net/sfc: add xstats for Rx/Tx doorbells
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
31 #include "sfc_ef10_rx_ev.h"
32
33 #define sfc_ef10_rx_err(dpq, ...) \
34         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35
36 #define sfc_ef10_rx_info(dpq, ...) \
37         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
38
39 /**
40  * Maximum number of descriptors/buffers in the Rx ring.
41  * It should guarantee that corresponding event queue never overfill.
42  * EF10 native datapath uses event queue of the same size as Rx queue.
43  * Maximum number of events on datapath can be estimated as number of
44  * Rx queue entries (one event per Rx buffer in the worst case) plus
45  * Rx error and flush events.
46  */
47 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
48         ((_ndesc) - 1 /* head must not step on tail */ - \
49          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50          1 /* Rx error */ - 1 /* flush */)
51
52 struct sfc_ef10_rx_sw_desc {
53         struct rte_mbuf                 *mbuf;
54 };
55
56 struct sfc_ef10_rxq {
57         /* Used on data path */
58         unsigned int                    flags;
59 #define SFC_EF10_RXQ_STARTED            0x1
60 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
61 #define SFC_EF10_RXQ_EXCEPTION          0x4
62 #define SFC_EF10_RXQ_RSS_HASH           0x8
63 #define SFC_EF10_RXQ_FLAG_INTR_EN       0x10
64         unsigned int                    ptr_mask;
65         unsigned int                    pending;
66         unsigned int                    completed;
67         unsigned int                    evq_read_ptr;
68         unsigned int                    evq_read_ptr_primed;
69         efx_qword_t                     *evq_hw_ring;
70         struct sfc_ef10_rx_sw_desc      *sw_ring;
71         uint64_t                        rearm_data;
72         struct rte_mbuf                 *scatter_pkt;
73         volatile void                   *evq_prime;
74         uint16_t                        prefix_size;
75
76         /* Used on refill */
77         uint16_t                        buf_size;
78         unsigned int                    added;
79         unsigned int                    max_fill_level;
80         unsigned int                    refill_threshold;
81         struct rte_mempool              *refill_mb_pool;
82         efx_qword_t                     *rxq_hw_ring;
83         volatile void                   *doorbell;
84
85         /* Datapath receive queue anchor */
86         struct sfc_dp_rxq               dp;
87 };
88
89 static inline struct sfc_ef10_rxq *
90 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
93 }
94
95 static void
96 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
97 {
98         sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
99         rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
100 }
101
102 static void
103 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
104 {
105         const unsigned int ptr_mask = rxq->ptr_mask;
106         const uint32_t buf_size = rxq->buf_size;
107         unsigned int free_space;
108         unsigned int bulks;
109         void *objs[SFC_RX_REFILL_BULK];
110         unsigned int added = rxq->added;
111
112         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
113
114         free_space = rxq->max_fill_level - (added - rxq->completed);
115
116         if (free_space < rxq->refill_threshold)
117                 return;
118
119         bulks = free_space / RTE_DIM(objs);
120         /* refill_threshold guarantees that bulks is positive */
121         SFC_ASSERT(bulks > 0);
122
123         do {
124                 unsigned int id;
125                 unsigned int i;
126
127                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
128                                                   RTE_DIM(objs)) < 0)) {
129                         struct rte_eth_dev_data *dev_data =
130                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
131
132                         /*
133                          * It is hardly a safe way to increment counter
134                          * from different contexts, but all PMDs do it.
135                          */
136                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
137                         /* Return if we have posted nothing yet */
138                         if (added == rxq->added)
139                                 return;
140                         /* Push posted */
141                         break;
142                 }
143
144                 for (i = 0, id = added & ptr_mask;
145                      i < RTE_DIM(objs);
146                      ++i, ++id) {
147                         struct rte_mbuf *m = objs[i];
148                         struct sfc_ef10_rx_sw_desc *rxd;
149                         rte_iova_t phys_addr;
150
151                         __rte_mbuf_raw_sanity_check(m);
152
153                         SFC_ASSERT((id & ~ptr_mask) == 0);
154                         rxd = &rxq->sw_ring[id];
155                         rxd->mbuf = m;
156
157                         /*
158                          * Avoid writing to mbuf. It is cheaper to do it
159                          * when we receive packet and fill in nearby
160                          * structure members.
