23df27c8f45aa10a11644d5e8c1b0534c735686b
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_flow_tunnel.h"
17 #include "sfc_log.h"
18 #include "sfc_ev.h"
19 #include "sfc_rx.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_kvargs.h"
22 #include "sfc_tweak.h"
23
24 /*
25  * Maximum number of Rx queue flush attempt in the case of failure or
26  * flush timeout
27  */
28 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
29
30 /*
31  * Time to wait between event queue polling attempts when waiting for Rx
32  * queue flush done or failed events.
33  */
34 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
35
36 /*
37  * Maximum number of event queue polling attempts when waiting for Rx queue
38  * flush done or failed events. It defines Rx queue flush attempt timeout
39  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
40  */
41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
42
43 void
44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
45 {
46         rxq_info->state |= SFC_RXQ_FLUSHED;
47         rxq_info->state &= ~SFC_RXQ_FLUSHING;
48 }
49
50 void
51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
52 {
53         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
54         rxq_info->state &= ~SFC_RXQ_FLUSHING;
55 }
56
57 /* This returns the running counter, which is not bounded by ring size */
58 unsigned int
59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
60 {
61         SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
62
63         return sa->priv.dp_rx->get_pushed(dp_rxq);
64 }
65
66 static int
67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
68 {
69         int rc = 0;
70
71         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
72                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
73                 if (rc == 0)
74                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
75         }
76         return rc;
77 }
78
79 static void
80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
81 {
82         unsigned int free_space;
83         unsigned int bulks;
84         void *objs[SFC_RX_REFILL_BULK];
85         efsys_dma_addr_t addr[RTE_DIM(objs)];
86         unsigned int added = rxq->added;
87         unsigned int id;
88         unsigned int i;
89         struct sfc_efx_rx_sw_desc *rxd;
90         struct rte_mbuf *m;
91         uint16_t port_id = rxq->dp.dpq.port_id;
92
93         free_space = rxq->max_fill_level - (added - rxq->completed);
94
95         if (free_space < rxq->refill_threshold)
96                 return;
97
98         bulks = free_space / RTE_DIM(objs);
99         /* refill_threshold guarantees that bulks is positive */
100         SFC_ASSERT(bulks > 0);
101
102         id = added & rxq->ptr_mask;
103         do {
104                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
105                                                   RTE_DIM(objs)) < 0)) {
106                         /*
107                          * It is hardly a safe way to increment counter
108                          * from different contexts, but all PMDs do it.
109                          */
110                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
111                                 RTE_DIM(objs);
112                         /* Return if we have posted nothing yet */
113                         if (added == rxq->added)
114                                 return;
115                         /* Push posted */
116                         break;
117                 }
118
119                 for (i = 0; i < RTE_DIM(objs);
120                      ++i, id = (id + 1) & rxq->ptr_mask) {
121                         m = objs[i];
122
123                         __rte_mbuf_raw_sanity_check(m);
124
125                         rxd = &rxq->sw_desc[id];
126                         rxd->mbuf = m;
127
128                         m->data_off = RTE_PKTMBUF_HEADROOM;
129                         m->port = port_id;
130
131                         addr[i] = rte_pktmbuf_iova(m);
132                 }
133
134                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135                              RTE_DIM(objs), rxq->completed, added);
136                 added += RTE_DIM(objs);
137         } while (--bulks > 0);
138
139         SFC_ASSERT(added != rxq->added);
140         rxq->added = added;
141         efx_rx_qpush(rxq->common, added, &rxq->pushed);
142         rxq->dp.dpq.rx_dbells++;
143 }
144
145 static uint64_t
146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
147 {
148         uint64_t mbuf_flags = 0;
149
150         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
151         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
152                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
153                 break;
154         case EFX_PKT_IPV4:
155                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
156                 break;
157         default:
158                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
159                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
160                            PKT_RX_IP_CKSUM_UNKNOWN);
161                 break;
162         }
163
164         switch ((desc_flags &
165                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
166         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
167         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
168                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
169                 break;
170         case EFX_PKT_TCP:
171         case EFX_PKT_UDP:
172                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
173                 break;
174         default:
175                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
176                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
177                            PKT_RX_L4_CKSUM_UNKNOWN);
178                 break;
179         }
180
181         return mbuf_flags;
182 }
183
184 static uint32_t
185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
186 {
187         return RTE_PTYPE_L2_ETHER |
188                 ((desc_flags & EFX_PKT_IPV4) ?
189                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
190                 ((desc_flags & EFX_PKT_IPV6) ?
