7afd2c8b338e4c6db16f3ad0f11e5eb4c19fc0e6
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58         int rc = 0;
59
60         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62                 if (rc == 0)
63                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64         }
65         return rc;
66 }
67
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71         unsigned int free_space;
72         unsigned int bulks;
73         void *objs[SFC_RX_REFILL_BULK];
74         efsys_dma_addr_t addr[RTE_DIM(objs)];
75         unsigned int added = rxq->added;
76         unsigned int id;
77         unsigned int i;
78         struct sfc_efx_rx_sw_desc *rxd;
79         struct rte_mbuf *m;
80         uint16_t port_id = rxq->dp.dpq.port_id;
81
82         free_space = rxq->max_fill_level - (added - rxq->completed);
83
84         if (free_space < rxq->refill_threshold)
85                 return;
86
87         bulks = free_space / RTE_DIM(objs);
88         /* refill_threshold guarantees that bulks is positive */
89         SFC_ASSERT(bulks > 0);
90
91         id = added & rxq->ptr_mask;
92         do {
93                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94                                                   RTE_DIM(objs)) < 0)) {
95                         /*
96                          * It is hardly a safe way to increment counter
97                          * from different contexts, but all PMDs do it.
98                          */
99                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100                                 RTE_DIM(objs);
101                         /* Return if we have posted nothing yet */
102                         if (added == rxq->added)
103                                 return;
104                         /* Push posted */
105                         break;
106                 }
107
108                 for (i = 0; i < RTE_DIM(objs);
109                      ++i, id = (id + 1) & rxq->ptr_mask) {
110                         m = objs[i];
111
112                         MBUF_RAW_ALLOC_CHECK(m);
113
114                         rxd = &rxq->sw_desc[id];
115                         rxd->mbuf = m;
116
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->port = port_id;
119
120                         addr[i] = rte_pktmbuf_iova(m);
121                 }
122
123                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124                              RTE_DIM(objs), rxq->completed, added);
125                 added += RTE_DIM(objs);
126         } while (--bulks > 0);
127
128         SFC_ASSERT(added != rxq->added);
129         rxq->added = added;
130         efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175         return RTE_PTYPE_L2_ETHER |
176                 ((desc_flags & EFX_PKT_IPV4) ?
177                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178                 ((desc_flags & EFX_PKT_IPV6) ?
179                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187         static const uint32_t ptypes[] = {
188                 RTE_PTYPE_L2_ETHER,
189                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191                 RTE_PTYPE_L4_TCP,
192                 RTE_PTYPE_L4_UDP,
193                 RTE_PTYPE_UNKNOWN
194         };
195
196         return ptypes;
197 }
198
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201                         struct rte_mbuf *m)
202 {
203         uint8_t *mbuf_data;
204
205
206         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207                 return;
208
209         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213                                                       EFX_RX_HASHALG_TOEPLITZ,
214                                                       mbuf_data);
215
216                 m->ol_flags |= PKT_RX_RSS_HASH;
217         }
218 }
219
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223         struct sfc_dp_rxq *dp_rxq = rx_queue;
224         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225         unsigned int completed;
226         unsigned int prefix_size = rxq->prefix_size;
227         unsigned int done_pkts = 0;
228         boolean_t discard_next = B_FALSE;
229         struct rte_mbuf *scatter_pkt = NULL;
230
231         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232                 return 0;
233
234         sfc_ev_qpoll(rxq->evq);
235
236         completed = rxq->completed;
237         while (completed != rxq->pending && done_pkts < nb_pkts) {
238                 unsigned int id;
239                 struct sfc_efx_rx_sw_desc *rxd;
240                 struct rte_mbuf *m;
241                 unsigned int seg_len;
242                 unsigned int desc_flags;
243
244                 id = completed++ & rxq->ptr_mask;
245                 rxd = &rxq->sw_desc[id];
246                 m = rxd->mbuf;
247                 desc_flags = rxd->flags;
248
249                 if (discard_next)
250                         goto discard;
251
252                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253                         goto discard;
254
255                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256                         uint16_t tmp_size;
257                         int rc __rte_unused;
258
259                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261                         SFC_ASSERT(rc == 0);
262                         seg_len = tmp_size;
263                 } else {
264                         seg_len = rxd->size - prefix_size;
265                 }
266
267                 rte_pktmbuf_data_len(m) = seg_len;
268                 rte_pktmbuf_pkt_len(m) = seg_len;
269
270                 if (scatter_pkt != NULL) {
271                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272                                 rte_pktmbuf_free(scatter_pkt);
273                                 goto discard;
274                         }
275                         /* The packet to deliver */
276                         m = scatter_pkt;
277                 }
278
279                 if (desc_flags & EFX_PKT_CONT) {
280                         /* The packet is scattered, more fragments to come */
281                         scatter_pkt = m;
282                         /* Further fragments have no prefix */
283                         prefix_size = 0;
284                         continue;
285                 }
286
287                 /* Scattered packet is done */
288                 scatter_pkt = NULL;
289                 /* The first fragment of the packet has prefix */
290                 prefix_size = rxq->prefix_size;
291
292                 m->ol_flags =
293                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294                 m->packet_type =
295                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297                 /*
298                  * Extract RSS hash from the packet prefix and
299                  * set the corresponding field (if needed and possible)
300                  */
301                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303                 m->data_off += prefix_size;
304
305                 *rx_pkts++ = m;
306                 done_pkts++;
