                 _qede_tx_queue_release(qdev, edev, txq);
514         }
515 }
516
517 /* This function allocates fast-path status block memory */
518 static int
519 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
520                   uint16_t sb_id)
521 {
522         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
523         struct status_block_e4 *sb_virt;
524         dma_addr_t sb_phys;
525         int rc;
526
527         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
528                                           sizeof(struct status_block_e4));
529         if (!sb_virt) {
530                 DP_ERR(edev, "Status block allocation failed\n");
531                 return -ENOMEM;
532         }
533         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
534                                         sb_phys, sb_id);
535         if (rc) {
536                 DP_ERR(edev, "Status block initialization failed\n");
537                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
538                                        sizeof(struct status_block_e4));
539                 return rc;
540         }
541
542         return 0;
543 }
544
545 int qede_alloc_fp_resc(struct qede_dev *qdev)
546 {
547         struct ecore_dev *edev = &qdev->edev;
548         struct qede_fastpath *fp;
549         uint32_t num_sbs;
550         uint16_t sb_idx;
551
552         if (IS_VF(edev))
553                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
554         else
555                 num_sbs = ecore_cxt_get_proto_cid_count
556                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
557
558         if (num_sbs == 0) {
559                 DP_ERR(edev, "No status blocks available\n");
560                 return -EINVAL;
561         }
562
563         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
564                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
565
566         if (!qdev->fp_array) {
567                 DP_ERR(edev, "fp array allocation failed\n");
568                 return -ENOMEM;
569         }
570
571         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
572                         sizeof(*qdev->fp_array));
573
574         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
575                 fp = &qdev->fp_array[sb_idx];
576                 if (!fp)
577                         continue;
578                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
579                                 RTE_CACHE_LINE_SIZE);
580                 if (!fp->sb_info) {
581                         DP_ERR(edev, "FP sb_info allocation fails\n");
582                         return -1;
583                 }
584                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
585                         DP_ERR(edev, "FP status block allocation fails\n");
586                         return -1;
587                 }
588                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
589                                 fp->sb_info->igu_sb_id);
590         }
591
592         return 0;
593 }
594
595 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
596 {
597         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
598         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
599         struct qede_fastpath *fp;
600         uint16_t sb_idx;
601         uint8_t i;
602
603         PMD_INIT_FUNC_TRACE(edev);
604
605         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
606                 fp = &qdev->fp_array[sb_idx];
607                 if (!fp)
608                         continue;
609                 DP_INFO(edev, "Free sb_info index 0x%x\n",
610                                 fp->sb_info->igu_sb_id);
611                 if (fp->sb_info) {
612                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
613                                 fp->sb_info->sb_phys,
614                                 sizeof(struct status_block_e4));
615                         rte_free(fp->sb_info);
616                         fp->sb_info = NULL;
617                 }
618         }
619
620         /* Free packet buffers and ring memories */
621         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
622                 if (eth_dev->data->rx_queues[i]) {
623                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
624                         eth_dev->data->rx_queues[i] = NULL;
625                 }
626         }
627
628         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
629                 if (eth_dev->data->tx_queues[i]) {
630                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
631                         eth_dev->data->tx_queues[i] = NULL;
632                 }
633         }
634
635         if (qdev->fp_array)
636                 rte_free(qdev->fp_array);
637         qdev->fp_array = NULL;
638 }
639
640 static inline void
641 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
642                     struct qede_rx_queue *rxq)
643 {
644         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
645         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
646         struct eth_rx_prod_data rx_prods = { 0 };
647
648         /* Update producers */
649         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
650         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
651
652         /* Make sure that the BD and SGE data is updated before updating the
653          * producers since FW might read the BD/SGE right after the producer
654          * is updated.
655          */
656         rte_wmb();
657
658         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
659                         (uint32_t *)&rx_prods);
660
661         /* mmiowb is needed to synchronize doorbell writes from more than one
662          * processor. It guarantees that the write arrives to the device before
663          * the napi lock is released and another qede_poll is called (possibly
664          * on another CPU). Without this barrier, the next doorbell can bypass
665          * this doorbell. This is applicable to IA64/Altix systems.
666          */
667         rte_wmb();
668
669         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
670 }
671
672 /* Starts a given RX queue in HW */
673 static int
674 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
675 {
676         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
677         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
678         struct ecore_queue_start_common_params params;
679         struct ecore_rxq_start_ret_params ret_params;
680         struct qede_rx_queue *rxq;
681         struct qede_fastpath *fp;
682         struct ecore_hwfn *p_hwfn;
683         dma_addr_t p_phys_table;
684         uint16_t page_cnt;
685         uint16_t j;
686         int hwfn_index;
687         int rc;
688
689         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
690                 fp = &qdev->fp_array[rx_queue_id];
691                 rxq = eth_dev->data->rx_queues[rx_queue_id];
692                 /* Allocate buffers for the Rx ring */
693                 for (j = 0; j < rxq->nb_rx_desc; j++) {
694                         rc = qede_alloc_rx_buffer(rxq);
695                         if (rc) {
696                                 DP_ERR(edev, "RX buffer allocation failed"
697                                                 " for rxq = %u\n", rx_queue_id);
698                                 return -ENOMEM;
699                         }
700                 }
701                 /* disable interrupts */
702                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
703                 /* Prepare ramrod */
704                 memset(&params, 0, sizeof(params));
705                 params.queue_id = rx_queue_id / edev->num_hwfns;
706                 params.vport_id = 0;
707                 params.stats_id = params.vport_id;
708                 params.p_sb = fp->sb_info;
709                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
710                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
711                 params.sb_idx = RX_PI;
712                 hwfn_index = rx_queue_id % edev->num_hwfns;
713                 p_hwfn = &edev->hwfns[hwfn_index];
714                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
715                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
716                 memset(&ret_params, 0, sizeof(ret_params));
717                 rc = ecore_eth_rx_queue_start(p_hwfn,
718                                 p_hwfn->hw_info.opaque_fid,
719                                 &params, fp->rxq->rx_buf_size,
720                                 fp->rxq->rx_bd_ring.p_phys_addr,
721                                 p_phys_table, page_cnt,
722                                 &ret_params);
723                 if (rc) {
724                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
725                                         rx_queue_id, rc);
726                         return -1;
727                 }
728                 /* Update with the returned parameters */
729                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
730                 fp->rxq->handle = ret_params.p_handle;
731
732                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
733                 qede_update_rx_prod(qdev, fp->rxq);
734                 eth_dev->data->rx_queue_state[rx_queue_id] =
735                         RTE_ETH_QUEUE_STATE_STARTED;
736                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
737         } else {
