f589ece7574305ab2c5524f5f19b002c61c034b3
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58         int rc = 0;
59
60         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62                 if (rc == 0)
63                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64         }
65         return rc;
66 }
67
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71         unsigned int free_space;
72         unsigned int bulks;
73         void *objs[SFC_RX_REFILL_BULK];
74         efsys_dma_addr_t addr[RTE_DIM(objs)];
75         unsigned int added = rxq->added;
76         unsigned int id;
77         unsigned int i;
78         struct sfc_efx_rx_sw_desc *rxd;
79         struct rte_mbuf *m;
80         uint16_t port_id = rxq->dp.dpq.port_id;
81
82         free_space = rxq->max_fill_level - (added - rxq->completed);
83
84         if (free_space < rxq->refill_threshold)
85                 return;
86
87         bulks = free_space / RTE_DIM(objs);
88         /* refill_threshold guarantees that bulks is positive */
89         SFC_ASSERT(bulks > 0);
90
91         id = added & rxq->ptr_mask;
92         do {
93                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94                                                   RTE_DIM(objs)) < 0)) {
95                         /*
96                          * It is hardly a safe way to increment counter
97                          * from different contexts, but all PMDs do it.
98                          */
99                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100                                 RTE_DIM(objs);
101                         /* Return if we have posted nothing yet */
102                         if (added == rxq->added)
103                                 return;
104                         /* Push posted */
105                         break;
106                 }
107
108                 for (i = 0; i < RTE_DIM(objs);
109                      ++i, id = (id + 1) & rxq->ptr_mask) {
110                         m = objs[i];
111
112                         MBUF_RAW_ALLOC_CHECK(m);
113
114                         rxd = &rxq->sw_desc[id];
115                         rxd->mbuf = m;
116
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->port = port_id;
119
120                         addr[i] = rte_pktmbuf_iova(m);
121                 }
122
123                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124                              RTE_DIM(objs), rxq->completed, added);
125                 added += RTE_DIM(objs);
126         } while (--bulks > 0);
127
128         SFC_ASSERT(added != rxq->added);
129         rxq->added = added;
130         efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175         return RTE_PTYPE_L2_ETHER |
176                 ((desc_flags & EFX_PKT_IPV4) ?
177                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178                 ((desc_flags & EFX_PKT_IPV6) ?
179                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187         static const uint32_t ptypes[] = {
188                 RTE_PTYPE_L2_ETHER,
189                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191                 RTE_PTYPE_L4_TCP,
192                 RTE_PTYPE_L4_UDP,
193                 RTE_PTYPE_UNKNOWN
194         };
195
196         return ptypes;
197 }
198
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201                         struct rte_mbuf *m)
202 {
203         uint8_t *mbuf_data;
204
205
206         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207                 return;
208
209         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213                                                       EFX_RX_HASHALG_TOEPLITZ,
214                                                       mbuf_data);
215
216                 m->ol_flags |= PKT_RX_RSS_HASH;
217         }
218 }
219
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223         struct sfc_dp_rxq *dp_rxq = rx_queue;
224         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225         unsigned int completed;
226         unsigned int prefix_size = rxq->prefix_size;
227         unsigned int done_pkts = 0;
228         boolean_t discard_next = B_FALSE;
229         struct rte_mbuf *scatter_pkt = NULL;
230
231         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232                 return 0;
233
234         sfc_ev_qpoll(rxq->evq);
235
236         completed = rxq->completed;
237         while (completed != rxq->pending && done_pkts < nb_pkts) {
238                 unsigned int id;
239                 struct sfc_efx_rx_sw_desc *rxd;
240                 struct rte_mbuf *m;
241                 unsigned int seg_len;
242                 unsigned int desc_flags;
243
244                 id = completed++ & rxq->ptr_mask;
245                 rxd = &rxq->sw_desc[id];
246                 m = rxd->mbuf;
247                 desc_flags = rxd->flags;
248
249                 if (discard_next)
250                         goto discard;
251
252                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253                         goto discard;
254
255                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256                         uint16_t tmp_size;
257                         int rc __rte_unused;
258
259                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261                         SFC_ASSERT(rc == 0);
262                         seg_len = tmp_size;
263                 } else {
264                         seg_len = rxd->size - prefix_size;
265                 }
266
267                 rte_pktmbuf_data_len(m) = seg_len;
268                 rte_pktmbuf_pkt_len(m) = seg_len;
269
270                 if (scatter_pkt != NULL) {
271                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272                                 rte_pktmbuf_free(scatter_pkt);
273                                 goto discard;
274                         }
275                         /* The packet to deliver */
276                         m = scatter_pkt;
277                 }
278
279                 if (desc_flags & EFX_PKT_CONT) {
280                         /* The packet is scattered, more fragments to come */
281                         scatter_pkt = m;
282                         /* Further fragments have no prefix */
283                         prefix_size = 0;
284                         continue;
285                 }
286
287                 /* Scattered packet is done */
288                 scatter_pkt = NULL;
289                 /* The first fragment of the packet has prefix */
290                 prefix_size = rxq->prefix_size;
291
292                 m->ol_flags =
293                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294                 m->packet_type =
295                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297                 /*
298                  * Extract RSS hash from the packet prefix and
299                  * set the corresponding field (if needed and possible)
300                  */
301                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303                 m->data_off += prefix_size;
304
305                 *rx_pkts++ = m;
306                 done_pkts++;
