54d4b587273e72f1a10207cdf30e65996431ecab
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 /** Get Rx datapath ops by the datapath RxQ handle */
364 const struct sfc_dp_rx *
365 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter_priv *sap;
370
371         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372         eth_dev = &rte_eth_devices[dpq->port_id];
373
374         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
375
376         return sap->dp_rx;
377 }
378
379 struct sfc_rxq_info *
380 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
381 {
382         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
383         struct rte_eth_dev *eth_dev;
384         struct sfc_adapter_shared *sas;
385
386         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
387         eth_dev = &rte_eth_devices[dpq->port_id];
388
389         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
390
391         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
392         return &sas->rxq_info[dpq->queue_id];
393 }
394
395 struct sfc_rxq *
396 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
397 {
398         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
399         struct rte_eth_dev *eth_dev;
400         struct sfc_adapter *sa;
401
402         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
403         eth_dev = &rte_eth_devices[dpq->port_id];
404
405         sa = sfc_adapter_by_eth_dev(eth_dev);
406
407         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
408         return &sa->rxq_ctrl[dpq->queue_id];
409 }
410
411 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
412 static int
413 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
414                           __rte_unused struct rte_mempool *mb_pool,
415                           unsigned int *rxq_entries,
416                           unsigned int *evq_entries,
417                           unsigned int *rxq_max_fill_level)
418 {
419         *rxq_entries = nb_rx_desc;
420         *evq_entries = nb_rx_desc;
421         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
422         return 0;
423 }
424
425 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
426 static int
427 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
428                    const struct rte_pci_addr *pci_addr, int socket_id,
429                    const struct sfc_dp_rx_qcreate_info *info,
430                    struct sfc_dp_rxq **dp_rxqp)
431 {
432         struct sfc_efx_rxq *rxq;
433         int rc;
434
435         rc = ENOMEM;
436         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
437                                  RTE_CACHE_LINE_SIZE, socket_id);
438         if (rxq == NULL)
439                 goto fail_rxq_alloc;
440
441         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
442
443         rc = ENOMEM;
444         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
445                                          info->rxq_entries,
446                                          sizeof(*rxq->sw_desc),
447                                          RTE_CACHE_LINE_SIZE, socket_id);
448         if (rxq->sw_desc == NULL)
449                 goto fail_desc_alloc;
450
451         /* efx datapath is bound to efx control path */
452         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
453         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
454                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
455         rxq->ptr_mask = info->rxq_entries - 1;
456         rxq->batch_max = info->batch_max;
457         rxq->prefix_size = info->prefix_size;
458         rxq->max_fill_level = info->max_fill_level;
459         rxq->refill_threshold = info->refill_threshold;
460         rxq->buf_size = info->buf_size;
461         rxq->refill_mb_pool = info->refill_mb_pool;
462
463         *dp_rxqp = &rxq->dp;
464         return 0;
465
466 fail_desc_alloc:
467         rte_free(rxq);
468
469 fail_rxq_alloc:
470         return rc;
471 }
472
473 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
474 static void
475 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
476 {
477         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
478
479         rte_free(rxq->sw_desc);
480         rte_free(rxq);
481 }
482
483 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
484 static int
485 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
486                   __rte_unused unsigned int evq_read_ptr)
487 {
488         /* libefx-based datapath is specific to libefx-based PMD */
489         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
490         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
491
492         rxq->common = crxq->common;
493
494         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
495
496         sfc_efx_rx_qrefill(rxq);
497
498         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
499
500         return 0;
501 }
502
503 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
504 static void
505 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
506                  __rte_unused unsigned int *evq_read_ptr)
507 {
508         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
509
510         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
511
512         /* libefx-based datapath is bound to libefx-based PMD and uses
513          * event queue structure directly. So, there is no necessity to
514          * return EvQ read pointer.
515          */
516 }
517
518 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
519 static void
520 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
521 {
522         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
523         unsigned int i;
524         struct sfc_efx_rx_sw_desc *rxd;
525
526         for (i = rxq->completed; i != rxq->added; ++i) {
527                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
528                 rte_mbuf_raw_free(rxd->mbuf);
529                 rxd->mbuf = NULL;
530                 /* Packed stream relies on 0 in inactive SW desc.
