net/sfc: factor out RSS fields from adapter info
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2017-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <rte_ethdev_driver.h>
14 #include <rte_eth_ctrl.h>
15 #include <rte_ether.h>
16 #include <rte_flow.h>
17 #include <rte_flow_driver.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26
27 /*
28  * At now flow API is implemented in such a manner that each
29  * flow rule is converted to one or more hardware filters.
30  * All elements of flow rule (attributes, pattern items, actions)
31  * correspond to one or more fields in the efx_filter_spec_s structure
32  * that is responsible for the hardware filter.
33  * If some required field is unset in the flow rule, then a handful
34  * of filter copies will be created to cover all possible values
35  * of such a field.
36  */
37
38 enum sfc_flow_item_layers {
39         SFC_FLOW_ITEM_ANY_LAYER,
40         SFC_FLOW_ITEM_START_LAYER,
41         SFC_FLOW_ITEM_L2,
42         SFC_FLOW_ITEM_L3,
43         SFC_FLOW_ITEM_L4,
44 };
45
46 typedef int (sfc_flow_item_parse)(const struct rte_flow_item *item,
47                                   efx_filter_spec_t *spec,
48                                   struct rte_flow_error *error);
49
50 struct sfc_flow_item {
51         enum rte_flow_item_type type;           /* Type of item */
52         enum sfc_flow_item_layers layer;        /* Layer of item */
53         enum sfc_flow_item_layers prev_layer;   /* Previous layer of item */
54         sfc_flow_item_parse *parse;             /* Parsing function */
55 };
56
57 static sfc_flow_item_parse sfc_flow_parse_void;
58 static sfc_flow_item_parse sfc_flow_parse_eth;
59 static sfc_flow_item_parse sfc_flow_parse_vlan;
60 static sfc_flow_item_parse sfc_flow_parse_ipv4;
61 static sfc_flow_item_parse sfc_flow_parse_ipv6;
62 static sfc_flow_item_parse sfc_flow_parse_tcp;
63 static sfc_flow_item_parse sfc_flow_parse_udp;
64 static sfc_flow_item_parse sfc_flow_parse_vxlan;
65 static sfc_flow_item_parse sfc_flow_parse_geneve;
66 static sfc_flow_item_parse sfc_flow_parse_nvgre;
67
68 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
69                                      unsigned int filters_count_for_one_val,
70                                      struct rte_flow_error *error);
71
72 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
73                                         efx_filter_spec_t *spec,
74                                         struct sfc_filter *filter);
75
76 struct sfc_flow_copy_flag {
77         /* EFX filter specification match flag */
78         efx_filter_match_flags_t flag;
79         /* Number of values of corresponding field */
80         unsigned int vals_count;
81         /* Function to set values in specifications */
82         sfc_flow_spec_set_vals *set_vals;
83         /*
84          * Function to check that the specification is suitable
85          * for adding this match flag
86          */
87         sfc_flow_spec_check *spec_check;
88 };
89
90 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
91 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
92 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
93 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
94 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
95
96 static boolean_t
97 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
98 {
99         uint8_t sum = 0;
100         unsigned int i;
101
102         for (i = 0; i < size; i++)
103                 sum |= buf[i];
104
105         return (sum == 0) ? B_TRUE : B_FALSE;
106 }
107
108 /*
109  * Validate item and prepare structures spec and mask for parsing
110  */
111 static int
112 sfc_flow_parse_init(const struct rte_flow_item *item,
113                     const void **spec_ptr,
114                     const void **mask_ptr,
115                     const void *supp_mask,
116                     const void *def_mask,
117                     unsigned int size,
118                     struct rte_flow_error *error)
119 {
120         const uint8_t *spec;
121         const uint8_t *mask;
122         const uint8_t *last;
123         uint8_t match;
124         uint8_t supp;
125         unsigned int i;
126
127         if (item == NULL) {
128                 rte_flow_error_set(error, EINVAL,
129                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
130                                    "NULL item");
131                 return -rte_errno;
132         }
133
134         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
135                 rte_flow_error_set(error, EINVAL,
136                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
137                                    "Mask or last is set without spec");
138                 return -rte_errno;
139         }
140
141         /*
142          * If "mask" is not set, default mask is used,
143          * but if default mask is NULL, "mask" should be set
144          */
145         if (item->mask == NULL) {
146                 if (def_mask == NULL) {
147                         rte_flow_error_set(error, EINVAL,
148                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
149                                 "Mask should be specified");
150                         return -rte_errno;
151                 }
152
153                 mask = def_mask;
154         } else {
155                 mask = item->mask;
156         }
157
158         spec = item->spec;
159         last = item->last;
160
161         if (spec == NULL)
162                 goto exit;
163
164         /*
165          * If field values in "last" are either 0 or equal to the corresponding
166          * values in "spec" then they are ignored
167          */
168         if (last != NULL &&
169             !sfc_flow_is_zero(last, size) &&
170             memcmp(last, spec, size) != 0) {
171                 rte_flow_error_set(error, ENOTSUP,
172                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
173                                    "Ranging is not supported");
174                 return -rte_errno;
175         }
176
177         if (supp_mask == NULL) {
178                 rte_flow_error_set(error, EINVAL,
179                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
180                         "Supported mask for item should be specified");
181                 return -rte_errno;
182         }
183
184         /* Check that mask and spec not asks for more match than supp_mask */
185         for (i = 0; i < size; i++) {
186                 match = spec[i] | mask[i];
187                 supp = ((const uint8_t *)supp_mask)[i];
188
189                 if ((match | supp) != supp) {
190                         rte_flow_error_set(error, ENOTSUP,
191                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
192                                            "Item's field is not supported");
193                         return -rte_errno;
194                 }
195         }
196
197 exit:
198         *spec_ptr = spec;
199         *mask_ptr = mask;
200         return 0;
201 }
202
203 /*
204  * Protocol parsers.
205  * Masking is not supported, so masks in items should be either
206  * full or empty (zeroed) and set only for supported fields which
207  * are specified in the supp_mask.
208  */
209
210 static int
211 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
212                     __rte_unused efx_filter_spec_t *efx_spec,
213                     __rte_unused struct rte_flow_error *error)
214 {
215         return 0;
216 }
217
218 /**
219  * Convert Ethernet item to EFX filter specification.
220  *
221  * @param item[in]
222  *   Item specification. Outer frame specification may only comprise
223  *   source/destination addresses and Ethertype field.
224  *   Inner frame specification may contain destination address only.
225  *   There is support for individual/group mask as well as for empty and full.
226  *   If the mask is NULL, default mask will be used. Ranging is not supported.
227  * @param efx_spec[in, out]
228  *   EFX filter specification to update.
229  * @param[out] error
230  *   Perform verbose error reporting if not NULL.
231  */
232 static int
233 sfc_flow_parse_eth(const struct rte_flow_item *item,
234                    efx_filter_spec_t *efx_spec,
235                    struct rte_flow_error *error)
236 {
237         int rc;
238         const struct rte_flow_item_eth *spec = NULL;
239         const struct rte_flow_item_eth *mask = NULL;
240         const struct rte_flow_item_eth supp_mask = {
241                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
242                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
243                 .type = 0xffff,
244         };
245         const struct rte_flow_item_eth ifrm_supp_mask = {
246                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
247         };
248         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
249                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
250         };
251         const struct rte_flow_item_eth *supp_mask_p;
252         const struct rte_flow_item_eth *def_mask_p;
253         uint8_t *loc_mac = NULL;
254         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
255                 EFX_TUNNEL_PROTOCOL_NONE);
256
257         if (is_ifrm) {
258                 supp_mask_p = &ifrm_supp_mask;
259                 def_mask_p = &ifrm_supp_mask;
260                 loc_mac = efx_spec->efs_ifrm_loc_mac;
261         } else {
262                 supp_mask_p = &supp_mask;
263                 def_mask_p = &rte_flow_item_eth_mask;
264                 loc_mac = efx_spec->efs_loc_mac;
265         }
266
267         rc = sfc_flow_parse_init(item,
268                                  (const void **)&spec,
269                                  (const void **)&mask,
270                                  supp_mask_p, def_mask_p,
271                                  sizeof(struct rte_flow_item_eth),
272                                  error);
273         if (rc != 0)
274                 return rc;
275
276         /* If "spec" is not set, could be any Ethernet */
277         if (spec == NULL)
278                 return 0;
279
280         if (is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
281                 efx_spec->efs_match_flags |= is_ifrm ?
282                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
283                         EFX_FILTER_MATCH_LOC_MAC;
284                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
285                            EFX_MAC_ADDR_LEN);
286         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
287                           EFX_MAC_ADDR_LEN) == 0) {
288                 if (is_unicast_ether_addr(&spec->dst))
289                         efx_spec->efs_match_flags |= is_ifrm ?
290                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
291                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
292                 else
293                         efx_spec->efs_match_flags |= is_ifrm ?
