net/sfc: move datapath TxQ handle to shared TxQ info
[dpdk.git] / drivers / net / sfc / sfc_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17
18 #include "efx.h"
19
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_log.h"
23 #include "sfc_kvargs.h"
24 #include "sfc_ev.h"
25 #include "sfc_rx.h"
26 #include "sfc_tx.h"
27 #include "sfc_flow.h"
28 #include "sfc_dp.h"
29 #include "sfc_dp_rx.h"
30
31 uint32_t sfc_logtype_driver;
32
33 static struct sfc_dp_list sfc_dp_head =
34         TAILQ_HEAD_INITIALIZER(sfc_dp_head);
35
36 static int
37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
38 {
39         struct sfc_adapter *sa = dev->data->dev_private;
40         efx_nic_fw_info_t enfi;
41         int ret;
42         int rc;
43
44         /*
45          * Return value of the callback is likely supposed to be
46          * equal to or greater than 0, nevertheless, if an error
47          * occurs, it will be desirable to pass it to the caller
48          */
49         if ((fw_version == NULL) || (fw_size == 0))
50                 return -EINVAL;
51
52         rc = efx_nic_get_fw_version(sa->nic, &enfi);
53         if (rc != 0)
54                 return -rc;
55
56         ret = snprintf(fw_version, fw_size,
57                        "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
58                        enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
59                        enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
60         if (ret < 0)
61                 return ret;
62
63         if (enfi.enfi_dpcpu_fw_ids_valid) {
64                 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
65                 int ret_extra;
66
67                 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
68                                      fw_size - dpcpu_fw_ids_offset,
69                                      " rx%" PRIx16 " tx%" PRIx16,
70                                      enfi.enfi_rx_dpcpu_fw_id,
71                                      enfi.enfi_tx_dpcpu_fw_id);
72                 if (ret_extra < 0)
73                         return ret_extra;
74
75                 ret += ret_extra;
76         }
77
78         if (fw_size < (size_t)(++ret))
79                 return ret;
80         else
81                 return 0;
82 }
83
84 static void
85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
86 {
87         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
88         struct sfc_adapter *sa = dev->data->dev_private;
89         struct sfc_rss *rss = &sa->rss;
90         uint64_t txq_offloads_def = 0;
91
92         sfc_log_init(sa, "entry");
93
94         dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
95
96         /* Autonegotiation may be disabled */
97         dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
98         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
99                 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
100         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
101                 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
102         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX)
103                 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
104         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
105                 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
106         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX)
107                 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
108         if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX)
109                 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
110
111         dev_info->max_rx_queues = sa->rxq_max;
112         dev_info->max_tx_queues = sa->txq_max;
113
114         /* By default packets are dropped if no descriptors are available */
115         dev_info->default_rxconf.rx_drop_en = 1;
116
117         dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
118
119         /*
120          * rx_offload_capa includes both device and queue offloads since
121          * the latter may be requested on a per device basis which makes
122          * sense when some offloads are needed to be set on all queues.
123          */
124         dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
125                                     dev_info->rx_queue_offload_capa;
126
127         dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
128
129         /*
130          * tx_offload_capa includes both device and queue offloads since
131          * the latter may be requested on a per device basis which makes
132          * sense when some offloads are needed to be set on all queues.
133          */
134         dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
135                                     dev_info->tx_queue_offload_capa;
136
137         if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
138                 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
139
140         dev_info->default_txconf.offloads |= txq_offloads_def;
141
142         if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
143                 uint64_t rte_hf = 0;
144                 unsigned int i;
145
146                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
147                         rte_hf |= rss->hf_map[i].rte;
148
149                 dev_info->reta_size = EFX_RSS_TBL_SIZE;
150                 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
151                 dev_info->flow_type_rss_offloads = rte_hf;
152         }
153
154         /* Initialize to hardware limits */
155         dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
156         dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
157         /* The RXQ hardware requires that the descriptor count is a power
158          * of 2, but rx_desc_lim cannot properly describe that constraint.
159          */
160         dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
161
162         /* Initialize to hardware limits */
163         dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
164         dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
165         /*
166          * The TXQ hardware requires that the descriptor count is a power
167          * of 2, but tx_desc_lim cannot properly describe that constraint
168          */
169         dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
170
171         if (sap->dp_rx->get_dev_info != NULL)
172                 sap->dp_rx->get_dev_info(dev_info);
173         if (sap->dp_tx->get_dev_info != NULL)
174                 sap->dp_tx->get_dev_info(dev_info);
175
176         dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
177                              RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
178 }
179
180 static const uint32_t *
181 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
182 {
183         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
184         struct sfc_adapter *sa = dev->data->dev_private;
185         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
186         uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
187
188         return sap->dp_rx->supported_ptypes_get(tunnel_encaps);
189 }
190
191 static int
192 sfc_dev_configure(struct rte_eth_dev *dev)
193 {
194         struct rte_eth_dev_data *dev_data = dev->data;
195         struct sfc_adapter *sa = dev_data->dev_private;
196         int rc;
197
198         sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
199                      dev_data->nb_rx_queues, dev_data->nb_tx_queues);
200
201         sfc_adapter_lock(sa);
202         switch (sa->state) {
203         case SFC_ADAPTER_CONFIGURED:
204                 /* FALLTHROUGH */
205         case SFC_ADAPTER_INITIALIZED:
206                 rc = sfc_configure(sa);
207                 break;
208         default:
209                 sfc_err(sa, "unexpected adapter state %u to configure",
210                         sa->state);
211                 rc = EINVAL;
212                 break;
213         }
214         sfc_adapter_unlock(sa);
215
216         sfc_log_init(sa, "done %d", rc);
217         SFC_ASSERT(rc >= 0);
218         return -rc;
219 }
220
221 static int
222 sfc_dev_start(struct rte_eth_dev *dev)
223 {
224         struct sfc_adapter *sa = dev->data->dev_private;
225         int rc;
226
227         sfc_log_init(sa, "entry");
228
229         sfc_adapter_lock(sa);
230         rc = sfc_start(sa);
231         sfc_adapter_unlock(sa);
232
233         sfc_log_init(sa, "done %d", rc);
234         SFC_ASSERT(rc >= 0);
235         return -rc;
236 }
237
238 static int
239 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
240 {
241         struct sfc_adapter *sa = dev->data->dev_private;
242         struct rte_eth_link current_link;
243         int ret;
244
245         sfc_log_init(sa, "entry");
246
247         if (sa->state != SFC_ADAPTER_STARTED) {
248                 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
249         } else if (wait_to_complete) {
250                 efx_link_mode_t link_mode;
251
252                 if (efx_port_poll(sa->nic, &link_mode) != 0)
253                         link_mode = EFX_LINK_UNKNOWN;
254                 sfc_port_link_mode_to_info(link_mode, &current_link);
255
256         } else {
257                 sfc_ev_mgmt_qpoll(sa);
258                 rte_eth_linkstatus_get(dev, &current_link);
259         }
260
261         ret = rte_eth_linkstatus_set(dev, &current_link);
262         if (ret == 0)
263                 sfc_notice(sa, "Link status is %s",
264                            current_link.link_status ? "UP" : "DOWN");
265
266         return ret;
267 }
268
269 static void
270 sfc_dev_stop(struct rte_eth_dev *dev)
271 {
272         struct sfc_adapter *sa = dev->data->dev_private;
273
274         sfc_log_init(sa, "entry");
275
276         sfc_adapter_lock(sa);
277         sfc_stop(sa);
278         sfc_adapter_unlock(sa);
279
280         sfc_log_init(sa, "done");