191                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
192                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
193                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
194 }
195
196 static const uint32_t *
197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
198 {
199         static const uint32_t ptypes[] = {
200                 RTE_PTYPE_L2_ETHER,
201                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
202                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
203                 RTE_PTYPE_L4_TCP,
204                 RTE_PTYPE_L4_UDP,
205                 RTE_PTYPE_UNKNOWN
206         };
207
208         return ptypes;
209 }
210
211 static void
212 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
213                         struct rte_mbuf *m)
214 {
215         uint8_t *mbuf_data;
216
217
218         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
219                 return;
220
221         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
222
223         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
224                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
225                                                       EFX_RX_HASHALG_TOEPLITZ,
226                                                       mbuf_data);
227
228                 m->ol_flags |= PKT_RX_RSS_HASH;
229         }
230 }
231
232 static uint16_t
233 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
234 {
235         struct sfc_dp_rxq *dp_rxq = rx_queue;
236         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
237         unsigned int completed;
238         unsigned int prefix_size = rxq->prefix_size;
239         unsigned int done_pkts = 0;
240         boolean_t discard_next = B_FALSE;
241         struct rte_mbuf *scatter_pkt = NULL;
242
243         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
244                 return 0;
245
246         sfc_ev_qpoll(rxq->evq);
247
248         completed = rxq->completed;
249         while (completed != rxq->pending && done_pkts < nb_pkts) {
250                 unsigned int id;
251                 struct sfc_efx_rx_sw_desc *rxd;
252                 struct rte_mbuf *m;
253                 unsigned int seg_len;
254                 unsigned int desc_flags;
255
256                 id = completed++ & rxq->ptr_mask;
257                 rxd = &rxq->sw_desc[id];
258                 m = rxd->mbuf;
259                 desc_flags = rxd->flags;
260
261                 if (discard_next)
262                         goto discard;
263
264                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
265                         goto discard;
266
267                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
268                         uint16_t tmp_size;
269                         int rc __rte_unused;
270
271                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
272                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
273                         SFC_ASSERT(rc == 0);
274                         seg_len = tmp_size;
275                 } else {
276                         seg_len = rxd->size - prefix_size;
277                 }
278
279                 rte_pktmbuf_data_len(m) = seg_len;
280                 rte_pktmbuf_pkt_len(m) = seg_len;
281
282                 if (scatter_pkt != NULL) {
283                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
284                                 rte_pktmbuf_free(scatter_pkt);
285                                 goto discard;
286                         }
287                         /* The packet to deliver */
288                         m = scatter_pkt;
289                 }
290
291                 if (desc_flags & EFX_PKT_CONT) {
292                         /* The packet is scattered, more fragments to come */
293                         scatter_pkt = m;
294                         /* Further fragments have no prefix */
295                         prefix_size = 0;
296                         continue;
297                 }
298
299                 /* Scattered packet is done */
300                 scatter_pkt = NULL;
301                 /* The first fragment of the packet has prefix */
302                 prefix_size = rxq->prefix_size;
303
304                 m->ol_flags =
305                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
306                 m->packet_type =
307                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
308
309                 /*
310                  * Extract RSS hash from the packet prefix and
311                  * set the corresponding field (if needed and possible)
312                  */
313                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
314
315                 m->data_off += prefix_size;
316
317                 *rx_pkts++ = m;
318                 done_pkts++;
319                 continue;
320
321 discard:
322                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
323                 rte_mbuf_raw_free(m);
324                 rxd->mbuf = NULL;
325         }
326
327         /* pending is only moved when entire packet is received */
328         SFC_ASSERT(scatter_pkt == NULL);
329
330         rxq->completed = completed;
331
332         sfc_efx_rx_qrefill(rxq);
333
334         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
335                 sfc_efx_rx_qprime(rxq);
336
337         return done_pkts;
338 }
339
340 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
341 static unsigned int
342 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
343 {
344         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
345
346         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
347                 return 0;
348
349         sfc_ev_qpoll(rxq->evq);
350
351         return rxq->pending - rxq->completed;
352 }
353
354 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
355 static int
356 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
357 {
358         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
359
360         if (unlikely(offset > rxq->ptr_mask))
361                 return -EINVAL;
362
363         /*
364          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
365          * it is required for the queue to be running, but the
366          * check is omitted because API design assumes that it
367          * is the duty of the caller to satisfy all conditions
368          */
369         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
370                    SFC_EFX_RXQ_FLAG_RUNNING);
371         sfc_ev_qpoll(rxq->evq);
372
373         /*
374          * There is a handful of reserved entries in the ring,
375          * but an explicit check whether the offset points to
376          * a reserved entry is neglected since the two checks
377          * below rely on the figures which take the HW limits
378          * into account and thus if an entry is reserved, the
379          * checks will fail and UNAVAIL code will be returned
380          */
381
382         if (offset < (rxq->pending - rxq->completed))
383                 return RTE_ETH_RX_DESC_DONE;
384
385         if (offset < (rxq->added - rxq->completed))
386                 return RTE_ETH_RX_DESC_AVAIL;
387
388         return RTE_ETH_RX_DESC_UNAVAIL;
389 }
390
391 boolean_t
392 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
393                      boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
394                      const char **error)
395 {
396         uint32_t effective_rx_scatter_max;
397         uint32_t rx_scatter_bufs;
398
399         effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
400         rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
401
402         if (rx_scatter_bufs > effective_rx_scatter_max) {
403                 if (rx_scatter_enabled)
404                         *error = "Possible number of Rx scatter buffers exceeds maximum number";
405                 else
406                         *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
407                 return B_FALSE;
408         }
409
410         return B_TRUE;
411 }
412
413 /** Get Rx datapath ops by the datapath RxQ handle */
414 const struct sfc_dp_rx *
415 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
416 {
417         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
418         struct rte_eth_dev *eth_dev;
419         struct sfc_adapter_priv *sap;
420
421         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
422         eth_dev = &rte_eth_devices[dpq->port_id];
423
424         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
425
426         return sap->dp_rx;
427 }
428
429 struct sfc_rxq_info *
430 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
431 {
432         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
433         struct rte_eth_dev *eth_dev;
434         struct sfc_adapter_shared *sas;
435
436         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
437         eth_dev = &rte_eth_devices[dpq->port_id];
438
439         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
440
441         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
442         return &sas->rxq_info[dpq->queue_id];
443 }
444
445 struct sfc_rxq *
446 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
447 {
448         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
449         struct rte_eth_dev *eth_dev;
450         struct sfc_adapter *sa;
451
452         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
453         eth_dev = &rte_eth_devices[dpq->port_id];
454
455         sa = sfc_adapter_by_eth_dev(eth_dev);
456
457         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
458         return &sa->rxq_ctrl[dpq->queue_id];
459 }
460
461 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
462 static int
463 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
464                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
465                           __rte_unused struct rte_mempool *mb_pool,
466                           unsigned int *rxq_entries,
467                           unsigned int *evq_entries,
468                           unsigned int *rxq_max_fill_level)
469 {
470         *rxq_entries = nb_rx_desc;
471         *evq_entries = nb_rx_desc;
472         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
473         return 0;
474 }
475
476 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
477 static int
478 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
479                    const struct rte_pci_addr *pci_addr, int socket_id,
480                    const struct sfc_dp_rx_qcreate_info *info,
481                    struct sfc_dp_rxq **dp_rxqp)
482 {
483         struct sfc_efx_rxq *rxq;
484         int rc;
485
486         rc = ENOMEM;
487         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
488                                  RTE_CACHE_LINE_SIZE, socket_id);
489         if (rxq == NULL)
490                 goto fail_rxq_alloc;
491
492         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
493
494         rc = ENOMEM;
495         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
496                                          info->rxq_entries,
497                                          sizeof(*rxq->sw_desc),
498                                          RTE_CACHE_LINE_SIZE, socket_id);
499         if (rxq->sw_desc == NULL)
500                 goto fail_desc_alloc;
501
502         /* efx datapath is bound to efx control path */
503         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
504         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
505                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
506         rxq->ptr_mask = info->rxq_entries - 1;
507         rxq->batch_max = info->batch_max;
508         rxq->prefix_size = info->prefix_size;
509         rxq->max_fill_level = info->max_fill_level;
510         rxq->refill_threshold = info->refill_threshold;
511         rxq->buf_size = info->buf_size;
512         rxq->refill_mb_pool = info->refill_mb_pool;
513
514         *dp_rxqp = &rxq->dp;
515         return 0;
516
517 fail_desc_alloc:
518         rte_free(rxq);
519
520 fail_rxq_alloc:
521         return rc;
522 }
523
524 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
525 static void
526 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
527 {
528         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
529
530         rte_free(rxq->sw_desc);
531         rte_free(rxq);
532 }
533
534
535 /* Use qstop and qstart functions in the case of qstart failure */
536 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
537 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
538
539
540 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
541 static int
542 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
543                   __rte_unused unsigned int evq_read_ptr,
544                   const efx_rx_prefix_layout_t *pinfo)
545 {
546         /* libefx-based datapath is specific to libefx-based PMD */
547         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
548         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
549         int rc;
550
551         /*
552          * libefx API is used to extract information from Rx prefix and
553          * it guarantees consistency. Just do length check to ensure
554          * that we reserved space in Rx buffers correctly.