294                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
295                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
296         } else if (!is_zero_ether_addr(&mask->dst)) {
297                 goto fail_bad_mask;
298         }
299
300         /*
301          * ifrm_supp_mask ensures that the source address and
302          * ethertype masks are equal to zero in inner frame,
303          * so these fields are filled in only for the outer frame
304          */
305         if (is_same_ether_addr(&mask->src, &supp_mask.src)) {
306                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
307                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
308                            EFX_MAC_ADDR_LEN);
309         } else if (!is_zero_ether_addr(&mask->src)) {
310                 goto fail_bad_mask;
311         }
312
313         /*
314          * Ether type is in big-endian byte order in item and
315          * in little-endian in efx_spec, so byte swap is used
316          */
317         if (mask->type == supp_mask.type) {
318                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
319                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
320         } else if (mask->type != 0) {
321                 goto fail_bad_mask;
322         }
323
324         return 0;
325
326 fail_bad_mask:
327         rte_flow_error_set(error, EINVAL,
328                            RTE_FLOW_ERROR_TYPE_ITEM, item,
329                            "Bad mask in the ETH pattern item");
330         return -rte_errno;
331 }
332
333 /**
334  * Convert VLAN item to EFX filter specification.
335  *
336  * @param item[in]
337  *   Item specification. Only VID field is supported.
338  *   The mask can not be NULL. Ranging is not supported.
339  * @param efx_spec[in, out]
340  *   EFX filter specification to update.
341  * @param[out] error
342  *   Perform verbose error reporting if not NULL.
343  */
344 static int
345 sfc_flow_parse_vlan(const struct rte_flow_item *item,
346                     efx_filter_spec_t *efx_spec,
347                     struct rte_flow_error *error)
348 {
349         int rc;
350         uint16_t vid;
351         const struct rte_flow_item_vlan *spec = NULL;
352         const struct rte_flow_item_vlan *mask = NULL;
353         const struct rte_flow_item_vlan supp_mask = {
354                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
355                 .inner_type = RTE_BE16(0xffff),
356         };
357
358         rc = sfc_flow_parse_init(item,
359                                  (const void **)&spec,
360                                  (const void **)&mask,
361                                  &supp_mask,
362                                  NULL,
363                                  sizeof(struct rte_flow_item_vlan),
364                                  error);
365         if (rc != 0)
366                 return rc;
367
368         /*
369          * VID is in big-endian byte order in item and
370          * in little-endian in efx_spec, so byte swap is used.
371          * If two VLAN items are included, the first matches
372          * the outer tag and the next matches the inner tag.
373          */
374         if (mask->tci == supp_mask.tci) {
375                 vid = rte_bswap16(spec->tci);
376
377                 if (!(efx_spec->efs_match_flags &
378                       EFX_FILTER_MATCH_OUTER_VID)) {
379                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
380                         efx_spec->efs_outer_vid = vid;
381                 } else if (!(efx_spec->efs_match_flags &
382                              EFX_FILTER_MATCH_INNER_VID)) {
383                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
384                         efx_spec->efs_inner_vid = vid;
385                 } else {
386                         rte_flow_error_set(error, EINVAL,
387                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
388                                            "More than two VLAN items");
389                         return -rte_errno;
390                 }
391         } else {
392                 rte_flow_error_set(error, EINVAL,
393                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
394                                    "VLAN ID in TCI match is required");
395                 return -rte_errno;
396         }
397
398         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
399                 rte_flow_error_set(error, EINVAL,
400                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
401                                    "VLAN TPID matching is not supported");
402                 return -rte_errno;
403         }
404         if (mask->inner_type == supp_mask.inner_type) {
405                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
406                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
407         } else if (mask->inner_type) {
408                 rte_flow_error_set(error, EINVAL,
409                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
410                                    "Bad mask for VLAN inner_type");
411                 return -rte_errno;
412         }
413
414         return 0;
415 }
416
417 /**
418  * Convert IPv4 item to EFX filter specification.
419  *
420  * @param item[in]
421  *   Item specification. Only source and destination addresses and
422  *   protocol fields are supported. If the mask is NULL, default
423  *   mask will be used. Ranging is not supported.
424  * @param efx_spec[in, out]
425  *   EFX filter specification to update.
426  * @param[out] error
427  *   Perform verbose error reporting if not NULL.
428  */
429 static int
430 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
431                     efx_filter_spec_t *efx_spec,
432                     struct rte_flow_error *error)
433 {
434         int rc;
435         const struct rte_flow_item_ipv4 *spec = NULL;
436         const struct rte_flow_item_ipv4 *mask = NULL;
437         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
438         const struct rte_flow_item_ipv4 supp_mask = {
439                 .hdr = {
440                         .src_addr = 0xffffffff,
441                         .dst_addr = 0xffffffff,
442                         .next_proto_id = 0xff,
443                 }
444         };
445
446         rc = sfc_flow_parse_init(item,
447                                  (const void **)&spec,
448                                  (const void **)&mask,
449                                  &supp_mask,
450                                  &rte_flow_item_ipv4_mask,
451                                  sizeof(struct rte_flow_item_ipv4),
452                                  error);
453         if (rc != 0)
454                 return rc;
455
456         /*
457          * Filtering by IPv4 source and destination addresses requires
458          * the appropriate ETHER_TYPE in hardware filters
459          */
460         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
461                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
462                 efx_spec->efs_ether_type = ether_type_ipv4;
463         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
464                 rte_flow_error_set(error, EINVAL,
465                         RTE_FLOW_ERROR_TYPE_ITEM, item,
466                         "Ethertype in pattern with IPV4 item should be appropriate");
467                 return -rte_errno;
468         }
469
470         if (spec == NULL)
471                 return 0;
472
473         /*
474          * IPv4 addresses are in big-endian byte order in item and in
475          * efx_spec
476          */
477         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
478                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
479                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
480         } else if (mask->hdr.src_addr != 0) {
481                 goto fail_bad_mask;
482         }
483
484         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
485                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
486                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
487         } else if (mask->hdr.dst_addr != 0) {
488                 goto fail_bad_mask;
489         }
490
491         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
492                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
493                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
494         } else if (mask->hdr.next_proto_id != 0) {
495                 goto fail_bad_mask;
496         }
497
498         return 0;
499
500 fail_bad_mask:
501         rte_flow_error_set(error, EINVAL,
502                            RTE_FLOW_ERROR_TYPE_ITEM, item,
503                            "Bad mask in the IPV4 pattern item");
504         return -rte_errno;
505 }
506
507 /**
508  * Convert IPv6 item to EFX filter specification.
509  *
510  * @param item[in]
511  *   Item specification. Only source and destination addresses and
512  *   next header fields are supported. If the mask is NULL, default
513  *   mask will be used. Ranging is not supported.
514  * @param efx_spec[in, out]
515  *   EFX filter specification to update.
516  * @param[out] error
517  *   Perform verbose error reporting if not NULL.
518  */
519 static int
520 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
521                     efx_filter_spec_t *efx_spec,
522                     struct rte_flow_error *error)
523 {
524         int rc;
525         const struct rte_flow_item_ipv6 *spec = NULL;
526         const struct rte_flow_item_ipv6 *mask = NULL;
527         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
528         const struct rte_flow_item_ipv6 supp_mask = {
529                 .hdr = {
530                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
531                                       0xff, 0xff, 0xff, 0xff,
532                                       0xff, 0xff, 0xff, 0xff,
533                                       0xff, 0xff, 0xff, 0xff },
534                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
535                                       0xff, 0xff, 0xff, 0xff,
536                                       0xff, 0xff, 0xff, 0xff,
537                                       0xff, 0xff, 0xff, 0xff },
538                         .proto = 0xff,
539                 }
540         };
541
542         rc = sfc_flow_parse_init(item,
543                                  (const void **)&spec,
544                                  (const void **)&mask,
545                                  &supp_mask,
546                                  &rte_flow_item_ipv6_mask,
547                                  sizeof(struct rte_flow_item_ipv6),
548                                  error);
549         if (rc != 0)
550                 return rc;
551
552         /*
553          * Filtering by IPv6 source and destination addresses requires
554          * the appropriate ETHER_TYPE in hardware filters
555          */
556         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
557                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
558                 efx_spec->efs_ether_type = ether_type_ipv6;
559         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
560                 rte_flow_error_set(error, EINVAL,
561                         RTE_FLOW_ERROR_TYPE_ITEM, item,
562                         "Ethertype in pattern with IPV6 item should be appropriate");
563                 return -rte_errno;
564         }
565
566         if (spec == NULL)
567                 return 0;
568
569         /*
570          * IPv6 addresses are in big-endian byte order in item and in
571          * efx_spec
572          */
573         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
574                    sizeof(mask->hdr.src_addr)) == 0) {
575                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
576
577                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
578                                  sizeof(spec->hdr.src_addr));
579                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
580                            sizeof(efx_spec->efs_rem_host));
581         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
582                                      sizeof(mask->hdr.src_addr))) {
583                 goto fail_bad_mask;
584         }
585
586         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
587                    sizeof(mask->hdr.dst_addr)) == 0) {
588                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
589
590                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
591                                  sizeof(spec->hdr.dst_addr));
592                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
593                            sizeof(efx_spec->efs_loc_host));
594         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
595                                      sizeof(mask->hdr.dst_addr))) {
596                 goto fail_bad_mask;
597         }
598
599         if (mask->hdr.proto == supp_mask.hdr.proto) {
600                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
601                 efx_spec->efs_ip_proto = spec->hdr.proto;
602         } else if (mask->hdr.proto != 0) {
603                 goto fail_bad_mask;
604         }
605
606         return 0;
607
608 fail_bad_mask:
609         rte_flow_error_set(error, EINVAL,
610                            RTE_FLOW_ERROR_TYPE_ITEM, item,
611                            "Bad mask in the IPV6 pattern item");
612         return -rte_errno;
613 }
614
615 /**
616  * Convert TCP item to EFX filter specification.