738                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
739                 rc = -EINVAL;
740         }
741
742         return rc;
743 }
744
745 static int
746 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
747 {
748         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
749         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
750         struct ecore_queue_start_common_params params;
751         struct ecore_txq_start_ret_params ret_params;
752         struct ecore_hwfn *p_hwfn;
753         dma_addr_t p_phys_table;
754         struct qede_tx_queue *txq;
755         struct qede_fastpath *fp;
756         uint16_t page_cnt;
757         int hwfn_index;
758         int rc;
759
760         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
761                 txq = eth_dev->data->tx_queues[tx_queue_id];
762                 fp = &qdev->fp_array[tx_queue_id];
763                 memset(&params, 0, sizeof(params));
764                 params.queue_id = tx_queue_id / edev->num_hwfns;
765                 params.vport_id = 0;
766                 params.stats_id = params.vport_id;
767                 params.p_sb = fp->sb_info;
768                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
769                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
770                 params.sb_idx = TX_PI(0); /* tc = 0 */
771                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
772                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
773                 hwfn_index = tx_queue_id % edev->num_hwfns;
774                 p_hwfn = &edev->hwfns[hwfn_index];
775                 if (qdev->dev_info.is_legacy)
776                         fp->txq->is_legacy = true;
777                 rc = ecore_eth_tx_queue_start(p_hwfn,
778                                 p_hwfn->hw_info.opaque_fid,
779                                 &params, 0 /* tc */,
780                                 p_phys_table, page_cnt,
781                                 &ret_params);
782                 if (rc != ECORE_SUCCESS) {
783                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
784                                         tx_queue_id, rc);
785                         return -1;
786                 }
787                 txq->doorbell_addr = ret_params.p_doorbell;
788                 txq->handle = ret_params.p_handle;
789
790                 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
791                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
792                                 DB_DEST_XCM);
793                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
794                                 DB_AGG_CMD_SET);
795                 SET_FIELD(txq->tx_db.data.params,
796                                 ETH_DB_DATA_AGG_VAL_SEL,
797                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
798                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
799                 eth_dev->data->tx_queue_state[tx_queue_id] =
800                         RTE_ETH_QUEUE_STATE_STARTED;
801                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
802         } else {
803                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
804                 rc = -EINVAL;
805         }
806
807         return rc;
808 }
809
810 static inline void
811 qede_free_tx_pkt(struct qede_tx_queue *txq)
812 {
813         struct rte_mbuf *mbuf;
814         uint16_t nb_segs;
815         uint16_t idx;
816
817         idx = TX_CONS(txq);
818         mbuf = txq->sw_tx_ring[idx].mbuf;
819         if (mbuf) {
820                 nb_segs = mbuf->nb_segs;
821                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
822                 while (nb_segs) {
823                         /* It's like consuming rxbuf in recv() */
824                         ecore_chain_consume(&txq->tx_pbl);
825                         txq->nb_tx_avail++;
826                         nb_segs--;
827                 }
828                 rte_pktmbuf_free(mbuf);
829                 txq->sw_tx_ring[idx].mbuf = NULL;
830                 txq->sw_tx_cons++;
831                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
832         } else {
833                 ecore_chain_consume(&txq->tx_pbl);
834                 txq->nb_tx_avail++;
835         }
836 }
837
838 static inline void
839 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
840                       struct qede_tx_queue *txq)
841 {
842         uint16_t hw_bd_cons;
843 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
844         uint16_t sw_tx_cons;
845 #endif
846
847         rte_compiler_barrier();
848         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
849 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
850         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
851         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
852                    abs(hw_bd_cons - sw_tx_cons));
853 #endif
854         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
855                 qede_free_tx_pkt(txq);
856 }
857
858 static int qede_drain_txq(struct qede_dev *qdev,
859                           struct qede_tx_queue *txq, bool allow_drain)
860 {
861         struct ecore_dev *edev = &qdev->edev;
862         int rc, cnt = 1000;
863
864         while (txq->sw_tx_cons != txq->sw_tx_prod) {
865                 qede_process_tx_compl(edev, txq);
866                 if (!cnt) {
867                         if (allow_drain) {
868                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
869                                           "requesting MCP to drain\n",
870                                           txq->queue_id);
871                                 rc = qdev->ops->common->drain(edev);
872                                 if (rc)
873                                         return rc;
874                                 return qede_drain_txq(qdev, txq, false);
875                         }
876                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
877                                   "PROD=%d, CONS=%d\n",
878                                   txq->queue_id, txq->sw_tx_prod,
879                                   txq->sw_tx_cons);
880                         return -1;
881                 }
882                 cnt--;
883                 DELAY(1000);
884                 rte_compiler_barrier();
885         }
886
887         /* FW finished processing, wait for HW to transmit all tx packets */
888         DELAY(2000);
889
890         return 0;
891 }
892
893 /* Stops a given TX queue in the HW */
894 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
895 {
896         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
897         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
898         struct ecore_hwfn *p_hwfn;
899         struct qede_tx_queue *txq;
900         int hwfn_index;
901         int rc;
902
903         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
904                 txq = eth_dev->data->tx_queues[tx_queue_id];
905                 /* Drain txq */
906                 if (qede_drain_txq(qdev, txq, true))
907                         return -1; /* For the lack of retcodes */
908                 /* Stop txq */
909                 hwfn_index = tx_queue_id % edev->num_hwfns;
910                 p_hwfn = &edev->hwfns[hwfn_index];
911                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
912                 if (rc != ECORE_SUCCESS) {
913                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
914                         return -1;
915                 }
916                 qede_tx_queue_release_mbufs(txq);
917                 qede_tx_queue_reset(qdev, txq);
918                 eth_dev->data->tx_queue_state[tx_queue_id] =
919                         RTE_ETH_QUEUE_STATE_STOPPED;
920                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
921         } else {
922                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
923                 rc = -EINVAL;
924         }
925
926         return rc;
927 }
928
929 int qede_start_queues(struct rte_eth_dev *eth_dev)
930 {
931         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
932         uint8_t id;
933         int rc = -1;
934
935         for_each_rss(id) {
936                 rc = qede_rx_queue_start(eth_dev, id);
937                 if (rc != ECORE_SUCCESS)
938                         return -1;
939         }
940
941         for_each_tss(id) {
942                 rc = qede_tx_queue_start(eth_dev, id);
943                 if (rc != ECORE_SUCCESS)
944                         return -1;
945         }
946
947         return rc;
948 }
949
950 void qede_stop_queues(struct rte_eth_dev *eth_dev)
951 {
952         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
953         uint8_t id;
954
955         /* Stopping RX/TX queues */
956         for_each_tss(id) {
957                 qede_tx_queue_stop(eth_dev, id);
958         }
959
960         for_each_rss(id) {
961                 qede_rx_queue_stop(eth_dev, id);
962         }
963 }
964
965 static inline bool qede_tunn_exist(uint16_t flag)
966 {
967         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
968                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
969 }
970
971 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
972 {
973         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
974                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
975 }
976
977 /*
978  * qede_check_tunn_csum_l4:
979  * Returns:
980  * 1 : If L4 csum is enabled AND if the validation has failed.