555          */
556         if (rxq->prefix_size != pinfo->erpl_length)
557                 return ENOTSUP;
558
559         rxq->common = crxq->common;
560
561         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
562
563         sfc_efx_rx_qrefill(rxq);
564
565         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
566
567         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
568                 rc = sfc_efx_rx_qprime(rxq);
569                 if (rc != 0)
570                         goto fail_rx_qprime;
571         }
572
573         return 0;
574
575 fail_rx_qprime:
576         sfc_efx_rx_qstop(dp_rxq, NULL);
577         sfc_efx_rx_qpurge(dp_rxq);
578         return rc;
579 }
580
581 static void
582 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
583                  __rte_unused unsigned int *evq_read_ptr)
584 {
585         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
586
587         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
588
589         /* libefx-based datapath is bound to libefx-based PMD and uses
590          * event queue structure directly. So, there is no necessity to
591          * return EvQ read pointer.
592          */
593 }
594
595 static void
596 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
597 {
598         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
599         unsigned int i;
600         struct sfc_efx_rx_sw_desc *rxd;
601
602         for (i = rxq->completed; i != rxq->added; ++i) {
603                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
604                 rte_mbuf_raw_free(rxd->mbuf);
605                 rxd->mbuf = NULL;
606                 /* Packed stream relies on 0 in inactive SW desc.
607                  * Rx queue stop is not performance critical, so
608                  * there is no harm to do it always.
609                  */
610                 rxd->flags = 0;
611                 rxd->size = 0;
612         }
613
614         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
615 }
616
617 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
618 static int
619 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
620 {
621         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
622         int rc = 0;
623
624         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
625         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
626                 rc = sfc_efx_rx_qprime(rxq);
627                 if (rc != 0)
628                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
629         }
630         return rc;
631 }
632
633 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
634 static int
635 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
636 {
637         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
638
639         /* Cannot disarm, just disable rearm */
640         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
641         return 0;
642 }
643
644 struct sfc_dp_rx sfc_efx_rx = {
645         .dp = {
646                 .name           = SFC_KVARG_DATAPATH_EFX,
647                 .type           = SFC_DP_RX,
648                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_RX_EFX,
649         },
650         .features               = SFC_DP_RX_FEAT_INTR,
651         .dev_offload_capa       = RTE_ETH_RX_OFFLOAD_CHECKSUM |
652                                   RTE_ETH_RX_OFFLOAD_RSS_HASH,
653         .queue_offload_capa     = RTE_ETH_RX_OFFLOAD_SCATTER,
654         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
655         .qcreate                = sfc_efx_rx_qcreate,
656         .qdestroy               = sfc_efx_rx_qdestroy,
657         .qstart                 = sfc_efx_rx_qstart,
658         .qstop                  = sfc_efx_rx_qstop,
659         .qpurge                 = sfc_efx_rx_qpurge,
660         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
661         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
662         .qdesc_status           = sfc_efx_rx_qdesc_status,
663         .intr_enable            = sfc_efx_rx_intr_enable,
664         .intr_disable           = sfc_efx_rx_intr_disable,
665         .pkt_burst              = sfc_efx_recv_pkts,
666 };
667
668 static void
669 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
670 {
671         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
672         sfc_ethdev_qid_t ethdev_qid;
673         struct sfc_rxq_info *rxq_info;
674         struct sfc_rxq *rxq;
675         unsigned int retry_count;
676         unsigned int wait_count;
677         int rc;
678
679         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
680         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
681         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
682
683         rxq = &sa->rxq_ctrl[sw_index];
684
685         /*
686          * Retry Rx queue flushing in the case of flush failed or
687          * timeout. In the worst case it can delay for 6 seconds.
688          */
689         for (retry_count = 0;
690              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
691              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
692              ++retry_count) {
693                 rc = efx_rx_qflush(rxq->common);
694                 if (rc != 0) {
695                         rxq_info->state |= (rc == EALREADY) ?