617  *
618  * @param item[in]
619  *   Item specification. Only source and destination ports fields
620  *   are supported. If the mask is NULL, default mask will be used.
621  *   Ranging is not supported.
622  * @param efx_spec[in, out]
623  *   EFX filter specification to update.
624  * @param[out] error
625  *   Perform verbose error reporting if not NULL.
626  */
627 static int
628 sfc_flow_parse_tcp(const struct rte_flow_item *item,
629                    efx_filter_spec_t *efx_spec,
630                    struct rte_flow_error *error)
631 {
632         int rc;
633         const struct rte_flow_item_tcp *spec = NULL;
634         const struct rte_flow_item_tcp *mask = NULL;
635         const struct rte_flow_item_tcp supp_mask = {
636                 .hdr = {
637                         .src_port = 0xffff,
638                         .dst_port = 0xffff,
639                 }
640         };
641
642         rc = sfc_flow_parse_init(item,
643                                  (const void **)&spec,
644                                  (const void **)&mask,
645                                  &supp_mask,
646                                  &rte_flow_item_tcp_mask,
647                                  sizeof(struct rte_flow_item_tcp),
648                                  error);
649         if (rc != 0)
650                 return rc;
651
652         /*
653          * Filtering by TCP source and destination ports requires
654          * the appropriate IP_PROTO in hardware filters
655          */
656         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
657                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
658                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
659         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
660                 rte_flow_error_set(error, EINVAL,
661                         RTE_FLOW_ERROR_TYPE_ITEM, item,
662                         "IP proto in pattern with TCP item should be appropriate");
663                 return -rte_errno;
664         }
665
666         if (spec == NULL)
667                 return 0;
668
669         /*
670          * Source and destination ports are in big-endian byte order in item and
671          * in little-endian in efx_spec, so byte swap is used
672          */
673         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
674                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
675                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
676         } else if (mask->hdr.src_port != 0) {
677                 goto fail_bad_mask;
678         }
679
680         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
681                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
682                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
683         } else if (mask->hdr.dst_port != 0) {
684                 goto fail_bad_mask;
685         }
686
687         return 0;
688
689 fail_bad_mask:
690         rte_flow_error_set(error, EINVAL,
691                            RTE_FLOW_ERROR_TYPE_ITEM, item,
692                            "Bad mask in the TCP pattern item");
693         return -rte_errno;
694 }
695
696 /**
697  * Convert UDP item to EFX filter specification.
698  *
699  * @param item[in]
700  *   Item specification. Only source and destination ports fields
701  *   are supported. If the mask is NULL, default mask will be used.
702  *   Ranging is not supported.
703  * @param efx_spec[in, out]
704  *   EFX filter specification to update.
705  * @param[out] error
706  *   Perform verbose error reporting if not NULL.
707  */
708 static int
709 sfc_flow_parse_udp(const struct rte_flow_item *item,
710                    efx_filter_spec_t *efx_spec,
711                    struct rte_flow_error *error)
712 {
713         int rc;
714         const struct rte_flow_item_udp *spec = NULL;
715         const struct rte_flow_item_udp *mask = NULL;
716         const struct rte_flow_item_udp supp_mask = {
717                 .hdr = {
718                         .src_port = 0xffff,
719                         .dst_port = 0xffff,
720                 }
721         };
722
723         rc = sfc_flow_parse_init(item,
724                                  (const void **)&spec,
725                                  (const void **)&mask,
726                                  &supp_mask,
727                                  &rte_flow_item_udp_mask,
728                                  sizeof(struct rte_flow_item_udp),
729                                  error);
730         if (rc != 0)
731                 return rc;
732
733         /*
734          * Filtering by UDP source and destination ports requires
735          * the appropriate IP_PROTO in hardware filters
736          */
737         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
738                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
739                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
740         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
741                 rte_flow_error_set(error, EINVAL,
742                         RTE_FLOW_ERROR_TYPE_ITEM, item,
743                         "IP proto in pattern with UDP item should be appropriate");
744                 return -rte_errno;
745         }
746
747         if (spec == NULL)
748                 return 0;
749
750         /*
751          * Source and destination ports are in big-endian byte order in item and
752          * in little-endian in efx_spec, so byte swap is used
753          */
754         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
755                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
756                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
757         } else if (mask->hdr.src_port != 0) {
758                 goto fail_bad_mask;
759         }
760
761         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
762                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
763                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
764         } else if (mask->hdr.dst_port != 0) {
765                 goto fail_bad_mask;
766         }
767
768         return 0;
769
770 fail_bad_mask:
771         rte_flow_error_set(error, EINVAL,
772                            RTE_FLOW_ERROR_TYPE_ITEM, item,
773                            "Bad mask in the UDP pattern item");
774         return -rte_errno;
775 }
776
777 /*
778  * Filters for encapsulated packets match based on the EtherType and IP
779  * protocol in the outer frame.
780  */
781 static int
782 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
783                                         efx_filter_spec_t *efx_spec,
784                                         uint8_t ip_proto,
785                                         struct rte_flow_error *error)
786 {
787         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
788                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
789                 efx_spec->efs_ip_proto = ip_proto;
790         } else if (efx_spec->efs_ip_proto != ip_proto) {
791                 switch (ip_proto) {
792                 case EFX_IPPROTO_UDP:
793                         rte_flow_error_set(error, EINVAL,
794                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
795                                 "Outer IP header protocol must be UDP "
796                                 "in VxLAN/GENEVE pattern");
797                         return -rte_errno;
798
799                 case EFX_IPPROTO_GRE:
800                         rte_flow_error_set(error, EINVAL,
801                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
802                                 "Outer IP header protocol must be GRE "
803                                 "in NVGRE pattern");
804                         return -rte_errno;
805
806                 default:
807                         rte_flow_error_set(error, EINVAL,
808                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
809                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
810                                 "are supported");
811                         return -rte_errno;
812                 }
813         }
814
815         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
816             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
817             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
818                 rte_flow_error_set(error, EINVAL,
819                         RTE_FLOW_ERROR_TYPE_ITEM, item,
820                         "Outer frame EtherType in pattern with tunneling "
821                         "must be IPv4 or IPv6");
822                 return -rte_errno;
823         }
824
825         return 0;
826 }
827
828 static int
829 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
830                                   const uint8_t *vni_or_vsid_val,
831                                   const uint8_t *vni_or_vsid_mask,
832                                   const struct rte_flow_item *item,
833                                   struct rte_flow_error *error)
834 {
835         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
836                 0xff, 0xff, 0xff
837         };
838
839         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
840                    EFX_VNI_OR_VSID_LEN) == 0) {
841                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
842                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
843                            EFX_VNI_OR_VSID_LEN);
844         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
845                 rte_flow_error_set(error, EINVAL,
846                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
847                                    "Unsupported VNI/VSID mask");
848                 return -rte_errno;
849         }
850
851         return 0;
852 }
853
854 /**
855  * Convert VXLAN item to EFX filter specification.
856  *
857  * @param item[in]
858  *   Item specification. Only VXLAN network identifier field is supported.
859  *   If the mask is NULL, default mask will be used.
860  *   Ranging is not supported.
861  * @param efx_spec[in, out]
862  *   EFX filter specification to update.
863  * @param[out] error
864  *   Perform verbose error reporting if not NULL.