281 }
282
283 static int
284 sfc_dev_set_link_up(struct rte_eth_dev *dev)
285 {
286         struct sfc_adapter *sa = dev->data->dev_private;
287         int rc;
288
289         sfc_log_init(sa, "entry");
290
291         sfc_adapter_lock(sa);
292         rc = sfc_start(sa);
293         sfc_adapter_unlock(sa);
294
295         SFC_ASSERT(rc >= 0);
296         return -rc;
297 }
298
299 static int
300 sfc_dev_set_link_down(struct rte_eth_dev *dev)
301 {
302         struct sfc_adapter *sa = dev->data->dev_private;
303
304         sfc_log_init(sa, "entry");
305
306         sfc_adapter_lock(sa);
307         sfc_stop(sa);
308         sfc_adapter_unlock(sa);
309
310         return 0;
311 }
312
313 static void
314 sfc_dev_close(struct rte_eth_dev *dev)
315 {
316         struct sfc_adapter *sa = dev->data->dev_private;
317
318         sfc_log_init(sa, "entry");
319
320         sfc_adapter_lock(sa);
321         switch (sa->state) {
322         case SFC_ADAPTER_STARTED:
323                 sfc_stop(sa);
324                 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
325                 /* FALLTHROUGH */
326         case SFC_ADAPTER_CONFIGURED:
327                 sfc_close(sa);
328                 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
329                 /* FALLTHROUGH */
330         case SFC_ADAPTER_INITIALIZED:
331                 break;
332         default:
333                 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
334                 break;
335         }
336         sfc_adapter_unlock(sa);
337
338         sfc_log_init(sa, "done");
339 }
340
341 static void
342 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
343                    boolean_t enabled)
344 {
345         struct sfc_port *port;
346         boolean_t *toggle;
347         struct sfc_adapter *sa = dev->data->dev_private;
348         boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
349         const char *desc = (allmulti) ? "all-multi" : "promiscuous";
350
351         sfc_adapter_lock(sa);
352
353         port = &sa->port;
354         toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
355
356         if (*toggle != enabled) {
357                 *toggle = enabled;
358
359                 if (port->isolated) {
360                         sfc_warn(sa, "isolated mode is active on the port");
361                         sfc_warn(sa, "the change is to be applied on the next "
362                                      "start provided that isolated mode is "
363                                      "disabled prior the next start");
364                 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
365                            (sfc_set_rx_mode(sa) != 0)) {
366                         *toggle = !(enabled);
367                         sfc_warn(sa, "Failed to %s %s mode",
368                                  ((enabled) ? "enable" : "disable"), desc);
369                 }
370         }
371
372         sfc_adapter_unlock(sa);
373 }
374
375 static void
376 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
377 {
378         sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
379 }
380
381 static void
382 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
383 {
384         sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
385 }
386
387 static void
388 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
389 {
390         sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
391 }
392
393 static void
394 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
395 {
396         sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
397 }
398
399 static int
400 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
401                    uint16_t nb_rx_desc, unsigned int socket_id,
402                    const struct rte_eth_rxconf *rx_conf,
403                    struct rte_mempool *mb_pool)
404 {
405         struct sfc_adapter *sa = dev->data->dev_private;
406         int rc;
407
408         sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
409                      rx_queue_id, nb_rx_desc, socket_id);
410
411         sfc_adapter_lock(sa);
412
413         rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
414                           rx_conf, mb_pool);
415         if (rc != 0)
416                 goto fail_rx_qinit;
417
418         dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].dp;
419
420         sfc_adapter_unlock(sa);
421
422         return 0;
423
424 fail_rx_qinit:
425         sfc_adapter_unlock(sa);
426         SFC_ASSERT(rc > 0);
427         return -rc;
428 }
429
430 static void
431 sfc_rx_queue_release(void *queue)
432 {
433         struct sfc_dp_rxq *dp_rxq = queue;
434         struct sfc_rxq *rxq;
435         struct sfc_adapter *sa;
436         unsigned int sw_index;
437
438         if (dp_rxq == NULL)
439                 return;
440
441         rxq = sfc_rxq_by_dp_rxq(dp_rxq);
442         sa = rxq->evq->sa;
443         sfc_adapter_lock(sa);
444
445         sw_index = sfc_rxq_sw_index(rxq);
446
447         sfc_log_init(sa, "RxQ=%u", sw_index);
448
449         sfc_rx_qfini(sa, sw_index);
450
451         sfc_adapter_unlock(sa);
452 }
453
454 static int
455 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
456                    uint16_t nb_tx_desc, unsigned int socket_id,
457                    const struct rte_eth_txconf *tx_conf)
458 {
459         struct sfc_adapter *sa = dev->data->dev_private;
460         int rc;
461
462         sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
463                      tx_queue_id, nb_tx_desc, socket_id);
464
465         sfc_adapter_lock(sa);
466
467         rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
468         if (rc != 0)
469                 goto fail_tx_qinit;
470
471         dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].dp;
472
473         sfc_adapter_unlock(sa);
474         return 0;
475
476 fail_tx_qinit:
477         sfc_adapter_unlock(sa);
478         SFC_ASSERT(rc > 0);
479         return -rc;
480 }
481
482 static void
483 sfc_tx_queue_release(void *queue)
484 {
485         struct sfc_dp_txq *dp_txq = queue;
486         struct sfc_txq *txq;
487         unsigned int sw_index;
488         struct sfc_adapter *sa;
489
490         if (dp_txq == NULL)
491                 return;
492
493         txq = sfc_txq_by_dp_txq(dp_txq);
494         sw_index = sfc_txq_sw_index(txq);
495
496         SFC_ASSERT(txq->evq != NULL);
497         sa = txq->evq->sa;
498
499         sfc_log_init(sa, "TxQ = %u", sw_index);
500
501         sfc_adapter_lock(sa);
502
503         sfc_tx_qfini(sa, sw_index);
504
505         sfc_adapter_unlock(sa);
506 }
507
508 /*
509  * Some statistics are computed as A - B where A and B each increase
510  * monotonically with some hardware counter(s) and the counters are read
511  * asynchronously.
512  *
513  * If packet X is counted in A, but not counted in B yet, computed value is
514  * greater than real.
515  *
516  * If packet X is not counted in A at the moment of reading the counter,
517  * but counted in B at the moment of reading the counter, computed value
518  * is less than real.
519  *
520  * However, counter which grows backward is worse evil than slightly wrong
521  * value. So, let's try to guarantee that it never happens except may be
522  * the case when the MAC stats are zeroed as a result of a NIC reset.
523  */
524 static void
525 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
526 {
527         if ((int64_t)(newval - *stat) > 0 || newval == 0)
528                 *stat = newval;
529 }
530
531 static int
532 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
533 {
534         struct sfc_adapter *sa = dev->data->dev_private;
535         struct sfc_port *port = &sa->port;
536         uint64_t *mac_stats;
537         int ret;
538
539         rte_spinlock_lock(&port->mac_stats_lock);
540
541         ret = sfc_port_update_mac_stats(sa);
542         if (ret != 0)
543                 goto unlock;
544
545         mac_stats = port->mac_stats_buf;
546
547         if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
548                                    EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
549                 stats->ipackets =
550                         mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
551                         mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
552                         mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
553                 stats->opackets =
554                         mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
555                         mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
556                         mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
557                 stats->ibytes =
558                         mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
559                         mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
560                         mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
561                 stats->obytes =
562                         mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
563                         mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
564                         mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
565                 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
566                 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
567         } else {
568                 stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
569                 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
570                 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
571                 /*
572                  * Take into account stats which are whenever supported
573                  * on EF10. If some stat is not supported by current
574                  * firmware variant or HW revision, it is guaranteed
575                  * to be zero in mac_stats.