981  * 0 : Otherwise
982  */
983 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
984 {
985         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
986              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
987                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
988                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
989
990         return 0;
991 }
992
993 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
994 {
995         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
996              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
997                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
998                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
999
1000         return 0;
1001 }
1002
1003 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
1004 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
1005 {
1006         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
1007         struct rte_ether_hdr *eth_hdr;
1008         struct rte_ipv4_hdr *ipv4_hdr;
1009         struct rte_ipv6_hdr *ipv6_hdr;
1010         struct rte_vlan_hdr *vlan_hdr;
1011         uint16_t ethertype;
1012         bool vlan_tagged = 0;
1013         uint16_t len;
1014
1015         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1016         len = sizeof(struct rte_ether_hdr);
1017         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
1018
1019          /* Note: Valid only if VLAN stripping is disabled */
1020         if (ethertype == RTE_ETHER_TYPE_VLAN) {
1021                 vlan_tagged = 1;
1022                 vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
1023                 len += sizeof(struct rte_vlan_hdr);
1024                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
1025         }
1026
1027         if (ethertype == RTE_ETHER_TYPE_IPV4) {
1028                 packet_type |= RTE_PTYPE_L3_IPV4;
1029                 ipv4_hdr = rte_pktmbuf_mtod_offset(m,
1030                                         struct rte_ipv4_hdr *, len);
1031                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
1032                         packet_type |= RTE_PTYPE_L4_TCP;
1033                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
1034                         packet_type |= RTE_PTYPE_L4_UDP;
1035         } else if (ethertype == RTE_ETHER_TYPE_IPV6) {
1036                 packet_type |= RTE_PTYPE_L3_IPV6;
1037                 ipv6_hdr = rte_pktmbuf_mtod_offset(m,
1038                                                 struct rte_ipv6_hdr *, len);
1039                 if (ipv6_hdr->proto == IPPROTO_TCP)
1040                         packet_type |= RTE_PTYPE_L4_TCP;
1041                 else if (ipv6_hdr->proto == IPPROTO_UDP)
1042                         packet_type |= RTE_PTYPE_L4_UDP;
1043         }
1044
1045         if (vlan_tagged)
1046                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
1047         else
1048                 packet_type |= RTE_PTYPE_L2_ETHER;
1049
1050         return packet_type;
1051 }
1052
1053 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
1054 {
1055         uint16_t val;
1056
1057         /* Lookup table */
1058         static const uint32_t
1059         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1060                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
1061                                        RTE_PTYPE_INNER_L2_ETHER,
1062                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
1063                                        RTE_PTYPE_INNER_L2_ETHER,
1064                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
1065                                            RTE_PTYPE_INNER_L4_TCP       |
1066                                            RTE_PTYPE_INNER_L2_ETHER,
1067                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
1068                                            RTE_PTYPE_INNER_L4_TCP       |
1069                                            RTE_PTYPE_INNER_L2_ETHER,
1070                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
1071                                            RTE_PTYPE_INNER_L4_UDP       |
1072                                            RTE_PTYPE_INNER_L2_ETHER,
1073                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
1074                                            RTE_PTYPE_INNER_L4_UDP       |
1075                                            RTE_PTYPE_INNER_L2_ETHER,
1076                 /* Frags with no VLAN */
1077                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
1078                                             RTE_PTYPE_INNER_L4_FRAG     |
1079                                             RTE_PTYPE_INNER_L2_ETHER,
1080                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
1081                                             RTE_PTYPE_INNER_L4_FRAG     |
1082                                             RTE_PTYPE_INNER_L2_ETHER,
1083                 /* VLANs */
1084                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
1085                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1086                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
1087                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1088                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1089                                                 RTE_PTYPE_INNER_L4_TCP  |
1090                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1091                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1092                                                 RTE_PTYPE_INNER_L4_TCP  |
1093                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1094                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1095                                                 RTE_PTYPE_INNER_L4_UDP  |
1096                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1097                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1098                                                 RTE_PTYPE_INNER_L4_UDP  |
1099                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1100                 /* Frags with VLAN */
1101                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1102                                                  RTE_PTYPE_INNER_L4_FRAG |
1103                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1104                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1105                                                  RTE_PTYPE_INNER_L4_FRAG |
1106                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1107         };
1108
1109         /* Bits (0..3) provides L3/L4 protocol type */
1110         /* Bits (4,5) provides frag and VLAN info */
1111         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1112                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1113                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1114                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1115                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1116                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1117                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1118                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1119
1120         if (val < QEDE_PKT_TYPE_MAX)
1121                 return ptype_lkup_tbl[val];
1122
1123         return RTE_PTYPE_UNKNOWN;
1124 }
1125
1126 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1127 {
1128         uint16_t val;
1129
1130         /* Lookup table */
1131         static const uint32_t
1132         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1133                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1134                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1135                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1136                                            RTE_PTYPE_L4_TCP     |
1137                                            RTE_PTYPE_L2_ETHER,
1138                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1139                                            RTE_PTYPE_L4_TCP     |
1140                                            RTE_PTYPE_L2_ETHER,
1141                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1142                                            RTE_PTYPE_L4_UDP     |
1143                                            RTE_PTYPE_L2_ETHER,
1144                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1145                                            RTE_PTYPE_L4_UDP     |
1146                                            RTE_PTYPE_L2_ETHER,
1147                 /* Frags with no VLAN */
1148                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1149                                             RTE_PTYPE_L4_FRAG   |
1150                                             RTE_PTYPE_L2_ETHER,
1151                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1152                                             RTE_PTYPE_L4_FRAG   |
1153                                             RTE_PTYPE_L2_ETHER,
1154                 /* VLANs */
1155                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1156                                             RTE_PTYPE_L2_ETHER_VLAN,
1157                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1158                                             RTE_PTYPE_L2_ETHER_VLAN,
1159                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1160                                                 RTE_PTYPE_L4_TCP        |
1161                                                 RTE_PTYPE_L2_ETHER_VLAN,
1162                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1163                                                 RTE_PTYPE_L4_TCP        |
1164                                                 RTE_PTYPE_L2_ETHER_VLAN,
1165                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1166                                                 RTE_PTYPE_L4_UDP        |
1167                                                 RTE_PTYPE_L2_ETHER_VLAN,
1168                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1169                                                 RTE_PTYPE_L4_UDP        |
1170                                                 RTE_PTYPE_L2_ETHER_VLAN,
1171                 /* Frags with VLAN */
1172                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1173                                                  RTE_PTYPE_L4_FRAG      |
1174                                                  RTE_PTYPE_L2_ETHER_VLAN,
1175                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1176                                                  RTE_PTYPE_L4_FRAG      |
1177                                                  RTE_PTYPE_L2_ETHER_VLAN,
1178         };
1179
1180         /* Bits (0..3) provides L3/L4 protocol type */
1181         /* Bits (4,5) provides frag and VLAN info */
1182         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1183                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1184                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1185                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1186                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1187                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1188                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1189                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1190
1191         if (val < QEDE_PKT_TYPE_MAX)
1192                 return ptype_lkup_tbl[val];
1193
1194         return RTE_PTYPE_UNKNOWN;
1195 }
1196
1197 static inline uint8_t
1198 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1199 {
1200         struct rte_ipv4_hdr *ip;
1201         uint16_t pkt_csum;
1202         uint16_t calc_csum;
1203         uint16_t val;
1204
1205         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1206                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1207
1208         if (unlikely(val)) {
1209                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1210                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1211                         ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
1212                                            sizeof(struct rte_ether_hdr));
1213                         pkt_csum = ip->hdr_checksum;
1214                         ip->hdr_checksum = 0;
1215                         calc_csum = rte_ipv4_cksum(ip);
1216                         ip->hdr_checksum = pkt_csum;
1217                         return (calc_csum != pkt_csum);
1218                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1219                         return 1;
1220                 }
1221         }
1222         return 0;
1223 }
1224
1225 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1226 {
1227         ecore_chain_consume(&rxq->rx_bd_ring);
1228         rxq->sw_rx_cons++;
1229 }
1230
1231 static inline void
1232 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1233                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1234 {
1235         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1236         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1237         struct qede_rx_entry *curr_prod;
1238         dma_addr_t new_mapping;
1239
1240         curr_prod = &rxq->sw_rx_ring[idx];
1241         *curr_prod = *curr_cons;
1242
1243         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1244                       curr_prod->page_offset;
1245
1246         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1247         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1248
1249         rxq->sw_rx_prod++;
1250 }
1251
1252 static inline void
1253 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1254                         struct qede_dev *qdev, uint8_t count)
1255 {
1256         struct qede_rx_entry *curr_cons;
1257
1258         for (; count > 0; count--) {
1259                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1260                 qede_reuse_page(qdev, rxq, curr_cons);
1261                 qede_rx_bd_ring_consume(rxq);
1262         }
1263 }
1264
1265 static inline void
1266 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1267                                      struct qede_rx_queue *rxq,
1268                                      uint8_t agg_index, uint16_t len)
1269 {
1270         struct qede_agg_info *tpa_info;
1271         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1272         uint16_t cons_idx;
1273
1274         /* Under certain conditions it is possible that FW may not consume
1275          * additional or new BD. So decision to consume the BD must be made
1276          * based on len_list[0].