696                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
697                         break;
698                 }
699                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
700                 rxq_info->state |= SFC_RXQ_FLUSHING;
701
702                 /*
703                  * Wait for Rx queue flush done or failed event at least
704                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
705                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
706                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
707                  */
708                 wait_count = 0;
709                 do {
710                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
711                         sfc_ev_qpoll(rxq->evq);
712                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
713                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
714
715                 if (rxq_info->state & SFC_RXQ_FLUSHING)
716                         sfc_err(sa, "RxQ %d (internal %u) flush timed out",
717                                 ethdev_qid, sw_index);
718
719                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
720                         sfc_err(sa, "RxQ %d (internal %u) flush failed",
721                                 ethdev_qid, sw_index);
722
723                 if (rxq_info->state & SFC_RXQ_FLUSHED)
724                         sfc_notice(sa, "RxQ %d (internal %u) flushed",
725                                    ethdev_qid, sw_index);
726         }
727
728         sa->priv.dp_rx->qpurge(rxq_info->dp);
729 }
730
731 static int
732 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
733 {
734         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
735         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
736         struct sfc_port *port = &sa->port;
737         int rc;
738
739         /*
740          * If promiscuous or all-multicast mode has been requested, setting
741          * filter for the default Rx queue might fail, in particular, while
742          * running over PCI function which is not a member of corresponding
743          * privilege groups; if this occurs, few iterations will be made to
744          * repeat this step without promiscuous and all-multicast flags set
745          */
746 retry:
747         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
748         if (rc == 0)
749                 return 0;
750         else if (rc != EOPNOTSUPP)
751                 return rc;
752
753         if (port->promisc) {
754                 sfc_warn(sa, "promiscuous mode has been requested, "
755                              "but the HW rejects it");
756                 sfc_warn(sa, "promiscuous mode will be disabled");
757
758                 port->promisc = B_FALSE;
759                 sa->eth_dev->data->promiscuous = 0;
760                 rc = sfc_set_rx_mode_unchecked(sa);
761                 if (rc != 0)
762                         return rc;
763
764                 goto retry;
765         }
766
767         if (port->allmulti) {
768                 sfc_warn(sa, "all-multicast mode has been requested, "
769                              "but the HW rejects it");
770                 sfc_warn(sa, "all-multicast mode will be disabled");
771
772                 port->allmulti = B_FALSE;
773                 sa->eth_dev->data->all_multicast = 0;
774                 rc = sfc_set_rx_mode_unchecked(sa);
775                 if (rc != 0)
776                         return rc;
777
778                 goto retry;
779         }
780
781         return rc;
782 }
783
784 int
785 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
786 {
787         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
788         sfc_ethdev_qid_t ethdev_qid;
789         struct sfc_rxq_info *rxq_info;
790         struct sfc_rxq *rxq;
791         struct sfc_evq *evq;
792         efx_rx_prefix_layout_t pinfo;
793         int rc;
794
795         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
796         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
797
798         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
799
800         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
801         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
802
803         rxq = &sa->rxq_ctrl[sw_index];
804         evq = rxq->evq;
805
806         rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
807         if (rc != 0)
808                 goto fail_ev_qstart;
809
810         switch (rxq_info->type) {
811         case EFX_RXQ_TYPE_DEFAULT:
812                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
813                         rxq->buf_size,
814                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
815                         rxq_info->type_flags, evq->common, &rxq->common);
816                 break;
817         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
818                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
819                 struct rte_mempool_info mp_info;
820
821                 rc = rte_mempool_ops_get_info(mp, &mp_info);
822                 if (rc != 0) {
823                         /* Positive errno is used in the driver */
824                         rc = -rc;
825                         goto fail_mp_get_info;
826                 }
827                 if (mp_info.contig_block_size <= 0) {
828                         rc = EINVAL;
829                         goto fail_bad_contig_block_size;
830                 }
831                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
832                         mp_info.contig_block_size, rxq->buf_size,
833                         mp->header_size + mp->elt_size + mp->trailer_size,
834                         sa->rxd_wait_timeout_ns,
835                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
836                         evq->common, &rxq->common);
837                 break;
838         }
839         default:
840                 rc = ENOTSUP;
841         }
842         if (rc != 0)
843                 goto fail_rx_qcreate;
844
845         rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
846         if (rc != 0)
847                 goto fail_prefix_get_layout;
848
849         efx_rx_qenable(rxq->common);
850
851         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
852         if (rc != 0)
853                 goto fail_dp_qstart;
854
855         rxq_info->state |= SFC_RXQ_STARTED;
856
857         if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
858                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
859                 if (rc != 0)
860                         goto fail_mac_filter_default_rxq_set;
861         }
862
863         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
864         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
865                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
866                         RTE_ETH_QUEUE_STATE_STARTED;
867
868         return 0;
869
870 fail_mac_filter_default_rxq_set:
871         sfc_rx_qflush(sa, sw_index);
872         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
873         rxq_info->state = SFC_RXQ_INITIALIZED;
874
875 fail_dp_qstart:
876         efx_rx_qdestroy(rxq->common);
877
878 fail_prefix_get_layout:
879 fail_rx_qcreate:
880 fail_bad_contig_block_size:
881 fail_mp_get_info:
882         sfc_ev_qstop(evq);
883
884 fail_ev_qstart:
885         return rc;
886 }
887
888 void
889 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
890 {
891         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
892         sfc_ethdev_qid_t ethdev_qid;
893         struct sfc_rxq_info *rxq_info;
894         struct sfc_rxq *rxq;
895
896         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
897         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
898
899         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
900
901         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
902
903         if (rxq_info->state == SFC_RXQ_INITIALIZED)
904                 return;
905         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
906
907         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
908         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
909                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
910                         RTE_ETH_QUEUE_STATE_STOPPED;
911
912         rxq = &sa->rxq_ctrl[sw_index];
913         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
914
915         if (ethdev_qid == 0)
916                 efx_mac_filter_default_rxq_clear(sa->nic);
917
918         sfc_rx_qflush(sa, sw_index);
919
920         rxq_info->state = SFC_RXQ_INITIALIZED;
921
922         efx_rx_qdestroy(rxq->common);
923
924         sfc_ev_qstop(rxq->evq);
925 }
926
927 static uint64_t
928 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
929 {
930         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
931         uint64_t no_caps = 0;
932
933         if (encp->enc_tunnel_encapsulations_supported == 0)
934                 no_caps |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
935
936         return ~no_caps;
937 }
938
939 uint64_t
940 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
941 {
942         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
943
944         return caps & sfc_rx_get_offload_mask(sa);
945 }
946
947 uint64_t
948 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
949 {
950         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
951 }
952
953 static int
954 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
955                    const struct rte_eth_rxconf *rx_conf,
956                    __rte_unused uint64_t offloads)
957 {
958         int rc = 0;
959
960         if (rx_conf->rx_thresh.pthresh != 0 ||
961             rx_conf->rx_thresh.hthresh != 0 ||
962             rx_conf->rx_thresh.wthresh != 0) {
963                 sfc_warn(sa,
964                         "RxQ prefetch/host/writeback thresholds are not supported");
965         }
966
967         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
968                 sfc_err(sa,
969                         "RxQ free threshold too large: %u vs maximum %u",
970                         rx_conf->rx_free_thresh, rxq_max_fill_level);
971                 rc = EINVAL;
972         }
973
974         if (rx_conf->rx_drop_en == 0) {
975                 sfc_err(sa, "RxQ drop disable is not supported");
976                 rc = EINVAL;
977         }
978
979         return rc;
980 }
981
982 static unsigned int
983 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
984 {
985         uint32_t data_off;
986         uint32_t order;
987
988         /* The mbuf object itself is always cache line aligned */
989         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
990
991         /* Data offset from mbuf object start */
992         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
993                 RTE_PKTMBUF_HEADROOM;
994
995         order = MIN(order, rte_bsf32(data_off));
996
997         return 1u << order;
998 }
999
1000 static uint16_t
1001 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1002 {
1003         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1004         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1005         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1006         uint16_t buf_size;
1007         unsigned int buf_aligned;
1008         unsigned int start_alignment;
1009         unsigned int end_padding_alignment;
1010
1011         /* Below it is assumed that both alignments are power of 2 */
1012         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1013         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1014
1015         /*
1016          * mbuf is always cache line aligned, double-check
1017          * that it meets rx buffer start alignment requirements.