531                  * Rx queue stop is not performance critical, so
532                  * there is no harm to do it always.
533                  */
534                 rxd->flags = 0;
535                 rxd->size = 0;
536         }
537
538         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
539 }
540
541 struct sfc_dp_rx sfc_efx_rx = {
542         .dp = {
543                 .name           = SFC_KVARG_DATAPATH_EFX,
544                 .type           = SFC_DP_RX,
545                 .hw_fw_caps     = 0,
546         },
547         .features               = SFC_DP_RX_FEAT_SCATTER |
548                                   SFC_DP_RX_FEAT_CHECKSUM,
549         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
550         .qcreate                = sfc_efx_rx_qcreate,
551         .qdestroy               = sfc_efx_rx_qdestroy,
552         .qstart                 = sfc_efx_rx_qstart,
553         .qstop                  = sfc_efx_rx_qstop,
554         .qpurge                 = sfc_efx_rx_qpurge,
555         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
556         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
557         .qdesc_status           = sfc_efx_rx_qdesc_status,
558         .pkt_burst              = sfc_efx_recv_pkts,
559 };
560
561 static void
562 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
563 {
564         struct sfc_rxq_info *rxq_info;
565         struct sfc_rxq *rxq;
566         unsigned int retry_count;
567         unsigned int wait_count;
568         int rc;
569
570         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
571         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
572
573         rxq = &sa->rxq_ctrl[sw_index];
574
575         /*
576          * Retry Rx queue flushing in the case of flush failed or
577          * timeout. In the worst case it can delay for 6 seconds.
578          */
579         for (retry_count = 0;
580              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
581              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
582              ++retry_count) {
583                 rc = efx_rx_qflush(rxq->common);
584                 if (rc != 0) {
585                         rxq_info->state |= (rc == EALREADY) ?
586                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
587                         break;
588                 }
589                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
590                 rxq_info->state |= SFC_RXQ_FLUSHING;
591
592                 /*
593                  * Wait for Rx queue flush done or failed event at least
594                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
595                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
596                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
597                  */
598                 wait_count = 0;
599                 do {
600                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
601                         sfc_ev_qpoll(rxq->evq);
602                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
603                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
604
605                 if (rxq_info->state & SFC_RXQ_FLUSHING)
606                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
607
608                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
609                         sfc_err(sa, "RxQ %u flush failed", sw_index);
610
611                 if (rxq_info->state & SFC_RXQ_FLUSHED)
612                         sfc_notice(sa, "RxQ %u flushed", sw_index);
613         }
614
615         sa->priv.dp_rx->qpurge(rxq_info->dp);
616 }
617
618 static int
619 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
620 {
621         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
622         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
623         struct sfc_port *port = &sa->port;
624         int rc;
625
626         /*
627          * If promiscuous or all-multicast mode has been requested, setting
628          * filter for the default Rx queue might fail, in particular, while
629          * running over PCI function which is not a member of corresponding
630          * privilege groups; if this occurs, few iterations will be made to
631          * repeat this step without promiscuous and all-multicast flags set
632          */
633 retry:
634         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
635         if (rc == 0)
636                 return 0;
637         else if (rc != EOPNOTSUPP)
638                 return rc;
639
640         if (port->promisc) {
641                 sfc_warn(sa, "promiscuous mode has been requested, "
642                              "but the HW rejects it");
643                 sfc_warn(sa, "promiscuous mode will be disabled");
644
645                 port->promisc = B_FALSE;
646                 rc = sfc_set_rx_mode(sa);
647                 if (rc != 0)
648                         return rc;
649
650                 goto retry;
651         }
652
653         if (port->allmulti) {
654                 sfc_warn(sa, "all-multicast mode has been requested, "
655                              "but the HW rejects it");
656                 sfc_warn(sa, "all-multicast mode will be disabled");
657
658                 port->allmulti = B_FALSE;
659                 rc = sfc_set_rx_mode(sa);
660                 if (rc != 0)
661                         return rc;
662
663                 goto retry;
664         }
665
666         return rc;
667 }
668
669 int
670 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
671 {
672         struct sfc_rxq_info *rxq_info;
673         struct sfc_rxq *rxq;
674         struct sfc_evq *evq;
675         int rc;
676
677         sfc_log_init(sa, "sw_index=%u", sw_index);
678
679         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
680
681         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
682         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
683
684         rxq = &sa->rxq_ctrl[sw_index];
685         evq = rxq->evq;
686
687         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
688         if (rc != 0)
689                 goto fail_ev_qstart;
690
691         switch (rxq_info->type) {
692         case EFX_RXQ_TYPE_DEFAULT:
693                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
694                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
695                         rxq_info->type_flags, evq->common, &rxq->common);
696                 break;
697         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
698                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
