net/sfc: support checksum offloads on receive
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /*-
2  * Copyright (c) 2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * This software was jointly developed between OKTET Labs (under contract
6  * for Solarflare) and Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright notice,
14  *    this list of conditions and the following disclaimer in the documentation
15  *    and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include <rte_mempool.h>
31
32 #include "efx.h"
33
34 #include "sfc.h"
35 #include "sfc_debug.h"
36 #include "sfc_log.h"
37 #include "sfc_ev.h"
38 #include "sfc_rx.h"
39 #include "sfc_tweak.h"
40
41 /*
42  * Maximum number of Rx queue flush attempt in the case of failure or
43  * flush timeout
44  */
45 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
46
47 /*
48  * Time to wait between event queue polling attempts when waiting for Rx
49  * queue flush done or failed events.
50  */
51 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
52
53 /*
54  * Maximum number of event queue polling attempts when waiting for Rx queue
55  * flush done or failed events. It defines Rx queue flush attempt timeout
56  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
57  */
58 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
59
60 void
61 sfc_rx_qflush_done(struct sfc_rxq *rxq)
62 {
63         rxq->state |= SFC_RXQ_FLUSHED;
64         rxq->state &= ~SFC_RXQ_FLUSHING;
65 }
66
67 void
68 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
69 {
70         rxq->state |= SFC_RXQ_FLUSH_FAILED;
71         rxq->state &= ~SFC_RXQ_FLUSHING;
72 }
73
74 static void
75 sfc_rx_qrefill(struct sfc_rxq *rxq)
76 {
77         unsigned int free_space;
78         unsigned int bulks;
79         void *objs[SFC_RX_REFILL_BULK];
80         efsys_dma_addr_t addr[RTE_DIM(objs)];
81         unsigned int added = rxq->added;
82         unsigned int id;
83         unsigned int i;
84         struct sfc_rx_sw_desc *rxd;
85         struct rte_mbuf *m;
86         uint8_t port_id = rxq->port_id;
87
88         free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
89                 (added - rxq->completed);
90         bulks = free_space / RTE_DIM(objs);
91
92         id = added & rxq->ptr_mask;
93         while (bulks-- > 0) {
94                 if (rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
95                                          RTE_DIM(objs)) < 0) {
96                         /*
97                          * It is hardly a safe way to increment counter
98                          * from different contexts, but all PMDs do it.
99                          */
100                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
101                                 RTE_DIM(objs);
102                         break;
103                 }
104
105                 for (i = 0; i < RTE_DIM(objs);
106                      ++i, id = (id + 1) & rxq->ptr_mask) {
107                         m = objs[i];
108
109                         rxd = &rxq->sw_desc[id];
110                         rxd->mbuf = m;
111
112                         rte_mbuf_refcnt_set(m, 1);
113                         m->data_off = RTE_PKTMBUF_HEADROOM;
114                         m->next = NULL;
115                         m->nb_segs = 1;
116                         m->port = port_id;
117
118                         addr[i] = rte_pktmbuf_mtophys(m);
119                 }
120
121                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
122                              RTE_DIM(objs), rxq->completed, added);
123                 added += RTE_DIM(objs);
124         }
125
126         /* Push doorbell if something is posted */
127         if (rxq->added != added) {
128                 rxq->added = added;
129                 efx_rx_qpush(rxq->common, added, &rxq->pushed);
130         }
131 }
132
133 static uint64_t
134 sfc_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 uint16_t
173 sfc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
174 {
175         struct sfc_rxq *rxq = rx_queue;
176         unsigned int completed;
177         unsigned int prefix_size = rxq->prefix_size;
178         unsigned int done_pkts = 0;
179         boolean_t discard_next = B_FALSE;
180
181         if (unlikely((rxq->state & SFC_RXQ_RUNNING) == 0))
182                 return 0;
183
184         sfc_ev_qpoll(rxq->evq);
185
186         completed = rxq->completed;
187         while (completed != rxq->pending && done_pkts < nb_pkts) {
188                 unsigned int id;
189                 struct sfc_rx_sw_desc *rxd;
190                 struct rte_mbuf *m;
191                 unsigned int seg_len;
192                 unsigned int desc_flags;
193
194                 id = completed++ & rxq->ptr_mask;
195                 rxd = &rxq->sw_desc[id];
196                 m = rxd->mbuf;
197                 desc_flags = rxd->flags;
198
199                 if (discard_next)
200                         goto discard;
201
202                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
203                         goto discard;
204
205                 if (desc_flags & EFX_PKT_CONT)
206                         goto discard;
207
208                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
209                         uint16_t tmp_size;
210                         int rc __rte_unused;
211
212                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
213                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