1018          */
1019
1020         /* Start from mbuf pool data room size */
1021         buf_size = rte_pktmbuf_data_room_size(mb_pool);
1022
1023         /* Remove headroom */
1024         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1025                 sfc_err(sa,
1026                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1027                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1028                 return 0;
1029         }
1030         buf_size -= RTE_PKTMBUF_HEADROOM;
1031
1032         /* Calculate guaranteed data start alignment */
1033         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1034
1035         /* Reserve space for start alignment */
1036         if (buf_aligned < nic_align_start) {
1037                 start_alignment = nic_align_start - buf_aligned;
1038                 if (buf_size <= start_alignment) {
1039                         sfc_err(sa,
1040                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1041                                 mb_pool->name,
1042                                 rte_pktmbuf_data_room_size(mb_pool),
1043                                 RTE_PKTMBUF_HEADROOM, start_alignment);
1044                         return 0;
1045                 }
1046                 buf_aligned = nic_align_start;
1047                 buf_size -= start_alignment;
1048         } else {
1049                 start_alignment = 0;
1050         }
1051
1052         /* Make sure that end padding does not write beyond the buffer */
1053         if (buf_aligned < nic_align_end) {
1054                 /*
1055                  * Estimate space which can be lost. If guarnteed buffer
1056                  * size is odd, lost space is (nic_align_end - 1). More
1057                  * accurate formula is below.
1058                  */
1059                 end_padding_alignment = nic_align_end -
1060                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1061                 if (buf_size <= end_padding_alignment) {
1062                         sfc_err(sa,
1063                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1064                                 mb_pool->name,
1065                                 rte_pktmbuf_data_room_size(mb_pool),
1066                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1067                                 end_padding_alignment);
1068                         return 0;
1069                 }
1070                 buf_size -= end_padding_alignment;
1071         } else {
1072                 /*
1073                  * Start is aligned the same or better than end,
1074                  * just align length.
1075                  */
1076                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1077         }
1078
1079         return buf_size;
1080 }
1081
1082 int
1083 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1084              uint16_t nb_rx_desc, unsigned int socket_id,
1085              const struct rte_eth_rxconf *rx_conf,
1086              struct rte_mempool *mb_pool)
1087 {
1088         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1089         sfc_ethdev_qid_t ethdev_qid;
1090         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1091         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1092         int rc;
1093         unsigned int rxq_entries;
1094         unsigned int evq_entries;
1095         unsigned int rxq_max_fill_level;
1096         uint64_t offloads;
1097         uint16_t buf_size;
1098         struct sfc_rxq_info *rxq_info;
1099         struct sfc_evq *evq;
1100         struct sfc_rxq *rxq;
1101         struct sfc_dp_rx_qcreate_info info;
1102         struct sfc_dp_rx_hw_limits hw_limits;
1103         uint16_t rx_free_thresh;
1104         const char *error;
1105
1106         memset(&hw_limits, 0, sizeof(hw_limits));
1107         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1108         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1109         hw_limits.evq_max_entries = sa->evq_max_entries;
1110         hw_limits.evq_min_entries = sa->evq_min_entries;
1111
1112         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1113                                             &rxq_entries, &evq_entries,
1114                                             &rxq_max_fill_level);
1115         if (rc != 0)
1116                 goto fail_size_up_rings;
1117         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1118         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1119         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1120
1121         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1122
1123         offloads = rx_conf->offloads;
1124         /* Add device level Rx offloads if the queue is an ethdev Rx queue */
1125         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1126                 offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1127
1128         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1129         if (rc != 0)
1130                 goto fail_bad_conf;
1131
1132         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1133         if (buf_size == 0) {
1134                 sfc_err(sa,
1135                         "RxQ %d (internal %u) mbuf pool object size is too small",
1136                         ethdev_qid, sw_index);
1137                 rc = EINVAL;
1138                 goto fail_bad_conf;
1139         }
1140
1141         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1142                                   encp->enc_rx_prefix_size,
1143                                   (offloads & RTE_ETH_RX_OFFLOAD_SCATTER),
1144                                   encp->enc_rx_scatter_max,
1145                                   &error)) {
1146                 sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1147                         ethdev_qid, sw_index, error);
1148                 sfc_err(sa,
1149                         "RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1150                         "PDU size %u plus Rx prefix %u bytes",
1151                         ethdev_qid, sw_index, buf_size,
1152                         (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1153                 rc = EINVAL;
1154                 goto fail_bad_conf;
1155         }
1156
1157         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1158         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1159
1160         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1161         rxq_info->entries = rxq_entries;
1162
1163         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1164                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1165         else
1166                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1167
1168         rxq_info->type_flags |=
1169                 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ?
1170                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1171
1172         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1173             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1174              RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1175                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1176
1177         if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH)
1178                 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1179
1180         if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0)
1181                 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG;
1182
1183         if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
1184             sfc_flow_tunnel_is_active(sa))
1185                 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK;
1186
1187         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1188                           evq_entries, socket_id, &evq);
1189         if (rc != 0)
1190                 goto fail_ev_qinit;
1191
1192         rxq = &sa->rxq_ctrl[sw_index];
1193         rxq->evq = evq;
1194         rxq->hw_index = sw_index;
1195         /*
1196          * If Rx refill threshold is specified (its value is non zero) in
1197          * Rx configuration, use specified value. Otherwise use 1/8 of
1198          * the Rx descriptors number as the default. It allows to keep
1199          * Rx ring full-enough and does not refill too aggressive if
1200          * packet rate is high.
1201          *
1202          * Since PMD refills in bulks waiting for full bulk may be
1203          * refilled (basically round down), it is better to round up
1204          * here to mitigate it a bit.