576                  */
577                 stats->imissed =
578                         mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
579                         mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
580                         mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
581                         mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
582                         mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
583                         mac_stats[EFX_MAC_PM_TRUNC_QBB] +
584                         mac_stats[EFX_MAC_PM_DISCARD_QBB] +
585                         mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
586                         mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
587                         mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
588                 stats->ierrors =
589                         mac_stats[EFX_MAC_RX_FCS_ERRORS] +
590                         mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
591                         mac_stats[EFX_MAC_RX_JABBER_PKTS];
592                 /* no oerrors counters supported on EF10 */
593
594                 /* Exclude missed, errors and pauses from Rx packets */
595                 sfc_update_diff_stat(&port->ipackets,
596                         mac_stats[EFX_MAC_RX_PKTS] -
597                         mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
598                         stats->imissed - stats->ierrors);
599                 stats->ipackets = port->ipackets;
600         }
601
602 unlock:
603         rte_spinlock_unlock(&port->mac_stats_lock);
604         SFC_ASSERT(ret >= 0);
605         return -ret;
606 }
607
608 static void
609 sfc_stats_reset(struct rte_eth_dev *dev)
610 {
611         struct sfc_adapter *sa = dev->data->dev_private;
612         struct sfc_port *port = &sa->port;
613         int rc;
614
615         if (sa->state != SFC_ADAPTER_STARTED) {
616                 /*
617                  * The operation cannot be done if port is not started; it
618                  * will be scheduled to be done during the next port start
619                  */
620                 port->mac_stats_reset_pending = B_TRUE;
621                 return;
622         }
623
624         rc = sfc_port_reset_mac_stats(sa);
625         if (rc != 0)
626                 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
627 }
628
629 static int
630 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
631                unsigned int xstats_count)
632 {
633         struct sfc_adapter *sa = dev->data->dev_private;
634         struct sfc_port *port = &sa->port;
635         uint64_t *mac_stats;
636         int rc;
637         unsigned int i;
638         int nstats = 0;
639
640         rte_spinlock_lock(&port->mac_stats_lock);
641
642         rc = sfc_port_update_mac_stats(sa);
643         if (rc != 0) {
644                 SFC_ASSERT(rc > 0);
645                 nstats = -rc;
646                 goto unlock;
647         }
648
649         mac_stats = port->mac_stats_buf;
650
651         for (i = 0; i < EFX_MAC_NSTATS; ++i) {
652                 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
653                         if (xstats != NULL && nstats < (int)xstats_count) {
654                                 xstats[nstats].id = nstats;
655                                 xstats[nstats].value = mac_stats[i];
656                         }
657                         nstats++;
658                 }
659         }
660
661 unlock:
662         rte_spinlock_unlock(&port->mac_stats_lock);
663
664         return nstats;
665 }
666
667 static int
668 sfc_xstats_get_names(struct rte_eth_dev *dev,
669                      struct rte_eth_xstat_name *xstats_names,
670                      unsigned int xstats_count)
671 {
672         struct sfc_adapter *sa = dev->data->dev_private;
673         struct sfc_port *port = &sa->port;
674         unsigned int i;
675         unsigned int nstats = 0;
676
677         for (i = 0; i < EFX_MAC_NSTATS; ++i) {
678                 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
679                         if (xstats_names != NULL && nstats < xstats_count)
680                                 strlcpy(xstats_names[nstats].name,
681                                         efx_mac_stat_name(sa->nic, i),
682                                         sizeof(xstats_names[0].name));
683                         nstats++;
684                 }
685         }
686
687         return nstats;
688 }
689
690 static int
691 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
692                      uint64_t *values, unsigned int n)
693 {
694         struct sfc_adapter *sa = dev->data->dev_private;
695         struct sfc_port *port = &sa->port;
696         uint64_t *mac_stats;
697         unsigned int nb_supported = 0;
698         unsigned int nb_written = 0;
699         unsigned int i;
700         int ret;
701         int rc;
702
703         if (unlikely(values == NULL) ||
704             unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
705                 return port->mac_stats_nb_supported;
706
707         rte_spinlock_lock(&port->mac_stats_lock);
708
709         rc = sfc_port_update_mac_stats(sa);
710         if (rc != 0) {
711                 SFC_ASSERT(rc > 0);
712                 ret = -rc;
713                 goto unlock;
714         }
715
716         mac_stats = port->mac_stats_buf;
717
718         for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
719                 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
720                         continue;
721
722                 if ((ids == NULL) || (ids[nb_written] == nb_supported))
723                         values[nb_written++] = mac_stats[i];
724
725                 ++nb_supported;
726         }
727
728         ret = nb_written;
729
730 unlock:
731         rte_spinlock_unlock(&port->mac_stats_lock);
732
733         return ret;
734 }
735
736 static int
737 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
738                            struct rte_eth_xstat_name *xstats_names,
739                            const uint64_t *ids, unsigned int size)
740 {
741         struct sfc_adapter *sa = dev->data->dev_private;
742         struct sfc_port *port = &sa->port;
743         unsigned int nb_supported = 0;
744         unsigned int nb_written = 0;
745         unsigned int i;
746
747         if (unlikely(xstats_names == NULL) ||
748             unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
749                 return port->mac_stats_nb_supported;
750
751         for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
752                 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
753                         continue;
754
755                 if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
756                         char *name = xstats_names[nb_written++].name;
757
758                         strlcpy(name, efx_mac_stat_name(sa->nic, i),
759                                 sizeof(xstats_names[0].name));
760                 }
761
762                 ++nb_supported;
763         }
764
765         return nb_written;
766 }
767
768 static int
769 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
770 {
771         struct sfc_adapter *sa = dev->data->dev_private;
772         unsigned int wanted_fc, link_fc;
773
774         memset(fc_conf, 0, sizeof(*fc_conf));
775
776         sfc_adapter_lock(sa);
777
778         if (sa->state == SFC_ADAPTER_STARTED)
779                 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
780         else
781                 link_fc = sa->port.flow_ctrl;
782
783         switch (link_fc) {
784         case 0:
785                 fc_conf->mode = RTE_FC_NONE;
786                 break;
787         case EFX_FCNTL_RESPOND:
788                 fc_conf->mode = RTE_FC_RX_PAUSE;
789                 break;
790         case EFX_FCNTL_GENERATE:
791                 fc_conf->mode = RTE_FC_TX_PAUSE;
792                 break;
793         case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
794                 fc_conf->mode = RTE_FC_FULL;
795                 break;
796         default:
797                 sfc_err(sa, "%s: unexpected flow control value %#x",
798                         __func__, link_fc);
799         }
800
801         fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
802
803         sfc_adapter_unlock(sa);
804
805         return 0;
806 }
807
808 static int
809 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
810 {
811         struct sfc_adapter *sa = dev->data->dev_private;
812         struct sfc_port *port = &sa->port;
813         unsigned int fcntl;
814         int rc;
815
816         if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
817             fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
818             fc_conf->mac_ctrl_frame_fwd != 0) {
819                 sfc_err(sa, "unsupported flow control settings specified");
820                 rc = EINVAL;
821                 goto fail_inval;
822         }
823
824         switch (fc_conf->mode) {
825         case RTE_FC_NONE:
826                 fcntl = 0;
827                 break;
828         case RTE_FC_RX_PAUSE:
829                 fcntl = EFX_FCNTL_RESPOND;
830                 break;
831         case RTE_FC_TX_PAUSE:
832                 fcntl = EFX_FCNTL_GENERATE;
833                 break;
834         case RTE_FC_FULL:
835                 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
836                 break;
837         default:
838                 rc = EINVAL;
839                 goto fail_inval;
840         }
841
842         sfc_adapter_lock(sa);
843
844         if (sa->state == SFC_ADAPTER_STARTED) {
845                 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
846                 if (rc != 0)
847                         goto fail_mac_fcntl_set;
848         }
849
850         port->flow_ctrl = fcntl;
851         port->flow_ctrl_autoneg = fc_conf->autoneg;
852
853         sfc_adapter_unlock(sa);
854
855         return 0;
856
857 fail_mac_fcntl_set:
858         sfc_adapter_unlock(sa);
859 fail_inval:
860         SFC_ASSERT(rc > 0);
861         return -rc;
862 }
863
864 static int
865 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
866 {
867         struct sfc_adapter *sa = dev->data->dev_private;
868         size_t pdu = EFX_MAC_PDU(mtu);
869         size_t old_pdu;
870         int rc;
871
872         sfc_log_init(sa, "mtu=%u", mtu);
873
874         rc = EINVAL;
875         if (pdu < EFX_MAC_PDU_MIN) {
876                 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
877                         (unsigned int)mtu, (unsigned int)pdu,
878                         EFX_MAC_PDU_MIN);
879                 goto fail_inval;
880         }
881         if (pdu > EFX_MAC_PDU_MAX) {
882                 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
883                         (unsigned int)mtu, (unsigned int)pdu,
884                         EFX_MAC_PDU_MAX);
885                 goto fail_inval;
886         }
887
888         sfc_adapter_lock(sa);
889
890         if (pdu != sa->port.pdu) {
891                 if (sa->state == SFC_ADAPTER_STARTED) {
892                         sfc_stop(sa);
893
894                         old_pdu = sa->port.pdu;
895                         sa->port.pdu = pdu;
896                         rc = sfc_start(sa);
897                         if (rc != 0)
898                                 goto fail_start;
899                 } else {
900                         sa->port.pdu = pdu;
901                 }
902         }
903
904         /*
905          * The driver does not use it, but other PMDs update jumbo frame
906          * flag and max_rx_pkt_len when MTU is set.