865  */
866 static int
867 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
868                      efx_filter_spec_t *efx_spec,
869                      struct rte_flow_error *error)
870 {
871         int rc;
872         const struct rte_flow_item_vxlan *spec = NULL;
873         const struct rte_flow_item_vxlan *mask = NULL;
874         const struct rte_flow_item_vxlan supp_mask = {
875                 .vni = { 0xff, 0xff, 0xff }
876         };
877
878         rc = sfc_flow_parse_init(item,
879                                  (const void **)&spec,
880                                  (const void **)&mask,
881                                  &supp_mask,
882                                  &rte_flow_item_vxlan_mask,
883                                  sizeof(struct rte_flow_item_vxlan),
884                                  error);
885         if (rc != 0)
886                 return rc;
887
888         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
889                                                      EFX_IPPROTO_UDP, error);
890         if (rc != 0)
891                 return rc;
892
893         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
894         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
895
896         if (spec == NULL)
897                 return 0;
898
899         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
900                                                mask->vni, item, error);
901
902         return rc;
903 }
904
905 /**
906  * Convert GENEVE item to EFX filter specification.
907  *
908  * @param item[in]
909  *   Item specification. Only Virtual Network Identifier and protocol type
910  *   fields are supported. But protocol type can be only Ethernet (0x6558).
911  *   If the mask is NULL, default mask will be used.
912  *   Ranging is not supported.
913  * @param efx_spec[in, out]
914  *   EFX filter specification to update.
915  * @param[out] error
916  *   Perform verbose error reporting if not NULL.
917  */
918 static int
919 sfc_flow_parse_geneve(const struct rte_flow_item *item,
920                       efx_filter_spec_t *efx_spec,
921                       struct rte_flow_error *error)
922 {
923         int rc;
924         const struct rte_flow_item_geneve *spec = NULL;
925         const struct rte_flow_item_geneve *mask = NULL;
926         const struct rte_flow_item_geneve supp_mask = {
927                 .protocol = RTE_BE16(0xffff),
928                 .vni = { 0xff, 0xff, 0xff }
929         };
930
931         rc = sfc_flow_parse_init(item,
932                                  (const void **)&spec,
933                                  (const void **)&mask,
934                                  &supp_mask,
935                                  &rte_flow_item_geneve_mask,
936                                  sizeof(struct rte_flow_item_geneve),
937                                  error);
938         if (rc != 0)
939                 return rc;
940
941         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
942                                                      EFX_IPPROTO_UDP, error);
943         if (rc != 0)
944                 return rc;
945
946         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
947         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
948
949         if (spec == NULL)
950                 return 0;
951
952         if (mask->protocol == supp_mask.protocol) {
953                 if (spec->protocol != rte_cpu_to_be_16(ETHER_TYPE_TEB)) {
954                         rte_flow_error_set(error, EINVAL,
955                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
956                                 "GENEVE encap. protocol must be Ethernet "
957                                 "(0x6558) in the GENEVE pattern item");
958                         return -rte_errno;
959                 }
960         } else if (mask->protocol != 0) {
961                 rte_flow_error_set(error, EINVAL,
962                         RTE_FLOW_ERROR_TYPE_ITEM, item,
963                         "Unsupported mask for GENEVE encap. protocol");
964                 return -rte_errno;
965         }
966
967         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
968                                                mask->vni, item, error);
969
970         return rc;
971 }
972
973 /**
974  * Convert NVGRE item to EFX filter specification.
975  *
976  * @param item[in]
977  *   Item specification. Only virtual subnet ID field is supported.
978  *   If the mask is NULL, default mask will be used.
979  *   Ranging is not supported.
980  * @param efx_spec[in, out]
981  *   EFX filter specification to update.
982  * @param[out] error
983  *   Perform verbose error reporting if not NULL.
984  */
985 static int
986 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
987                      efx_filter_spec_t *efx_spec,
988                      struct rte_flow_error *error)
989 {
990         int rc;
991         const struct rte_flow_item_nvgre *spec = NULL;
992         const struct rte_flow_item_nvgre *mask = NULL;
993         const struct rte_flow_item_nvgre supp_mask = {
994                 .tni = { 0xff, 0xff, 0xff }
995         };
996
997         rc = sfc_flow_parse_init(item,
998                                  (const void **)&spec,
999                                  (const void **)&mask,
1000                                  &supp_mask,
1001                                  &rte_flow_item_nvgre_mask,
1002                                  sizeof(struct rte_flow_item_nvgre),
1003                                  error);
1004         if (rc != 0)
1005                 return rc;
1006
1007         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1008                                                      EFX_IPPROTO_GRE, error);
1009         if (rc != 0)
1010                 return rc;
1011
1012         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1013         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1014
1015         if (spec == NULL)
1016                 return 0;
1017
1018         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1019                                                mask->tni, item, error);
1020
1021         return rc;
1022 }
1023
1024 static const struct sfc_flow_item sfc_flow_items[] = {
1025         {
1026                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1027                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1028                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1029                 .parse = sfc_flow_parse_void,
1030         },
1031         {
1032                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1033                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1034                 .layer = SFC_FLOW_ITEM_L2,
1035                 .parse = sfc_flow_parse_eth,
1036         },
1037         {
1038                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1039                 .prev_layer = SFC_FLOW_ITEM_L2,
1040                 .layer = SFC_FLOW_ITEM_L2,
1041                 .parse = sfc_flow_parse_vlan,
1042         },
1043         {
1044                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1045                 .prev_layer = SFC_FLOW_ITEM_L2,
1046                 .layer = SFC_FLOW_ITEM_L3,
1047                 .parse = sfc_flow_parse_ipv4,
1048         },
1049         {
1050                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1051                 .prev_layer = SFC_FLOW_ITEM_L2,
1052                 .layer = SFC_FLOW_ITEM_L3,
1053                 .parse = sfc_flow_parse_ipv6,
1054         },
1055         {
1056                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1057                 .prev_layer = SFC_FLOW_ITEM_L3,
1058                 .layer = SFC_FLOW_ITEM_L4,
1059                 .parse = sfc_flow_parse_tcp,
1060         },
1061         {
1062                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1063                 .prev_layer = SFC_FLOW_ITEM_L3,
1064                 .layer = SFC_FLOW_ITEM_L4,
1065                 .parse = sfc_flow_parse_udp,
1066         },
1067         {
1068                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1069                 .prev_layer = SFC_FLOW_ITEM_L4,
1070                 .layer = SFC_FLOW_ITEM_START_LAYER,
1071                 .parse = sfc_flow_parse_vxlan,
1072         },
1073         {
1074                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1075                 .prev_layer = SFC_FLOW_ITEM_L4,
1076                 .layer = SFC_FLOW_ITEM_START_LAYER,
1077                 .parse = sfc_flow_parse_geneve,
1078         },
1079         {
1080                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1081                 .prev_layer = SFC_FLOW_ITEM_L3,
1082                 .layer = SFC_FLOW_ITEM_START_LAYER,
1083                 .parse = sfc_flow_parse_nvgre,
1084         },
1085 };
1086
1087 /*
1088  * Protocol-independent flow API support
1089  */
1090 static int
1091 sfc_flow_parse_attr(const struct rte_flow_attr *attr,
1092                     struct rte_flow *flow,
1093                     struct rte_flow_error *error)
1094 {
1095         if (attr == NULL) {
1096                 rte_flow_error_set(error, EINVAL,
1097                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1098                                    "NULL attribute");
1099                 return -rte_errno;
1100         }
1101         if (attr->group != 0) {
1102                 rte_flow_error_set(error, ENOTSUP,
1103                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1104                                    "Groups are not supported");
1105                 return -rte_errno;
1106         }
1107         if (attr->priority != 0) {
1108                 rte_flow_error_set(error, ENOTSUP,
1109                                    RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr,
1110                                    "Priorities are not supported");
1111                 return -rte_errno;
1112         }
1113         if (attr->egress != 0) {
1114                 rte_flow_error_set(error, ENOTSUP,
1115                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1116                                    "Egress is not supported");
1117                 return -rte_errno;
1118         }
1119         if (attr->transfer != 0) {
1120                 rte_flow_error_set(error, ENOTSUP,
1121                                    RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr,
1122                                    "Transfer is not supported");
1123                 return -rte_errno;
1124         }
1125         if (attr->ingress == 0) {
1126                 rte_flow_error_set(error, ENOTSUP,
1127                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1128                                    "Only ingress is supported");
1129                 return -rte_errno;
1130         }
1131
1132         flow->spec.template.efs_flags |= EFX_FILTER_FLAG_RX;
1133         flow->spec.template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1134
1135         return 0;
1136 }
1137
1138 /* Get item from array sfc_flow_items */
1139 static const struct sfc_flow_item *
1140 sfc_flow_get_item(enum rte_flow_item_type type)
1141 {
1142         unsigned int i;
1143
1144         for (i = 0; i < RTE_DIM(sfc_flow_items); i++)
1145                 if (sfc_flow_items[i].type == type)
1146                         return &sfc_flow_items[i];
1147
1148         return NULL;
1149 }
1150
1151 static int
1152 sfc_flow_parse_pattern(const struct rte_flow_item pattern[],
1153                        struct rte_flow *flow,
1154                        struct rte_flow_error *error)
1155 {
1156         int rc;
1157         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1158         boolean_t is_ifrm = B_FALSE;
1159         const struct sfc_flow_item *item;
1160
1161         if (pattern == NULL) {
1162                 rte_flow_error_set(error, EINVAL,
1163                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1164                                    "NULL pattern");
1165                 return -rte_errno;
1166         }
1167
1168         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1169                 item = sfc_flow_get_item(pattern->type);
1170                 if (item == NULL) {
1171                         rte_flow_error_set(error, ENOTSUP,
1172                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1173                                            "Unsupported pattern item");
1174                         return -rte_errno;
1175                 }
1176
1177                 /*
1178                  * Omitting one or several protocol layers at the beginning
1179                  * of pattern is supported
1180                  */
1181                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1182                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1183                     item->prev_layer != prev_layer) {
1184                         rte_flow_error_set(error, ENOTSUP,
1185                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1186                                            "Unexpected sequence of pattern items");
1187                         return -rte_errno;
1188                 }
1189
1190                 /*
1191                  * Allow only VOID and ETH pattern items in the inner frame.