307                 continue;
308
309 discard:
310                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311                 rte_mbuf_raw_free(m);
312                 rxd->mbuf = NULL;
313         }
314
315         /* pending is only moved when entire packet is received */
316         SFC_ASSERT(scatter_pkt == NULL);
317
318         rxq->completed = completed;
319
320         sfc_efx_rx_qrefill(rxq);
321
322         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323                 sfc_efx_rx_qprime(rxq);
324
325         return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335                 return 0;
336
337         sfc_ev_qpoll(rxq->evq);
338
339         return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348         if (unlikely(offset > rxq->ptr_mask))
349                 return -EINVAL;
350
351         /*
352          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353          * it is required for the queue to be running, but the
354          * check is omitted because API design assumes that it
355          * is the duty of the caller to satisfy all conditions
356          */
357         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358                    SFC_EFX_RXQ_FLAG_RUNNING);
359         sfc_ev_qpoll(rxq->evq);
360
361         /*
362          * There is a handful of reserved entries in the ring,
363          * but an explicit check whether the offset points to
364          * a reserved entry is neglected since the two checks
365          * below rely on the figures which take the HW limits
366          * into account and thus if an entry is reserved, the
367          * checks will fail and UNAVAIL code will be returned
368          */
369
370         if (offset < (rxq->pending - rxq->completed))
371                 return RTE_ETH_RX_DESC_DONE;
372
373         if (offset < (rxq->added - rxq->completed))
374                 return RTE_ETH_RX_DESC_AVAIL;
375
376         return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381                      boolean_t rx_scatter_enabled, const char **error)
382 {
383         if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384                 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385                 return B_FALSE;
386         }
387
388         return B_TRUE;
389 }
390
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396         struct rte_eth_dev *eth_dev;
397         struct sfc_adapter_priv *sap;
398
399         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400         eth_dev = &rte_eth_devices[dpq->port_id];
401
402         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403
404         return sap->dp_rx;
405 }
406
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411         struct rte_eth_dev *eth_dev;
412         struct sfc_adapter_shared *sas;
413
414         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415         eth_dev = &rte_eth_devices[dpq->port_id];
416
417         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418
419         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420         return &sas->rxq_info[dpq->queue_id];
421 }
422
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427         struct rte_eth_dev *eth_dev;
428         struct sfc_adapter *sa;
429
430         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431         eth_dev = &rte_eth_devices[dpq->port_id];
432
433         sa = sfc_adapter_by_eth_dev(eth_dev);
434
435         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436         return &sa->rxq_ctrl[dpq->queue_id];
437 }
438
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
443                           __rte_unused struct rte_mempool *mb_pool,
444                           unsigned int *rxq_entries,
445                           unsigned int *evq_entries,
446                           unsigned int *rxq_max_fill_level)
447 {
448         *rxq_entries = nb_rx_desc;
449         *evq_entries = nb_rx_desc;
450         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451         return 0;
452 }
453
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457                    const struct rte_pci_addr *pci_addr, int socket_id,
458                    const struct sfc_dp_rx_qcreate_info *info,
459                    struct sfc_dp_rxq **dp_rxqp)
460 {
461         struct sfc_efx_rxq *rxq;
462         int rc;
463
464         rc = ENOMEM;
465         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466                                  RTE_CACHE_LINE_SIZE, socket_id);
467         if (rxq == NULL)
468                 goto fail_rxq_alloc;
469
470         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471
472         rc = ENOMEM;
473         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474                                          info->rxq_entries,
475                                          sizeof(*rxq->sw_desc),
476                                          RTE_CACHE_LINE_SIZE, socket_id);
477         if (rxq->sw_desc == NULL)
478                 goto fail_desc_alloc;
479
480         /* efx datapath is bound to efx control path */
481         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484         rxq->ptr_mask = info->rxq_entries - 1;
485         rxq->batch_max = info->batch_max;
486         rxq->prefix_size = info->prefix_size;
487         rxq->max_fill_level = info->max_fill_level;
488         rxq->refill_threshold = info->refill_threshold;
489         rxq->buf_size = info->buf_size;
490         rxq->refill_mb_pool = info->refill_mb_pool;
491
492         *dp_rxqp = &rxq->dp;
493         return 0;
494
495 fail_desc_alloc:
496         rte_free(rxq);
497
498 fail_rxq_alloc:
499         return rc;
500 }
501
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507
508         rte_free(rxq->sw_desc);
509         rte_free(rxq);
510 }
511
512
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516
517
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521                   __rte_unused unsigned int evq_read_ptr)
522 {
523         /* libefx-based datapath is specific to libefx-based PMD */
524         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526         int rc;
527
528         rxq->common = crxq->common;
529
530         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531
532         sfc_efx_rx_qrefill(rxq);
533
534         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535
536         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537                 rc = sfc_efx_rx_qprime(rxq);
538                 if (rc != 0)
539                         goto fail_rx_qprime;
540         }
541
542         return 0;
543
544 fail_rx_qprime:
545         sfc_efx_rx_qstop(dp_rxq, NULL);
546         sfc_efx_rx_qpurge(dp_rxq);
547         return rc;
548 }
549
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552                  __rte_unused unsigned int *evq_read_ptr)
553 {
554         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555
556         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557
558         /* libefx-based datapath is bound to libefx-based PMD and uses
559          * event queue structure directly. So, there is no necessity to
560          * return EvQ read pointer.