907          */
908         if (mtu > ETHER_MAX_LEN) {
909                 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
910                 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
911         }
912
913         dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
914
915         sfc_adapter_unlock(sa);
916
917         sfc_log_init(sa, "done");
918         return 0;
919
920 fail_start:
921         sa->port.pdu = old_pdu;
922         if (sfc_start(sa) != 0)
923                 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
924                         "PDU max size - port is stopped",
925                         (unsigned int)pdu, (unsigned int)old_pdu);
926         sfc_adapter_unlock(sa);
927
928 fail_inval:
929         sfc_log_init(sa, "failed %d", rc);
930         SFC_ASSERT(rc > 0);
931         return -rc;
932 }
933 static int
934 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
935 {
936         struct sfc_adapter *sa = dev->data->dev_private;
937         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
938         struct sfc_port *port = &sa->port;
939         struct ether_addr *old_addr = &dev->data->mac_addrs[0];
940         int rc = 0;
941
942         sfc_adapter_lock(sa);
943
944         /*
945          * Copy the address to the device private data so that
946          * it could be recalled in the case of adapter restart.
947          */
948         ether_addr_copy(mac_addr, &port->default_mac_addr);
949
950         /*
951          * Neither of the two following checks can return
952          * an error. The new MAC address is preserved in
953          * the device private data and can be activated
954          * on the next port start if the user prevents
955          * isolated mode from being enabled.
956          */
957         if (port->isolated) {
958                 sfc_warn(sa, "isolated mode is active on the port");
959                 sfc_warn(sa, "will not set MAC address");
960                 goto unlock;
961         }
962
963         if (sa->state != SFC_ADAPTER_STARTED) {
964                 sfc_notice(sa, "the port is not started");
965                 sfc_notice(sa, "the new MAC address will be set on port start");
966
967                 goto unlock;
968         }
969
970         if (encp->enc_allow_set_mac_with_installed_filters) {
971                 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
972                 if (rc != 0) {
973                         sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
974                         goto unlock;
975                 }
976
977                 /*
978                  * Changing the MAC address by means of MCDI request
979                  * has no effect on received traffic, therefore
980                  * we also need to update unicast filters
981                  */
982                 rc = sfc_set_rx_mode(sa);
983                 if (rc != 0) {
984                         sfc_err(sa, "cannot set filter (rc = %u)", rc);
985                         /* Rollback the old address */
986                         (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
987                         (void)sfc_set_rx_mode(sa);
988                 }
989         } else {
990                 sfc_warn(sa, "cannot set MAC address with filters installed");
991                 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
992                 sfc_warn(sa, "(some traffic may be dropped)");
993
994                 /*
995                  * Since setting MAC address with filters installed is not
996                  * allowed on the adapter, the new MAC address will be set
997                  * by means of adapter restart. sfc_start() shall retrieve
998                  * the new address from the device private data and set it.
999                  */
1000                 sfc_stop(sa);
1001                 rc = sfc_start(sa);
1002                 if (rc != 0)
1003                         sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1004         }
1005
1006 unlock:
1007         if (rc != 0)
1008                 ether_addr_copy(old_addr, &port->default_mac_addr);
1009
1010         sfc_adapter_unlock(sa);
1011
1012         SFC_ASSERT(rc >= 0);
1013         return -rc;
1014 }
1015
1016
1017 static int
1018 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1019                      uint32_t nb_mc_addr)
1020 {
1021         struct sfc_adapter *sa = dev->data->dev_private;
1022         struct sfc_port *port = &sa->port;
1023         uint8_t *mc_addrs = port->mcast_addrs;
1024         int rc;
1025         unsigned int i;
1026
1027         if (port->isolated) {
1028                 sfc_err(sa, "isolated mode is active on the port");
1029                 sfc_err(sa, "will not set multicast address list");
1030                 return -ENOTSUP;
1031         }
1032
1033         if (mc_addrs == NULL)
1034                 return -ENOBUFS;
1035
1036         if (nb_mc_addr > port->max_mcast_addrs) {
1037                 sfc_err(sa, "too many multicast addresses: %u > %u",
1038                          nb_mc_addr, port->max_mcast_addrs);
1039                 return -EINVAL;
1040         }
1041
1042         for (i = 0; i < nb_mc_addr; ++i) {
1043                 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1044                                  EFX_MAC_ADDR_LEN);
1045                 mc_addrs += EFX_MAC_ADDR_LEN;
1046         }
1047
1048         port->nb_mcast_addrs = nb_mc_addr;
1049
1050         if (sa->state != SFC_ADAPTER_STARTED)
1051                 return 0;
1052
1053         rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1054                                         port->nb_mcast_addrs);
1055         if (rc != 0)
1056                 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1057
1058         SFC_ASSERT(rc >= 0);
1059         return -rc;
1060 }
1061
1062 /*
1063  * The function is used by the secondary process as well. It must not
1064  * use any process-local pointers from the adapter data.
1065  */
1066 static void
1067 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1068                       struct rte_eth_rxq_info *qinfo)
1069 {
1070         struct sfc_adapter *sa = dev->data->dev_private;
1071         struct sfc_rxq_info *rxq_info;
1072
1073         sfc_adapter_lock(sa);
1074
1075         SFC_ASSERT(rx_queue_id < sa->rxq_count);
1076
1077         rxq_info = &sa->rxq_info[rx_queue_id];
1078
1079         qinfo->mp = rxq_info->refill_mb_pool;
1080         qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1081         qinfo->conf.rx_drop_en = 1;
1082         qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1083         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1084         if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1085                 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1086                 qinfo->scattered_rx = 1;
1087         }
1088         qinfo->nb_desc = rxq_info->entries;
1089
1090         sfc_adapter_unlock(sa);
1091 }
1092
1093 /*
1094  * The function is used by the secondary process as well. It must not
1095  * use any process-local pointers from the adapter data.
1096  */
1097 static void
1098 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1099                       struct rte_eth_txq_info *qinfo)
1100 {
1101         struct sfc_adapter *sa = dev->data->dev_private;
1102         struct sfc_txq_info *txq_info;
1103
1104         sfc_adapter_lock(sa);
1105
1106         SFC_ASSERT(tx_queue_id < sa->txq_count);
1107
1108         txq_info = &sa->txq_info[tx_queue_id];
1109
1110         memset(qinfo, 0, sizeof(*qinfo));
1111
1112         qinfo->conf.offloads = txq_info->offloads;
1113         qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1114         qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1115         qinfo->nb_desc = txq_info->entries;
1116
1117         sfc_adapter_unlock(sa);
1118 }
1119
1120 /*
1121  * The function is used by the secondary process as well. It must not
1122  * use any process-local pointers from the adapter data.
1123  */
1124 static uint32_t
1125 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1126 {
1127         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1128         struct sfc_adapter *sa = dev->data->dev_private;
1129         struct sfc_rxq_info *rxq_info;
1130
1131         SFC_ASSERT(rx_queue_id < sa->rxq_count);
1132         rxq_info = &sa->rxq_info[rx_queue_id];
1133
1134         if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1135                 return 0;
1136
1137         return sap->dp_rx->qdesc_npending(rxq_info->dp);
1138 }
1139
1140 /*
1141  * The function is used by the secondary process as well. It must not
1142  * use any process-local pointers from the adapter data.
1143  */
1144 static int
1145 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1146 {
1147         struct sfc_dp_rxq *dp_rxq = queue;
1148         const struct sfc_dp_rx *dp_rx;
1149
1150         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1151
1152         return offset < dp_rx->qdesc_npending(dp_rxq);
1153 }
1154
1155 /*
1156  * The function is used by the secondary process as well. It must not
1157  * use any process-local pointers from the adapter data.