1192                  * Also check that there is only one tunneling protocol.
1193                  */
1194                 switch (item->type) {
1195                 case RTE_FLOW_ITEM_TYPE_VOID:
1196                 case RTE_FLOW_ITEM_TYPE_ETH:
1197                         break;
1198
1199                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1200                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1201                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1202                         if (is_ifrm) {
1203                                 rte_flow_error_set(error, EINVAL,
1204                                         RTE_FLOW_ERROR_TYPE_ITEM,
1205                                         pattern,
1206                                         "More than one tunneling protocol");
1207                                 return -rte_errno;
1208                         }
1209                         is_ifrm = B_TRUE;
1210                         break;
1211
1212                 default:
1213                         if (is_ifrm) {
1214                                 rte_flow_error_set(error, EINVAL,
1215                                         RTE_FLOW_ERROR_TYPE_ITEM,
1216                                         pattern,
1217                                         "There is an unsupported pattern item "
1218                                         "in the inner frame");
1219                                 return -rte_errno;
1220                         }
1221                         break;
1222                 }
1223
1224                 rc = item->parse(pattern, &flow->spec.template, error);
1225                 if (rc != 0)
1226                         return rc;
1227
1228                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1229                         prev_layer = item->layer;
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int
1236 sfc_flow_parse_queue(struct sfc_adapter *sa,
1237                      const struct rte_flow_action_queue *queue,
1238                      struct rte_flow *flow)
1239 {
1240         struct sfc_rxq *rxq;
1241
1242         if (queue->index >= sa->rxq_count)
1243                 return -EINVAL;
1244
1245         rxq = sa->rxq_info[queue->index].rxq;
1246         flow->spec.template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1247
1248         return 0;
1249 }
1250
1251 static int
1252 sfc_flow_parse_rss(struct sfc_adapter *sa,
1253                    const struct rte_flow_action_rss *action_rss,
1254                    struct rte_flow *flow)
1255 {
1256         struct sfc_rss *rss = &sa->rss;
1257         unsigned int rxq_sw_index;
1258         struct sfc_rxq *rxq;
1259         unsigned int rxq_hw_index_min;
1260         unsigned int rxq_hw_index_max;
1261         uint64_t rss_hf;
1262         const uint8_t *rss_key;
1263         struct sfc_flow_rss *sfc_rss_conf = &flow->rss_conf;
1264         unsigned int i;
1265
1266         if (action_rss->queue_num == 0)
1267                 return -EINVAL;
1268
1269         rxq_sw_index = sa->rxq_count - 1;
1270         rxq = sa->rxq_info[rxq_sw_index].rxq;
1271         rxq_hw_index_min = rxq->hw_index;
1272         rxq_hw_index_max = 0;
1273
1274         for (i = 0; i < action_rss->queue_num; ++i) {
1275                 rxq_sw_index = action_rss->queue[i];
1276
1277                 if (rxq_sw_index >= sa->rxq_count)
1278                         return -EINVAL;
1279
1280                 rxq = sa->rxq_info[rxq_sw_index].rxq;
1281
1282                 if (rxq->hw_index < rxq_hw_index_min)
1283                         rxq_hw_index_min = rxq->hw_index;
1284
1285                 if (rxq->hw_index > rxq_hw_index_max)
1286                         rxq_hw_index_max = rxq->hw_index;
1287         }
1288
1289         switch (action_rss->func) {
1290         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1291         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1292                 break;
1293         default:
1294                 return -EINVAL;
1295         }
1296
1297         if (action_rss->level)
1298                 return -EINVAL;
1299
1300         rss_hf = action_rss->types;
1301         if ((rss_hf & ~SFC_RSS_OFFLOADS) != 0)
1302                 return -EINVAL;
1303
1304         if (action_rss->key_len) {
1305                 if (action_rss->key_len != sizeof(rss->key))
1306                         return -EINVAL;
1307
1308                 rss_key = action_rss->key;
1309         } else {
1310                 rss_key = rss->key;
1311         }
1312
1313         flow->rss = B_TRUE;
1314
1315         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1316         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1317         sfc_rss_conf->rss_hash_types = sfc_rte_to_efx_hash_type(rss_hf);
1318         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1319
1320         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1321                 unsigned int nb_queues = action_rss->queue_num;
1322                 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1323                 struct sfc_rxq *rxq = sa->rxq_info[rxq_sw_index].rxq;
1324
1325                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1326         }
1327
1328         return 0;
1329 }
1330
1331 static int
1332 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1333                     unsigned int filters_count)
1334 {
1335         unsigned int i;
1336         int ret = 0;
1337
1338         for (i = 0; i < filters_count; i++) {
1339                 int rc;
1340
1341                 rc = efx_filter_remove(sa->nic, &spec->filters[i]);
1342                 if (ret == 0 && rc != 0) {
1343                         sfc_err(sa, "failed to remove filter specification "
1344                                 "(rc = %d)", rc);
1345                         ret = rc;
1346                 }
1347         }
1348
1349         return ret;
1350 }
1351
1352 static int
1353 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1354 {
1355         unsigned int i;
1356         int rc = 0;
1357
1358         for (i = 0; i < spec->count; i++) {
1359                 rc = efx_filter_insert(sa->nic, &spec->filters[i]);
1360                 if (rc != 0) {
1361                         sfc_flow_spec_flush(sa, spec, i);
1362                         break;
1363                 }
1364         }
1365
1366         return rc;
1367 }
1368
1369 static int
1370 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1371 {
1372         return sfc_flow_spec_flush(sa, spec, spec->count);
1373 }
1374
1375 static int
1376 sfc_flow_filter_insert(struct sfc_adapter *sa,
1377                        struct rte_flow *flow)
1378 {
1379         struct sfc_rss *rss = &sa->rss;
1380         struct sfc_flow_rss *flow_rss = &flow->rss_conf;
1381         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1382         unsigned int i;
1383         int rc = 0;
1384
1385         if (flow->rss) {
1386                 unsigned int rss_spread = MIN(flow_rss->rxq_hw_index_max -
1387                                               flow_rss->rxq_hw_index_min + 1,
1388                                               EFX_MAXRSS);
1389
1390                 rc = efx_rx_scale_context_alloc(sa->nic,
1391                                                 EFX_RX_SCALE_EXCLUSIVE,
1392                                                 rss_spread,
1393                                                 &efs_rss_context);
1394                 if (rc != 0)
1395                         goto fail_scale_context_alloc;
1396
1397                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1398                                            EFX_RX_HASHALG_TOEPLITZ,
1399                                            flow_rss->rss_hash_types, B_TRUE);
1400                 if (rc != 0)
1401                         goto fail_scale_mode_set;
1402
1403                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1404                                           flow_rss->rss_key,
1405                                           sizeof(rss->key));
1406                 if (rc != 0)
1407                         goto fail_scale_key_set;
1408
1409                 /*
1410                  * At this point, fully elaborated filter specifications
1411                  * have been produced from the template. To make sure that
1412                  * RSS behaviour is consistent between them, set the same
1413                  * RSS context value everywhere.