307                 continue;
308
309 discard:
310                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311                 rte_mbuf_raw_free(m);
312                 rxd->mbuf = NULL;
313         }
314
315         /* pending is only moved when entire packet is received */
316         SFC_ASSERT(scatter_pkt == NULL);
317
318         rxq->completed = completed;
319
320         sfc_efx_rx_qrefill(rxq);
321
322         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323                 sfc_efx_rx_qprime(rxq);
324
325         return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335                 return 0;
336
337         sfc_ev_qpoll(rxq->evq);
338
339         return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348         if (unlikely(offset > rxq->ptr_mask))
349                 return -EINVAL;
350
351         /*
352          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353          * it is required for the queue to be running, but the
354          * check is omitted because API design assumes that it
355          * is the duty of the caller to satisfy all conditions
356          */
357         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358                    SFC_EFX_RXQ_FLAG_RUNNING);
359         sfc_ev_qpoll(rxq->evq);
360
361         /*
362          * There is a handful of reserved entries in the ring,
363          * but an explicit check whether the offset points to
364          * a reserved entry is neglected since the two checks
365          * below rely on the figures which take the HW limits
366          * into account and thus if an entry is reserved, the
367          * checks will fail and UNAVAIL code will be returned
368          */
369
370         if (offset < (rxq->pending - rxq->completed))
371                 return RTE_ETH_RX_DESC_DONE;
372
373         if (offset < (rxq->added - rxq->completed))
374                 return RTE_ETH_RX_DESC_AVAIL;
375
376         return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381                      boolean_t rx_scatter_enabled, const char **error)
382 {
383         if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384                 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385                 return B_FALSE;
386         }
387
388         return B_TRUE;
389 }
390
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396         struct rte_eth_dev *eth_dev;
397         struct sfc_adapter_priv *sap;
398
399         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400         eth_dev = &rte_eth_devices[dpq->port_id];
401
402         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403
404         return sap->dp_rx;
405 }
406
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411         struct rte_eth_dev *eth_dev;
412         struct sfc_adapter_shared *sas;
413
414         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415         eth_dev = &rte_eth_devices[dpq->port_id];
416
417         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418
419         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420         return &sas->rxq_info[dpq->queue_id];
421 }
422
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427         struct rte_eth_dev *eth_dev;
428         struct sfc_adapter *sa;
429
430         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431         eth_dev = &rte_eth_devices[dpq->port_id];
432
433         sa = sfc_adapter_by_eth_dev(eth_dev);
434
435         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436         return &sa->rxq_ctrl[dpq->queue_id];
437 }
438
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
443                           __rte_unused struct rte_mempool *mb_pool,
444                           unsigned int *rxq_entries,
445                           unsigned int *evq_entries,
446                           unsigned int *rxq_max_fill_level)
447 {
448         *rxq_entries = nb_rx_desc;
449         *evq_entries = nb_rx_desc;
450         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451         return 0;
452 }
453
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457                    const struct rte_pci_addr *pci_addr, int socket_id,
458                    const struct sfc_dp_rx_qcreate_info *info,
459                    struct sfc_dp_rxq **dp_rxqp)
460 {
461         struct sfc_efx_rxq *rxq;
462         int rc;
463
464         rc = ENOMEM;
465         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466                                  RTE_CACHE_LINE_SIZE, socket_id);
467         if (rxq == NULL)
468                 goto fail_rxq_alloc;
469
470         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471
472         rc = ENOMEM;
473         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474                                          info->rxq_entries,
475                                          sizeof(*rxq->sw_desc),
476                                          RTE_CACHE_LINE_SIZE, socket_id);
477         if (rxq->sw_desc == NULL)
478                 goto fail_desc_alloc;
479
480         /* efx datapath is bound to efx control path */
481         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484         rxq->ptr_mask = info->rxq_entries - 1;
485         rxq->batch_max = info->batch_max;
486         rxq->prefix_size = info->prefix_size;
487         rxq->max_fill_level = info->max_fill_level;
488         rxq->refill_threshold = info->refill_threshold;
489         rxq->buf_size = info->buf_size;
490         rxq->refill_mb_pool = info->refill_mb_pool;
491
492         *dp_rxqp = &rxq->dp;
493         return 0;
494
495 fail_desc_alloc:
496         rte_free(rxq);
497
498 fail_rxq_alloc:
499         return rc;
500 }
501
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507
508         rte_free(rxq->sw_desc);
509         rte_free(rxq);
510 }
511
512
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516
517
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521                   __rte_unused unsigned int evq_read_ptr)
522 {
523         /* libefx-based datapath is specific to libefx-based PMD */
524         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526         int rc;
527
528         rxq->common = crxq->common;
529
530         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531
532         sfc_efx_rx_qrefill(rxq);
533
534         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535
536         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537                 rc = sfc_efx_rx_qprime(rxq);
538                 if (rc != 0)
539                         goto fail_rx_qprime;
540         }
541
542         return 0;
543
544 fail_rx_qprime:
545         sfc_efx_rx_qstop(dp_rxq, NULL);
546         sfc_efx_rx_qpurge(dp_rxq);
547         return rc;
548 }
549
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552                  __rte_unused unsigned int *evq_read_ptr)
553 {
554         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555
556         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557
558         /* libefx-based datapath is bound to libefx-based PMD and uses
559          * event queue structure directly. So, there is no necessity to
560          * return EvQ read pointer.