161                          */
162
163                         phys_addr = rte_mbuf_data_iova_default(m);
164                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
165                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
166                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
167                 }
168
169                 added += RTE_DIM(objs);
170         } while (--bulks > 0);
171
172         SFC_ASSERT(rxq->added != added);
173         rxq->added = added;
174         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask,
175                           &rxq->dp.dpq.rx_dbells);
176 }
177
178 static void
179 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
180 {
181         struct rte_mbuf *next_mbuf;
182
183         /* Prefetch next bunch of software descriptors */
184         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
185                 rte_prefetch0(&rxq->sw_ring[next_id]);
186
187         /*
188          * It looks strange to prefetch depending on previous prefetch
189          * data, but measurements show that it is really efficient and
190          * increases packet rate.
191          */
192         next_mbuf = rxq->sw_ring[next_id].mbuf;
193         if (likely(next_mbuf != NULL)) {
194                 /* Prefetch the next mbuf structure */
195                 rte_mbuf_prefetch_part1(next_mbuf);
196
197                 /* Prefetch pseudo header of the next packet */
198                 /* data_off is not filled in yet */
199                 /* Yes, data could be not ready yet, but we hope */
200                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
201                               RTE_PKTMBUF_HEADROOM);
202         }
203 }
204
205 static struct rte_mbuf **
206 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
207                     uint16_t nb_pkts)
208 {
209         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
210
211         SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
212
213         if (n_rx_pkts != 0) {
214                 unsigned int completed = rxq->completed;
215
216                 rxq->completed = completed + n_rx_pkts;
217
218                 do {
219                         *rx_pkts++ =
220                                 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
221                 } while (completed != rxq->completed);
222         }
223
224         return rx_pkts;
225 }
226
227 /*
228  * Below Rx pseudo-header (aka Rx prefix) accessors rely on the
229  * following fields layout.
230  */
231 static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
232         .erpl_fields    = {
233                 [EFX_RX_PREFIX_FIELD_RSS_HASH]  =
234                     { 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
235                 [EFX_RX_PREFIX_FIELD_LENGTH]    =
236                     { 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
237         }
238 };
239 static uint16_t
240 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
241 {
242         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
243 }
244
245 static uint32_t
246 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
247 {
248         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
249 }
250
251 static struct rte_mbuf **
252 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
253                           struct rte_mbuf **rx_pkts,
254                           struct rte_mbuf ** const rx_pkts_end)
255 {
256         const unsigned int ptr_mask = rxq->ptr_mask;
257         unsigned int pending = rxq->pending;
258         unsigned int ready;
259         struct sfc_ef10_rx_sw_desc *rxd;
260         struct rte_mbuf *m;
261         struct rte_mbuf *m0;
262         const uint8_t *pseudo_hdr;
263         uint16_t seg_len;
264
265         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
266                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
267
268         if (ready == 0) {
269                 /* Rx abort - it was no enough descriptors for Rx packet */
270                 rte_pktmbuf_free(rxq->scatter_pkt);
271                 rxq->scatter_pkt = NULL;
272                 return rx_pkts;
273         }
274
275         rxq->pending = pending + ready;
276
277         if (rx_ev.eq_u64[0] &
278             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
279                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
280                 SFC_ASSERT(rxq->completed == pending);
281                 do {
282                         rxd = &rxq->sw_ring[pending++ & ptr_mask];
283                         rte_mbuf_raw_free(rxd->mbuf);
284                 } while (pending != rxq->pending);
285                 rxq->completed = pending;
286                 return rx_pkts;
287         }
288
289         /* If scattered packet is in progress */
290         if (rxq->scatter_pkt != NULL) {
291                 /* Events for scattered packet frags are not merged */
292                 SFC_ASSERT(ready == 1);
293                 SFC_ASSERT(rxq->completed == pending);
294
295                 /* There is no pseudo-header in scatter segments. */
296                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
297
298                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
299                 m = rxd->mbuf;
300
301                 __rte_mbuf_raw_sanity_check(m);
302
303                 m->data_off = RTE_PKTMBUF_HEADROOM;
304                 rte_pktmbuf_data_len(m) = seg_len;
305                 rte_pktmbuf_pkt_len(m) = seg_len;
306
307                 rxq->scatter_pkt->nb_segs++;
308                 rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
309                 rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
310
311                 if (~rx_ev.eq_u64[0] &
312                     rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
313                         *rx_pkts++ = rxq->scatter_pkt;
314                         rxq->scatter_pkt = NULL;
315                 }
316                 rxq->completed = pending;
317                 return rx_pkts;
318         }
319
320         rxd = &rxq->sw_ring[pending++ & ptr_mask];
321
322         sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
323
324         m = rxd->mbuf;
325
326         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
327         m->rearm_data[0] = rxq->rearm_data;
328
329         /* Classify packet based on Rx event */
330         /* Mask RSS hash offload flag if RSS is not enabled */
331         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
332                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
333                                    ~0ull : ~PKT_RX_RSS_HASH);
334
335         /* data_off already moved past pseudo header */
336         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
337
338         /*
339          * Always get RSS hash from pseudo header to avoid
340          * condition/branching. If it is valid or not depends on
341          * PKT_RX_RSS_HASH in m->ol_flags.