561          */
562 }
563
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568         unsigned int i;
569         struct sfc_efx_rx_sw_desc *rxd;
570
571         for (i = rxq->completed; i != rxq->added; ++i) {
572                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573                 rte_mbuf_raw_free(rxd->mbuf);
574                 rxd->mbuf = NULL;
575                 /* Packed stream relies on 0 in inactive SW desc.
576                  * Rx queue stop is not performance critical, so
577                  * there is no harm to do it always.
578                  */
579                 rxd->flags = 0;
580                 rxd->size = 0;
581         }
582
583         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591         int rc = 0;
592
593         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595                 rc = sfc_efx_rx_qprime(rxq);
596                 if (rc != 0)
597                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598         }
599         return rc;
600 }
601
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607
608         /* Cannot disarm, just disable rearm */
609         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610         return 0;
611 }
612
613 struct sfc_dp_rx sfc_efx_rx = {
614         .dp = {
615                 .name           = SFC_KVARG_DATAPATH_EFX,
616                 .type           = SFC_DP_RX,
617                 .hw_fw_caps     = 0,
618         },
619         .features               = SFC_DP_RX_FEAT_INTR,
620         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
621                                   DEV_RX_OFFLOAD_RSS_HASH,
622         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
623         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
624         .qcreate                = sfc_efx_rx_qcreate,
625         .qdestroy               = sfc_efx_rx_qdestroy,
626         .qstart                 = sfc_efx_rx_qstart,
627         .qstop                  = sfc_efx_rx_qstop,
628         .qpurge                 = sfc_efx_rx_qpurge,
629         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
630         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
631         .qdesc_status           = sfc_efx_rx_qdesc_status,
632         .intr_enable            = sfc_efx_rx_intr_enable,
633         .intr_disable           = sfc_efx_rx_intr_disable,
634         .pkt_burst              = sfc_efx_recv_pkts,
635 };
636
637 static void
638 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
639 {
640         struct sfc_rxq_info *rxq_info;
641         struct sfc_rxq *rxq;
642         unsigned int retry_count;
643         unsigned int wait_count;
644         int rc;
645
646         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
647         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
648
649         rxq = &sa->rxq_ctrl[sw_index];
650
651         /*
652          * Retry Rx queue flushing in the case of flush failed or
653          * timeout. In the worst case it can delay for 6 seconds.
654          */
655         for (retry_count = 0;
656              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
657              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
658              ++retry_count) {
659                 rc = efx_rx_qflush(rxq->common);
660                 if (rc != 0) {
661                         rxq_info->state |= (rc == EALREADY) ?
662                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
663                         break;
664                 }
665                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
666                 rxq_info->state |= SFC_RXQ_FLUSHING;
667
668                 /*
669                  * Wait for Rx queue flush done or failed event at least
670                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
671                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
672                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
673                  */
674                 wait_count = 0;
675                 do {
676                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
677                         sfc_ev_qpoll(rxq->evq);
678                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
679                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
680
681                 if (rxq_info->state & SFC_RXQ_FLUSHING)
682                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
683
684                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
685                         sfc_err(sa, "RxQ %u flush failed", sw_index);
686
687                 if (rxq_info->state & SFC_RXQ_FLUSHED)
688                         sfc_notice(sa, "RxQ %u flushed", sw_index);
689         }
690
691         sa->priv.dp_rx->qpurge(rxq_info->dp);
692 }
693
694 static int
695 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
696 {
697         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
698         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
699         struct sfc_port *port = &sa->port;
700         int rc;
701
702         /*
703          * If promiscuous or all-multicast mode has been requested, setting
704          * filter for the default Rx queue might fail, in particular, while
705          * running over PCI function which is not a member of corresponding
706          * privilege groups; if this occurs, few iterations will be made to
707          * repeat this step without promiscuous and all-multicast flags set
708          */
709 retry:
710         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
711         if (rc == 0)
712                 return 0;
713         else if (rc != EOPNOTSUPP)
714                 return rc;
715
716         if (port->promisc) {
717                 sfc_warn(sa, "promiscuous mode has been requested, "
718                              "but the HW rejects it");
719                 sfc_warn(sa, "promiscuous mode will be disabled");
720
721                 port->promisc = B_FALSE;
722                 sa->eth_dev->data->promiscuous = 0;
723                 rc = sfc_set_rx_mode(sa);
724                 if (rc != 0)
725                         return rc;
726
727                 goto retry;
728         }
729
730         if (port->allmulti) {
731                 sfc_warn(sa, "all-multicast mode has been requested, "
732                              "but the HW rejects it");
733                 sfc_warn(sa, "all-multicast mode will be disabled");
734
735                 port->allmulti = B_FALSE;
736                 sa->eth_dev->data->all_multicast = 0;
737                 rc = sfc_set_rx_mode(sa);
738                 if (rc != 0)
739                         return rc;
740
741                 goto retry;
742         }
743
744         return rc;
745 }
746
747 int
748 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
749 {
750         struct sfc_rxq_info *rxq_info;
751         struct sfc_rxq *rxq;
752         struct sfc_evq *evq;
753         int rc;
754
755         sfc_log_init(sa, "sw_index=%u", sw_index);
756
757         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
758