699                 struct rte_mempool_info mp_info;
700
701                 rc = rte_mempool_ops_get_info(mp, &mp_info);
702                 if (rc != 0) {
703                         /* Positive errno is used in the driver */
704                         rc = -rc;
705                         goto fail_mp_get_info;
706                 }
707                 if (mp_info.contig_block_size <= 0) {
708                         rc = EINVAL;
709                         goto fail_bad_contig_block_size;
710                 }
711                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
712                         mp_info.contig_block_size, rxq->buf_size,
713                         mp->header_size + mp->elt_size + mp->trailer_size,
714                         sa->rxd_wait_timeout_ns,
715                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
716                         evq->common, &rxq->common);
717                 break;
718         }
719         default:
720                 rc = ENOTSUP;
721         }
722         if (rc != 0)
723                 goto fail_rx_qcreate;
724
725         efx_rx_qenable(rxq->common);
726
727         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
728         if (rc != 0)
729                 goto fail_dp_qstart;
730
731         rxq_info->state |= SFC_RXQ_STARTED;
732
733         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
734                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
735                 if (rc != 0)
736                         goto fail_mac_filter_default_rxq_set;
737         }
738
739         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
740         sa->eth_dev->data->rx_queue_state[sw_index] =
741                 RTE_ETH_QUEUE_STATE_STARTED;
742
743         return 0;
744
745 fail_mac_filter_default_rxq_set:
746         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
747
748 fail_dp_qstart:
749         sfc_rx_qflush(sa, sw_index);
750
751 fail_rx_qcreate:
752 fail_bad_contig_block_size:
753 fail_mp_get_info:
754         sfc_ev_qstop(evq);
755
756 fail_ev_qstart:
757         return rc;
758 }
759
760 void
761 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
762 {
763         struct sfc_rxq_info *rxq_info;
764         struct sfc_rxq *rxq;
765
766         sfc_log_init(sa, "sw_index=%u", sw_index);
767
768         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
769
770         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
771
772         if (rxq_info->state == SFC_RXQ_INITIALIZED)
773                 return;
774         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
775
776         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
777         sa->eth_dev->data->rx_queue_state[sw_index] =
778                 RTE_ETH_QUEUE_STATE_STOPPED;
779
780         rxq = &sa->rxq_ctrl[sw_index];
781         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
782
783         if (sw_index == 0)
784                 efx_mac_filter_default_rxq_clear(sa->nic);
785
786         sfc_rx_qflush(sa, sw_index);
787
788         rxq_info->state = SFC_RXQ_INITIALIZED;
789
790         efx_rx_qdestroy(rxq->common);
791
792         sfc_ev_qstop(rxq->evq);
793 }
794
795 uint64_t
796 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
797 {
798         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
799         uint64_t caps = 0;
800
801         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
802
803         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
804                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
805                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
806                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
807         }
808
809         if (encp->enc_tunnel_encapsulations_supported &&
810             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
811                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
812
813         return caps;
814 }
815
816 uint64_t
817 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
818 {
819         uint64_t caps = 0;
820
821         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
822                 caps |= DEV_RX_OFFLOAD_SCATTER;
823
824         return caps;
825 }
826
827 static int
828 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
829                    const struct rte_eth_rxconf *rx_conf,
830                    __rte_unused uint64_t offloads)
831 {
832         int rc = 0;
833
834         if (rx_conf->rx_thresh.pthresh != 0 ||
835             rx_conf->rx_thresh.hthresh != 0 ||
836             rx_conf->rx_thresh.wthresh != 0) {
837                 sfc_warn(sa,
838                         "RxQ prefetch/host/writeback thresholds are not supported");
839         }
840
841         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
842                 sfc_err(sa,
843                         "RxQ free threshold too large: %u vs maximum %u",
844                         rx_conf->rx_free_thresh, rxq_max_fill_level);
845                 rc = EINVAL;
846         }
847
848         if (rx_conf->rx_drop_en == 0) {
849                 sfc_err(sa, "RxQ drop disable is not supported");
850                 rc = EINVAL;
851         }
852
853         return rc;
854 }
855
856 static unsigned int
857 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
858 {
859         uint32_t data_off;
860         uint32_t order;
861
862         /* The mbuf object itself is always cache line aligned */
863         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
864
865         /* Data offset from mbuf object start */
866         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
867                 RTE_PKTMBUF_HEADROOM;
868
869         order = MIN(order, rte_bsf32(data_off));
870
871         return 1u << order;
872 }
873
874 static uint16_t
875 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
876 {
877         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
878         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
879         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
880         uint16_t buf_size;
881         unsigned int buf_aligned;
882         unsigned int start_alignment;
883         unsigned int end_padding_alignment;
884
885         /* Below it is assumed that both alignments are power of 2 */
886         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
887         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
888
889         /*
890          * mbuf is always cache line aligned, double-check
891          * that it meets rx buffer start alignment requirements.