561          */
562 }
563
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568         unsigned int i;
569         struct sfc_efx_rx_sw_desc *rxd;
570
571         for (i = rxq->completed; i != rxq->added; ++i) {
572                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573                 rte_mbuf_raw_free(rxd->mbuf);
574                 rxd->mbuf = NULL;
575                 /* Packed stream relies on 0 in inactive SW desc.
576                  * Rx queue stop is not performance critical, so
577                  * there is no harm to do it always.
578                  */
579                 rxd->flags = 0;
580                 rxd->size = 0;
581         }
582
583         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591         int rc = 0;
592
593         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595                 rc = sfc_efx_rx_qprime(rxq);
596                 if (rc != 0)
597                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598         }
599         return rc;
600 }
601
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607
608         /* Cannot disarm, just disable rearm */
609         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610         return 0;
611 }
612
613 struct sfc_dp_rx sfc_efx_rx = {
614         .dp = {
615                 .name           = SFC_KVARG_DATAPATH_EFX,
616                 .type           = SFC_DP_RX,
617                 .hw_fw_caps     = 0,
618         },
619         .features               = SFC_DP_RX_FEAT_INTR,
620         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
621                                   DEV_RX_OFFLOAD_RSS_HASH,
622         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
623         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
624         .qcreate                = sfc_efx_rx_qcreate,
625         .qdestroy               = sfc_efx_rx_qdestroy,
626         .qstart                 = sfc_efx_rx_qstart,
627         .qstop                  = sfc_efx_rx_qstop,
628         .qpurge                 = sfc_efx_rx_qpurge,
629         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
630         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
631         .qdesc_status           = sfc_efx_rx_qdesc_status,
632         .intr_enable            = sfc_efx_rx_intr_enable,
633         .intr_disable           = sfc_efx_rx_intr_disable,
634         .pkt_burst              = sfc_efx_recv_pkts,
635 };
636
637 static void
638 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
639 {
640         struct sfc_rxq_info *rxq_info;
641         struct sfc_rxq *rxq;
642         unsigned int retry_count;
643         unsigned int wait_count;
644         int rc;
645
646         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
647         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
648
649         rxq = &sa->rxq_ctrl[sw_index];
650
651         /*
652          * Retry Rx queue flushing in the case of flush failed or
653          * timeout. In the worst case it can delay for 6 seconds.
654          */
655         for (retry_count = 0;
656              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
657              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
658              ++retry_count) {
659                 rc = efx_rx_qflush(rxq->common);
660                 if (rc != 0) {
661                         rxq_info->state |= (rc == EALREADY) ?
662                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
663                         break;
664                 }
665                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
666                 rxq_info->state |= SFC_RXQ_FLUSHING;
667
668                 /*
669                  * Wait for Rx queue flush done or failed event at least
670                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
671                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
672                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
673                  */
674                 wait_count = 0;
675                 do {
676                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
677                         sfc_ev_qpoll(rxq->evq);
678                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
679                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
680
681                 if (rxq_info->state & SFC_RXQ_FLUSHING)
682                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
683
684                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
685                         sfc_err(sa, "RxQ %u flush failed", sw_index);
686
687                 if (rxq_info->state & SFC_RXQ_FLUSHED)
688                         sfc_notice(sa, "RxQ %u flushed", sw_index);
689         }
690
691         sa->priv.dp_rx->qpurge(rxq_info->dp);
692 }
693
694 static int
695 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
696 {
697         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
698         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
699         struct sfc_port *port = &sa->port;
700         int rc;
701
702         /*
703          * If promiscuous or all-multicast mode has been requested, setting
704          * filter for the default Rx queue might fail, in particular, while
705          * running over PCI function which is not a member of corresponding
706          * privilege groups; if this occurs, few iterations will be made to
707          * repeat this step without promiscuous and all-multicast flags set
708          */
709 retry:
710         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
711         if (rc == 0)
712                 return 0;
713         else if (rc != EOPNOTSUPP)
714                 return rc;
715
716         if (port->promisc) {
717                 sfc_warn(sa, "promiscuous mode has been requested, "
718                              "but the HW rejects it");
719                 sfc_warn(sa, "promiscuous mode will be disabled");
720
721                 port->promisc = B_FALSE;
722                 rc = sfc_set_rx_mode(sa);
723                 if (rc != 0)
724                         return rc;
725
726                 goto retry;
727         }
728
729         if (port->allmulti) {
730                 sfc_warn(sa, "all-multicast mode has been requested, "
731                              "but the HW rejects it");
732                 sfc_warn(sa, "all-multicast mode will be disabled");
733
734                 port->allmulti = B_FALSE;
735                 rc = sfc_set_rx_mode(sa);
736                 if (rc != 0)
737                         return rc;
738
739                 goto retry;
740         }
741
742         return rc;
743 }
744
745 int
746 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
747 {
748         struct sfc_rxq_info *rxq_info;
749         struct sfc_rxq *rxq;
750         struct sfc_evq *evq;
751         int rc;
752
753         sfc_log_init(sa, "sw_index=%u", sw_index);
754
755         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
756
757         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