342          */
343         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
344
345         if (ready == 1)
346                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
347                         rxq->prefix_size;
348         else
349                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
350         SFC_ASSERT(seg_len > 0);
351         rte_pktmbuf_data_len(m) = seg_len;
352         rte_pktmbuf_pkt_len(m) = seg_len;
353
354         SFC_ASSERT(m->next == NULL);
355
356         if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
357                 *rx_pkts++ = m;
358                 rxq->completed = pending;
359         } else {
360                 /* Events with CONT bit are not merged */
361                 SFC_ASSERT(ready == 1);
362                 rxq->scatter_pkt = m;
363                 rxq->completed = pending;
364                 return rx_pkts;
365         }
366
367         /* Remember mbuf to copy offload flags and packet type from */
368         m0 = m;
369         while (pending != rxq->pending) {
370                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
371
372                 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
373
374                 m = rxd->mbuf;
375
376                 if (rx_pkts != rx_pkts_end) {
377                         *rx_pkts++ = m;
378                         rxq->completed = pending;
379                 }
380
381                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
382                                  sizeof(rxq->rearm_data));
383                 m->rearm_data[0] = rxq->rearm_data;
384
385                 /* Event-dependent information is the same */
386                 m->ol_flags = m0->ol_flags;
387                 m->packet_type = m0->packet_type;
388
389                 /* data_off already moved past pseudo header */
390                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
391
392                 /*
393                  * Always get RSS hash from pseudo header to avoid
394                  * condition/branching. If it is valid or not depends on
395                  * PKT_RX_RSS_HASH in m->ol_flags.
396                  */
397                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
398
399                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
400                 SFC_ASSERT(seg_len > 0);
401                 rte_pktmbuf_data_len(m) = seg_len;
402                 rte_pktmbuf_pkt_len(m) = seg_len;
403
404                 SFC_ASSERT(m->next == NULL);
405         }
406
407         return rx_pkts;
408 }
409
410 static bool
411 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
412 {
413         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
414
415         if (!sfc_ef10_ev_present(*rx_ev))
416                 return false;
417
418         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
419                      FSE_AZ_EV_CODE_RX_EV)) {
420                 /*
421                  * Do not move read_ptr to keep the event for exception
422                  * handling by the control path.
423                  */
424                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
425                 sfc_ef10_rx_err(&rxq->dp.dpq,
426                                 "RxQ exception at EvQ read ptr %#x",
427                                 rxq->evq_read_ptr);
428                 return false;
429         }
430
431         rxq->evq_read_ptr++;
432         return true;
433 }
434
435 static uint16_t
436 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
437 {
438         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
439         struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
440         unsigned int evq_old_read_ptr;
441         efx_qword_t rx_ev;
442
443         rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
444
445         if (unlikely(rxq->flags &
446                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
447                 goto done;
448
449         evq_old_read_ptr = rxq->evq_read_ptr;
450         while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
451                 /*
452                  * DROP_EVENT is an internal to the NIC, software should
453                  * never see it and, therefore, may ignore it.
454                  */
455
456                 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
457                                                     rx_pkts, rx_pkts_end);
458         }
459
460         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
461                            rxq->evq_read_ptr);
462
463         /* It is not a problem if we refill in the case of exception */
464         sfc_ef10_rx_qrefill(rxq);
465
466         if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
467             rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
468                 sfc_ef10_rx_qprime(rxq);
469
470 done:
471         return nb_pkts - (rx_pkts_end - rx_pkts);
472 }
473
474 const uint32_t *
475 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
476 {
477         static const uint32_t ef10_native_ptypes[] = {
478                 RTE_PTYPE_L2_ETHER,
479                 RTE_PTYPE_L2_ETHER_ARP,
480                 RTE_PTYPE_L2_ETHER_VLAN,
481                 RTE_PTYPE_L2_ETHER_QINQ,
482                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
483                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
484                 RTE_PTYPE_L4_FRAG,
485                 RTE_PTYPE_L4_TCP,
486                 RTE_PTYPE_L4_UDP,
487                 RTE_PTYPE_UNKNOWN
488         };
489         static const uint32_t ef10_overlay_ptypes[] = {
490                 RTE_PTYPE_L2_ETHER,
491                 RTE_PTYPE_L2_ETHER_ARP,
492                 RTE_PTYPE_L2_ETHER_VLAN,
493                 RTE_PTYPE_L2_ETHER_QINQ,
494                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
495                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
496                 RTE_PTYPE_L4_FRAG,
497                 RTE_PTYPE_L4_TCP,
498                 RTE_PTYPE_L4_UDP,
499                 RTE_PTYPE_TUNNEL_VXLAN,
500                 RTE_PTYPE_TUNNEL_NVGRE,
501                 RTE_PTYPE_INNER_L2_ETHER,
502                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
503                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
504                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
505                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
506                 RTE_PTYPE_INNER_L4_FRAG,
507                 RTE_PTYPE_INNER_L4_TCP,
508                 RTE_PTYPE_INNER_L4_UDP,
509                 RTE_PTYPE_UNKNOWN
510         };
511
512         /*
513          * The function returns static set of supported packet types,
514          * so we can't build it dynamically based on supported tunnel
515          * encapsulations and should limit to known sets.