892          */
893
894         /* Start from mbuf pool data room size */
895         buf_size = rte_pktmbuf_data_room_size(mb_pool);
896
897         /* Remove headroom */
898         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
899                 sfc_err(sa,
900                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
901                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
902                 return 0;
903         }
904         buf_size -= RTE_PKTMBUF_HEADROOM;
905
906         /* Calculate guaranteed data start alignment */
907         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
908
909         /* Reserve space for start alignment */
910         if (buf_aligned < nic_align_start) {
911                 start_alignment = nic_align_start - buf_aligned;
912                 if (buf_size <= start_alignment) {
913                         sfc_err(sa,
914                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
915                                 mb_pool->name,
916                                 rte_pktmbuf_data_room_size(mb_pool),
917                                 RTE_PKTMBUF_HEADROOM, start_alignment);
918                         return 0;
919                 }
920                 buf_aligned = nic_align_start;
921                 buf_size -= start_alignment;
922         } else {
923                 start_alignment = 0;
924         }
925
926         /* Make sure that end padding does not write beyond the buffer */
927         if (buf_aligned < nic_align_end) {
928                 /*
929                  * Estimate space which can be lost. If guarnteed buffer
930                  * size is odd, lost space is (nic_align_end - 1). More
931                  * accurate formula is below.
932                  */
933                 end_padding_alignment = nic_align_end -
934                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
935                 if (buf_size <= end_padding_alignment) {
936                         sfc_err(sa,
937                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
938                                 mb_pool->name,
939                                 rte_pktmbuf_data_room_size(mb_pool),
940                                 RTE_PKTMBUF_HEADROOM, start_alignment,
941                                 end_padding_alignment);
942                         return 0;
943                 }
944                 buf_size -= end_padding_alignment;
945         } else {
946                 /*
947                  * Start is aligned the same or better than end,
948                  * just align length.
949                  */
950                 buf_size = P2ALIGN(buf_size, nic_align_end);
951         }
952
953         return buf_size;
954 }
955
956 int
957 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
958              uint16_t nb_rx_desc, unsigned int socket_id,
959              const struct rte_eth_rxconf *rx_conf,
960              struct rte_mempool *mb_pool)
961 {
962         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
963         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
964         int rc;
965         unsigned int rxq_entries;
966         unsigned int evq_entries;
967         unsigned int rxq_max_fill_level;
968         uint64_t offloads;
969         uint16_t buf_size;
970         struct sfc_rxq_info *rxq_info;
971         struct sfc_evq *evq;
972         struct sfc_rxq *rxq;
973         struct sfc_dp_rx_qcreate_info info;
974
975         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
976                                             &evq_entries, &rxq_max_fill_level);
977         if (rc != 0)
978                 goto fail_size_up_rings;
979         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
980         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
981         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
982
983         offloads = rx_conf->offloads |
984                 sa->eth_dev->data->dev_conf.rxmode.offloads;
985         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
986         if (rc != 0)
987                 goto fail_bad_conf;
988
989         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
990         if (buf_size == 0) {
991                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
992                         sw_index);
993                 rc = EINVAL;
994                 goto fail_bad_conf;
995         }
996
997         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
998             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
999                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