758         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
759
760         rxq = &sa->rxq_ctrl[sw_index];
761         evq = rxq->evq;
762
763         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
764         if (rc != 0)
765                 goto fail_ev_qstart;
766
767         switch (rxq_info->type) {
768         case EFX_RXQ_TYPE_DEFAULT:
769                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
770                         rxq->buf_size,
771                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
772                         rxq_info->type_flags, evq->common, &rxq->common);
773                 break;
774         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
775                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
776                 struct rte_mempool_info mp_info;
777
778                 rc = rte_mempool_ops_get_info(mp, &mp_info);
779                 if (rc != 0) {
780                         /* Positive errno is used in the driver */
781                         rc = -rc;
782                         goto fail_mp_get_info;
783                 }
784                 if (mp_info.contig_block_size <= 0) {
785                         rc = EINVAL;
786                         goto fail_bad_contig_block_size;
787                 }
788                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
789                         mp_info.contig_block_size, rxq->buf_size,
790                         mp->header_size + mp->elt_size + mp->trailer_size,
791                         sa->rxd_wait_timeout_ns,
792                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
793                         evq->common, &rxq->common);
794                 break;
795         }
796         default:
797                 rc = ENOTSUP;
798         }
799         if (rc != 0)
800                 goto fail_rx_qcreate;
801
802         efx_rx_qenable(rxq->common);
803
804         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
805         if (rc != 0)
806                 goto fail_dp_qstart;
807
808         rxq_info->state |= SFC_RXQ_STARTED;
809
810         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
811                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
812                 if (rc != 0)
813                         goto fail_mac_filter_default_rxq_set;
814         }
815
816         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
817         sa->eth_dev->data->rx_queue_state[sw_index] =
818                 RTE_ETH_QUEUE_STATE_STARTED;
819
820         return 0;
821
822 fail_mac_filter_default_rxq_set:
823         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
824
825 fail_dp_qstart:
826         sfc_rx_qflush(sa, sw_index);
827
828 fail_rx_qcreate:
829 fail_bad_contig_block_size:
830 fail_mp_get_info:
831         sfc_ev_qstop(evq);
832
833 fail_ev_qstart:
834         return rc;
835 }
836
837 void
838 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
839 {
840         struct sfc_rxq_info *rxq_info;
841         struct sfc_rxq *rxq;
842
843         sfc_log_init(sa, "sw_index=%u", sw_index);
844
845         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
846
847         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
848
849         if (rxq_info->state == SFC_RXQ_INITIALIZED)
850                 return;
851         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
852
853         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
854         sa->eth_dev->data->rx_queue_state[sw_index] =
855                 RTE_ETH_QUEUE_STATE_STOPPED;
856
857         rxq = &sa->rxq_ctrl[sw_index];
858         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
859
860         if (sw_index == 0)
861                 efx_mac_filter_default_rxq_clear(sa->nic);
862
863         sfc_rx_qflush(sa, sw_index);
864
865         rxq_info->state = SFC_RXQ_INITIALIZED;
866
867         efx_rx_qdestroy(rxq->common);
868
869         sfc_ev_qstop(rxq->evq);
870 }
871
872 static uint64_t
873 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
874 {
875         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
876         uint64_t no_caps = 0;
877
878         if (encp->enc_tunnel_encapsulations_supported == 0)
879                 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
880
881         return ~no_caps;
882 }
883
884 uint64_t
885 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
886 {
887         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
888
889         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
890
891         return caps & sfc_rx_get_offload_mask(sa);
892 }
893
894 uint64_t
895 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
896 {
897         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
898 }
899
900 static int
901 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
902                    const struct rte_eth_rxconf *rx_conf,
903                    __rte_unused uint64_t offloads)
904 {
905         int rc = 0;
906
907         if (rx_conf->rx_thresh.pthresh != 0 ||
908             rx_conf->rx_thresh.hthresh != 0 ||
909             rx_conf->rx_thresh.wthresh != 0) {
910                 sfc_warn(sa,
911                         "RxQ prefetch/host/writeback thresholds are not supported");
912         }
913
914         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
915                 sfc_err(sa,
916                         "RxQ free threshold too large: %u vs maximum %u",
917                         rx_conf->rx_free_thresh, rxq_max_fill_level);
918                 rc = EINVAL;
919         }
920
921         if (rx_conf->rx_drop_en == 0) {
922                 sfc_err(sa, "RxQ drop disable is not supported");
923                 rc = EINVAL;
924         }
925
926         return rc;
927 }
928
929 static unsigned int
930 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
931 {
932         uint32_t data_off;
933         uint32_t order;
934
935         /* The mbuf object itself is always cache line aligned */
936         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
937
938         /* Data offset from mbuf object start */
939         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
940                 RTE_PKTMBUF_HEADROOM;
941
942         order = MIN(order, rte_bsf32(data_off));
943
944         return 1u << order;
945 }
946
947 static uint16_t
948 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
949 {
950         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
951         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
952         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
953         uint16_t buf_size;
954         unsigned int buf_aligned;
955         unsigned int start_alignment;
956         unsigned int end_padding_alignment;
957
958         /* Below it is assumed that both alignments are power of 2 */
959         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
960         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
961
962         /*
963          * mbuf is always cache line aligned, double-check
964          * that it meets rx buffer start alignment requirements.