516          */
517         switch (tunnel_encaps) {
518         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
519               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
520               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
521                 return ef10_overlay_ptypes;
522         default:
523                 SFC_GENERIC_LOG(ERR,
524                         "Unexpected set of supported tunnel encapsulations: %#x",
525                         tunnel_encaps);
526                 /* FALLTHROUGH */
527         case 0:
528                 return ef10_native_ptypes;
529         }
530 }
531
532 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
533 static unsigned int
534 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
535 {
536         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
537         efx_qword_t rx_ev;
538         const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
539         unsigned int pending = rxq->pending;
540         unsigned int ready;
541
542         if (unlikely(rxq->flags &
543                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
544                 goto done;
545
546         while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
547                 ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
548                          pending) &
549                         EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
550                 pending += ready;
551         }
552
553         /*
554          * The function does not process events, so return event queue read
555          * pointer to the original position to allow the events that were
556          * read to be processed later
557          */
558         rxq->evq_read_ptr = evq_old_read_ptr;
559
560 done:
561         return pending - rxq->completed;
562 }
563
564 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
565 static int
566 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
567 {
568         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
569         unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
570
571         if (unlikely(offset > rxq->ptr_mask))
572                 return -EINVAL;
573
574         if (offset < npending)
575                 return RTE_ETH_RX_DESC_DONE;
576
577         if (offset < (rxq->added - rxq->completed))
578                 return RTE_ETH_RX_DESC_AVAIL;
579
580         return RTE_ETH_RX_DESC_UNAVAIL;
581 }
582
583
584 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
585 static void
586 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
587 {
588         /*
589          * Number of descriptors just defines maximum number of pushed
590          * descriptors (fill level).
591          */
592         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
593         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
594 }
595
596
597 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
598 static int
599 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
600                            struct sfc_dp_rx_hw_limits *limits,
601                            __rte_unused struct rte_mempool *mb_pool,
602                            unsigned int *rxq_entries,
603                            unsigned int *evq_entries,
604                            unsigned int *rxq_max_fill_level)
605 {
606         /*
607          * rte_ethdev API guarantees that the number meets min, max and
608          * alignment requirements.
609          */
610         if (nb_rx_desc <= limits->rxq_min_entries)
611                 *rxq_entries = limits->rxq_min_entries;
612         else
613                 *rxq_entries = rte_align32pow2(nb_rx_desc);
614
615         *evq_entries = *rxq_entries;
616
617         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
618                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
619         return 0;
620 }
621
622
623 static uint64_t
624 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
625 {
626         struct rte_mbuf m;
627
628         memset(&m, 0, sizeof(m));
629
630         rte_mbuf_refcnt_set(&m, 1);
631         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
632         m.nb_segs = 1;
633         m.port = port_id;
634
635         /* rearm_data covers structure members filled in above */
636         rte_compiler_barrier();
637         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
638         return m.rearm_data[0];
639 }
640
641 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
642 static int
643 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
644                     const struct rte_pci_addr *pci_addr, int socket_id,
645                     const struct sfc_dp_rx_qcreate_info *info,
646                     struct sfc_dp_rxq **dp_rxqp)
647 {
648         struct sfc_ef10_rxq *rxq;
649         int rc;
650
651         rc = EINVAL;
652         if (info->rxq_entries != info->evq_entries)
653                 goto fail_rxq_args;
654
655         rc = ENOMEM;
656         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
657                                  RTE_CACHE_LINE_SIZE, socket_id);
658         if (rxq == NULL)
659                 goto fail_rxq_alloc;
660
661         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
662
663         rc = ENOMEM;
664         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
665                                          info->rxq_entries,
666                                          sizeof(*rxq->sw_ring),
667                                          RTE_CACHE_LINE_SIZE, socket_id);
668         if (rxq->sw_ring == NULL)
669                 goto fail_desc_alloc;
670
671         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
672         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
673                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
674         rxq->ptr_mask = info->rxq_entries - 1;
675         rxq->evq_hw_ring = info->evq_hw_ring;
676         rxq->max_fill_level = info->max_fill_level;