1277          */
1278         if (rte_le_to_cpu_16(len)) {
1279                 tpa_info = &rxq->tpa_info[agg_index];
1280                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1281                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1282                 assert(curr_frag);
1283                 curr_frag->nb_segs = 1;
1284                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1285                 curr_frag->data_len = curr_frag->pkt_len;
1286                 tpa_info->tpa_tail->next = curr_frag;
1287                 tpa_info->tpa_tail = curr_frag;
1288                 qede_rx_bd_ring_consume(rxq);
1289                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1290                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1291                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1292                         rxq->rx_alloc_errors++;
1293                 }
1294         }
1295 }
1296
1297 static inline void
1298 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1299                              struct qede_rx_queue *rxq,
1300                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1301 {
1302         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1303                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1304         /* only len_list[0] will have value */
1305         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1306                                              cqe->len_list[0]);
1307 }
1308
1309 static inline void
1310 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1311                             struct qede_rx_queue *rxq,
1312                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1313 {
1314         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1315
1316         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1317                                              cqe->len_list[0]);
1318         /* Update total length and frags based on end TPA */
1319         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1320         /* TODO:  Add Sanity Checks */
1321         rx_mb->nb_segs = cqe->num_of_bds;
1322         rx_mb->pkt_len = cqe->total_packet_len;
1323
1324         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1325                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1326                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1327                    rx_mb->pkt_len);
1328 }
1329
1330 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1331 {
1332         uint32_t val;
1333
1334         /* Lookup table */
1335         static const uint32_t
1336         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1337                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1338                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1339                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1340                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1341                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1342                                 RTE_PTYPE_TUNNEL_GENEVE,
1343                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1344                                 RTE_PTYPE_TUNNEL_GRE,
1345                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1346                                 RTE_PTYPE_TUNNEL_VXLAN,
1347                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1348                                 RTE_PTYPE_TUNNEL_GENEVE,
1349                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1350                                 RTE_PTYPE_TUNNEL_GRE,
1351                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1352                                 RTE_PTYPE_TUNNEL_VXLAN,
1353                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1354                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1355                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1356                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1357                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1358                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1359                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1360                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1361                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1362                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1363                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1364                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1365                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1366                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1367                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1368                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1369                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1370                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1371                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1372                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1373                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1374                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1375                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1376                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1377         };
1378
1379         /* Cover bits[4-0] to include tunn_type and next protocol */
1380         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1381                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1382                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1383                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1384
1385         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1386                 return ptype_tunn_lkup_tbl[val];
1387         else
1388                 return RTE_PTYPE_UNKNOWN;
1389 }
1390
1391 static inline int
1392 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1393                      uint8_t num_segs, uint16_t pkt_len)
1394 {
1395         struct qede_rx_queue *rxq = p_rxq;
1396         struct qede_dev *qdev = rxq->qdev;
1397         register struct rte_mbuf *seg1 = NULL;
1398         register struct rte_mbuf *seg2 = NULL;
1399         uint16_t sw_rx_index;
1400         uint16_t cur_size;
1401
1402         seg1 = rx_mb;
1403         while (num_segs) {
1404                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1405                                                         pkt_len;
1406                 if (unlikely(!cur_size)) {
1407                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1408                                    " left for mapping jumbo\n", num_segs);
1409                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1410                         return -EINVAL;
1411                 }
1412                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1413                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1414                 qede_rx_bd_ring_consume(rxq);
1415                 pkt_len -= cur_size;
1416                 seg2->data_len = cur_size;
1417                 seg1->next = seg2;
1418                 seg1 = seg1->next;
1419                 num_segs--;
1420                 rxq->rx_segs++;
1421         }
1422
1423         return 0;
1424 }
1425
1426 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1427 static inline void
1428 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1429                  uint8_t bitfield)
1430 {
1431         PMD_RX_LOG(INFO, rxq,
1432                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1433                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1434                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1435                 m->data_len, bitfield, m->hash.rss,
1436                 (unsigned long)m->ol_flags,
1437                 rte_get_ptype_l2_name(m->packet_type),
1438                 rte_get_ptype_l3_name(m->packet_type),
1439                 rte_get_ptype_l4_name(m->packet_type),
1440                 rte_get_ptype_tunnel_name(m->packet_type),
1441                 rte_get_ptype_inner_l2_name(m->packet_type),
1442                 rte_get_ptype_inner_l3_name(m->packet_type),
1443                 rte_get_ptype_inner_l4_name(m->packet_type));
1444 }
1445 #endif
1446
1447 uint16_t
1448 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1449 {
1450         struct qede_rx_queue *rxq = p_rxq;
1451         struct qede_dev *qdev = rxq->qdev;
1452         struct ecore_dev *edev = &qdev->edev;
1453         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1454         uint16_t rx_pkt = 0;
1455         union eth_rx_cqe *cqe;
1456         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1457         register struct rte_mbuf *rx_mb = NULL;
1458         register struct rte_mbuf *seg1 = NULL;
1459         enum eth_rx_cqe_type cqe_type;
1460         uint16_t pkt_len = 0; /* Sum of all BD segments */