759         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
760         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
761
762         rxq = &sa->rxq_ctrl[sw_index];
763         evq = rxq->evq;
764
765         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
766         if (rc != 0)
767                 goto fail_ev_qstart;
768
769         switch (rxq_info->type) {
770         case EFX_RXQ_TYPE_DEFAULT:
771                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
772                         rxq->buf_size,
773                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
774                         rxq_info->type_flags, evq->common, &rxq->common);
775                 break;
776         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
777                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
778                 struct rte_mempool_info mp_info;
779
780                 rc = rte_mempool_ops_get_info(mp, &mp_info);
781                 if (rc != 0) {
782                         /* Positive errno is used in the driver */
783                         rc = -rc;
784                         goto fail_mp_get_info;
785                 }
786                 if (mp_info.contig_block_size <= 0) {
787                         rc = EINVAL;
788                         goto fail_bad_contig_block_size;
789                 }
790                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
791                         mp_info.contig_block_size, rxq->buf_size,
792                         mp->header_size + mp->elt_size + mp->trailer_size,
793                         sa->rxd_wait_timeout_ns,
794                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
795                         evq->common, &rxq->common);
796                 break;
797         }
798         default:
799                 rc = ENOTSUP;
800         }
801         if (rc != 0)
802                 goto fail_rx_qcreate;
803
804         efx_rx_qenable(rxq->common);
805
806         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
807         if (rc != 0)
808                 goto fail_dp_qstart;
809
810         rxq_info->state |= SFC_RXQ_STARTED;
811
812         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
813                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
814                 if (rc != 0)
815                         goto fail_mac_filter_default_rxq_set;
816         }
817
818         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
819         sa->eth_dev->data->rx_queue_state[sw_index] =
820                 RTE_ETH_QUEUE_STATE_STARTED;
821
822         return 0;
823
824 fail_mac_filter_default_rxq_set:
825         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
826
827 fail_dp_qstart:
828         sfc_rx_qflush(sa, sw_index);
829
830 fail_rx_qcreate:
831 fail_bad_contig_block_size:
832 fail_mp_get_info:
833         sfc_ev_qstop(evq);
834
835 fail_ev_qstart:
836         return rc;
837 }
838
839 void
840 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
841 {
842         struct sfc_rxq_info *rxq_info;
843         struct sfc_rxq *rxq;
844
845         sfc_log_init(sa, "sw_index=%u", sw_index);
846
847         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
848
849         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
850
851         if (rxq_info->state == SFC_RXQ_INITIALIZED)
852                 return;
853         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
854
855         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
856         sa->eth_dev->data->rx_queue_state[sw_index] =
857                 RTE_ETH_QUEUE_STATE_STOPPED;
858
859         rxq = &sa->rxq_ctrl[sw_index];
860         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
861
862         if (sw_index == 0)
863                 efx_mac_filter_default_rxq_clear(sa->nic);
864
865         sfc_rx_qflush(sa, sw_index);
866
867         rxq_info->state = SFC_RXQ_INITIALIZED;
868
869         efx_rx_qdestroy(rxq->common);
870
871         sfc_ev_qstop(rxq->evq);
872 }
873
874 static uint64_t
875 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
876 {
877         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
878         uint64_t no_caps = 0;
879
880         if (encp->enc_tunnel_encapsulations_supported == 0)
881                 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
882
883         return ~no_caps;
884 }
885
886 uint64_t
887 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
888 {
889         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
890
891         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
892
893         return caps & sfc_rx_get_offload_mask(sa);
894 }
895
896 uint64_t
897 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
898 {
899         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
900 }
901
902 static int
903 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
904                    const struct rte_eth_rxconf *rx_conf,
905                    __rte_unused uint64_t offloads)
906 {
907         int rc = 0;
908
909         if (rx_conf->rx_thresh.pthresh != 0 ||
910             rx_conf->rx_thresh.hthresh != 0 ||
911             rx_conf->rx_thresh.wthresh != 0) {
912                 sfc_warn(sa,
913                         "RxQ prefetch/host/writeback thresholds are not supported");
914         }
915
916         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
917                 sfc_err(sa,
918                         "RxQ free threshold too large: %u vs maximum %u",
919                         rx_conf->rx_free_thresh, rxq_max_fill_level);
920                 rc = EINVAL;
921         }
922
923         if (rx_conf->rx_drop_en == 0) {
924                 sfc_err(sa, "RxQ drop disable is not supported");
925                 rc = EINVAL;
926         }
927
928         return rc;
929 }
930
931 static unsigned int
932 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
933 {
934         uint32_t data_off;
935         uint32_t order;
936
937         /* The mbuf object itself is always cache line aligned */
938         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
939
940         /* Data offset from mbuf object start */
941         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
942                 RTE_PKTMBUF_HEADROOM;
943
944         order = MIN(order, rte_bsf32(data_off));
945
946         return 1u << order;
947 }
948
949 static uint16_t
950 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
951 {
952         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
953         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
954         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
955         uint16_t buf_size;
956         unsigned int buf_aligned;
957         unsigned int start_alignment;
958         unsigned int end_padding_alignment;
959
960         /* Below it is assumed that both alignments are power of 2 */
961         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
962         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
963
964         /*
965          * mbuf is always cache line aligned, double-check
966          * that it meets rx buffer start alignment requirements.