677         rxq->refill_threshold = info->refill_threshold;
678         rxq->rearm_data =
679                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
680         rxq->prefix_size = info->prefix_size;
681         rxq->buf_size = info->buf_size;
682         rxq->refill_mb_pool = info->refill_mb_pool;
683         rxq->rxq_hw_ring = info->rxq_hw_ring;
684         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
685                         ER_DZ_RX_DESC_UPD_REG_OFST +
686                         (info->hw_index << info->vi_window_shift);
687         rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
688                       ER_DZ_EVQ_RPTR_REG_OFST +
689                       (info->evq_hw_index << info->vi_window_shift);
690
691         sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
692
693         *dp_rxqp = &rxq->dp;
694         return 0;
695
696 fail_desc_alloc:
697         rte_free(rxq);
698
699 fail_rxq_alloc:
700 fail_rxq_args:
701         return rc;
702 }
703
704 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
705 static void
706 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
707 {
708         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
709
710         rte_free(rxq->sw_ring);
711         rte_free(rxq);
712 }
713
714 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
715 static int
716 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
717                    const efx_rx_prefix_layout_t *pinfo)
718 {
719         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
720
721         SFC_ASSERT(rxq->completed == 0);
722         SFC_ASSERT(rxq->pending == 0);
723         SFC_ASSERT(rxq->added == 0);
724
725         if (pinfo->erpl_length != rxq->prefix_size ||
726             efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
727                 return ENOTSUP;
728
729         sfc_ef10_rx_qrefill(rxq);
730
731         rxq->evq_read_ptr = evq_read_ptr;
732
733         rxq->flags |= SFC_EF10_RXQ_STARTED;
734         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
735
736         if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
737                 sfc_ef10_rx_qprime(rxq);
738
739         return 0;
740 }
741
742 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
743 static void
744 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
745 {
746         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
747
748         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
749
750         *evq_read_ptr = rxq->evq_read_ptr;
751 }
752
753 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
754 static bool
755 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
756 {
757         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
758
759         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
760
761         /*
762          * It is safe to ignore Rx event since we free all mbufs on
763          * queue purge anyway.
764          */
765
766         return false;
767 }
768
769 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
770 static void
771 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
772 {
773         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
774         unsigned int i;
775         struct sfc_ef10_rx_sw_desc *rxd;
776
777         rte_pktmbuf_free(rxq->scatter_pkt);
778         rxq->scatter_pkt = NULL;
779
780         for (i = rxq->completed; i != rxq->added; ++i) {
781                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
782                 rte_mbuf_raw_free(rxd->mbuf);
783                 rxd->mbuf = NULL;
784         }
785
786         rxq->completed = rxq->pending = rxq->added = 0;
787
788         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
789 }
790
791 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
792 static int
793 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
794 {
795         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
796
797         rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
798         if (rxq->flags & SFC_EF10_RXQ_STARTED)
799                 sfc_ef10_rx_qprime(rxq);
800         return 0;
801 }
802
803 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
804 static int
805 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
806 {
807         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
808
809         /* Cannot disarm, just disable rearm */
810         rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
811         return 0;
812 }
813
814 struct sfc_dp_rx sfc_ef10_rx = {
815         .dp = {
816                 .name           = SFC_KVARG_DATAPATH_EF10,
817                 .type           = SFC_DP_RX,
818                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
819         },
820         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
821                                   SFC_DP_RX_FEAT_INTR,
822         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
823                                   DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
824                                   DEV_RX_OFFLOAD_RSS_HASH,
825         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
826         .get_dev_info           = sfc_ef10_rx_get_dev_info,
827         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
828         .qcreate                = sfc_ef10_rx_qcreate,
829         .qdestroy               = sfc_ef10_rx_qdestroy,
830         .qstart                 = sfc_ef10_rx_qstart,
831         .qstop                  = sfc_ef10_rx_qstop,
832         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
833         .qpurge                 = sfc_ef10_rx_qpurge,
834         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
835         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
836         .qdesc_status           = sfc_ef10_rx_qdesc_status,
837         .intr_enable            = sfc_ef10_rx_intr_enable,
838         .intr_disable           = sfc_ef10_rx_intr_disable,
839         .pkt_burst              = sfc_ef10_recv_pkts,
840 };