965          */
966
967         /* Start from mbuf pool data room size */
968         buf_size = rte_pktmbuf_data_room_size(mb_pool);
969
970         /* Remove headroom */
971         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
972                 sfc_err(sa,
973                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
974                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
975                 return 0;
976         }
977         buf_size -= RTE_PKTMBUF_HEADROOM;
978
979         /* Calculate guaranteed data start alignment */
980         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
981
982         /* Reserve space for start alignment */
983         if (buf_aligned < nic_align_start) {
984                 start_alignment = nic_align_start - buf_aligned;
985                 if (buf_size <= start_alignment) {
986                         sfc_err(sa,
987                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
988                                 mb_pool->name,
989                                 rte_pktmbuf_data_room_size(mb_pool),
990                                 RTE_PKTMBUF_HEADROOM, start_alignment);
991                         return 0;
992                 }
993                 buf_aligned = nic_align_start;
994                 buf_size -= start_alignment;
995         } else {
996                 start_alignment = 0;
997         }
998
999         /* Make sure that end padding does not write beyond the buffer */
1000         if (buf_aligned < nic_align_end) {
1001                 /*
1002                  * Estimate space which can be lost. If guarnteed buffer
1003                  * size is odd, lost space is (nic_align_end - 1). More
1004                  * accurate formula is below.
1005                  */
1006                 end_padding_alignment = nic_align_end -
1007                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1008                 if (buf_size <= end_padding_alignment) {
1009                         sfc_err(sa,
1010                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1011                                 mb_pool->name,
1012                                 rte_pktmbuf_data_room_size(mb_pool),
1013                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1014                                 end_padding_alignment);
1015                         return 0;
1016                 }
1017                 buf_size -= end_padding_alignment;
1018         } else {
1019                 /*
1020                  * Start is aligned the same or better than end,
1021                  * just align length.
1022                  */
1023                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1024         }
1025
1026         return buf_size;
1027 }
1028
1029 int
1030 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1031              uint16_t nb_rx_desc, unsigned int socket_id,
1032              const struct rte_eth_rxconf *rx_conf,
1033              struct rte_mempool *mb_pool)
1034 {
1035         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1036         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1037         int rc;
1038         unsigned int rxq_entries;
1039         unsigned int evq_entries;
1040         unsigned int rxq_max_fill_level;
1041         uint64_t offloads;
1042         uint16_t buf_size;
1043         struct sfc_rxq_info *rxq_info;
1044         struct sfc_evq *evq;
1045         struct sfc_rxq *rxq;
1046         struct sfc_dp_rx_qcreate_info info;
1047         struct sfc_dp_rx_hw_limits hw_limits;
1048         uint16_t rx_free_thresh;
1049         const char *error;
1050
1051         memset(&hw_limits, 0, sizeof(hw_limits));
1052         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1053         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1054         hw_limits.evq_max_entries = sa->evq_max_entries;
1055         hw_limits.evq_min_entries = sa->evq_min_entries;
1056
1057         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1058                                             &rxq_entries, &evq_entries,
1059                                             &rxq_max_fill_level);
1060         if (rc != 0)
1061                 goto fail_size_up_rings;
1062         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1063         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1064         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1065
1066         offloads = rx_conf->offloads |
1067                 sa->eth_dev->data->dev_conf.rxmode.offloads;
1068         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1069         if (rc != 0)
1070                 goto fail_bad_conf;
1071
1072         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1073         if (buf_size == 0) {
1074                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1075                         sw_index);
1076                 rc = EINVAL;
1077                 goto fail_bad_conf;
1078         }
1079
1080         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1081                                   encp->enc_rx_prefix_size,
1082                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1083                                   &error)) {
1084                 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1085                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1086                         "PDU size %u plus Rx prefix %u bytes",
1087                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1088                         encp->enc_rx_prefix_size);
1089                 rc = EINVAL;
1090                 goto fail_bad_conf;
1091         }
1092
1093         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1094         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1095
1096         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1097         rxq_info->entries = rxq_entries;
1098
1099         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1100                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1101         else
1102                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1103
1104         rxq_info->type_flags =
1105                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1106                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1107
1108         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1109             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1110              DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1111                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1112
1113         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1114                           evq_entries, socket_id, &evq);
1115         if (rc != 0)
1116                 goto fail_ev_qinit;
1117
1118         rxq = &sa->rxq_ctrl[sw_index];
1119         rxq->evq = evq;
1120         rxq->hw_index = sw_index;
1121         /*
1122          * If Rx refill threshold is specified (its value is non zero) in
1123          * Rx configuration, use specified value. Otherwise use 1/8 of
1124          * the Rx descriptors number as the default. It allows to keep
1125          * Rx ring full-enough and does not refill too aggressive if
1126          * packet rate is high.
1127          *
1128          * Since PMD refills in bulks waiting for full bulk may be
1129          * refilled (basically round down), it is better to round up
1130          * here to mitigate it a bit.