1461         uint16_t len; /* Length of first BD */
1462         uint8_t num_segs = 1;
1463         uint16_t preload_idx;
1464         uint16_t parse_flag;
1465 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1466         uint8_t bitfield_val;
1467 #endif
1468         uint8_t tunn_parse_flag;
1469         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1470         uint64_t ol_flags;
1471         uint32_t packet_type;
1472         uint16_t vlan_tci;
1473         bool tpa_start_flg;
1474         uint8_t offset, tpa_agg_idx, flags;
1475         struct qede_agg_info *tpa_info = NULL;
1476         uint32_t rss_hash;
1477         int rx_alloc_count = 0;
1478
1479
1480         /* Allocate buffers that we used in previous loop */
1481         if (rxq->rx_alloc_count) {
1482                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1483                              rxq->rx_alloc_count))) {
1484                         struct rte_eth_dev *dev;
1485
1486                         PMD_RX_LOG(ERR, rxq,
1487                                    "New buffer allocation failed,"
1488                                    "dropping incoming packetn");
1489                         dev = &rte_eth_devices[rxq->port_id];
1490                         dev->data->rx_mbuf_alloc_failed +=
1491                                                         rxq->rx_alloc_count;
1492                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1493                         return 0;
1494                 }
1495                 qede_update_rx_prod(qdev, rxq);
1496                 rxq->rx_alloc_count = 0;
1497         }
1498
1499         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1500         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1501
1502         rte_rmb();
1503
1504         if (hw_comp_cons == sw_comp_cons)
1505                 return 0;
1506
1507         while (sw_comp_cons != hw_comp_cons) {
1508                 ol_flags = 0;
1509                 packet_type = RTE_PTYPE_UNKNOWN;
1510                 vlan_tci = 0;
1511                 tpa_start_flg = false;
1512                 rss_hash = 0;
1513
1514                 /* Get the CQE from the completion ring */
1515                 cqe =
1516                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1517                 cqe_type = cqe->fast_path_regular.type;
1518                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1519
1520                 switch (cqe_type) {
1521                 case ETH_RX_CQE_TYPE_REGULAR:
1522                         fp_cqe = &cqe->fast_path_regular;
1523                 break;
1524                 case ETH_RX_CQE_TYPE_TPA_START:
1525                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1526                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1527                         tpa_start_flg = true;
1528                         /* Mark it as LRO packet */
1529                         ol_flags |= PKT_RX_LRO;
1530                         /* In split mode,  seg_len is same as len_on_first_bd
1531                          * and ext_bd_len_list will be empty since there are
1532                          * no additional buffers
1533                          */
1534                         PMD_RX_LOG(INFO, rxq,
1535                             "TPA start[%d] - len_on_first_bd %d header %d"
1536                             " [bd_list[0] %d], [seg_len %d]\n",
1537                             cqe_start_tpa->tpa_agg_index,
1538                             rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1539                             cqe_start_tpa->header_len,
1540                             rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1541                             rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1542
1543                 break;
1544                 case ETH_RX_CQE_TYPE_TPA_CONT:
1545                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1546                                                      &cqe->fast_path_tpa_cont);
1547                         goto next_cqe;
1548                 case ETH_RX_CQE_TYPE_TPA_END:
1549                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1550                                                     &cqe->fast_path_tpa_end);
1551                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1552                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1553                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1554                         goto tpa_end;
1555                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1556                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1557                         ecore_eth_cqe_completion(
1558                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1559                                 (struct eth_slow_path_rx_cqe *)cqe);
1560                         /* fall-thru */
1561                 default:
1562                         goto next_cqe;
1563                 }
1564
1565                 /* Get the data from the SW ring */
1566                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1567                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1568                 assert(rx_mb != NULL);
1569
1570                 /* Handle regular CQE or TPA start CQE */
1571                 if (!tpa_start_flg) {
1572                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1573                         offset = fp_cqe->placement_offset;
1574                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1575                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1576                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1577                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1578 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1579                         bitfield_val = fp_cqe->bitfields;
1580 #endif
1581                 } else {
1582                         parse_flag =
1583                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1584                         offset = cqe_start_tpa->placement_offset;
1585                         /* seg_len = len_on_first_bd */
1586                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1587                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1588 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1589                         bitfield_val = cqe_start_tpa->bitfields;
1590 #endif
1591                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1592                 }
1593                 if (qede_tunn_exist(parse_flag)) {
1594                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1595                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1596                                 PMD_RX_LOG(ERR, rxq,
1597                                             "L4 csum failed, flags = 0x%x\n",
1598                                             parse_flag);
1599                                 rxq->rx_hw_errors++;
1600                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1601                         } else {
1602                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1603                         }
1604
1605                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1606                                 PMD_RX_LOG(ERR, rxq,
1607                                         "Outer L3 csum failed, flags = 0x%x\n",
1608                                         parse_flag);
1609                                   rxq->rx_hw_errors++;
1610                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1611                         } else {
1612                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1613                         }
1614
1615                         if (tpa_start_flg)
1616                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1617                         else
1618                                 flags = fp_cqe->tunnel_pars_flags.flags;
1619                         tunn_parse_flag = flags;
1620
1621                         /* Tunnel_type */
1622                         packet_type =
1623                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1624
1625                         /* Inner header */
1626                         packet_type |=
1627                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1628
1629                         /* Outer L3/L4 types is not available in CQE */
1630                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1631
1632                         /* Outer L3/L4 types is not available in CQE.
1633                          * Need to add offset to parse correctly,
1634                          */
1635                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1636                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1637                 } else {
1638                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1639                 }
1640
1641                 /* Common handling for non-tunnel packets and for inner
1642                  * headers in the case of tunnel.