1000                         "object size is too small", sw_index);
1001                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1002                         "PDU size %u plus Rx prefix %u bytes",
1003                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1004                         encp->enc_rx_prefix_size);
1005                 rc = EINVAL;
1006                 goto fail_bad_conf;
1007         }
1008
1009         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1010         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1011
1012         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1013         rxq_info->entries = rxq_entries;
1014
1015         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1016                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1017         else
1018                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1019
1020         rxq_info->type_flags =
1021                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1022                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1023
1024         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1025             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1026                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1027
1028         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1029                           evq_entries, socket_id, &evq);
1030         if (rc != 0)
1031                 goto fail_ev_qinit;
1032
1033         rxq = &sa->rxq_ctrl[sw_index];
1034         rxq->evq = evq;
1035         rxq->hw_index = sw_index;
1036         rxq_info->refill_threshold =
1037                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1038         rxq_info->refill_mb_pool = mb_pool;
1039         rxq->buf_size = buf_size;
1040
1041         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1042                            socket_id, &rxq->mem);
1043         if (rc != 0)
1044                 goto fail_dma_alloc;
1045
1046         memset(&info, 0, sizeof(info));
1047         info.refill_mb_pool = rxq_info->refill_mb_pool;
1048         info.max_fill_level = rxq_max_fill_level;
1049         info.refill_threshold = rxq_info->refill_threshold;
1050         info.buf_size = buf_size;
1051         info.batch_max = encp->enc_rx_batch_max;
1052         info.prefix_size = encp->enc_rx_prefix_size;
1053
1054         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1055                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1056
1057         info.rxq_entries = rxq_info->entries;
1058         info.rxq_hw_ring = rxq->mem.esm_base;
1059         info.evq_entries = evq_entries;
1060         info.evq_hw_ring = evq->mem.esm_base;
1061         info.hw_index = rxq->hw_index;
1062         info.mem_bar = sa->mem_bar.esb_base;
1063         info.vi_window_shift = encp->enc_vi_window_shift;
1064
1065         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1066                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1067                                      socket_id, &info, &rxq_info->dp);
1068         if (rc != 0)
1069                 goto fail_dp_rx_qcreate;
1070
1071         evq->dp_rxq = rxq_info->dp;
1072
1073         rxq_info->state = SFC_RXQ_INITIALIZED;
1074
1075         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1076
1077         return 0;
1078
1079 fail_dp_rx_qcreate:
1080         sfc_dma_free(sa, &rxq->mem);
1081
1082 fail_dma_alloc:
1083         sfc_ev_qfini(evq);
1084
1085 fail_ev_qinit:
1086         rxq_info->entries = 0;
1087
1088 fail_bad_conf:
1089 fail_size_up_rings:
1090         sfc_log_init(sa, "failed %d", rc);
1091         return rc;
1092 }
1093
1094 void
1095 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1096 {
1097         struct sfc_rxq_info *rxq_info;
1098         struct sfc_rxq *rxq;
1099
1100         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1101         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1102
1103         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1104
1105         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1106
1107         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1108         rxq_info->dp = NULL;
1109
1110         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1111         rxq_info->entries = 0;
1112
1113         rxq = &sa->rxq_ctrl[sw_index];
1114
1115         sfc_dma_free(sa, &rxq->mem);
1116
1117         sfc_ev_qfini(rxq->evq);
1118         rxq->evq = NULL;
1119 }
1120
1121 /*
1122  * Mapping between RTE RSS hash functions and their EFX counterparts.