1131          */
1132         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1133                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1134         /* Rx refill threshold cannot be smaller than refill bulk */
1135         rxq_info->refill_threshold =
1136                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1137         rxq_info->refill_mb_pool = mb_pool;
1138         rxq->buf_size = buf_size;
1139
1140         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1141                            efx_rxq_size(sa->nic, rxq_info->entries),
1142                            socket_id, &rxq->mem);
1143         if (rc != 0)
1144                 goto fail_dma_alloc;
1145
1146         memset(&info, 0, sizeof(info));
1147         info.refill_mb_pool = rxq_info->refill_mb_pool;
1148         info.max_fill_level = rxq_max_fill_level;
1149         info.refill_threshold = rxq_info->refill_threshold;
1150         info.buf_size = buf_size;
1151         info.batch_max = encp->enc_rx_batch_max;
1152         info.prefix_size = encp->enc_rx_prefix_size;
1153
1154         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1155                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1156
1157         info.rxq_entries = rxq_info->entries;
1158         info.rxq_hw_ring = rxq->mem.esm_base;
1159         info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1160         info.evq_entries = evq_entries;
1161         info.evq_hw_ring = evq->mem.esm_base;
1162         info.hw_index = rxq->hw_index;
1163         info.mem_bar = sa->mem_bar.esb_base;
1164         info.vi_window_shift = encp->enc_vi_window_shift;
1165
1166         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1167                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1168                                      socket_id, &info, &rxq_info->dp);
1169         if (rc != 0)
1170                 goto fail_dp_rx_qcreate;
1171
1172         evq->dp_rxq = rxq_info->dp;
1173
1174         rxq_info->state = SFC_RXQ_INITIALIZED;
1175
1176         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1177
1178         return 0;
1179
1180 fail_dp_rx_qcreate:
1181         sfc_dma_free(sa, &rxq->mem);
1182
1183 fail_dma_alloc:
1184         sfc_ev_qfini(evq);
1185
1186 fail_ev_qinit:
1187         rxq_info->entries = 0;
1188
1189 fail_bad_conf:
1190 fail_size_up_rings:
1191         sfc_log_init(sa, "failed %d", rc);
1192         return rc;
1193 }
1194
1195 void
1196 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1197 {
1198         struct sfc_rxq_info *rxq_info;
1199         struct sfc_rxq *rxq;
1200
1201         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1202         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1203
1204         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1205
1206         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1207
1208         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1209         rxq_info->dp = NULL;
1210
1211         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1212         rxq_info->entries = 0;
1213
1214         rxq = &sa->rxq_ctrl[sw_index];
1215
1216         sfc_dma_free(sa, &rxq->mem);
1217
1218         sfc_ev_qfini(rxq->evq);
1219         rxq->evq = NULL;
1220 }
1221
1222 /*
1223  * Mapping between RTE RSS hash functions and their EFX counterparts.
1224  */
1225 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1226         { ETH_RSS_NONFRAG_IPV4_TCP,
1227           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1228         { ETH_RSS_NONFRAG_IPV4_UDP,
1229           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1230         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1231           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1232         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1233           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1234         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1235           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1236           EFX_RX_HASH(IPV4, 2TUPLE) },
1237         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1238           ETH_RSS_IPV6_EX,
1239           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1240           EFX_RX_HASH(IPV6, 2TUPLE) }
1241 };
1242
1243 static efx_rx_hash_type_t
1244 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1245                             unsigned int *hash_type_flags_supported,
1246                             unsigned int nb_hash_type_flags_supported)
1247 {
1248         efx_rx_hash_type_t hash_type_masked = 0;
1249         unsigned int i, j;
1250
1251         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1252                 unsigned int class_tuple_lbn[] = {
1253                         EFX_RX_CLASS_IPV4_TCP_LBN,
1254                         EFX_RX_CLASS_IPV4_UDP_LBN,
1255                         EFX_RX_CLASS_IPV4_LBN,
1256                         EFX_RX_CLASS_IPV6_TCP_LBN,
1257                         EFX_RX_CLASS_IPV6_UDP_LBN,
1258                         EFX_RX_CLASS_IPV6_LBN
1259                 };
1260
1261                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1262                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1263                         unsigned int flag;
1264
1265                         tuple_mask <<= class_tuple_lbn[j];
1266                         flag = hash_type & tuple_mask;
1267
1268                         if (flag == hash_type_flags_supported[i])
1269                                 hash_type_masked |= flag;
1270                 }
1271         }
1272
1273         return hash_type_masked;
1274 }
1275
1276 int
1277 sfc_rx_hash_init(struct sfc_adapter *sa)
1278 {
1279         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1280         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1281         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1282         efx_rx_hash_alg_t alg;
1283         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1284         unsigned int nb_flags_supp;
1285         struct sfc_rss_hf_rte_to_efx *hf_map;
1286         struct sfc_rss_hf_rte_to_efx *entry;
1287         efx_rx_hash_type_t efx_hash_types;
1288         unsigned int i;
1289         int rc;
1290
1291         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1292                 alg = EFX_RX_HASHALG_TOEPLITZ;
1293         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1294                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1295         else
1296                 return EINVAL;
1297
1298         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1299                                          RTE_DIM(flags_supp), &nb_flags_supp);
1300         if (rc != 0)
1301                 return rc;
1302
1303         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1304                                    RTE_DIM(sfc_rss_hf_map),
1305                                    sizeof(*hf_map), 0, sa->socket_id);
1306         if (hf_map == NULL)
1307                 return ENOMEM;
1308
1309         entry = hf_map;
1310         efx_hash_types = 0;
1311         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1312                 efx_rx_hash_type_t ht;
1313
1314                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1315                                                  flags_supp, nb_flags_supp);
1316                 if (ht != 0) {
1317                         entry->rte = sfc_rss_hf_map[i].rte;
1318                         entry->efx = ht;