1643                  */
1644                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1645                         PMD_RX_LOG(ERR, rxq,
1646                                     "L4 csum failed, flags = 0x%x\n",
1647                                     parse_flag);
1648                         rxq->rx_hw_errors++;
1649                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1650                 } else {
1651                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1652                 }
1653                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1654                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1655                                    parse_flag);
1656                         rxq->rx_hw_errors++;
1657                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1658                 } else {
1659                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1660                 }
1661
1662                 if (CQE_HAS_VLAN(parse_flag) ||
1663                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1664                         /* Note: FW doesn't indicate Q-in-Q packet */
1665                         ol_flags |= PKT_RX_VLAN;
1666                         if (qdev->vlan_strip_flg) {
1667                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1668                                 rx_mb->vlan_tci = vlan_tci;
1669                         }
1670                 }
1671
1672                 /* RSS Hash */
1673                 if (qdev->rss_enable) {
1674                         ol_flags |= PKT_RX_RSS_HASH;
1675                         rx_mb->hash.rss = rss_hash;
1676                 }
1677
1678                 rx_alloc_count++;
1679                 qede_rx_bd_ring_consume(rxq);
1680
1681                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1682                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1683                                    " len on first: %04x Total Len: %04x",
1684                                    fp_cqe->bd_num, len, pkt_len);
1685                         num_segs = fp_cqe->bd_num - 1;
1686                         seg1 = rx_mb;
1687                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1688                                                  pkt_len - len))
1689                                 goto next_cqe;
1690
1691                         rx_alloc_count += num_segs;
1692                         rxq->rx_segs += num_segs;
1693                 }
1694                 rxq->rx_segs++; /* for the first segment */
1695
1696                 /* Prefetch next mbuf while processing current one. */
1697                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1698                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1699
1700                 /* Update rest of the MBUF fields */
1701                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1702                 rx_mb->port = rxq->port_id;
1703                 rx_mb->ol_flags = ol_flags;
1704                 rx_mb->data_len = len;
1705                 rx_mb->packet_type = packet_type;
1706 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1707                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1708 #endif
1709                 if (!tpa_start_flg) {
1710                         rx_mb->nb_segs = fp_cqe->bd_num;
1711                         rx_mb->pkt_len = pkt_len;
1712                 } else {
1713                         /* store ref to the updated mbuf */
1714                         tpa_info->tpa_head = rx_mb;
1715                         tpa_info->tpa_tail = tpa_info->tpa_head;
1716                 }
1717                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1718 tpa_end:
1719                 if (!tpa_start_flg) {
1720                         rx_pkts[rx_pkt] = rx_mb;
1721                         rx_pkt++;
1722                 }
1723 next_cqe:
1724                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1725                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1726                 if (rx_pkt == nb_pkts) {
1727                         PMD_RX_LOG(DEBUG, rxq,
1728                                    "Budget reached nb_pkts=%u received=%u",
1729                                    rx_pkt, nb_pkts);
1730                         break;
1731                 }
1732         }
1733
1734         /* Request number of bufferes to be allocated in next loop */
1735         rxq->rx_alloc_count = rx_alloc_count;
1736
1737         rxq->rcv_pkts += rx_pkt;
1738
1739         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1740
1741         return rx_pkt;
1742 }
1743
1744
1745 /* Populate scatter gather buffer descriptor fields */
1746 static inline uint16_t
1747 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1748                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1749                   uint16_t start_seg)
1750 {
1751         struct qede_tx_queue *txq = p_txq;
1752         struct eth_tx_bd *tx_bd = NULL;
1753         dma_addr_t mapping;
1754         uint16_t nb_segs = 0;
1755
1756         /* Check for scattered buffers */
1757         while (m_seg) {
1758                 if (start_seg == 0) {
1759                         if (!*bd2) {
1760                                 *bd2 = (struct eth_tx_2nd_bd *)
1761                                         ecore_chain_produce(&txq->tx_pbl);
1762                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1763                                 nb_segs++;
1764                         }
1765                         mapping = rte_mbuf_data_iova(m_seg);
1766                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1767                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1768                 } else if (start_seg == 1) {
1769                         if (!*bd3) {
1770                                 *bd3 = (struct eth_tx_3rd_bd *)
1771                                         ecore_chain_produce(&txq->tx_pbl);
1772                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1773                                 nb_segs++;
1774                         }
1775                         mapping = rte_mbuf_data_iova(m_seg);
1776                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1777                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1778                 } else {
1779                         tx_bd = (struct eth_tx_bd *)
1780                                 ecore_chain_produce(&txq->tx_pbl);
1781                         memset(tx_bd, 0, sizeof(*tx_bd));
1782                         nb_segs++;
1783                         mapping = rte_mbuf_data_iova(m_seg);
1784                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1785                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1786                 }
1787                 start_seg++;
1788                 m_seg = m_seg->next;
1789         }
1790
1791         /* Return total scattered buffers */
1792         return nb_segs;
1793 }
1794
1795 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1796 static inline void
1797 print_tx_bd_info(struct qede_tx_queue *txq,
1798                  struct eth_tx_1st_bd *bd1,
1799                  struct eth_tx_2nd_bd *bd2,
1800                  struct eth_tx_3rd_bd *bd3,
1801                  uint64_t tx_ol_flags)
1802 {
1803         char ol_buf[256] = { 0 }; /* for verbose prints */
1804
1805         if (bd1)
1806                 PMD_TX_LOG(INFO, txq,
1807                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1808                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1809                    bd1->data.bd_flags.bitfields,
1810                    rte_cpu_to_le_16(bd1->data.bitfields));
1811         if (bd2)
1812                 PMD_TX_LOG(INFO, txq,
1813                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1814                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1815                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
1816         if (bd3)
1817                 PMD_TX_LOG(INFO, txq,
1818                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1819                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1820                    rte_cpu_to_le_16(bd3->nbytes),
1821                    rte_cpu_to_le_16(bd3->data.bitfields),
1822                    rte_cpu_to_le_16(bd3->data.lso_mss),
1823                    bd3->data.tunn_l4_hdr_start_offset_w,
1824                    bd3->data.tunn_hdr_size_w);
1825
1826         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1827         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1828 }
1829 #endif
1830
1831 /* TX prepare to check packets meets TX conditions */
1832 uint16_t
1833 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1834 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1835                     uint16_t nb_pkts)
1836 {
1837         struct qede_tx_queue *txq = p_txq;
1838 #else
1839 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1840                     uint16_t nb_pkts)
1841 {
1842 #endif
1843         uint64_t ol_flags;
1844         struct rte_mbuf *m;
1845         uint16_t i;
1846 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1847         int ret;
1848 #endif
1849
1850         for (i = 0; i < nb_pkts; i++) {
1851                 m = tx_pkts[i];
1852                 ol_flags = m->ol_flags;
1853                 if (ol_flags & PKT_TX_TCP_SEG) {
1854                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1855                                 rte_errno = EINVAL;
1856                                 break;
1857                         }
1858                         /* TBD: confirm its ~9700B for both ? */
1859                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1860                                 rte_errno = EINVAL;
1861                                 break;
1862                         }
1863                 } else {
1864                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1865                                 rte_errno = EINVAL;
1866                                 break;
1867                         }
1868                 }
1869                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1870                         /* We support only limited tunnel protocols */
1871                         if (ol_flags & PKT_TX_TUNNEL_MASK) {
1872                                 uint64_t temp;
1873
1874                                 temp = ol_flags & PKT_TX_TUNNEL_MASK;
1875                                 if (temp == PKT_TX_TUNNEL_VXLAN ||
1876                                     temp == PKT_TX_TUNNEL_GENEVE ||
1877                                     temp == PKT_TX_TUNNEL_MPLSINUDP ||
1878                                     temp == PKT_TX_TUNNEL_GRE)
1879                                         continue;
1880                         }
1881
1882                         rte_errno = ENOTSUP;
1883                         break;