1205          */
1206         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1207                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1208         /* Rx refill threshold cannot be smaller than refill bulk */
1209         rxq_info->refill_threshold =
1210                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1211         rxq_info->refill_mb_pool = mb_pool;
1212
1213         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1214             (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH))
1215                 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1216         else
1217                 rxq_info->rxq_flags = 0;
1218
1219         rxq->buf_size = buf_size;
1220
1221         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1222                            efx_rxq_size(sa->nic, rxq_info->entries),
1223                            socket_id, &rxq->mem);
1224         if (rc != 0)
1225                 goto fail_dma_alloc;
1226
1227         memset(&info, 0, sizeof(info));
1228         info.refill_mb_pool = rxq_info->refill_mb_pool;
1229         info.max_fill_level = rxq_max_fill_level;
1230         info.refill_threshold = rxq_info->refill_threshold;
1231         info.buf_size = buf_size;
1232         info.batch_max = encp->enc_rx_batch_max;
1233         info.prefix_size = encp->enc_rx_prefix_size;
1234
1235         if (sfc_flow_tunnel_is_active(sa))
1236                 info.user_mark_mask = SFC_FT_USER_MARK_MASK;
1237         else
1238                 info.user_mark_mask = UINT32_MAX;
1239
1240         info.flags = rxq_info->rxq_flags;
1241         info.rxq_entries = rxq_info->entries;
1242         info.rxq_hw_ring = rxq->mem.esm_base;
1243         info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1244         info.evq_entries = evq_entries;
1245         info.evq_hw_ring = evq->mem.esm_base;
1246         info.hw_index = rxq->hw_index;
1247         info.mem_bar = sa->mem_bar.esb_base;
1248         info.vi_window_shift = encp->enc_vi_window_shift;
1249         info.fcw_offset = sa->fcw_offset;
1250
1251         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1252                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1253                                      socket_id, &info, &rxq_info->dp);
1254         if (rc != 0)
1255                 goto fail_dp_rx_qcreate;
1256
1257         evq->dp_rxq = rxq_info->dp;
1258
1259         rxq_info->state = SFC_RXQ_INITIALIZED;
1260
1261         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1262
1263         return 0;
1264
1265 fail_dp_rx_qcreate:
1266         sfc_dma_free(sa, &rxq->mem);
1267
1268 fail_dma_alloc:
1269         sfc_ev_qfini(evq);
1270
1271 fail_ev_qinit:
1272         rxq_info->entries = 0;
1273
1274 fail_bad_conf:
1275 fail_size_up_rings:
1276         sfc_log_init(sa, "failed %d", rc);
1277         return rc;
1278 }
1279
1280 void
1281 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1282 {
1283         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1284         sfc_ethdev_qid_t ethdev_qid;
1285         struct sfc_rxq_info *rxq_info;
1286         struct sfc_rxq *rxq;
1287
1288         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1289         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1290
1291         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1292                 sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1293
1294         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1295
1296         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1297
1298         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1299         rxq_info->dp = NULL;
1300
1301         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1302         rxq_info->entries = 0;
1303
1304         rxq = &sa->rxq_ctrl[sw_index];
1305
1306         sfc_dma_free(sa, &rxq->mem);
1307
1308         sfc_ev_qfini(rxq->evq);
1309         rxq->evq = NULL;
1310 }
1311
1312 /*
1313  * Mapping between RTE RSS hash functions and their EFX counterparts.
1314  */
1315 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1316         { RTE_ETH_RSS_NONFRAG_IPV4_TCP,
1317           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1318         { RTE_ETH_RSS_NONFRAG_IPV4_UDP,
1319           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1320         { RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX,
1321           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1322         { RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX,
1323           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1324         { RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
1325           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1326           EFX_RX_HASH(IPV4, 2TUPLE) },
1327         { RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
1328           RTE_ETH_RSS_IPV6_EX,
1329           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1330           EFX_RX_HASH(IPV6, 2TUPLE) }
1331 };
1332
1333 static efx_rx_hash_type_t
1334 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1335                             unsigned int *hash_type_flags_supported,
1336                             unsigned int nb_hash_type_flags_supported)
1337 {
1338         efx_rx_hash_type_t hash_type_masked = 0;
1339         unsigned int i, j;
1340
1341         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1342                 unsigned int class_tuple_lbn[] = {
1343                         EFX_RX_CLASS_IPV4_TCP_LBN,
1344                         EFX_RX_CLASS_IPV4_UDP_LBN,
1345                         EFX_RX_CLASS_IPV4_LBN,
1346                         EFX_RX_CLASS_IPV6_TCP_LBN,
1347                         EFX_RX_CLASS_IPV6_UDP_LBN,
1348                         EFX_RX_CLASS_IPV6_LBN
1349                 };
1350
1351                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1352                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1353                         unsigned int flag;
1354
1355                         tuple_mask <<= class_tuple_lbn[j];
1356                         flag = hash_type & tuple_mask;
1357
1358                         if (flag == hash_type_flags_supported[i])
1359                                 hash_type_masked |= flag;
1360                 }
1361         }
1362
1363         return hash_type_masked;
1364 }
1365
1366 int
1367 sfc_rx_hash_init(struct sfc_adapter *sa)
1368 {
1369         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1370         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1371         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1372         efx_rx_hash_alg_t alg;
1373         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1374         unsigned int nb_flags_supp;
1375         struct sfc_rss_hf_rte_to_efx *hf_map;
1376         struct sfc_rss_hf_rte_to_efx *entry;
1377         efx_rx_hash_type_t efx_hash_types;
1378         unsigned int i;
1379         int rc;
1380
1381         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1382                 alg = EFX_RX_HASHALG_TOEPLITZ;
1383         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1384                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1385         else
1386                 return EINVAL;
1387
1388         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1389                                          RTE_DIM(flags_supp), &nb_flags_supp);
1390         if (rc != 0)
1391                 return rc;
1392
1393         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1394                                    RTE_DIM(sfc_rss_hf_map),
1395                                    sizeof(*hf_map), 0, sa->socket_id);
1396         if (hf_map == NULL)
1397                 return ENOMEM;
1398
1399         entry = hf_map;
1400         efx_hash_types = 0;
1401         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1402                 efx_rx_hash_type_t ht;
1403
1404                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1405                                                  flags_supp, nb_flags_supp);
1406                 if (ht != 0) {
1407                         entry->rte = sfc_rss_hf_map[i].rte;
1408                         entry->efx = ht;
1409                         efx_hash_types |= ht;
1410                         ++entry;
1411                 }
1412         }
1413
1414         rss->hash_alg = alg;
1415         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1416         rss->hf_map = hf_map;
1417         rss->hash_types = efx_hash_types;
1418
1419         return 0;
1420 }
1421
1422 void
1423 sfc_rx_hash_fini(struct sfc_adapter *sa)
1424 {
1425         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1426
1427         rte_free(rss->hf_map);
1428 }
1429
1430 int
1431 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1432                      efx_rx_hash_type_t *efx)