1123  */
1124 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1125         { ETH_RSS_NONFRAG_IPV4_TCP,
1126           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1127         { ETH_RSS_NONFRAG_IPV4_UDP,
1128           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1129         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1130           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1131         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1132           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1133         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1134           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1135           EFX_RX_HASH(IPV4, 2TUPLE) },
1136         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1137           ETH_RSS_IPV6_EX,
1138           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1139           EFX_RX_HASH(IPV6, 2TUPLE) }
1140 };
1141
1142 static efx_rx_hash_type_t
1143 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1144                             unsigned int *hash_type_flags_supported,
1145                             unsigned int nb_hash_type_flags_supported)
1146 {
1147         efx_rx_hash_type_t hash_type_masked = 0;
1148         unsigned int i, j;
1149
1150         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1151                 unsigned int class_tuple_lbn[] = {
1152                         EFX_RX_CLASS_IPV4_TCP_LBN,
1153                         EFX_RX_CLASS_IPV4_UDP_LBN,
1154                         EFX_RX_CLASS_IPV4_LBN,
1155                         EFX_RX_CLASS_IPV6_TCP_LBN,
1156                         EFX_RX_CLASS_IPV6_UDP_LBN,
1157                         EFX_RX_CLASS_IPV6_LBN
1158                 };
1159
1160                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1161                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1162                         unsigned int flag;
1163
1164                         tuple_mask <<= class_tuple_lbn[j];
1165                         flag = hash_type & tuple_mask;
1166
1167                         if (flag == hash_type_flags_supported[i])
1168                                 hash_type_masked |= flag;
1169                 }
1170         }
1171
1172         return hash_type_masked;
1173 }
1174
1175 int
1176 sfc_rx_hash_init(struct sfc_adapter *sa)
1177 {
1178         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1179         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1180         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1181         efx_rx_hash_alg_t alg;
1182         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1183         unsigned int nb_flags_supp;
1184         struct sfc_rss_hf_rte_to_efx *hf_map;
1185         struct sfc_rss_hf_rte_to_efx *entry;
1186         efx_rx_hash_type_t efx_hash_types;
1187         unsigned int i;
1188         int rc;
1189
1190         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1191                 alg = EFX_RX_HASHALG_TOEPLITZ;
1192         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1193                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1194         else
1195                 return EINVAL;
1196
1197         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1198                                          RTE_DIM(flags_supp), &nb_flags_supp);
1199         if (rc != 0)
1200                 return rc;
1201
1202         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1203                                    RTE_DIM(sfc_rss_hf_map),
1204                                    sizeof(*hf_map), 0, sa->socket_id);
1205         if (hf_map == NULL)
1206                 return ENOMEM;
1207
1208         entry = hf_map;
1209         efx_hash_types = 0;
1210         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1211                 efx_rx_hash_type_t ht;
1212
1213                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1214                                                  flags_supp, nb_flags_supp);
1215                 if (ht != 0) {
1216                         entry->rte = sfc_rss_hf_map[i].rte;
1217                         entry->efx = ht;
1218                         efx_hash_types |= ht;
1219                         ++entry;
1220                 }
1221         }
1222
1223         rss->hash_alg = alg;
1224         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1225         rss->hf_map = hf_map;
1226         rss->hash_types = efx_hash_types;
1227
1228         return 0;
1229 }
1230
1231 void
1232 sfc_rx_hash_fini(struct sfc_adapter *sa)
1233 {
1234         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1235
1236         rte_free(rss->hf_map);
1237 }
1238
1239 int
1240 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1241                      efx_rx_hash_type_t *efx)
1242 {
1243         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1244         efx_rx_hash_type_t hash_types = 0;
1245         unsigned int i;
1246
1247         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1248                 uint64_t rte_mask = rss->hf_map[i].rte;
1249
1250                 if ((rte & rte_mask) != 0) {
1251                         rte &= ~rte_mask;
1252                         hash_types |= rss->hf_map[i].efx;
1253                 }
1254         }
1255
1256         if (rte != 0) {
1257                 sfc_err(sa, "unsupported hash functions requested");
1258                 return EINVAL;
1259         }
1260
1261         *efx = hash_types;
1262
1263         return 0;
1264 }
1265
1266 uint64_t
1267 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1268 {
1269         uint64_t rte = 0;
1270         unsigned int i;
1271
1272         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1273                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1274
1275                 if ((efx & hash_type) == hash_type)
1276                         rte |= rss->hf_map[i].rte;
1277         }
1278
1279         return rte;
1280 }
1281
1282 static int
1283 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1284                             struct rte_eth_rss_conf *conf)
1285 {
1286         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1287         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1288         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1289         int rc;
1290
1291         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1292                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1293                     conf->rss_key != NULL)