1319                         efx_hash_types |= ht;
1320                         ++entry;
1321                 }
1322         }
1323
1324         rss->hash_alg = alg;
1325         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1326         rss->hf_map = hf_map;
1327         rss->hash_types = efx_hash_types;
1328
1329         return 0;
1330 }
1331
1332 void
1333 sfc_rx_hash_fini(struct sfc_adapter *sa)
1334 {
1335         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1336
1337         rte_free(rss->hf_map);
1338 }
1339
1340 int
1341 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1342                      efx_rx_hash_type_t *efx)
1343 {
1344         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1345         efx_rx_hash_type_t hash_types = 0;
1346         unsigned int i;
1347
1348         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1349                 uint64_t rte_mask = rss->hf_map[i].rte;
1350
1351                 if ((rte & rte_mask) != 0) {
1352                         rte &= ~rte_mask;
1353                         hash_types |= rss->hf_map[i].efx;
1354                 }
1355         }
1356
1357         if (rte != 0) {
1358                 sfc_err(sa, "unsupported hash functions requested");
1359                 return EINVAL;
1360         }
1361
1362         *efx = hash_types;
1363
1364         return 0;
1365 }
1366
1367 uint64_t
1368 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1369 {
1370         uint64_t rte = 0;
1371         unsigned int i;
1372
1373         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1374                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1375
1376                 if ((efx & hash_type) == hash_type)
1377                         rte |= rss->hf_map[i].rte;
1378         }
1379
1380         return rte;
1381 }
1382
1383 static int
1384 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1385                             struct rte_eth_rss_conf *conf)
1386 {
1387         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1388         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1389         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1390         int rc;
1391
1392         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1393                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1394                     conf->rss_key != NULL)
1395                         return EINVAL;
1396         }
1397
1398         if (conf->rss_hf != 0) {
1399                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1400                 if (rc != 0)
1401                         return rc;
1402         }
1403
1404         if (conf->rss_key != NULL) {
1405                 if (conf->rss_key_len != sizeof(rss->key)) {
1406                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1407                                 sizeof(rss->key));
1408                         return EINVAL;
1409                 }
1410                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1411         }
1412
1413         rss->hash_types = efx_hash_types;
1414
1415         return 0;
1416 }
1417
1418 static int
1419 sfc_rx_rss_config(struct sfc_adapter *sa)
1420 {
1421         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1422         int rc = 0;
1423
1424         if (rss->channels > 0) {
1425                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1426                                            rss->hash_alg, rss->hash_types,
1427                                            B_TRUE);
1428                 if (rc != 0)
1429                         goto finish;
1430
1431                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1432                                           rss->key, sizeof(rss->key));
1433                 if (rc != 0)
1434                         goto finish;
1435
1436                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1437                                           rss->tbl, RTE_DIM(rss->tbl));
1438         }
1439
1440 finish:
1441         return rc;
1442 }
1443
1444 int
1445 sfc_rx_start(struct sfc_adapter *sa)
1446 {
1447         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1448         unsigned int sw_index;
1449         int rc;
1450
1451         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1452
1453         rc = efx_rx_init(sa->nic);
1454         if (rc != 0)
1455                 goto fail_rx_init;
1456
1457         rc = sfc_rx_rss_config(sa);
1458         if (rc != 0)
1459                 goto fail_rss_config;
1460
1461         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1462                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1463                     (!sas->rxq_info[sw_index].deferred_start ||
1464                      sas->rxq_info[sw_index].deferred_started)) {
1465                         rc = sfc_rx_qstart(sa, sw_index);
1466                         if (rc != 0)
1467                                 goto fail_rx_qstart;
1468                 }
1469         }
1470
1471         return 0;
1472
1473 fail_rx_qstart:
1474         while (sw_index-- > 0)
1475                 sfc_rx_qstop(sa, sw_index);
1476
1477 fail_rss_config:
1478         efx_rx_fini(sa->nic);
1479
1480 fail_rx_init:
1481         sfc_log_init(sa, "failed %d", rc);
1482         return rc;
1483 }
1484
1485 void
1486 sfc_rx_stop(struct sfc_adapter *sa)
1487 {
1488         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1489         unsigned int sw_index;
1490
1491         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1492
1493         sw_index = sas->rxq_count;
1494         while (sw_index-- > 0) {
1495                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1496                         sfc_rx_qstop(sa, sw_index);
1497         }
1498
1499         efx_rx_fini(sa->nic);
1500 }
1501
1502 static int
1503 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1504 {
1505         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1506         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1507         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1508         unsigned int max_entries;
1509
1510         max_entries = encp->enc_rxq_max_ndescs;
1511         SFC_ASSERT(rte_is_power_of_2(max_entries));
1512
1513         rxq_info->max_entries = max_entries;
1514
1515         return 0;
1516 }
1517
1518 static int
1519 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1520 {
1521         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1522         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1523                                       sfc_rx_get_queue_offload_caps(sa);
1524         struct sfc_rss *rss = &sas->rss;
1525         int rc = 0;
1526
1527         switch (rxmode->mq_mode) {
1528         case ETH_MQ_RX_NONE:
1529                 /* No special checks are required */
1530                 break;
1531         case ETH_MQ_RX_RSS:
1532                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1533                         sfc_err(sa, "RSS is not available");
1534                         rc = EINVAL;
1535                 }
1536                 break;
1537         default:
1538                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1539                         rxmode->mq_mode);
1540                 rc = EINVAL;
1541         }
1542
1543         /*
1544          * Requested offloads are validated against supported by ethdev,
1545          * so unsupported offloads cannot be added as the result of
1546          * below check.