1433 {
1434         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1435         efx_rx_hash_type_t hash_types = 0;
1436         unsigned int i;
1437
1438         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1439                 uint64_t rte_mask = rss->hf_map[i].rte;
1440
1441                 if ((rte & rte_mask) != 0) {
1442                         rte &= ~rte_mask;
1443                         hash_types |= rss->hf_map[i].efx;
1444                 }
1445         }
1446
1447         if (rte != 0) {
1448                 sfc_err(sa, "unsupported hash functions requested");
1449                 return EINVAL;
1450         }
1451
1452         *efx = hash_types;
1453
1454         return 0;
1455 }
1456
1457 uint64_t
1458 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1459 {
1460         uint64_t rte = 0;
1461         unsigned int i;
1462
1463         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1464                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1465
1466                 if ((efx & hash_type) == hash_type)
1467                         rte |= rss->hf_map[i].rte;
1468         }
1469
1470         return rte;
1471 }
1472
1473 static int
1474 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1475                             struct rte_eth_rss_conf *conf)
1476 {
1477         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1478         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1479         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1480         int rc;
1481
1482         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1483                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1484                     conf->rss_key != NULL)
1485                         return EINVAL;
1486         }
1487
1488         if (conf->rss_hf != 0) {
1489                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1490                 if (rc != 0)
1491                         return rc;
1492         }
1493
1494         if (conf->rss_key != NULL) {
1495                 if (conf->rss_key_len != sizeof(rss->key)) {
1496                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1497                                 sizeof(rss->key));
1498                         return EINVAL;
1499                 }
1500                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1501         }
1502
1503         rss->hash_types = efx_hash_types;
1504
1505         return 0;
1506 }
1507
1508 static int
1509 sfc_rx_rss_config(struct sfc_adapter *sa)
1510 {
1511         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1512         int rc = 0;
1513
1514         if (rss->channels > 0) {
1515                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1516                                            rss->hash_alg, rss->hash_types,
1517                                            B_TRUE);
1518                 if (rc != 0)
1519                         goto finish;
1520
1521                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1522                                           rss->key, sizeof(rss->key));
1523                 if (rc != 0)
1524                         goto finish;
1525
1526                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1527                                           rss->tbl, RTE_DIM(rss->tbl));
1528         }
1529
1530 finish:
1531         return rc;
1532 }
1533
1534 struct sfc_rxq_info *
1535 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1536                            sfc_ethdev_qid_t ethdev_qid)
1537 {
1538         sfc_sw_index_t sw_index;
1539
1540         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1541         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1542
1543         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1544         return &sas->rxq_info[sw_index];
1545 }
1546
1547 struct sfc_rxq *
1548 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1549 {
1550         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1551         sfc_sw_index_t sw_index;
1552
1553         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1554         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1555
1556         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1557         return &sa->rxq_ctrl[sw_index];
1558 }
1559
1560 int
1561 sfc_rx_start(struct sfc_adapter *sa)
1562 {
1563         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1564         sfc_sw_index_t sw_index;
1565         int rc;
1566
1567         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1568                      sas->rxq_count);
1569
1570         rc = efx_rx_init(sa->nic);
1571         if (rc != 0)
1572                 goto fail_rx_init;
1573
1574         rc = sfc_rx_rss_config(sa);
1575         if (rc != 0)
1576                 goto fail_rss_config;
1577
1578         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1579                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1580                     (!sas->rxq_info[sw_index].deferred_start ||
1581                      sas->rxq_info[sw_index].deferred_started)) {
1582                         rc = sfc_rx_qstart(sa, sw_index);
1583                         if (rc != 0)
1584                                 goto fail_rx_qstart;
1585                 }
1586         }
1587
1588         return 0;
1589
1590 fail_rx_qstart:
1591         while (sw_index-- > 0)
1592                 sfc_rx_qstop(sa, sw_index);
1593
1594 fail_rss_config:
1595         efx_rx_fini(sa->nic);
1596
1597 fail_rx_init:
1598         sfc_log_init(sa, "failed %d", rc);
1599         return rc;
1600 }
1601
1602 void
1603 sfc_rx_stop(struct sfc_adapter *sa)
1604 {
1605         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1606         sfc_sw_index_t sw_index;
1607
1608         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1609                      sas->rxq_count);
1610
1611         sw_index = sas->rxq_count;
1612         while (sw_index-- > 0) {
1613                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1614                         sfc_rx_qstop(sa, sw_index);
1615         }
1616
1617         efx_rx_fini(sa->nic);
1618 }
1619
1620 int
1621 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1622                   unsigned int extra_efx_type_flags)
1623 {
1624         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1625         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1626         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1627         unsigned int max_entries;
1628
1629         max_entries = encp->enc_rxq_max_ndescs;
1630         SFC_ASSERT(rte_is_power_of_2(max_entries));
1631
1632         rxq_info->max_entries = max_entries;
1633         rxq_info->type_flags = extra_efx_type_flags;
1634
1635         return 0;
1636 }
1637
1638 static int
1639 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1640 {
1641         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1642         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1643                                       sfc_rx_get_queue_offload_caps(sa);
1644         struct sfc_rss *rss = &sas->rss;
1645         int rc = 0;
1646
1647         switch (rxmode->mq_mode) {
1648         case RTE_ETH_MQ_RX_NONE:
1649                 /* No special checks are required */
1650                 break;
1651         case RTE_ETH_MQ_RX_RSS:
1652                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1653                         sfc_err(sa, "RSS is not available");
1654                         rc = EINVAL;
1655                 }
1656                 break;
1657         default:
1658                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1659                         rxmode->mq_mode);
1660                 rc = EINVAL;
1661         }
1662
1663         /*
1664          * Requested offloads are validated against supported by ethdev,
1665          * so unsupported offloads cannot be added as the result of
1666          * below check.
1667          */
1668         if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) !=
1669             (offloads_supported & RTE_ETH_RX_OFFLOAD_CHECKSUM)) {
1670                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1671                 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_CHECKSUM;
1672         }
1673
1674         if ((offloads_supported & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1675             (~rxmode->offloads & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1676                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1677                 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1678         }
1679
1680         return rc;
1681 }
1682
1683 /**
1684  * Destroy excess queues that are no longer needed after reconfiguration
1685  * or complete close.