1294                         return EINVAL;
1295         }
1296
1297         if (conf->rss_hf != 0) {
1298                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1299                 if (rc != 0)
1300                         return rc;
1301         }
1302
1303         if (conf->rss_key != NULL) {
1304                 if (conf->rss_key_len != sizeof(rss->key)) {
1305                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1306                                 sizeof(rss->key));
1307                         return EINVAL;
1308                 }
1309                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1310         }
1311
1312         rss->hash_types = efx_hash_types;
1313
1314         return 0;
1315 }
1316
1317 static int
1318 sfc_rx_rss_config(struct sfc_adapter *sa)
1319 {
1320         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1321         int rc = 0;
1322
1323         if (rss->channels > 0) {
1324                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1325                                            rss->hash_alg, rss->hash_types,
1326                                            B_TRUE);
1327                 if (rc != 0)
1328                         goto finish;
1329
1330                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1331                                           rss->key, sizeof(rss->key));
1332                 if (rc != 0)
1333                         goto finish;
1334
1335                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1336                                           rss->tbl, RTE_DIM(rss->tbl));
1337         }
1338
1339 finish:
1340         return rc;
1341 }
1342
1343 int
1344 sfc_rx_start(struct sfc_adapter *sa)
1345 {
1346         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1347         unsigned int sw_index;
1348         int rc;
1349
1350         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1351
1352         rc = efx_rx_init(sa->nic);
1353         if (rc != 0)
1354                 goto fail_rx_init;
1355
1356         rc = sfc_rx_rss_config(sa);
1357         if (rc != 0)
1358                 goto fail_rss_config;
1359
1360         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1361                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1362                     (!sas->rxq_info[sw_index].deferred_start ||
1363                      sas->rxq_info[sw_index].deferred_started)) {
1364                         rc = sfc_rx_qstart(sa, sw_index);
1365                         if (rc != 0)
1366                                 goto fail_rx_qstart;
1367                 }
1368         }
1369
1370         return 0;
1371
1372 fail_rx_qstart:
1373         while (sw_index-- > 0)
1374                 sfc_rx_qstop(sa, sw_index);
1375
1376 fail_rss_config:
1377         efx_rx_fini(sa->nic);
1378
1379 fail_rx_init:
1380         sfc_log_init(sa, "failed %d", rc);
1381         return rc;
1382 }
1383
1384 void
1385 sfc_rx_stop(struct sfc_adapter *sa)
1386 {
1387         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1388         unsigned int sw_index;
1389
1390         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1391
1392         sw_index = sas->rxq_count;
1393         while (sw_index-- > 0) {
1394                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1395                         sfc_rx_qstop(sa, sw_index);
1396         }
1397
1398         efx_rx_fini(sa->nic);
1399 }
1400
1401 static int
1402 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1403 {
1404         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1405         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1406         unsigned int max_entries;
1407
1408         max_entries = EFX_RXQ_MAXNDESCS;
1409         SFC_ASSERT(rte_is_power_of_2(max_entries));
1410
1411         rxq_info->max_entries = max_entries;
1412
1413         return 0;
1414 }
1415
1416 static int
1417 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1418 {
1419         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1420         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1421                                       sfc_rx_get_queue_offload_caps(sa);
1422         struct sfc_rss *rss = &sas->rss;
1423         int rc = 0;
1424
1425         switch (rxmode->mq_mode) {
1426         case ETH_MQ_RX_NONE:
1427                 /* No special checks are required */
1428                 break;
1429         case ETH_MQ_RX_RSS:
1430                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1431                         sfc_err(sa, "RSS is not available");
1432                         rc = EINVAL;
1433                 }
1434                 break;
1435         default:
1436                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1437                         rxmode->mq_mode);
1438                 rc = EINVAL;
1439         }
1440
1441         /*
1442          * Requested offloads are validated against supported by ethdev,
1443          * so unsupported offloads cannot be added as the result of
1444          * below check.
1445          */
1446         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1447             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1448                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1449                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1450         }
1451
1452         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1453             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1454                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1455                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1456         }
1457
1458         return rc;
1459 }
1460
1461 /**
1462  * Destroy excess queues that are no longer needed after reconfiguration
1463  * or complete close.
1464  */
1465 static void
1466 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1467 {
1468         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1469         int sw_index;
1470
1471         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1472
1473         sw_index = sas->rxq_count;
1474         while (--sw_index >= (int)nb_rx_queues) {
1475                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1476                         sfc_rx_qfini(sa, sw_index);
1477         }
1478
1479         sas->rxq_count = nb_rx_queues;
1480 }
1481
1482 /**
1483  * Initialize Rx subsystem.