1414                  */
1415                 for (i = 0; i < flow->spec.count; i++) {
1416                         efx_filter_spec_t *spec = &flow->spec.filters[i];
1417
1418                         spec->efs_rss_context = efs_rss_context;
1419                         spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1420                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1421                 }
1422         }
1423
1424         rc = sfc_flow_spec_insert(sa, &flow->spec);
1425         if (rc != 0)
1426                 goto fail_filter_insert;
1427
1428         if (flow->rss) {
1429                 /*
1430                  * Scale table is set after filter insertion because
1431                  * the table entries are relative to the base RxQ ID
1432                  * and the latter is submitted to the HW by means of
1433                  * inserting a filter, so by the time of the request
1434                  * the HW knows all the information needed to verify
1435                  * the table entries, and the operation will succeed
1436                  */
1437                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1438                                           flow_rss->rss_tbl,
1439                                           RTE_DIM(flow_rss->rss_tbl));
1440                 if (rc != 0)
1441                         goto fail_scale_tbl_set;
1442         }
1443
1444         return 0;
1445
1446 fail_scale_tbl_set:
1447         sfc_flow_spec_remove(sa, &flow->spec);
1448
1449 fail_filter_insert:
1450 fail_scale_key_set:
1451 fail_scale_mode_set:
1452         if (efs_rss_context != EFX_RSS_CONTEXT_DEFAULT)
1453                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1454
1455 fail_scale_context_alloc:
1456         return rc;
1457 }
1458
1459 static int
1460 sfc_flow_filter_remove(struct sfc_adapter *sa,
1461                        struct rte_flow *flow)
1462 {
1463         int rc = 0;
1464
1465         rc = sfc_flow_spec_remove(sa, &flow->spec);
1466         if (rc != 0)
1467                 return rc;
1468
1469         if (flow->rss) {
1470                 /*
1471                  * All specifications for a given flow rule have the same RSS
1472                  * context, so that RSS context value is taken from the first
1473                  * filter specification
1474                  */
1475                 efx_filter_spec_t *spec = &flow->spec.filters[0];
1476
1477                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1478         }
1479
1480         return rc;
1481 }
1482
1483 static int
1484 sfc_flow_parse_actions(struct sfc_adapter *sa,
1485                        const struct rte_flow_action actions[],
1486                        struct rte_flow *flow,
1487                        struct rte_flow_error *error)
1488 {
1489         int rc;
1490         boolean_t is_specified = B_FALSE;
1491
1492         if (actions == NULL) {
1493                 rte_flow_error_set(error, EINVAL,
1494                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1495                                    "NULL actions");
1496                 return -rte_errno;
1497         }
1498
1499         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1500                 /* This one may appear anywhere multiple times. */
1501                 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID)
1502                         continue;
1503                 /* Fate-deciding actions may appear exactly once. */
1504                 if (is_specified) {
1505                         rte_flow_error_set
1506                                 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
1507                                  actions,
1508                                  "Cannot combine several fate-deciding actions,"
1509                                  "choose between QUEUE, RSS or DROP");
1510                         return -rte_errno;
1511                 }
1512                 switch (actions->type) {
1513                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1514                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1515                         if (rc != 0) {
1516                                 rte_flow_error_set(error, EINVAL,
1517                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1518                                         "Bad QUEUE action");
1519                                 return -rte_errno;
1520                         }
1521
1522                         is_specified = B_TRUE;
1523                         break;
1524
1525                 case RTE_FLOW_ACTION_TYPE_RSS:
1526                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1527                         if (rc != 0) {
1528                                 rte_flow_error_set(error, rc,
1529                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1530                                         "Bad RSS action");
1531                                 return -rte_errno;
1532                         }
1533
1534                         is_specified = B_TRUE;
1535                         break;
1536
1537                 case RTE_FLOW_ACTION_TYPE_DROP:
1538                         flow->spec.template.efs_dmaq_id =
1539                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1540
1541                         is_specified = B_TRUE;
1542                         break;
1543
1544                 default:
1545                         rte_flow_error_set(error, ENOTSUP,
1546                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1547                                            "Action is not supported");
1548                         return -rte_errno;
1549                 }
1550         }
1551
1552         /* When fate is unknown, drop traffic. */
1553         if (!is_specified) {
1554                 flow->spec.template.efs_dmaq_id =
1555                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1556         }
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1563  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1564  * specifications after copying.
1565  *
1566  * @param spec[in, out]
1567  *   SFC flow specification to update.
1568  * @param filters_count_for_one_val[in]
1569  *   How many specifications should have the same match flag, what is the
1570  *   number of specifications before copying.
1571  * @param error[out]
1572  *   Perform verbose error reporting if not NULL.
1573  */
1574 static int
1575 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1576                                unsigned int filters_count_for_one_val,
1577                                struct rte_flow_error *error)
1578 {
1579         unsigned int i;
1580         static const efx_filter_match_flags_t vals[] = {
1581                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1582                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1583         };
1584
1585         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1586                 rte_flow_error_set(error, EINVAL,
1587                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1588                         "Number of specifications is incorrect while copying "
1589                         "by unknown destination flags");
1590                 return -rte_errno;
1591         }
1592
1593         for (i = 0; i < spec->count; i++) {
1594                 /* The check above ensures that divisor can't be zero here */
1595                 spec->filters[i].efs_match_flags |=
1596                         vals[i / filters_count_for_one_val];
1597         }
1598
1599         return 0;
1600 }
1601
1602 /**
1603  * Check that the following conditions are met:
1604  * - the list of supported filters has a filter
1605  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1606  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1607  *   be inserted.
1608  *
1609  * @param match[in]
1610  *   The match flags of filter.
1611  * @param spec[in]
1612  *   Specification to be supplemented.
1613  * @param filter[in]
1614  *   SFC filter with list of supported filters.
1615  */
1616 static boolean_t
1617 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1618                                  __rte_unused efx_filter_spec_t *spec,
1619                                  struct sfc_filter *filter)
1620 {
1621         unsigned int i;
1622         efx_filter_match_flags_t match_mcast_dst;
1623
1624         match_mcast_dst =
1625                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1626                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1627         for (i = 0; i < filter->supported_match_num; i++) {
1628                 if (match_mcast_dst == filter->supported_match[i])
1629                         return B_TRUE;
1630         }
1631
1632         return B_FALSE;
1633 }
1634
1635 /**
1636  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1637  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1638  * specifications after copying.
1639  *
1640  * @param spec[in, out]
1641  *   SFC flow specification to update.
1642  * @param filters_count_for_one_val[in]
1643  *   How many specifications should have the same EtherType value, what is the
1644  *   number of specifications before copying.
1645  * @param error[out]
1646  *   Perform verbose error reporting if not NULL.
1647  */
1648 static int
1649 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1650                         unsigned int filters_count_for_one_val,
1651                         struct rte_flow_error *error)
1652 {
1653         unsigned int i;
1654         static const uint16_t vals[] = {
1655                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1656         };
1657
1658         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1659                 rte_flow_error_set(error, EINVAL,
1660                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1661                         "Number of specifications is incorrect "
1662                         "while copying by Ethertype");
1663                 return -rte_errno;
1664         }
1665
1666         for (i = 0; i < spec->count; i++) {
1667                 spec->filters[i].efs_match_flags |=
1668                         EFX_FILTER_MATCH_ETHER_TYPE;
1669
1670                 /*
1671                  * The check above ensures that
1672                  * filters_count_for_one_val is not 0
1673                  */
1674                 spec->filters[i].efs_ether_type =
1675                         vals[i / filters_count_for_one_val];
1676         }
1677
1678         return 0;
1679 }
1680
1681 /**
1682  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1683  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1684  * specifications after copying.
1685  *
1686  * @param spec[in, out]
1687  *   SFC flow specification to update.
1688  * @param filters_count_for_one_val[in]
1689  *   How many specifications should have the same match flag, what is the
1690  *   number of specifications before copying.
1691  * @param error[out]
1692  *   Perform verbose error reporting if not NULL.
1693  */
1694 static int
1695 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1696                                     unsigned int filters_count_for_one_val,
1697                                     struct rte_flow_error *error)
1698 {
1699         unsigned int i;
1700         static const efx_filter_match_flags_t vals[] = {
1701                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1702                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1703         };
1704
1705         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1706                 rte_flow_error_set(error, EINVAL,
1707                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1708                         "Number of specifications is incorrect while copying "
1709                         "by inner frame unknown destination flags");
1710                 return -rte_errno;
1711         }
1712
1713         for (i = 0; i < spec->count; i++) {
1714                 /* The check above ensures that divisor can't be zero here */
1715                 spec->filters[i].efs_match_flags |=
1716                         vals[i / filters_count_for_one_val];
1717         }
1718
1719         return 0;
1720 }
1721
1722 /**
1723  * Check that the following conditions are met:
1724  * - the specification corresponds to a filter for encapsulated traffic
1725  * - the list of supported filters has a filter
1726  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
1727  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
1728  *   be inserted.
1729  *
1730  * @param match[in]
1731  *   The match flags of filter.
1732  * @param spec[in]
1733  *   Specification to be supplemented.
1734  * @param filter[in]
1735  *   SFC filter with list of supported filters.
1736  */
1737 static boolean_t
1738 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
1739                                       efx_filter_spec_t *spec,
1740                                       struct sfc_filter *filter)
1741 {
1742         unsigned int i;
1743         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
1744         efx_filter_match_flags_t match_mcast_dst;
1745
1746         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
1747                 return B_FALSE;
1748
1749         match_mcast_dst =
1750                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
1751                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
1752         for (i = 0; i < filter->supported_match_num; i++) {
1753                 if (match_mcast_dst == filter->supported_match[i])
1754                         return B_TRUE;
1755         }
1756
1757         return B_FALSE;
1758 }
1759
1760 /*
1761  * Match flags that can be automatically added to filters.