1158  */
1159 static int
1160 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1161 {
1162         struct sfc_dp_rxq *dp_rxq = queue;
1163         const struct sfc_dp_rx *dp_rx;
1164
1165         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1166
1167         return dp_rx->qdesc_status(dp_rxq, offset);
1168 }
1169
1170 static int
1171 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1172 {
1173         struct sfc_dp_txq *dp_txq = queue;
1174         struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1175
1176         return txq->evq->sa->priv.dp_tx->qdesc_status(dp_txq, offset);
1177 }
1178
1179 static int
1180 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1181 {
1182         struct sfc_adapter *sa = dev->data->dev_private;
1183         int rc;
1184
1185         sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1186
1187         sfc_adapter_lock(sa);
1188
1189         rc = EINVAL;
1190         if (sa->state != SFC_ADAPTER_STARTED)
1191                 goto fail_not_started;
1192
1193         if (sa->rxq_info[rx_queue_id].rxq == NULL)
1194                 goto fail_not_setup;
1195
1196         rc = sfc_rx_qstart(sa, rx_queue_id);
1197         if (rc != 0)
1198                 goto fail_rx_qstart;
1199
1200         sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1201
1202         sfc_adapter_unlock(sa);
1203
1204         return 0;
1205
1206 fail_rx_qstart:
1207 fail_not_setup:
1208 fail_not_started:
1209         sfc_adapter_unlock(sa);
1210         SFC_ASSERT(rc > 0);
1211         return -rc;
1212 }
1213
1214 static int
1215 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1216 {
1217         struct sfc_adapter *sa = dev->data->dev_private;
1218
1219         sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1220
1221         sfc_adapter_lock(sa);
1222         sfc_rx_qstop(sa, rx_queue_id);
1223
1224         sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1225
1226         sfc_adapter_unlock(sa);
1227
1228         return 0;
1229 }
1230
1231 static int
1232 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1233 {
1234         struct sfc_adapter *sa = dev->data->dev_private;
1235         int rc;
1236
1237         sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1238
1239         sfc_adapter_lock(sa);
1240
1241         rc = EINVAL;
1242         if (sa->state != SFC_ADAPTER_STARTED)
1243                 goto fail_not_started;
1244
1245         if (sa->txq_info[tx_queue_id].txq == NULL)
1246                 goto fail_not_setup;
1247
1248         rc = sfc_tx_qstart(sa, tx_queue_id);
1249         if (rc != 0)
1250                 goto fail_tx_qstart;
1251
1252         sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1253
1254         sfc_adapter_unlock(sa);
1255         return 0;
1256
1257 fail_tx_qstart:
1258
1259 fail_not_setup:
1260 fail_not_started:
1261         sfc_adapter_unlock(sa);
1262         SFC_ASSERT(rc > 0);
1263         return -rc;
1264 }
1265
1266 static int
1267 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1268 {
1269         struct sfc_adapter *sa = dev->data->dev_private;
1270
1271         sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1272
1273         sfc_adapter_lock(sa);
1274
1275         sfc_tx_qstop(sa, tx_queue_id);
1276
1277         sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1278
1279         sfc_adapter_unlock(sa);
1280         return 0;
1281 }
1282
1283 static efx_tunnel_protocol_t
1284 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1285 {
1286         switch (rte_type) {
1287         case RTE_TUNNEL_TYPE_VXLAN:
1288                 return EFX_TUNNEL_PROTOCOL_VXLAN;
1289         case RTE_TUNNEL_TYPE_GENEVE:
1290                 return EFX_TUNNEL_PROTOCOL_GENEVE;
1291         default:
1292                 return EFX_TUNNEL_NPROTOS;
1293         }
1294 }
1295
1296 enum sfc_udp_tunnel_op_e {
1297         SFC_UDP_TUNNEL_ADD_PORT,
1298         SFC_UDP_TUNNEL_DEL_PORT,
1299 };
1300
1301 static int
1302 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1303                       struct rte_eth_udp_tunnel *tunnel_udp,
1304                       enum sfc_udp_tunnel_op_e op)
1305 {
1306         struct sfc_adapter *sa = dev->data->dev_private;
1307         efx_tunnel_protocol_t tunnel_proto;
1308         int rc;
1309
1310         sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1311                      (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1312                      (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1313                      tunnel_udp->udp_port, tunnel_udp->prot_type);
1314
1315         tunnel_proto =
1316                 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1317         if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1318                 rc = ENOTSUP;
1319                 goto fail_bad_proto;
1320         }
1321
1322         sfc_adapter_lock(sa);
1323
1324         switch (op) {
1325         case SFC_UDP_TUNNEL_ADD_PORT:
1326                 rc = efx_tunnel_config_udp_add(sa->nic,
1327                                                tunnel_udp->udp_port,
1328                                                tunnel_proto);
1329                 break;
1330         case SFC_UDP_TUNNEL_DEL_PORT:
1331                 rc = efx_tunnel_config_udp_remove(sa->nic,
1332                                                   tunnel_udp->udp_port,
1333                                                   tunnel_proto);
1334                 break;
1335         default:
1336                 rc = EINVAL;
1337                 goto fail_bad_op;
1338         }
1339
1340         if (rc != 0)
1341                 goto fail_op;
1342
1343         if (sa->state == SFC_ADAPTER_STARTED) {
1344                 rc = efx_tunnel_reconfigure(sa->nic);
1345                 if (rc == EAGAIN) {
1346                         /*
1347                          * Configuration is accepted by FW and MC reboot
1348                          * is initiated to apply the changes. MC reboot
1349                          * will be handled in a usual way (MC reboot
1350                          * event on management event queue and adapter
1351                          * restart).
1352                          */
1353                         rc = 0;
1354                 } else if (rc != 0) {
1355                         goto fail_reconfigure;
1356                 }
1357         }
1358
1359         sfc_adapter_unlock(sa);
1360         return 0;
1361
1362 fail_reconfigure:
1363         /* Remove/restore entry since the change makes the trouble */
1364         switch (op) {
1365         case SFC_UDP_TUNNEL_ADD_PORT:
1366                 (void)efx_tunnel_config_udp_remove(sa->nic,
1367                                                    tunnel_udp->udp_port,
1368                                                    tunnel_proto);
1369                 break;
1370         case SFC_UDP_TUNNEL_DEL_PORT:
1371                 (void)efx_tunnel_config_udp_add(sa->nic,
1372                                                 tunnel_udp->udp_port,
1373                                                 tunnel_proto);
1374                 break;
1375         }
1376
1377 fail_op:
1378 fail_bad_op:
1379         sfc_adapter_unlock(sa);
1380
1381 fail_bad_proto:
1382         SFC_ASSERT(rc > 0);
1383         return -rc;
1384 }
1385
1386 static int
1387 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1388                             struct rte_eth_udp_tunnel *tunnel_udp)
1389 {
1390         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1391 }
1392
1393 static int
1394 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1395                             struct rte_eth_udp_tunnel *tunnel_udp)
1396 {
1397         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1398 }
1399
1400 static int
1401 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1402                           struct rte_eth_rss_conf *rss_conf)
1403 {
1404         struct sfc_adapter *sa = dev->data->dev_private;
1405         struct sfc_rss *rss = &sa->rss;
1406
1407         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1408                 return -ENOTSUP;
1409
1410         sfc_adapter_lock(sa);
1411
1412         /*
1413          * Mapping of hash configuration between RTE and EFX is not one-to-one,
1414          * hence, conversion is done here to derive a correct set of ETH_RSS
1415          * flags which corresponds to the active EFX configuration stored
1416          * locally in 'sfc_adapter' and kept up-to-date
1417          */
1418         rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types);
1419         rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1420         if (rss_conf->rss_key != NULL)
1421                 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1422
1423         sfc_adapter_unlock(sa);
1424
1425         return 0;