1484  *
1485  * Called at device (re)configuration stage when number of receive queues is
1486  * specified together with other device level receive configuration.
1487  *
1488  * It should be used to allocate NUMA-unaware resources.
1489  */
1490 int
1491 sfc_rx_configure(struct sfc_adapter *sa)
1492 {
1493         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1494         struct sfc_rss *rss = &sas->rss;
1495         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1496         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1497         int rc;
1498
1499         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1500                      nb_rx_queues, sas->rxq_count);
1501
1502         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1503         if (rc != 0)
1504                 goto fail_check_mode;
1505
1506         if (nb_rx_queues == sas->rxq_count)
1507                 goto configure_rss;
1508
1509         if (sas->rxq_info == NULL) {
1510                 rc = ENOMEM;
1511                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1512                                                   sizeof(sas->rxq_info[0]), 0,
1513                                                   sa->socket_id);
1514                 if (sas->rxq_info == NULL)
1515                         goto fail_rxqs_alloc;
1516
1517                 /*
1518                  * Allocate primary process only RxQ control from heap
1519                  * since it should not be shared.
1520                  */
1521                 rc = ENOMEM;
1522                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1523                 if (sa->rxq_ctrl == NULL)
1524                         goto fail_rxqs_ctrl_alloc;
1525         } else {
1526                 struct sfc_rxq_info *new_rxq_info;
1527                 struct sfc_rxq *new_rxq_ctrl;
1528
1529                 if (nb_rx_queues < sas->rxq_count)
1530                         sfc_rx_fini_queues(sa, nb_rx_queues);
1531
1532                 rc = ENOMEM;
1533                 new_rxq_info =
1534                         rte_realloc(sas->rxq_info,
1535                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1536                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1537                         goto fail_rxqs_realloc;
1538
1539                 rc = ENOMEM;
1540                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1541                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1542                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1543                         goto fail_rxqs_ctrl_realloc;
1544
1545                 sas->rxq_info = new_rxq_info;
1546                 sa->rxq_ctrl = new_rxq_ctrl;
1547                 if (nb_rx_queues > sas->rxq_count) {
1548                         memset(&sas->rxq_info[sas->rxq_count], 0,
1549                                (nb_rx_queues - sas->rxq_count) *
1550                                sizeof(sas->rxq_info[0]));
1551                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1552                                (nb_rx_queues - sas->rxq_count) *
1553                                sizeof(sa->rxq_ctrl[0]));
1554                 }
1555         }
1556
1557         while (sas->rxq_count < nb_rx_queues) {
1558                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1559                 if (rc != 0)
1560                         goto fail_rx_qinit_info;
1561
1562                 sas->rxq_count++;
1563         }
1564
1565 configure_rss:
1566         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1567                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1568
1569         if (rss->channels > 0) {
1570                 struct rte_eth_rss_conf *adv_conf_rss;
1571                 unsigned int sw_index;
1572
1573                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1574                         rss->tbl[sw_index] = sw_index % rss->channels;
1575
1576                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1577                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1578                 if (rc != 0)
1579                         goto fail_rx_process_adv_conf_rss;
1580         }
1581
1582         return 0;
1583
1584 fail_rx_process_adv_conf_rss:
1585 fail_rx_qinit_info:
1586 fail_rxqs_ctrl_realloc:
1587 fail_rxqs_realloc:
1588 fail_rxqs_ctrl_alloc:
1589 fail_rxqs_alloc:
1590         sfc_rx_close(sa);
1591
1592 fail_check_mode:
1593         sfc_log_init(sa, "failed %d", rc);
1594         return rc;
1595 }
1596
1597 /**
1598  * Shutdown Rx subsystem.
1599  *
1600  * Called at device close stage, for example, before device shutdown.
1601  */
1602 void
1603 sfc_rx_close(struct sfc_adapter *sa)
1604 {
1605         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1606
1607         sfc_rx_fini_queues(sa, 0);
1608
1609         rss->channels = 0;
1610
1611         free(sa->rxq_ctrl);
1612         sa->rxq_ctrl = NULL;
1613
1614         rte_free(sfc_sa2shared(sa)->rxq_info);
1615         sfc_sa2shared(sa)->rxq_info = NULL;
1616 }