967          */
968
969         /* Start from mbuf pool data room size */
970         buf_size = rte_pktmbuf_data_room_size(mb_pool);
971
972         /* Remove headroom */
973         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
974                 sfc_err(sa,
975                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
976                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
977                 return 0;
978         }
979         buf_size -= RTE_PKTMBUF_HEADROOM;
980
981         /* Calculate guaranteed data start alignment */
982         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
983
984         /* Reserve space for start alignment */
985         if (buf_aligned < nic_align_start) {
986                 start_alignment = nic_align_start - buf_aligned;
987                 if (buf_size <= start_alignment) {
988                         sfc_err(sa,
989                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
990                                 mb_pool->name,
991                                 rte_pktmbuf_data_room_size(mb_pool),
992                                 RTE_PKTMBUF_HEADROOM, start_alignment);
993                         return 0;
994                 }
995                 buf_aligned = nic_align_start;
996                 buf_size -= start_alignment;
997         } else {
998                 start_alignment = 0;
999         }
1000
1001         /* Make sure that end padding does not write beyond the buffer */
1002         if (buf_aligned < nic_align_end) {
1003                 /*
1004                  * Estimate space which can be lost. If guarnteed buffer
1005                  * size is odd, lost space is (nic_align_end - 1). More
1006                  * accurate formula is below.
1007                  */
1008                 end_padding_alignment = nic_align_end -
1009                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1010                 if (buf_size <= end_padding_alignment) {
1011                         sfc_err(sa,
1012                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1013                                 mb_pool->name,
1014                                 rte_pktmbuf_data_room_size(mb_pool),
1015                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1016                                 end_padding_alignment);
1017                         return 0;
1018                 }
1019                 buf_size -= end_padding_alignment;
1020         } else {
1021                 /*
1022                  * Start is aligned the same or better than end,
1023                  * just align length.
1024                  */
1025                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1026         }
1027
1028         return buf_size;
1029 }
1030
1031 int
1032 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1033              uint16_t nb_rx_desc, unsigned int socket_id,
1034              const struct rte_eth_rxconf *rx_conf,
1035              struct rte_mempool *mb_pool)
1036 {
1037         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1038         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1039         int rc;
1040         unsigned int rxq_entries;
1041         unsigned int evq_entries;
1042         unsigned int rxq_max_fill_level;
1043         uint64_t offloads;
1044         uint16_t buf_size;
1045         struct sfc_rxq_info *rxq_info;
1046         struct sfc_evq *evq;
1047         struct sfc_rxq *rxq;
1048         struct sfc_dp_rx_qcreate_info info;
1049         struct sfc_dp_rx_hw_limits hw_limits;
1050         uint16_t rx_free_thresh;
1051         const char *error;
1052
1053         memset(&hw_limits, 0, sizeof(hw_limits));
1054         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1055         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1056         hw_limits.evq_max_entries = sa->evq_max_entries;
1057         hw_limits.evq_min_entries = sa->evq_min_entries;
1058
1059         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1060                                             &rxq_entries, &evq_entries,
1061                                             &rxq_max_fill_level);
1062         if (rc != 0)
1063                 goto fail_size_up_rings;
1064         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1065         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1066         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1067
1068         offloads = rx_conf->offloads |
1069                 sa->eth_dev->data->dev_conf.rxmode.offloads;
1070         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1071         if (rc != 0)
1072                 goto fail_bad_conf;
1073
1074         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1075         if (buf_size == 0) {
1076                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1077                         sw_index);
1078                 rc = EINVAL;
1079                 goto fail_bad_conf;
1080         }
1081
1082         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1083                                   encp->enc_rx_prefix_size,
1084                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1085                                   &error)) {
1086                 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1087                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1088                         "PDU size %u plus Rx prefix %u bytes",
1089                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1090                         encp->enc_rx_prefix_size);
1091                 rc = EINVAL;
1092                 goto fail_bad_conf;
1093         }
1094
1095         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1096         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1097
1098         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1099         rxq_info->entries = rxq_entries;
1100
1101         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1102                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1103         else
1104                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1105
1106         rxq_info->type_flags =
1107                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1108                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1109
1110         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1111             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1112              DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1113                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1114
1115         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1116                           evq_entries, socket_id, &evq);
1117         if (rc != 0)
1118                 goto fail_ev_qinit;
1119
1120         rxq = &sa->rxq_ctrl[sw_index];
1121         rxq->evq = evq;
1122         rxq->hw_index = sw_index;
1123         /*
1124          * If Rx refill threshold is specified (its value is non zero) in
1125          * Rx configuration, use specified value. Otherwise use 1/8 of
1126          * the Rx descriptors number as the default. It allows to keep
1127          * Rx ring full-enough and does not refill too aggressive if
1128          * packet rate is high.
1129          *
1130          * Since PMD refills in bulks waiting for full bulk may be
1131          * refilled (basically round down), it is better to round up
1132          * here to mitigate it a bit.