1884                 }
1885
1886 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1887                 ret = rte_validate_tx_offload(m);
1888                 if (ret != 0) {
1889                         rte_errno = -ret;
1890                         break;
1891                 }
1892 #endif
1893         }
1894
1895 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1896         if (unlikely(i != nb_pkts))
1897                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1898                            nb_pkts - i);
1899 #endif
1900         return i;
1901 }
1902
1903 #define MPLSINUDP_HDR_SIZE                      (12)
1904
1905 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1906 static inline void
1907 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1908                                struct qede_tx_queue *txq)
1909 {
1910         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1911                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1912         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1913                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1914                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1915         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1916                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1917                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1918         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1919                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1920                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1921 }
1922 #endif
1923
1924 uint16_t
1925 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1926 {
1927         struct qede_tx_queue *txq = p_txq;
1928         struct qede_dev *qdev = txq->qdev;
1929         struct ecore_dev *edev = &qdev->edev;
1930         struct rte_mbuf *mbuf;
1931         struct rte_mbuf *m_seg = NULL;
1932         uint16_t nb_tx_pkts;
1933         uint16_t bd_prod;
1934         uint16_t idx;
1935         uint16_t nb_frags;
1936         uint16_t nb_pkt_sent = 0;
1937         uint8_t nbds;
1938         bool lso_flg;
1939         bool mplsoudp_flg;
1940         __rte_unused bool tunn_flg;
1941         bool tunn_ipv6_ext_flg;
1942         struct eth_tx_1st_bd *bd1;
1943         struct eth_tx_2nd_bd *bd2;
1944         struct eth_tx_3rd_bd *bd3;
1945         uint64_t tx_ol_flags;
1946         uint16_t hdr_size;
1947         /* BD1 */
1948         uint16_t bd1_bf;
1949         uint8_t bd1_bd_flags_bf;
1950         uint16_t vlan;
1951         /* BD2 */
1952         uint16_t bd2_bf1;
1953         uint16_t bd2_bf2;
1954         /* BD3 */
1955         uint16_t mss;
1956         uint16_t bd3_bf;
1957
1958         uint8_t tunn_l4_hdr_start_offset;
1959         uint8_t tunn_hdr_size;
1960         uint8_t inner_l2_hdr_size;
1961         uint16_t inner_l4_hdr_offset;
1962
1963         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1964                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1965                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1966                 qede_process_tx_compl(edev, txq);
1967         }
1968
1969         nb_tx_pkts  = nb_pkts;
1970         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1971         while (nb_tx_pkts--) {
1972                 /* Init flags/values */
1973                 tunn_flg = false;
1974                 lso_flg = false;
1975                 nbds = 0;
1976                 vlan = 0;
1977                 bd1 = NULL;
1978                 bd2 = NULL;
1979                 bd3 = NULL;
1980                 hdr_size = 0;
1981                 bd1_bf = 0;
1982                 bd1_bd_flags_bf = 0;
1983                 bd2_bf1 = 0;
1984                 bd2_bf2 = 0;
1985                 mss = 0;
1986                 bd3_bf = 0;
1987                 mplsoudp_flg = false;
1988                 tunn_ipv6_ext_flg = false;
1989                 tunn_hdr_size = 0;
1990                 tunn_l4_hdr_start_offset = 0;
1991
1992                 mbuf = *tx_pkts++;
1993                 assert(mbuf);
1994
1995                 /* Check minimum TX BDS availability against available BDs */
1996                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1997                         break;
1998
1999                 tx_ol_flags = mbuf->ol_flags;
2000                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2001
2002                 /* TX prepare would have already checked supported tunnel Tx
2003                  * offloads. Don't rely on pkt_type marked by Rx, instead use
2004                  * tx_ol_flags to decide.
2005                  */
2006                 tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
2007
2008                 if (tunn_flg) {
2009                         /* Check against max which is Tunnel IPv6 + ext */
2010                         if (unlikely(txq->nb_tx_avail <
2011                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
2012                                         break;
2013
2014                         /* First indicate its a tunnel pkt */
2015                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
2016                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2017                         /* Legacy FW had flipped behavior in regard to this bit
2018                          * i.e. it needed to set to prevent FW from touching
2019                          * encapsulated packets when it didn't need to.
2020                          */
2021                         if (unlikely(txq->is_legacy)) {
2022                                 bd1_bf ^= 1 <<
2023                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2024                         }
2025
2026                         /* Outer IP checksum offload */
2027                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
2028                                            PKT_TX_OUTER_IPV4)) {
2029                                 bd1_bd_flags_bf |=
2030                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
2031                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
2032                         }
2033
2034                         /**
2035                          * Currently, only inner checksum offload in MPLS-in-UDP
2036                          * tunnel with one MPLS label is supported. Both outer
2037                          * and inner layers  lengths need to be provided in
2038                          * mbuf.
2039                          */
2040                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
2041                                                 PKT_TX_TUNNEL_MPLSINUDP) {
2042                                 mplsoudp_flg = true;
2043 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2044                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
2045 #endif
2046                                 /* Outer L4 offset in two byte words */
2047                                 tunn_l4_hdr_start_offset =
2048                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
2049                                 /* Tunnel header size in two byte words */
2050                                 tunn_hdr_size = (mbuf->outer_l2_len +
2051                                                 mbuf->outer_l3_len +
2052                                                 MPLSINUDP_HDR_SIZE) / 2;
2053                                 /* Inner L2 header size in two byte words */
2054                                 inner_l2_hdr_size = (mbuf->l2_len -
2055                                                 MPLSINUDP_HDR_SIZE) / 2;
2056                                 /* Inner L4 header offset from the beggining
2057                                  * of inner packet in two byte words
2058                                  */
2059                                 inner_l4_hdr_offset = (mbuf->l2_len -
2060                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2061
2062                                 /* Inner L2 size and address type */
2063                                 bd2_bf1 |= (inner_l2_hdr_size &
2064                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2065                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2066                                 bd2_bf1 |= (UNICAST_ADDRESS &
2067                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2068                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2069                                 /* Treated as IPv6+Ext */
2070                                 bd2_bf1 |=
2071                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2072
2073                                 /* Mark inner IPv6 if present */
2074                                 if (tx_ol_flags & PKT_TX_IPV6)
2075                                         bd2_bf1 |=
2076                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2077
2078                                 /* Inner L4 offsets */
2079                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2080                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
2081                                                         PKT_TX_TCP_CKSUM))) {
2082                                         /* Determines if BD3 is needed */
2083                                         tunn_ipv6_ext_flg = true;
2084                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
2085                                                         PKT_TX_UDP_CKSUM) {
2086                                                 bd2_bf1 |=
2087                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2088                                         }
2089
2090                                         /* TODO other pseudo checksum modes are
2091                                          * not supported
2092                                          */
2093                                         bd2_bf1 |=
2094                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2095                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2096                                         bd2_bf2 |= (inner_l4_hdr_offset &
2097                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2098                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2099                                 }
2100                         } /* End MPLSoUDP */
2101                 } /* End Tunnel handling */
2102
2103                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
2104                         lso_flg = true;
2105                         if (unlikely(txq->nb_tx_avail <
2106                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
2107                                 break;
2108                         /* For LSO, packet header and payload must reside on
2109                          * buffers pointed by different BDs. Using BD1 for HDR
2110                          * and BD2 onwards for data.