1547          */
1548         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1549             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1550                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1551                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1552         }
1553
1554         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1555             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1556                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1557                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1558         }
1559
1560         if ((offloads_supported & DEV_RX_OFFLOAD_RSS_HASH) &&
1561             (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG))
1562                 rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1563
1564         return rc;
1565 }
1566
1567 /**
1568  * Destroy excess queues that are no longer needed after reconfiguration
1569  * or complete close.
1570  */
1571 static void
1572 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1573 {
1574         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1575         int sw_index;
1576
1577         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1578
1579         sw_index = sas->rxq_count;
1580         while (--sw_index >= (int)nb_rx_queues) {
1581                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1582                         sfc_rx_qfini(sa, sw_index);
1583         }
1584
1585         sas->rxq_count = nb_rx_queues;
1586 }
1587
1588 /**
1589  * Initialize Rx subsystem.
1590  *
1591  * Called at device (re)configuration stage when number of receive queues is
1592  * specified together with other device level receive configuration.
1593  *
1594  * It should be used to allocate NUMA-unaware resources.
1595  */
1596 int
1597 sfc_rx_configure(struct sfc_adapter *sa)
1598 {
1599         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1600         struct sfc_rss *rss = &sas->rss;
1601         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1602         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1603         int rc;
1604
1605         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1606                      nb_rx_queues, sas->rxq_count);
1607
1608         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1609         if (rc != 0)
1610                 goto fail_check_mode;
1611
1612         if (nb_rx_queues == sas->rxq_count)
1613                 goto configure_rss;
1614
1615         if (sas->rxq_info == NULL) {
1616                 rc = ENOMEM;
1617                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1618                                                   sizeof(sas->rxq_info[0]), 0,
1619                                                   sa->socket_id);
1620                 if (sas->rxq_info == NULL)
1621                         goto fail_rxqs_alloc;
1622
1623                 /*
1624                  * Allocate primary process only RxQ control from heap
1625                  * since it should not be shared.
1626                  */
1627                 rc = ENOMEM;
1628                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1629                 if (sa->rxq_ctrl == NULL)
1630                         goto fail_rxqs_ctrl_alloc;
1631         } else {
1632                 struct sfc_rxq_info *new_rxq_info;
1633                 struct sfc_rxq *new_rxq_ctrl;
1634
1635                 if (nb_rx_queues < sas->rxq_count)
1636                         sfc_rx_fini_queues(sa, nb_rx_queues);
1637
1638                 rc = ENOMEM;
1639                 new_rxq_info =
1640                         rte_realloc(sas->rxq_info,
1641                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1642                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1643                         goto fail_rxqs_realloc;
1644
1645                 rc = ENOMEM;
1646                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1647                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1648                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1649                         goto fail_rxqs_ctrl_realloc;
1650
1651                 sas->rxq_info = new_rxq_info;
1652                 sa->rxq_ctrl = new_rxq_ctrl;
1653                 if (nb_rx_queues > sas->rxq_count) {
1654                         memset(&sas->rxq_info[sas->rxq_count], 0,
1655                                (nb_rx_queues - sas->rxq_count) *
1656                                sizeof(sas->rxq_info[0]));
1657                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1658                                (nb_rx_queues - sas->rxq_count) *
1659                                sizeof(sa->rxq_ctrl[0]));
1660                 }
1661         }
1662
1663         while (sas->rxq_count < nb_rx_queues) {
1664                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1665                 if (rc != 0)
1666                         goto fail_rx_qinit_info;
1667
1668                 sas->rxq_count++;
1669         }
1670
1671 configure_rss:
1672         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1673                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1674
1675         if (rss->channels > 0) {
1676                 struct rte_eth_rss_conf *adv_conf_rss;
1677                 unsigned int sw_index;
1678
1679                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1680                         rss->tbl[sw_index] = sw_index % rss->channels;
1681
1682                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1683                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1684                 if (rc != 0)
1685                         goto fail_rx_process_adv_conf_rss;
1686         }
1687
1688         return 0;
1689
1690 fail_rx_process_adv_conf_rss:
1691 fail_rx_qinit_info:
1692 fail_rxqs_ctrl_realloc:
1693 fail_rxqs_realloc:
1694 fail_rxqs_ctrl_alloc:
1695 fail_rxqs_alloc:
1696         sfc_rx_close(sa);
1697
1698 fail_check_mode:
1699         sfc_log_init(sa, "failed %d", rc);
1700         return rc;
1701 }
1702
1703 /**
1704  * Shutdown Rx subsystem.
1705  *
1706  * Called at device close stage, for example, before device shutdown.
1707  */
1708 void
1709 sfc_rx_close(struct sfc_adapter *sa)
1710 {
1711         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1712
1713         sfc_rx_fini_queues(sa, 0);
1714
1715         rss->channels = 0;
1716
1717         free(sa->rxq_ctrl);
1718         sa->rxq_ctrl = NULL;
1719
1720         rte_free(sfc_sa2shared(sa)->rxq_info);
1721         sfc_sa2shared(sa)->rxq_info = NULL;
1722 }