1133          */
1134         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1135                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1136         /* Rx refill threshold cannot be smaller than refill bulk */
1137         rxq_info->refill_threshold =
1138                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1139         rxq_info->refill_mb_pool = mb_pool;
1140         rxq->buf_size = buf_size;
1141
1142         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1143                            efx_rxq_size(sa->nic, rxq_info->entries),
1144                            socket_id, &rxq->mem);
1145         if (rc != 0)
1146                 goto fail_dma_alloc;
1147
1148         memset(&info, 0, sizeof(info));
1149         info.refill_mb_pool = rxq_info->refill_mb_pool;
1150         info.max_fill_level = rxq_max_fill_level;
1151         info.refill_threshold = rxq_info->refill_threshold;
1152         info.buf_size = buf_size;
1153         info.batch_max = encp->enc_rx_batch_max;
1154         info.prefix_size = encp->enc_rx_prefix_size;
1155
1156         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1157                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1158
1159         info.rxq_entries = rxq_info->entries;
1160         info.rxq_hw_ring = rxq->mem.esm_base;
1161         info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1162         info.evq_entries = evq_entries;
1163         info.evq_hw_ring = evq->mem.esm_base;
1164         info.hw_index = rxq->hw_index;
1165         info.mem_bar = sa->mem_bar.esb_base;
1166         info.vi_window_shift = encp->enc_vi_window_shift;
1167
1168         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1169                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1170                                      socket_id, &info, &rxq_info->dp);
1171         if (rc != 0)
1172                 goto fail_dp_rx_qcreate;
1173
1174         evq->dp_rxq = rxq_info->dp;
1175
1176         rxq_info->state = SFC_RXQ_INITIALIZED;
1177
1178         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1179
1180         return 0;
1181
1182 fail_dp_rx_qcreate:
1183         sfc_dma_free(sa, &rxq->mem);
1184
1185 fail_dma_alloc:
1186         sfc_ev_qfini(evq);
1187
1188 fail_ev_qinit:
1189         rxq_info->entries = 0;
1190
1191 fail_bad_conf:
1192 fail_size_up_rings:
1193         sfc_log_init(sa, "failed %d", rc);
1194         return rc;
1195 }
1196
1197 void
1198 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1199 {
1200         struct sfc_rxq_info *rxq_info;
1201         struct sfc_rxq *rxq;
1202
1203         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1204         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1205
1206         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1207
1208         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1209
1210         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1211         rxq_info->dp = NULL;
1212
1213         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1214         rxq_info->entries = 0;
1215
1216         rxq = &sa->rxq_ctrl[sw_index];
1217
1218         sfc_dma_free(sa, &rxq->mem);
1219
1220         sfc_ev_qfini(rxq->evq);
1221         rxq->evq = NULL;
1222 }
1223
1224 /*
1225  * Mapping between RTE RSS hash functions and their EFX counterparts.
1226  */
1227 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1228         { ETH_RSS_NONFRAG_IPV4_TCP,
1229           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1230         { ETH_RSS_NONFRAG_IPV4_UDP,
1231           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1232         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1233           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1234         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1235           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1236         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1237           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1238           EFX_RX_HASH(IPV4, 2TUPLE) },
1239         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1240           ETH_RSS_IPV6_EX,
1241           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1242           EFX_RX_HASH(IPV6, 2TUPLE) }
1243 };
1244
1245 static efx_rx_hash_type_t
1246 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1247                             unsigned int *hash_type_flags_supported,
1248                             unsigned int nb_hash_type_flags_supported)
1249 {
1250         efx_rx_hash_type_t hash_type_masked = 0;
1251         unsigned int i, j;
1252
1253         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1254                 unsigned int class_tuple_lbn[] = {
1255                         EFX_RX_CLASS_IPV4_TCP_LBN,
1256                         EFX_RX_CLASS_IPV4_UDP_LBN,
1257                         EFX_RX_CLASS_IPV4_LBN,
1258                         EFX_RX_CLASS_IPV6_TCP_LBN,
1259                         EFX_RX_CLASS_IPV6_UDP_LBN,
1260                         EFX_RX_CLASS_IPV6_LBN
1261                 };
1262
1263                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1264                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1265                         unsigned int flag;
1266
1267                         tuple_mask <<= class_tuple_lbn[j];
1268                         flag = hash_type & tuple_mask;
1269
1270                         if (flag == hash_type_flags_supported[i])
1271                                 hash_type_masked |= flag;
1272                 }
1273         }
1274
1275         return hash_type_masked;
1276 }
1277
1278 int
1279 sfc_rx_hash_init(struct sfc_adapter *sa)
1280 {
1281         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1282         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1283         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1284         efx_rx_hash_alg_t alg;
1285         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1286         unsigned int nb_flags_supp;
1287         struct sfc_rss_hf_rte_to_efx *hf_map;
1288         struct sfc_rss_hf_rte_to_efx *entry;
1289         efx_rx_hash_type_t efx_hash_types;
1290         unsigned int i;
1291         int rc;
1292
1293         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1294                 alg = EFX_RX_HASHALG_TOEPLITZ;
1295         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1296                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1297         else
1298                 return EINVAL;
1299
1300         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1301                                          RTE_DIM(flags_supp), &nb_flags_supp);
1302         if (rc != 0)
1303                 return rc;
1304
1305         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1306                                    RTE_DIM(sfc_rss_hf_map),
1307                                    sizeof(*hf_map), 0, sa->socket_id);
1308         if (hf_map == NULL)
1309                 return ENOMEM;
1310
1311         entry = hf_map;
1312         efx_hash_types = 0;
1313         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1314                 efx_rx_hash_type_t ht;
1315
1316                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1317                                                  flags_supp, nb_flags_supp);
1318                 if (ht != 0) {
1319                         entry->rte = sfc_rss_hf_map[i].rte;
1320                         entry->efx = ht;