1426 }
1427
1428 static int
1429 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1430                         struct rte_eth_rss_conf *rss_conf)
1431 {
1432         struct sfc_adapter *sa = dev->data->dev_private;
1433         struct sfc_rss *rss = &sa->rss;
1434         struct sfc_port *port = &sa->port;
1435         unsigned int efx_hash_types;
1436         int rc = 0;
1437
1438         if (port->isolated)
1439                 return -ENOTSUP;
1440
1441         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1442                 sfc_err(sa, "RSS is not available");
1443                 return -ENOTSUP;
1444         }
1445
1446         if (rss->channels == 0) {
1447                 sfc_err(sa, "RSS is not configured");
1448                 return -EINVAL;
1449         }
1450
1451         if ((rss_conf->rss_key != NULL) &&
1452             (rss_conf->rss_key_len != sizeof(rss->key))) {
1453                 sfc_err(sa, "RSS key size is wrong (should be %lu)",
1454                         sizeof(rss->key));
1455                 return -EINVAL;
1456         }
1457
1458         sfc_adapter_lock(sa);
1459
1460         rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1461         if (rc != 0)
1462                 goto fail_rx_hf_rte_to_efx;
1463
1464         rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1465                                    rss->hash_alg, efx_hash_types, B_TRUE);
1466         if (rc != 0)
1467                 goto fail_scale_mode_set;
1468
1469         if (rss_conf->rss_key != NULL) {
1470                 if (sa->state == SFC_ADAPTER_STARTED) {
1471                         rc = efx_rx_scale_key_set(sa->nic,
1472                                                   EFX_RSS_CONTEXT_DEFAULT,
1473                                                   rss_conf->rss_key,
1474                                                   sizeof(rss->key));
1475                         if (rc != 0)
1476                                 goto fail_scale_key_set;
1477                 }
1478
1479                 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1480         }
1481
1482         rss->hash_types = efx_hash_types;
1483
1484         sfc_adapter_unlock(sa);
1485
1486         return 0;
1487
1488 fail_scale_key_set:
1489         if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1490                                   EFX_RX_HASHALG_TOEPLITZ,
1491                                   rss->hash_types, B_TRUE) != 0)
1492                 sfc_err(sa, "failed to restore RSS mode");
1493
1494 fail_scale_mode_set:
1495 fail_rx_hf_rte_to_efx:
1496         sfc_adapter_unlock(sa);
1497         return -rc;
1498 }
1499
1500 static int
1501 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1502                        struct rte_eth_rss_reta_entry64 *reta_conf,
1503                        uint16_t reta_size)
1504 {
1505         struct sfc_adapter *sa = dev->data->dev_private;
1506         struct sfc_rss *rss = &sa->rss;
1507         struct sfc_port *port = &sa->port;
1508         int entry;
1509
1510         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
1511                 return -ENOTSUP;
1512
1513         if (rss->channels == 0)
1514                 return -EINVAL;
1515
1516         if (reta_size != EFX_RSS_TBL_SIZE)
1517                 return -EINVAL;
1518
1519         sfc_adapter_lock(sa);
1520
1521         for (entry = 0; entry < reta_size; entry++) {
1522                 int grp = entry / RTE_RETA_GROUP_SIZE;
1523                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1524
1525                 if ((reta_conf[grp].mask >> grp_idx) & 1)
1526                         reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1527         }
1528
1529         sfc_adapter_unlock(sa);
1530
1531         return 0;
1532 }
1533
1534 static int
1535 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1536                         struct rte_eth_rss_reta_entry64 *reta_conf,
1537                         uint16_t reta_size)
1538 {
1539         struct sfc_adapter *sa = dev->data->dev_private;
1540         struct sfc_rss *rss = &sa->rss;
1541         struct sfc_port *port = &sa->port;
1542         unsigned int *rss_tbl_new;
1543         uint16_t entry;
1544         int rc = 0;
1545
1546
1547         if (port->isolated)
1548                 return -ENOTSUP;
1549
1550         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1551                 sfc_err(sa, "RSS is not available");
1552                 return -ENOTSUP;
1553         }
1554
1555         if (rss->channels == 0) {
1556                 sfc_err(sa, "RSS is not configured");
1557                 return -EINVAL;
1558         }
1559
1560         if (reta_size != EFX_RSS_TBL_SIZE) {
1561                 sfc_err(sa, "RETA size is wrong (should be %u)",
1562                         EFX_RSS_TBL_SIZE);
1563                 return -EINVAL;
1564         }
1565
1566         rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1567         if (rss_tbl_new == NULL)
1568                 return -ENOMEM;
1569
1570         sfc_adapter_lock(sa);
1571
1572         rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1573
1574         for (entry = 0; entry < reta_size; entry++) {
1575                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1576                 struct rte_eth_rss_reta_entry64 *grp;
1577
1578                 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1579
1580                 if (grp->mask & (1ull << grp_idx)) {
1581                         if (grp->reta[grp_idx] >= rss->channels) {
1582                                 rc = EINVAL;
1583                                 goto bad_reta_entry;
1584                         }
1585                         rss_tbl_new[entry] = grp->reta[grp_idx];
1586                 }
1587         }
1588
1589         if (sa->state == SFC_ADAPTER_STARTED) {
1590                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1591                                           rss_tbl_new, EFX_RSS_TBL_SIZE);
1592                 if (rc != 0)
1593                         goto fail_scale_tbl_set;
1594         }
1595
1596         rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1597
1598 fail_scale_tbl_set:
1599 bad_reta_entry:
1600         sfc_adapter_unlock(sa);
1601
1602         rte_free(rss_tbl_new);
1603
1604         SFC_ASSERT(rc >= 0);
1605         return -rc;
1606 }
1607
1608 static int
1609 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1610                     enum rte_filter_op filter_op,
1611                     void *arg)
1612 {
1613         struct sfc_adapter *sa = dev->data->dev_private;
1614         int rc = ENOTSUP;
1615
1616         sfc_log_init(sa, "entry");
1617
1618         switch (filter_type) {
1619         case RTE_ETH_FILTER_NONE:
1620                 sfc_err(sa, "Global filters configuration not supported");
1621                 break;
1622         case RTE_ETH_FILTER_MACVLAN:
1623                 sfc_err(sa, "MACVLAN filters not supported");
1624                 break;
1625         case RTE_ETH_FILTER_ETHERTYPE:
1626                 sfc_err(sa, "EtherType filters not supported");
1627                 break;
1628         case RTE_ETH_FILTER_FLEXIBLE:
1629                 sfc_err(sa, "Flexible filters not supported");
1630                 break;
1631         case RTE_ETH_FILTER_SYN:
1632                 sfc_err(sa, "SYN filters not supported");
1633                 break;
1634         case RTE_ETH_FILTER_NTUPLE:
1635                 sfc_err(sa, "NTUPLE filters not supported");
1636                 break;
1637         case RTE_ETH_FILTER_TUNNEL:
1638                 sfc_err(sa, "Tunnel filters not supported");
1639                 break;
1640         case RTE_ETH_FILTER_FDIR:
1641                 sfc_err(sa, "Flow Director filters not supported");
1642                 break;
1643         case RTE_ETH_FILTER_HASH:
1644                 sfc_err(sa, "Hash filters not supported");
1645                 break;
1646         case RTE_ETH_FILTER_GENERIC:
1647                 if (filter_op != RTE_ETH_FILTER_GET) {
1648                         rc = EINVAL;
1649                 } else {
1650                         *(const void **)arg = &sfc_flow_ops;
1651                         rc = 0;
1652                 }
1653                 break;
1654         default:
1655                 sfc_err(sa, "Unknown filter type %u", filter_type);
1656                 break;
1657         }
1658
1659         sfc_log_init(sa, "exit: %d", -rc);
1660         SFC_ASSERT(rc >= 0);
1661         return -rc;
1662 }
1663
1664 static int
1665 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1666 {
1667         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1668
1669         /*
1670          * If Rx datapath does not provide callback to check mempool,
1671          * all pools are supported.