2111                          */
2112                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2113                         if (tunn_flg)
2114                                 hdr_size += mbuf->outer_l2_len +
2115                                             mbuf->outer_l3_len;
2116
2117                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2118                         bd1_bd_flags_bf |=
2119                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2120                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2121                         bd1_bd_flags_bf |=
2122                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2123                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2124                         /* Using one header BD */
2125                         bd3_bf |= rte_cpu_to_le_16(1 <<
2126                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2127                 } else {
2128                         if (unlikely(txq->nb_tx_avail <
2129                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2130                                 break;
2131                         bd1_bf |=
2132                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2133                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2134                 }
2135
2136                 /* Descriptor based VLAN insertion */
2137                 if (tx_ol_flags & PKT_TX_VLAN_PKT) {
2138                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2139                         bd1_bd_flags_bf |=
2140                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2141                 }
2142
2143                 /* Offload the IP checksum in the hardware */
2144                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2145                         bd1_bd_flags_bf |=
2146                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2147                         /* There's no DPDK flag to request outer-L4 csum
2148                          * offload. But in the case of tunnel if inner L3 or L4
2149                          * csum offload is requested then we need to force
2150                          * recalculation of L4 tunnel header csum also.
2151                          */
2152                         if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
2153                                                         PKT_TX_TUNNEL_GRE)) {
2154                                 bd1_bd_flags_bf |=
2155                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2156                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2157                         }
2158                 }
2159
2160                 /* L4 checksum offload (tcp or udp) */
2161                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2162                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2163                         bd1_bd_flags_bf |=
2164                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2165                         /* There's no DPDK flag to request outer-L4 csum
2166                          * offload. But in the case of tunnel if inner L3 or L4
2167                          * csum offload is requested then we need to force
2168                          * recalculation of L4 tunnel header csum also.
2169                          */
2170                         if (tunn_flg) {
2171                                 bd1_bd_flags_bf |=
2172                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2173                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2174                         }
2175                 }
2176
2177                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2178                 idx = TX_PROD(txq);
2179                 txq->sw_tx_ring[idx].mbuf = mbuf;
2180
2181                 /* BD1 */
2182                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2183                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2184                 nbds++;
2185
2186                 /* Map MBUF linear data for DMA and set in the BD1 */
2187                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2188                                      mbuf->data_len);
2189                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2190                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2191                 bd1->data.vlan = vlan;
2192
2193                 if (lso_flg || mplsoudp_flg) {
2194                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2195                                                         (&txq->tx_pbl);
2196                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2197                         nbds++;
2198
2199                         /* BD1 */
2200                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2201                                              hdr_size);
2202                         /* BD2 */
2203                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2204                                              rte_mbuf_data_iova(mbuf)),
2205                                              mbuf->data_len - hdr_size);
2206                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2207                         if (mplsoudp_flg) {
2208                                 bd2->data.bitfields2 =
2209                                         rte_cpu_to_le_16(bd2_bf2);
2210                                 /* Outer L3 size */
2211                                 bd2->data.tunn_ip_size =
2212                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2213                         }
2214                         /* BD3 */
2215                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2216                                 bd3 = (struct eth_tx_3rd_bd *)
2217                                         ecore_chain_produce(&txq->tx_pbl);
2218                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2219                                 nbds++;
2220                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2221                                 if (lso_flg)
2222                                         bd3->data.lso_mss = mss;
2223                                 if (mplsoudp_flg) {
2224                                         bd3->data.tunn_l4_hdr_start_offset_w =
2225                                                 tunn_l4_hdr_start_offset;
2226                                         bd3->data.tunn_hdr_size_w =
2227                                                 tunn_hdr_size;
2228                                 }
2229                         }
2230                 }
2231
2232                 /* Handle fragmented MBUF */
2233                 m_seg = mbuf->next;
2234
2235                 /* Encode scatter gather buffer descriptors if required */
2236                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2237                 bd1->data.nbds = nbds + nb_frags;
2238
2239                 txq->nb_tx_avail -= bd1->data.nbds;
2240                 txq->sw_tx_prod++;
2241                 bd_prod =
2242                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2243 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2244                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2245 #endif
2246                 nb_pkt_sent++;
2247                 txq->xmit_pkts++;
2248         }
2249
2250         /* Write value of prod idx into bd_prod */
2251         txq->tx_db.data.bd_prod = bd_prod;
2252         rte_wmb();
2253         rte_compiler_barrier();
2254         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2255         rte_wmb();
2256
2257         /* Check again for Tx completions */
2258         qede_process_tx_compl(edev, txq);
2259
2260         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2261                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2262
2263         return nb_pkt_sent;
2264 }
2265
2266 uint16_t
2267 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2268                      __rte_unused struct rte_mbuf **pkts,
2269                      __rte_unused uint16_t nb_pkts)
2270 {
2271         return 0;
2272 }
2273
2274
2275 /* this function does a fake walk through over completion queue
2276  * to calculate number of BDs used by HW.
2277  * At the end, it restores the state of completion queue.
2278  */
2279 static uint16_t
2280 qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2281 {
2282         uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2283         union eth_rx_cqe *cqe, *orig_cqe = NULL;
2284
2285         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2286         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2287
2288         if (hw_comp_cons == sw_comp_cons)
2289                 return 0;
2290
2291         /* Get the CQE from the completion ring */
2292         cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2293         orig_cqe = cqe;
2294
2295         while (sw_comp_cons != hw_comp_cons) {
2296                 switch (cqe->fast_path_regular.type) {
2297                 case ETH_RX_CQE_TYPE_REGULAR:
2298                         bd_count += cqe->fast_path_regular.bd_num;
2299                         break;
2300                 case ETH_RX_CQE_TYPE_TPA_END:
2301                         bd_count += cqe->fast_path_tpa_end.num_of_bds;
2302                         break;
2303                 default:
2304                         break;
2305                 }
2306
2307                 cqe =
2308                 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2309                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2310         }
2311
2312         /* revert comp_ring to original state */
2313         ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2314
2315         return bd_count;
2316 }
2317
2318 int
2319 qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2320 {
2321         uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2322         uint16_t produced, consumed;
2323         struct qede_rx_queue *rxq = p_rxq;
2324
2325         if (offset > rxq->nb_rx_desc)
2326                 return -EINVAL;
2327
2328         sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2329         sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2330
2331         /* find BDs used by HW from completion queue elements */
2332         hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2333
2334         if (hw_bd_cons < sw_bd_cons)
2335                 /* wraparound case */
2336                 consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2337         else
2338                 consumed = hw_bd_cons - sw_bd_cons;
2339
2340         if (offset <= consumed)
2341                 return RTE_ETH_RX_DESC_DONE;
2342
2343         if (sw_bd_prod < sw_bd_cons)
2344                 /* wraparound case */
2345                 produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2346         else
2347                 produced = sw_bd_prod - sw_bd_cons;
2348
2349         if (offset <= produced)
2350                 return RTE_ETH_RX_DESC_AVAIL;
2351
2352         return RTE_ETH_RX_DESC_UNAVAIL;
2353 }