1321                         efx_hash_types |= ht;
1322                         ++entry;
1323                 }
1324         }
1325
1326         rss->hash_alg = alg;
1327         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1328         rss->hf_map = hf_map;
1329         rss->hash_types = efx_hash_types;
1330
1331         return 0;
1332 }
1333
1334 void
1335 sfc_rx_hash_fini(struct sfc_adapter *sa)
1336 {
1337         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1338
1339         rte_free(rss->hf_map);
1340 }
1341
1342 int
1343 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1344                      efx_rx_hash_type_t *efx)
1345 {
1346         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1347         efx_rx_hash_type_t hash_types = 0;
1348         unsigned int i;
1349
1350         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1351                 uint64_t rte_mask = rss->hf_map[i].rte;
1352
1353                 if ((rte & rte_mask) != 0) {
1354                         rte &= ~rte_mask;
1355                         hash_types |= rss->hf_map[i].efx;
1356                 }
1357         }
1358
1359         if (rte != 0) {
1360                 sfc_err(sa, "unsupported hash functions requested");
1361                 return EINVAL;
1362         }
1363
1364         *efx = hash_types;
1365
1366         return 0;
1367 }
1368
1369 uint64_t
1370 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1371 {
1372         uint64_t rte = 0;
1373         unsigned int i;
1374
1375         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1376                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1377
1378                 if ((efx & hash_type) == hash_type)
1379                         rte |= rss->hf_map[i].rte;
1380         }
1381
1382         return rte;
1383 }
1384
1385 static int
1386 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1387                             struct rte_eth_rss_conf *conf)
1388 {
1389         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1390         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1391         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1392         int rc;
1393
1394         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1395                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1396                     conf->rss_key != NULL)
1397                         return EINVAL;
1398         }
1399
1400         if (conf->rss_hf != 0) {
1401                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1402                 if (rc != 0)
1403                         return rc;
1404         }
1405
1406         if (conf->rss_key != NULL) {
1407                 if (conf->rss_key_len != sizeof(rss->key)) {
1408                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1409                                 sizeof(rss->key));
1410                         return EINVAL;
1411                 }
1412                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1413         }
1414
1415         rss->hash_types = efx_hash_types;
1416
1417         return 0;
1418 }
1419
1420 static int
1421 sfc_rx_rss_config(struct sfc_adapter *sa)
1422 {
1423         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1424         int rc = 0;
1425
1426         if (rss->channels > 0) {
1427                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1428                                            rss->hash_alg, rss->hash_types,
1429                                            B_TRUE);
1430                 if (rc != 0)
1431                         goto finish;
1432
1433                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1434                                           rss->key, sizeof(rss->key));
1435                 if (rc != 0)
1436                         goto finish;
1437
1438                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1439                                           rss->tbl, RTE_DIM(rss->tbl));
1440         }
1441
1442 finish:
1443         return rc;
1444 }
1445
1446 int
1447 sfc_rx_start(struct sfc_adapter *sa)
1448 {
1449         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1450         unsigned int sw_index;
1451         int rc;
1452
1453         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1454
1455         rc = efx_rx_init(sa->nic);
1456         if (rc != 0)
1457                 goto fail_rx_init;
1458
1459         rc = sfc_rx_rss_config(sa);
1460         if (rc != 0)
1461                 goto fail_rss_config;
1462
1463         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1464                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1465                     (!sas->rxq_info[sw_index].deferred_start ||
1466                      sas->rxq_info[sw_index].deferred_started)) {
1467                         rc = sfc_rx_qstart(sa, sw_index);
1468                         if (rc != 0)
1469                                 goto fail_rx_qstart;
1470                 }
1471         }
1472
1473         return 0;
1474
1475 fail_rx_qstart:
1476         while (sw_index-- > 0)
1477                 sfc_rx_qstop(sa, sw_index);
1478
1479 fail_rss_config:
1480         efx_rx_fini(sa->nic);
1481
1482 fail_rx_init:
1483         sfc_log_init(sa, "failed %d", rc);
1484         return rc;
1485 }
1486
1487 void
1488 sfc_rx_stop(struct sfc_adapter *sa)
1489 {
1490         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1491         unsigned int sw_index;
1492
1493         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1494
1495         sw_index = sas->rxq_count;
1496         while (sw_index-- > 0) {
1497                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1498                         sfc_rx_qstop(sa, sw_index);
1499         }
1500
1501         efx_rx_fini(sa->nic);
1502 }
1503
1504 static int
1505 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1506 {
1507         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1508         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1509         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1510         unsigned int max_entries;
1511
1512         max_entries = encp->enc_rxq_max_ndescs;
1513         SFC_ASSERT(rte_is_power_of_2(max_entries));
1514
1515         rxq_info->max_entries = max_entries;
1516
1517         return 0;
1518 }
1519
1520 static int
1521 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1522 {
1523         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1524         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1525                                       sfc_rx_get_queue_offload_caps(sa);
1526         struct sfc_rss *rss = &sas->rss;
1527         int rc = 0;
1528
1529         switch (rxmode->mq_mode) {
1530         case ETH_MQ_RX_NONE:
1531                 /* No special checks are required */
1532                 break;
1533         case ETH_MQ_RX_RSS:
1534                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1535                         sfc_err(sa, "RSS is not available");
1536                         rc = EINVAL;
1537                 }
1538                 break;
1539         default:
1540                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1541                         rxmode->mq_mode);
1542                 rc = EINVAL;
1543         }
1544
1545         /*
1546          * Requested offloads are validated against supported by ethdev,
1547          * so unsupported offloads cannot be added as the result of
1548          * below check.