1762  * Selecting the last minimum when searching for the copy flag ensures that the
1763  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
1764  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
1765  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
1766  * filters.
1767  */
1768 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
1769         {
1770                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1771                 .vals_count = 2,
1772                 .set_vals = sfc_flow_set_unknown_dst_flags,
1773                 .spec_check = sfc_flow_check_unknown_dst_flags,
1774         },
1775         {
1776                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
1777                 .vals_count = 2,
1778                 .set_vals = sfc_flow_set_ethertypes,
1779                 .spec_check = NULL,
1780         },
1781         {
1782                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1783                 .vals_count = 2,
1784                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
1785                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
1786         },
1787 };
1788
1789 /* Get item from array sfc_flow_copy_flags */
1790 static const struct sfc_flow_copy_flag *
1791 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
1792 {
1793         unsigned int i;
1794
1795         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1796                 if (sfc_flow_copy_flags[i].flag == flag)
1797                         return &sfc_flow_copy_flags[i];
1798         }
1799
1800         return NULL;
1801 }
1802
1803 /**
1804  * Make copies of the specifications, set match flag and values
1805  * of the field that corresponds to it.
1806  *
1807  * @param spec[in, out]
1808  *   SFC flow specification to update.
1809  * @param flag[in]
1810  *   The match flag to add.
1811  * @param error[out]
1812  *   Perform verbose error reporting if not NULL.
1813  */
1814 static int
1815 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
1816                              efx_filter_match_flags_t flag,
1817                              struct rte_flow_error *error)
1818 {
1819         unsigned int i;
1820         unsigned int new_filters_count;
1821         unsigned int filters_count_for_one_val;
1822         const struct sfc_flow_copy_flag *copy_flag;
1823         int rc;
1824
1825         copy_flag = sfc_flow_get_copy_flag(flag);
1826         if (copy_flag == NULL) {
1827                 rte_flow_error_set(error, ENOTSUP,
1828                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1829                                    "Unsupported spec field for copying");
1830                 return -rte_errno;
1831         }
1832
1833         new_filters_count = spec->count * copy_flag->vals_count;
1834         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
1835                 rte_flow_error_set(error, EINVAL,
1836                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1837                         "Too much EFX specifications in the flow rule");
1838                 return -rte_errno;
1839         }
1840
1841         /* Copy filters specifications */
1842         for (i = spec->count; i < new_filters_count; i++)
1843                 spec->filters[i] = spec->filters[i - spec->count];
1844
1845         filters_count_for_one_val = spec->count;
1846         spec->count = new_filters_count;
1847
1848         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
1849         if (rc != 0)
1850                 return rc;
1851
1852         return 0;
1853 }
1854
1855 /**
1856  * Check that the given set of match flags missing in the original filter spec
1857  * could be covered by adding spec copies which specify the corresponding
1858  * flags and packet field values to match.
1859  *
1860  * @param miss_flags[in]
1861  *   Flags that are missing until the supported filter.
1862  * @param spec[in]
1863  *   Specification to be supplemented.
1864  * @param filter[in]
1865  *   SFC filter.
1866  *
1867  * @return
1868  *   Number of specifications after copy or 0, if the flags can not be added.
1869  */
1870 static unsigned int
1871 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
1872                              efx_filter_spec_t *spec,
1873                              struct sfc_filter *filter)
1874 {
1875         unsigned int i;
1876         efx_filter_match_flags_t copy_flags = 0;
1877         efx_filter_match_flags_t flag;
1878         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
1879         sfc_flow_spec_check *check;
1880         unsigned int multiplier = 1;
1881
1882         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1883                 flag = sfc_flow_copy_flags[i].flag;
1884                 check = sfc_flow_copy_flags[i].spec_check;
1885                 if ((flag & miss_flags) == flag) {
1886                         if (check != NULL && (!check(match, spec, filter)))
1887                                 continue;
1888
1889                         copy_flags |= flag;
1890                         multiplier *= sfc_flow_copy_flags[i].vals_count;
1891                 }
1892         }
1893
1894         if (copy_flags == miss_flags)
1895                 return multiplier;
1896
1897         return 0;
1898 }
1899
1900 /**
1901  * Attempt to supplement the specification template to the minimally
1902  * supported set of match flags. To do this, it is necessary to copy
1903  * the specifications, filling them with the values of fields that
1904  * correspond to the missing flags.
1905  * The necessary and sufficient filter is built from the fewest number
1906  * of copies which could be made to cover the minimally required set
1907  * of flags.
1908  *
1909  * @param sa[in]
1910  *   SFC adapter.
1911  * @param spec[in, out]
1912  *   SFC flow specification to update.
1913  * @param error[out]
1914  *   Perform verbose error reporting if not NULL.
1915  */
1916 static int
1917 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
1918                                struct sfc_flow_spec *spec,
1919                                struct rte_flow_error *error)
1920 {
1921         struct sfc_filter *filter = &sa->filter;
1922         efx_filter_match_flags_t miss_flags;
1923         efx_filter_match_flags_t min_miss_flags = 0;
1924         efx_filter_match_flags_t match;
1925         unsigned int min_multiplier = UINT_MAX;
1926         unsigned int multiplier;
1927         unsigned int i;
1928         int rc;
1929
1930         match = spec->template.efs_match_flags;
1931         for (i = 0; i < filter->supported_match_num; i++) {
1932                 if ((match & filter->supported_match[i]) == match) {
1933                         miss_flags = filter->supported_match[i] & (~match);
1934                         multiplier = sfc_flow_check_missing_flags(miss_flags,
1935                                 &spec->template, filter);
1936                         if (multiplier > 0) {
1937                                 if (multiplier <= min_multiplier) {
1938                                         min_multiplier = multiplier;
1939                                         min_miss_flags = miss_flags;
1940                                 }
1941                         }
1942                 }
1943         }
1944
1945         if (min_multiplier == UINT_MAX) {
1946                 rte_flow_error_set(error, ENOTSUP,
1947                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1948                                    "Flow rule pattern is not supported");
1949                 return -rte_errno;
1950         }
1951
1952         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1953                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
1954
1955                 if ((flag & min_miss_flags) == flag) {
1956                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
1957                         if (rc != 0)
1958                                 return rc;
1959                 }
1960         }
1961
1962         return 0;
1963 }
1964
1965 /**
1966  * Check that set of match flags is referred to by a filter. Filter is
1967  * described by match flags with the ability to add OUTER_VID and INNER_VID
1968  * flags.
1969  *
1970  * @param match_flags[in]
1971  *   Set of match flags.
1972  * @param flags_pattern[in]
1973  *   Pattern of filter match flags.
1974  */
1975 static boolean_t
1976 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
1977                             efx_filter_match_flags_t flags_pattern)
1978 {
1979         if ((match_flags & flags_pattern) != flags_pattern)
1980                 return B_FALSE;
1981
1982         switch (match_flags & ~flags_pattern) {
1983         case 0:
1984         case EFX_FILTER_MATCH_OUTER_VID:
1985         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
1986                 return B_TRUE;
1987         default:
1988                 return B_FALSE;
1989         }
1990 }
1991
1992 /**
1993  * Check whether the spec maps to a hardware filter which is known to be
1994  * ineffective despite being valid.
1995  *
1996  * @param spec[in]
1997  *   SFC flow specification.