1672          */
1673         if (sap->dp_rx->pool_ops_supported == NULL)
1674                 return 1;
1675
1676         return sap->dp_rx->pool_ops_supported(pool);
1677 }
1678
1679 static const struct eth_dev_ops sfc_eth_dev_ops = {
1680         .dev_configure                  = sfc_dev_configure,
1681         .dev_start                      = sfc_dev_start,
1682         .dev_stop                       = sfc_dev_stop,
1683         .dev_set_link_up                = sfc_dev_set_link_up,
1684         .dev_set_link_down              = sfc_dev_set_link_down,
1685         .dev_close                      = sfc_dev_close,
1686         .promiscuous_enable             = sfc_dev_promisc_enable,
1687         .promiscuous_disable            = sfc_dev_promisc_disable,
1688         .allmulticast_enable            = sfc_dev_allmulti_enable,
1689         .allmulticast_disable           = sfc_dev_allmulti_disable,
1690         .link_update                    = sfc_dev_link_update,
1691         .stats_get                      = sfc_stats_get,
1692         .stats_reset                    = sfc_stats_reset,
1693         .xstats_get                     = sfc_xstats_get,
1694         .xstats_reset                   = sfc_stats_reset,
1695         .xstats_get_names               = sfc_xstats_get_names,
1696         .dev_infos_get                  = sfc_dev_infos_get,
1697         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
1698         .mtu_set                        = sfc_dev_set_mtu,
1699         .rx_queue_start                 = sfc_rx_queue_start,
1700         .rx_queue_stop                  = sfc_rx_queue_stop,
1701         .tx_queue_start                 = sfc_tx_queue_start,
1702         .tx_queue_stop                  = sfc_tx_queue_stop,
1703         .rx_queue_setup                 = sfc_rx_queue_setup,
1704         .rx_queue_release               = sfc_rx_queue_release,
1705         .rx_queue_count                 = sfc_rx_queue_count,
1706         .rx_descriptor_done             = sfc_rx_descriptor_done,
1707         .rx_descriptor_status           = sfc_rx_descriptor_status,
1708         .tx_descriptor_status           = sfc_tx_descriptor_status,
1709         .tx_queue_setup                 = sfc_tx_queue_setup,
1710         .tx_queue_release               = sfc_tx_queue_release,
1711         .flow_ctrl_get                  = sfc_flow_ctrl_get,
1712         .flow_ctrl_set                  = sfc_flow_ctrl_set,
1713         .mac_addr_set                   = sfc_mac_addr_set,
1714         .udp_tunnel_port_add            = sfc_dev_udp_tunnel_port_add,
1715         .udp_tunnel_port_del            = sfc_dev_udp_tunnel_port_del,
1716         .reta_update                    = sfc_dev_rss_reta_update,
1717         .reta_query                     = sfc_dev_rss_reta_query,
1718         .rss_hash_update                = sfc_dev_rss_hash_update,
1719         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
1720         .filter_ctrl                    = sfc_dev_filter_ctrl,
1721         .set_mc_addr_list               = sfc_set_mc_addr_list,
1722         .rxq_info_get                   = sfc_rx_queue_info_get,
1723         .txq_info_get                   = sfc_tx_queue_info_get,
1724         .fw_version_get                 = sfc_fw_version_get,
1725         .xstats_get_by_id               = sfc_xstats_get_by_id,
1726         .xstats_get_names_by_id         = sfc_xstats_get_names_by_id,
1727         .pool_ops_supported             = sfc_pool_ops_supported,
1728 };
1729
1730 /**
1731  * Duplicate a string in potentially shared memory required for
1732  * multi-process support.
1733  *
1734  * strdup() allocates from process-local heap/memory.
1735  */
1736 static char *
1737 sfc_strdup(const char *str)
1738 {
1739         size_t size;
1740         char *copy;
1741
1742         if (str == NULL)
1743                 return NULL;
1744
1745         size = strlen(str) + 1;
1746         copy = rte_malloc(__func__, size, 0);
1747         if (copy != NULL)
1748                 rte_memcpy(copy, str, size);
1749
1750         return copy;
1751 }
1752
1753 static int
1754 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1755 {
1756         struct sfc_adapter *sa = dev->data->dev_private;
1757         const struct sfc_dp_rx *dp_rx;
1758         const struct sfc_dp_tx *dp_tx;
1759         const efx_nic_cfg_t *encp;
1760         unsigned int avail_caps = 0;
1761         const char *rx_name = NULL;
1762         const char *tx_name = NULL;
1763         int rc;
1764
1765         switch (sa->family) {
1766         case EFX_FAMILY_HUNTINGTON:
1767         case EFX_FAMILY_MEDFORD:
1768         case EFX_FAMILY_MEDFORD2:
1769                 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1770                 break;
1771         default:
1772                 break;
1773         }
1774
1775         encp = efx_nic_cfg_get(sa->nic);
1776         if (encp->enc_rx_es_super_buffer_supported)
1777                 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1778
1779         rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1780                                 sfc_kvarg_string_handler, &rx_name);
1781         if (rc != 0)
1782                 goto fail_kvarg_rx_datapath;
1783
1784         if (rx_name != NULL) {
1785                 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1786                 if (dp_rx == NULL) {
1787                         sfc_err(sa, "Rx datapath %s not found", rx_name);
1788                         rc = ENOENT;
1789                         goto fail_dp_rx;
1790                 }
1791                 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1792                         sfc_err(sa,
1793                                 "Insufficient Hw/FW capabilities to use Rx datapath %s",
1794                                 rx_name);
1795                         rc = EINVAL;
1796                         goto fail_dp_rx_caps;
1797                 }
1798         } else {
1799                 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1800                 if (dp_rx == NULL) {
1801                         sfc_err(sa, "Rx datapath by caps %#x not found",
1802                                 avail_caps);
1803                         rc = ENOENT;
1804                         goto fail_dp_rx;
1805                 }
1806         }
1807
1808         sa->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1809         if (sa->dp_rx_name == NULL) {
1810                 rc = ENOMEM;
1811                 goto fail_dp_rx_name;
1812         }
1813
1814         sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
1815
1816         rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1817                                 sfc_kvarg_string_handler, &tx_name);
1818         if (rc != 0)
1819                 goto fail_kvarg_tx_datapath;
1820
1821         if (tx_name != NULL) {
1822                 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1823                 if (dp_tx == NULL) {
1824                         sfc_err(sa, "Tx datapath %s not found", tx_name);
1825                         rc = ENOENT;
1826                         goto fail_dp_tx;
1827                 }
1828                 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1829                         sfc_err(sa,
1830                                 "Insufficient Hw/FW capabilities to use Tx datapath %s",
1831                                 tx_name);
1832                         rc = EINVAL;
1833                         goto fail_dp_tx_caps;
1834                 }
1835         } else {
1836                 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1837                 if (dp_tx == NULL) {
1838                         sfc_err(sa, "Tx datapath by caps %#x not found",
1839                                 avail_caps);
1840                         rc = ENOENT;
1841                         goto fail_dp_tx;
1842                 }
1843         }
1844
1845         sa->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1846         if (sa->dp_tx_name == NULL) {
1847                 rc = ENOMEM;
1848                 goto fail_dp_tx_name;
1849         }
1850
1851         sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
1852
1853         sa->priv.dp_rx = dp_rx;
1854         sa->priv.dp_tx = dp_tx;
1855
1856         dev->rx_pkt_burst = dp_rx->pkt_burst;
1857         dev->tx_pkt_burst = dp_tx->pkt_burst;
1858
1859         dev->dev_ops = &sfc_eth_dev_ops;
1860
1861         return 0;
1862
1863 fail_dp_tx_name:
1864 fail_dp_tx_caps:
1865 fail_dp_tx:
1866 fail_kvarg_tx_datapath:
1867         rte_free(sa->dp_rx_name);
1868         sa->dp_rx_name = NULL;
1869
1870 fail_dp_rx_name:
1871 fail_dp_rx_caps:
1872 fail_dp_rx:
1873 fail_kvarg_rx_datapath:
1874         return rc;
1875 }
1876
1877 static void
1878 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1879 {
1880         struct sfc_adapter *sa = dev->data->dev_private;
1881
1882         dev->dev_ops = NULL;
1883         dev->rx_pkt_burst = NULL;
1884         dev->tx_pkt_burst = NULL;
1885
1886         rte_free(sa->dp_tx_name);
1887         sa->dp_tx_name = NULL;
1888         sa->priv.dp_tx = NULL;
1889
1890         rte_free(sa->dp_rx_name);
1891         sa->dp_rx_name = NULL;
1892         sa->priv.dp_rx = NULL;
1893 }
1894
1895 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1896         .rx_queue_count                 = sfc_rx_queue_count,
1897         .rx_descriptor_done             = sfc_rx_descriptor_done,
1898         .rx_descriptor_status           = sfc_rx_descriptor_status,
1899         .rxq_info_get                   = sfc_rx_queue_info_get,
1900         .txq_info_get                   = sfc_tx_queue_info_get,
1901 };
1902
1903 static int
1904 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
1905 {
1906         /*
1907          * Device private data has really many process-local pointers.
1908          * Below code should be extremely careful to use data located
1909          * in shared memory only.