1686  */
1687 static void
1688 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1689 {
1690         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1691         sfc_sw_index_t sw_index;
1692         sfc_ethdev_qid_t ethdev_qid;
1693
1694         SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1695
1696         /*
1697          * Finalize only ethdev queues since other ones are finalized only
1698          * on device close and they may require additional deinitializaton.
1699          */
1700         ethdev_qid = sas->ethdev_rxq_count;
1701         while (--ethdev_qid >= (int)nb_rx_queues) {
1702                 struct sfc_rxq_info *rxq_info;
1703
1704                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1705                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1706                         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1707                                                                 ethdev_qid);
1708                         sfc_rx_qfini(sa, sw_index);
1709                 }
1710
1711         }
1712
1713         sas->ethdev_rxq_count = nb_rx_queues;
1714 }
1715
1716 /**
1717  * Initialize Rx subsystem.
1718  *
1719  * Called at device (re)configuration stage when number of receive queues is
1720  * specified together with other device level receive configuration.
1721  *
1722  * It should be used to allocate NUMA-unaware resources.
1723  */
1724 int
1725 sfc_rx_configure(struct sfc_adapter *sa)
1726 {
1727         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1728         struct sfc_rss *rss = &sas->rss;
1729         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1730         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1731         const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1732         const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1733         bool reconfigure;
1734         int rc;
1735
1736         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1737                      nb_rx_queues, sas->ethdev_rxq_count);
1738
1739         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1740         if (rc != 0)
1741                 goto fail_check_mode;
1742
1743         if (nb_rxq_total == sas->rxq_count) {
1744                 reconfigure = true;
1745                 goto configure_rss;
1746         }
1747
1748         if (sas->rxq_info == NULL) {
1749                 reconfigure = false;
1750                 rc = ENOMEM;
1751                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1752                                                   sizeof(sas->rxq_info[0]), 0,
1753                                                   sa->socket_id);
1754                 if (sas->rxq_info == NULL)
1755                         goto fail_rxqs_alloc;
1756
1757                 /*
1758                  * Allocate primary process only RxQ control from heap
1759                  * since it should not be shared.
1760                  */
1761                 rc = ENOMEM;
1762                 sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1763                 if (sa->rxq_ctrl == NULL)
1764                         goto fail_rxqs_ctrl_alloc;
1765         } else {
1766                 struct sfc_rxq_info *new_rxq_info;
1767                 struct sfc_rxq *new_rxq_ctrl;
1768
1769                 reconfigure = true;
1770
1771                 /* Do not ununitialize reserved queues */
1772                 if (nb_rx_queues < sas->ethdev_rxq_count)
1773                         sfc_rx_fini_queues(sa, nb_rx_queues);
1774
1775                 rc = ENOMEM;
1776                 new_rxq_info =
1777                         rte_realloc(sas->rxq_info,
1778                                     nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1779                 if (new_rxq_info == NULL && nb_rxq_total > 0)
1780                         goto fail_rxqs_realloc;
1781
1782                 rc = ENOMEM;
1783                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1784                                        nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1785                 if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1786                         goto fail_rxqs_ctrl_realloc;
1787
1788                 sas->rxq_info = new_rxq_info;
1789                 sa->rxq_ctrl = new_rxq_ctrl;
1790                 if (nb_rxq_total > sas->rxq_count) {
1791                         unsigned int rxq_count = sas->rxq_count;
1792
1793                         memset(&sas->rxq_info[rxq_count], 0,
1794                                (nb_rxq_total - rxq_count) *
1795                                sizeof(sas->rxq_info[0]));
1796                         memset(&sa->rxq_ctrl[rxq_count], 0,
1797                                (nb_rxq_total - rxq_count) *
1798                                sizeof(sa->rxq_ctrl[0]));
1799                 }
1800         }
1801
1802         while (sas->ethdev_rxq_count < nb_rx_queues) {
1803                 sfc_sw_index_t sw_index;
1804
1805                 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1806                                                         sas->ethdev_rxq_count);
1807                 rc = sfc_rx_qinit_info(sa, sw_index, 0);
1808                 if (rc != 0)
1809                         goto fail_rx_qinit_info;
1810
1811                 sas->ethdev_rxq_count++;
1812         }
1813
1814         sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1815
1816         if (!reconfigure) {
1817                 rc = sfc_mae_counter_rxq_init(sa);
1818                 if (rc != 0)
1819                         goto fail_count_rxq_init;
1820         }
1821
1822 configure_rss:
1823         rss->channels = (dev_conf->rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) ?
1824                          MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1825
1826         if (rss->channels > 0) {
1827                 struct rte_eth_rss_conf *adv_conf_rss;
1828                 sfc_sw_index_t sw_index;
1829
1830                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1831                         rss->tbl[sw_index] = sw_index % rss->channels;
1832
1833                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1834                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1835                 if (rc != 0)
1836                         goto fail_rx_process_adv_conf_rss;
1837         }
1838
1839         return 0;
1840
1841 fail_rx_process_adv_conf_rss:
1842         if (!reconfigure)
1843                 sfc_mae_counter_rxq_fini(sa);
1844
1845 fail_count_rxq_init:
1846 fail_rx_qinit_info:
1847 fail_rxqs_ctrl_realloc:
1848 fail_rxqs_realloc:
1849 fail_rxqs_ctrl_alloc:
1850 fail_rxqs_alloc:
1851         sfc_rx_close(sa);
1852
1853 fail_check_mode:
1854         sfc_log_init(sa, "failed %d", rc);
1855         return rc;
1856 }
1857
1858 /**
1859  * Shutdown Rx subsystem.
1860  *
1861  * Called at device close stage, for example, before device shutdown.
1862  */
1863 void
1864 sfc_rx_close(struct sfc_adapter *sa)
1865 {
1866         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1867
1868         sfc_rx_fini_queues(sa, 0);
1869         sfc_mae_counter_rxq_fini(sa);
1870
1871         rss->channels = 0;
1872
1873         free(sa->rxq_ctrl);
1874         sa->rxq_ctrl = NULL;
1875
1876         rte_free(sfc_sa2shared(sa)->rxq_info);
1877         sfc_sa2shared(sa)->rxq_info = NULL;
1878 }