1998  */
1999 static boolean_t
2000 sfc_flow_is_match_flags_exception(struct sfc_flow_spec *spec)
2001 {
2002         unsigned int i;
2003         uint16_t ether_type;
2004         uint8_t ip_proto;
2005         efx_filter_match_flags_t match_flags;
2006
2007         for (i = 0; i < spec->count; i++) {
2008                 match_flags = spec->filters[i].efs_match_flags;
2009
2010                 if (sfc_flow_is_match_with_vids(match_flags,
2011                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2012                     sfc_flow_is_match_with_vids(match_flags,
2013                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2014                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2015                         ether_type = spec->filters[i].efs_ether_type;
2016                         if (ether_type == EFX_ETHER_TYPE_IPV4 ||
2017                             ether_type == EFX_ETHER_TYPE_IPV6)
2018                                 return B_TRUE;
2019                 } else if (sfc_flow_is_match_with_vids(match_flags,
2020                                 EFX_FILTER_MATCH_ETHER_TYPE |
2021                                 EFX_FILTER_MATCH_IP_PROTO) ||
2022                            sfc_flow_is_match_with_vids(match_flags,
2023                                 EFX_FILTER_MATCH_ETHER_TYPE |
2024                                 EFX_FILTER_MATCH_IP_PROTO |
2025                                 EFX_FILTER_MATCH_LOC_MAC)) {
2026                         ip_proto = spec->filters[i].efs_ip_proto;
2027                         if (ip_proto == EFX_IPPROTO_TCP ||
2028                             ip_proto == EFX_IPPROTO_UDP)
2029                                 return B_TRUE;
2030                 }
2031         }
2032
2033         return B_FALSE;
2034 }
2035
2036 static int
2037 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2038                               struct rte_flow *flow,
2039                               struct rte_flow_error *error)
2040 {
2041         efx_filter_spec_t *spec_tmpl = &flow->spec.template;
2042         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2043         int rc;
2044
2045         /* Initialize the first filter spec with template */
2046         flow->spec.filters[0] = *spec_tmpl;
2047         flow->spec.count = 1;
2048
2049         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2050                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2051                 if (rc != 0)
2052                         return rc;
2053         }
2054
2055         if (sfc_flow_is_match_flags_exception(&flow->spec)) {
2056                 rte_flow_error_set(error, ENOTSUP,
2057                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2058                         "The flow rule pattern is unsupported");
2059                 return -rte_errno;
2060         }
2061
2062         return 0;
2063 }
2064
2065 static int
2066 sfc_flow_parse(struct rte_eth_dev *dev,
2067                const struct rte_flow_attr *attr,
2068                const struct rte_flow_item pattern[],
2069                const struct rte_flow_action actions[],
2070                struct rte_flow *flow,
2071                struct rte_flow_error *error)
2072 {
2073         struct sfc_adapter *sa = dev->data->dev_private;
2074         int rc;
2075
2076         rc = sfc_flow_parse_attr(attr, flow, error);
2077         if (rc != 0)
2078                 goto fail_bad_value;
2079
2080         rc = sfc_flow_parse_pattern(pattern, flow, error);
2081         if (rc != 0)
2082                 goto fail_bad_value;
2083
2084         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2085         if (rc != 0)
2086                 goto fail_bad_value;
2087
2088         rc = sfc_flow_validate_match_flags(sa, flow, error);
2089         if (rc != 0)
2090                 goto fail_bad_value;
2091
2092         return 0;
2093
2094 fail_bad_value:
2095         return rc;
2096 }
2097
2098 static int
2099 sfc_flow_validate(struct rte_eth_dev *dev,
2100                   const struct rte_flow_attr *attr,
2101                   const struct rte_flow_item pattern[],
2102                   const struct rte_flow_action actions[],
2103                   struct rte_flow_error *error)
2104 {
2105         struct rte_flow flow;
2106
2107         memset(&flow, 0, sizeof(flow));
2108
2109         return sfc_flow_parse(dev, attr, pattern, actions, &flow, error);
2110 }
2111
2112 static struct rte_flow *
2113 sfc_flow_create(struct rte_eth_dev *dev,
2114                 const struct rte_flow_attr *attr,
2115                 const struct rte_flow_item pattern[],
2116                 const struct rte_flow_action actions[],
2117                 struct rte_flow_error *error)
2118 {
2119         struct sfc_adapter *sa = dev->data->dev_private;
2120         struct rte_flow *flow = NULL;
2121         int rc;
2122
2123         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2124         if (flow == NULL) {
2125                 rte_flow_error_set(error, ENOMEM,
2126                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2127                                    "Failed to allocate memory");
2128                 goto fail_no_mem;
2129         }
2130
2131         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2132         if (rc != 0)
2133                 goto fail_bad_value;
2134
2135         TAILQ_INSERT_TAIL(&sa->filter.flow_list, flow, entries);
2136
2137         sfc_adapter_lock(sa);
2138
2139         if (sa->state == SFC_ADAPTER_STARTED) {
2140                 rc = sfc_flow_filter_insert(sa, flow);
2141                 if (rc != 0) {
2142                         rte_flow_error_set(error, rc,
2143                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2144                                 "Failed to insert filter");
2145                         goto fail_filter_insert;
2146                 }
2147         }
2148
2149         sfc_adapter_unlock(sa);
2150
2151         return flow;
2152
2153 fail_filter_insert:
2154         TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2155
2156 fail_bad_value:
2157         rte_free(flow);
2158         sfc_adapter_unlock(sa);
2159
2160 fail_no_mem:
2161         return NULL;
2162 }
2163
2164 static int
2165 sfc_flow_remove(struct sfc_adapter *sa,
2166                 struct rte_flow *flow,
2167                 struct rte_flow_error *error)
2168 {
2169         int rc = 0;
2170
2171         SFC_ASSERT(sfc_adapter_is_locked(sa));
2172
2173         if (sa->state == SFC_ADAPTER_STARTED) {
2174                 rc = sfc_flow_filter_remove(sa, flow);
2175                 if (rc != 0)
2176                         rte_flow_error_set(error, rc,
2177                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2178                                 "Failed to destroy flow rule");
2179         }
2180
2181         TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2182         rte_free(flow);
2183
2184         return rc;
2185 }
2186
2187 static int
2188 sfc_flow_destroy(struct rte_eth_dev *dev,
2189                  struct rte_flow *flow,
2190                  struct rte_flow_error *error)
2191 {
2192         struct sfc_adapter *sa = dev->data->dev_private;
2193         struct rte_flow *flow_ptr;
2194         int rc = EINVAL;
2195
2196         sfc_adapter_lock(sa);
2197
2198         TAILQ_FOREACH(flow_ptr, &sa->filter.flow_list, entries) {
2199                 if (flow_ptr == flow)
2200                         rc = 0;
2201         }
2202         if (rc != 0) {
2203                 rte_flow_error_set(error, rc,
2204                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2205                                    "Failed to find flow rule to destroy");
2206                 goto fail_bad_value;
2207         }
2208
2209         rc = sfc_flow_remove(sa, flow, error);
2210
2211 fail_bad_value:
2212         sfc_adapter_unlock(sa);
2213
2214         return -rc;
2215 }
2216
2217 static int
2218 sfc_flow_flush(struct rte_eth_dev *dev,
2219                struct rte_flow_error *error)
2220 {
2221         struct sfc_adapter *sa = dev->data->dev_private;
2222         struct rte_flow *flow;
2223         int rc = 0;
2224         int ret = 0;
2225
2226         sfc_adapter_lock(sa);
2227
2228         while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2229                 rc = sfc_flow_remove(sa, flow, error);
2230                 if (rc != 0)
2231                         ret = rc;
2232         }
2233
2234         sfc_adapter_unlock(sa);
2235
2236         return -ret;
2237 }
2238
2239 static int
2240 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2241                  struct rte_flow_error *error)
2242 {
2243         struct sfc_adapter *sa = dev->data->dev_private;
2244         struct sfc_port *port = &sa->port;
2245         int ret = 0;
2246
2247         sfc_adapter_lock(sa);
2248         if (sa->state != SFC_ADAPTER_INITIALIZED) {
2249                 rte_flow_error_set(error, EBUSY,
2250                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2251                                    NULL, "please close the port first");
2252                 ret = -rte_errno;
2253         } else {
2254                 port->isolated = (enable) ? B_TRUE : B_FALSE;
2255         }
2256         sfc_adapter_unlock(sa);
2257
2258         return ret;
2259 }
2260
2261 const struct rte_flow_ops sfc_flow_ops = {
2262         .validate = sfc_flow_validate,
2263         .create = sfc_flow_create,
2264         .destroy = sfc_flow_destroy,
2265         .flush = sfc_flow_flush,
2266         .query = NULL,
2267         .isolate = sfc_flow_isolate,
2268 };
2269
2270 void
2271 sfc_flow_init(struct sfc_adapter *sa)
2272 {
2273         SFC_ASSERT(sfc_adapter_is_locked(sa));
2274
2275         TAILQ_INIT(&sa->filter.flow_list);
2276 }
2277
2278 void
2279 sfc_flow_fini(struct sfc_adapter *sa)
2280 {
2281         struct rte_flow *flow;
2282
2283         SFC_ASSERT(sfc_adapter_is_locked(sa));
2284
2285         while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2286                 TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2287                 rte_free(flow);
2288         }
2289 }
2290
2291 void
2292 sfc_flow_stop(struct sfc_adapter *sa)
2293 {
2294         struct rte_flow *flow;
2295
2296         SFC_ASSERT(sfc_adapter_is_locked(sa));
2297
2298         TAILQ_FOREACH(flow, &sa->filter.flow_list, entries)
2299                 sfc_flow_filter_remove(sa, flow);
2300 }
2301
2302 int
2303 sfc_flow_start(struct sfc_adapter *sa)
2304 {
2305         struct rte_flow *flow;
2306         int rc = 0;
2307
2308         sfc_log_init(sa, "entry");
2309
2310         SFC_ASSERT(sfc_adapter_is_locked(sa));
2311
2312         TAILQ_FOREACH(flow, &sa->filter.flow_list, entries) {
2313                 rc = sfc_flow_filter_insert(sa, flow);
2314                 if (rc != 0)
2315                         goto fail_bad_flow;
2316         }
2317
2318         sfc_log_init(sa, "done");
2319
2320 fail_bad_flow:
2321         return rc;
2322 }