1910          */
1911         struct sfc_adapter *sa = dev->data->dev_private;
1912         struct sfc_adapter_priv *sap;
1913         const struct sfc_dp_rx *dp_rx;
1914         const struct sfc_dp_tx *dp_tx;
1915         int rc;
1916
1917         /*
1918          * Allocate process private data from heap, since it should not
1919          * be located in shared memory allocated using rte_malloc() API.
1920          */
1921         sap = calloc(1, sizeof(*sap));
1922         if (sap == NULL) {
1923                 rc = ENOMEM;
1924                 goto fail_alloc_priv;
1925         }
1926
1927         sap->logtype_main = logtype_main;
1928
1929         dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1930         if (dp_rx == NULL) {
1931                 SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1932                         "cannot find %s Rx datapath", sa->dp_rx_name);
1933                 rc = ENOENT;
1934                 goto fail_dp_rx;
1935         }
1936         if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1937                 SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1938                         "%s Rx datapath does not support multi-process",
1939                         sa->dp_rx_name);
1940                 rc = EINVAL;
1941                 goto fail_dp_rx_multi_process;
1942         }
1943
1944         dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1945         if (dp_tx == NULL) {
1946                 SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1947                         "cannot find %s Tx datapath", sa->dp_tx_name);
1948                 rc = ENOENT;
1949                 goto fail_dp_tx;
1950         }
1951         if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1952                 SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1953                         "%s Tx datapath does not support multi-process",
1954                         sa->dp_tx_name);
1955                 rc = EINVAL;
1956                 goto fail_dp_tx_multi_process;
1957         }
1958
1959         sap->dp_rx = dp_rx;
1960         sap->dp_tx = dp_tx;
1961
1962         dev->process_private = sap;
1963         dev->rx_pkt_burst = dp_rx->pkt_burst;
1964         dev->tx_pkt_burst = dp_tx->pkt_burst;
1965         dev->dev_ops = &sfc_eth_dev_secondary_ops;
1966
1967         return 0;
1968
1969 fail_dp_tx_multi_process:
1970 fail_dp_tx:
1971 fail_dp_rx_multi_process:
1972 fail_dp_rx:
1973         free(sap);
1974
1975 fail_alloc_priv:
1976         return rc;
1977 }
1978
1979 static void
1980 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1981 {
1982         free(dev->process_private);
1983         dev->process_private = NULL;
1984         dev->dev_ops = NULL;
1985         dev->tx_pkt_burst = NULL;
1986         dev->rx_pkt_burst = NULL;
1987 }
1988
1989 static void
1990 sfc_register_dp(void)
1991 {
1992         /* Register once */
1993         if (TAILQ_EMPTY(&sfc_dp_head)) {
1994                 /* Prefer EF10 datapath */
1995                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
1996                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1997                 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1998
1999                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2000                 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2001                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2002         }
2003 }
2004
2005 static int
2006 sfc_eth_dev_init(struct rte_eth_dev *dev)
2007 {
2008         struct sfc_adapter *sa = dev->data->dev_private;
2009         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2010         uint32_t logtype_main;
2011         int rc;
2012         const efx_nic_cfg_t *encp;
2013         const struct ether_addr *from;
2014
2015         sfc_register_dp();
2016
2017         logtype_main = sfc_register_logtype(&pci_dev->addr,
2018                                             SFC_LOGTYPE_MAIN_STR,
2019                                             RTE_LOG_NOTICE);
2020
2021         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2022                 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2023
2024         /*
2025          * sfc_adapter is a mixture of shared and process private data.
2026          * During transition period use it in both kinds. When the
2027          * driver becomes ready to separate it, sfc_adapter will become
2028          * primary process private only.
2029          */
2030         dev->process_private = sa;
2031
2032         /* Required for logging */
2033         sa->pci_addr = pci_dev->addr;
2034         sa->port_id = dev->data->port_id;
2035         sa->priv.logtype_main = logtype_main;
2036
2037         sa->eth_dev = dev;
2038
2039         /* Copy PCI device info to the dev->data */
2040         rte_eth_copy_pci_info(dev, pci_dev);
2041
2042         rc = sfc_kvargs_parse(sa);
2043         if (rc != 0)
2044                 goto fail_kvargs_parse;
2045
2046         sfc_log_init(sa, "entry");
2047
2048         dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
2049         if (dev->data->mac_addrs == NULL) {
2050                 rc = ENOMEM;
2051                 goto fail_mac_addrs;
2052         }
2053
2054         sfc_adapter_lock_init(sa);
2055         sfc_adapter_lock(sa);
2056
2057         sfc_log_init(sa, "probing");
2058         rc = sfc_probe(sa);
2059         if (rc != 0)
2060                 goto fail_probe;
2061
2062         sfc_log_init(sa, "set device ops");
2063         rc = sfc_eth_dev_set_ops(dev);
2064         if (rc != 0)
2065                 goto fail_set_ops;
2066
2067         sfc_log_init(sa, "attaching");
2068         rc = sfc_attach(sa);
2069         if (rc != 0)
2070                 goto fail_attach;
2071
2072         encp = efx_nic_cfg_get(sa->nic);
2073
2074         /*
2075          * The arguments are really reverse order in comparison to
2076          * Linux kernel. Copy from NIC config to Ethernet device data.
2077          */
2078         from = (const struct ether_addr *)(encp->enc_mac_addr);
2079         ether_addr_copy(from, &dev->data->mac_addrs[0]);
2080
2081         sfc_adapter_unlock(sa);
2082
2083         sfc_log_init(sa, "done");
2084         return 0;
2085
2086 fail_attach:
2087         sfc_eth_dev_clear_ops(dev);
2088
2089 fail_set_ops:
2090         sfc_unprobe(sa);
2091
2092 fail_probe:
2093         sfc_adapter_unlock(sa);
2094         sfc_adapter_lock_fini(sa);
2095         rte_free(dev->data->mac_addrs);
2096         dev->data->mac_addrs = NULL;
2097
2098 fail_mac_addrs:
2099         sfc_kvargs_cleanup(sa);
2100
2101 fail_kvargs_parse:
2102         sfc_log_init(sa, "failed %d", rc);
2103         dev->process_private = NULL;
2104         SFC_ASSERT(rc > 0);
2105         return -rc;
2106 }
2107
2108 static int
2109 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2110 {
2111         struct sfc_adapter *sa;
2112
2113         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2114                 sfc_eth_dev_secondary_clear_ops(dev);
2115                 return 0;
2116         }
2117
2118         sa = dev->data->dev_private;
2119         sfc_log_init(sa, "entry");
2120
2121         sfc_adapter_lock(sa);
2122
2123         sfc_eth_dev_clear_ops(dev);
2124
2125         sfc_detach(sa);
2126         sfc_unprobe(sa);
2127
2128         sfc_kvargs_cleanup(sa);
2129
2130         sfc_adapter_unlock(sa);
2131         sfc_adapter_lock_fini(sa);
2132
2133         sfc_log_init(sa, "done");
2134
2135         /* Required for logging, so cleanup last */
2136         sa->eth_dev = NULL;
2137         return 0;
2138 }
2139
2140 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2141         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2142         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2143         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2144         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2145         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2146         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2147         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2148         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2149         { .vendor_id = 0 /* sentinel */ }
2150 };
2151
2152 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2153         struct rte_pci_device *pci_dev)
2154 {
2155         return rte_eth_dev_pci_generic_probe(pci_dev,
2156                 sizeof(struct sfc_adapter), sfc_eth_dev_init);
2157 }
2158
2159 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2160 {
2161         return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2162 }
2163
2164 static struct rte_pci_driver sfc_efx_pmd = {
2165         .id_table = pci_id_sfc_efx_map,
2166         .drv_flags =
2167                 RTE_PCI_DRV_INTR_LSC |
2168                 RTE_PCI_DRV_NEED_MAPPING,
2169         .probe = sfc_eth_dev_pci_probe,
2170         .remove = sfc_eth_dev_pci_remove,
2171 };
2172
2173 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2174 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2175 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2176 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2177         SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2178         SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2179         SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2180         SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2181         SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2182         SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2183
2184 RTE_INIT(sfc_driver_register_logtype)
2185 {
2186         int ret;
2187
2188         ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2189                                                    RTE_LOG_NOTICE);
2190         sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2191 }