1549          */
1550         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1551             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1552                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1553                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1554         }
1555
1556         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1557             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1558                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1559                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1560         }
1561
1562         if ((offloads_supported & DEV_RX_OFFLOAD_RSS_HASH) &&
1563             (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG))
1564                 rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1565
1566         return rc;
1567 }
1568
1569 /**
1570  * Destroy excess queues that are no longer needed after reconfiguration
1571  * or complete close.
1572  */
1573 static void
1574 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1575 {
1576         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1577         int sw_index;
1578
1579         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1580
1581         sw_index = sas->rxq_count;
1582         while (--sw_index >= (int)nb_rx_queues) {
1583                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1584                         sfc_rx_qfini(sa, sw_index);
1585         }
1586
1587         sas->rxq_count = nb_rx_queues;
1588 }
1589
1590 /**
1591  * Initialize Rx subsystem.
1592  *
1593  * Called at device (re)configuration stage when number of receive queues is
1594  * specified together with other device level receive configuration.
1595  *
1596  * It should be used to allocate NUMA-unaware resources.
1597  */
1598 int
1599 sfc_rx_configure(struct sfc_adapter *sa)
1600 {
1601         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1602         struct sfc_rss *rss = &sas->rss;
1603         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1604         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1605         int rc;
1606
1607         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1608                      nb_rx_queues, sas->rxq_count);
1609
1610         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1611         if (rc != 0)
1612                 goto fail_check_mode;
1613
1614         if (nb_rx_queues == sas->rxq_count)
1615                 goto configure_rss;
1616
1617         if (sas->rxq_info == NULL) {
1618                 rc = ENOMEM;
1619                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1620                                                   sizeof(sas->rxq_info[0]), 0,
1621                                                   sa->socket_id);
1622                 if (sas->rxq_info == NULL)
1623                         goto fail_rxqs_alloc;
1624
1625                 /*
1626                  * Allocate primary process only RxQ control from heap
1627                  * since it should not be shared.
1628                  */
1629                 rc = ENOMEM;
1630                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1631                 if (sa->rxq_ctrl == NULL)
1632                         goto fail_rxqs_ctrl_alloc;
1633         } else {
1634                 struct sfc_rxq_info *new_rxq_info;
1635                 struct sfc_rxq *new_rxq_ctrl;
1636
1637                 if (nb_rx_queues < sas->rxq_count)
1638                         sfc_rx_fini_queues(sa, nb_rx_queues);
1639
1640                 rc = ENOMEM;
1641                 new_rxq_info =
1642                         rte_realloc(sas->rxq_info,
1643                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1644                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1645                         goto fail_rxqs_realloc;
1646
1647                 rc = ENOMEM;
1648                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1649                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1650                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1651                         goto fail_rxqs_ctrl_realloc;
1652
1653                 sas->rxq_info = new_rxq_info;
1654                 sa->rxq_ctrl = new_rxq_ctrl;
1655                 if (nb_rx_queues > sas->rxq_count) {
1656                         memset(&sas->rxq_info[sas->rxq_count], 0,
1657                                (nb_rx_queues - sas->rxq_count) *
1658                                sizeof(sas->rxq_info[0]));
1659                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1660                                (nb_rx_queues - sas->rxq_count) *
1661                                sizeof(sa->rxq_ctrl[0]));
1662                 }
1663         }
1664
1665         while (sas->rxq_count < nb_rx_queues) {
1666                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1667                 if (rc != 0)
1668                         goto fail_rx_qinit_info;
1669
1670                 sas->rxq_count++;
1671         }
1672
1673 configure_rss:
1674         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1675                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1676
1677         if (rss->channels > 0) {
1678                 struct rte_eth_rss_conf *adv_conf_rss;
1679                 unsigned int sw_index;
1680
1681                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1682                         rss->tbl[sw_index] = sw_index % rss->channels;
1683
1684                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1685                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1686                 if (rc != 0)
1687                         goto fail_rx_process_adv_conf_rss;
1688         }
1689
1690         return 0;
1691
1692 fail_rx_process_adv_conf_rss:
1693 fail_rx_qinit_info:
1694 fail_rxqs_ctrl_realloc:
1695 fail_rxqs_realloc:
1696 fail_rxqs_ctrl_alloc:
1697 fail_rxqs_alloc:
1698         sfc_rx_close(sa);
1699
1700 fail_check_mode:
1701         sfc_log_init(sa, "failed %d", rc);
1702         return rc;
1703 }
1704
1705 /**
1706  * Shutdown Rx subsystem.
1707  *
1708  * Called at device close stage, for example, before device shutdown.
1709  */
1710 void
1711 sfc_rx_close(struct sfc_adapter *sa)
1712 {
1713         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1714
1715         sfc_rx_fini_queues(sa, 0);
1716
1717         rss->channels = 0;
1718
1719         free(sa->rxq_ctrl);
1720         sa->rxq_ctrl = NULL;
1721
1722         rte_free(sfc_sa2shared(sa)->rxq_info);
1723         sfc_sa2shared(sa)->rxq_info = NULL;
1724 }