214                         SFC_ASSERT(rc == 0);
215                         seg_len = tmp_size;
216                 } else {
217                         seg_len = rxd->size - prefix_size;
218                 }
219
220                 m->data_off += prefix_size;
221                 rte_pktmbuf_data_len(m) = seg_len;
222                 rte_pktmbuf_pkt_len(m) = seg_len;
223
224                 m->ol_flags = sfc_rx_desc_flags_to_offload_flags(desc_flags);
225                 m->packet_type = RTE_PTYPE_L2_ETHER;
226
227                 *rx_pkts++ = m;
228                 done_pkts++;
229                 continue;
230
231 discard:
232                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
233                 rte_mempool_put(rxq->refill_mb_pool, m);
234                 rxd->mbuf = NULL;
235         }
236
237         rxq->completed = completed;
238
239         sfc_rx_qrefill(rxq);
240
241         return done_pkts;
242 }
243
244 static void
245 sfc_rx_qpurge(struct sfc_rxq *rxq)
246 {
247         unsigned int i;
248         struct sfc_rx_sw_desc *rxd;
249
250         for (i = rxq->completed; i != rxq->added; ++i) {
251                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
252                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
253                 rxd->mbuf = NULL;
254         }
255 }
256
257 static void
258 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
259 {
260         struct sfc_rxq *rxq;
261         unsigned int retry_count;
262         unsigned int wait_count;
263
264         rxq = sa->rxq_info[sw_index].rxq;
265         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
266
267         /*
268          * Retry Rx queue flushing in the case of flush failed or
269          * timeout. In the worst case it can delay for 6 seconds.
270          */
271         for (retry_count = 0;
272              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
273              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
274              ++retry_count) {
275                 if (efx_rx_qflush(rxq->common) != 0) {
276                         rxq->state |= SFC_RXQ_FLUSH_FAILED;
277                         break;
278                 }
279                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
280                 rxq->state |= SFC_RXQ_FLUSHING;
281
282                 /*
283                  * Wait for Rx queue flush done or failed event at least
284                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
285                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
286                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
287                  */
288                 wait_count = 0;
289                 do {
290                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
291                         sfc_ev_qpoll(rxq->evq);
292                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
293                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
294
295                 if (rxq->state & SFC_RXQ_FLUSHING)
296                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
297
298                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
299                         sfc_err(sa, "RxQ %u flush failed", sw_index);
300
301                 if (rxq->state & SFC_RXQ_FLUSHED)
302                         sfc_info(sa, "RxQ %u flushed", sw_index);
303         }
304
305         sfc_rx_qpurge(rxq);
306 }
307
308 int
309 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
310 {
311         struct sfc_rxq_info *rxq_info;
312         struct sfc_rxq *rxq;
313         struct sfc_evq *evq;
314         int rc;
315
316         sfc_log_init(sa, "sw_index=%u", sw_index);
317
318         SFC_ASSERT(sw_index < sa->rxq_count);
319
320         rxq_info = &sa->rxq_info[sw_index];
321         rxq = rxq_info->rxq;
322         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
323
324         evq = rxq->evq;
325
326         rc = sfc_ev_qstart(sa, evq->evq_index);
327         if (rc != 0)
328                 goto fail_ev_qstart;
329
330         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
331                             &rxq->mem, rxq_info->entries,
332                             0 /* not used on EF10 */, evq->common,
333                             &rxq->common);
334         if (rc != 0)
335                 goto fail_rx_qcreate;
336
337         efx_rx_qenable(rxq->common);
338
339         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
340
341         rxq->state |= (SFC_RXQ_STARTED | SFC_RXQ_RUNNING);
342
343         sfc_rx_qrefill(rxq);
344
345         if (sw_index == 0) {
346                 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common,
347                                                     B_FALSE);
348                 if (rc != 0)
349                         goto fail_mac_filter_default_rxq_set;
350         }
351
352         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
353         sa->eth_dev->data->rx_queue_state[sw_index] =
354                 RTE_ETH_QUEUE_STATE_STARTED;
355
356         return 0;
357
358 fail_mac_filter_default_rxq_set:
359         sfc_rx_qflush(sa, sw_index);
360
361 fail_rx_qcreate:
362         sfc_ev_qstop(sa, evq->evq_index);
363
364 fail_ev_qstart:
365         return rc;
366 }
367
368 void
369 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
370 {
371         struct sfc_rxq_info *rxq_info;
372         struct sfc_rxq *rxq;
373
374         sfc_log_init(sa, "sw_index=%u", sw_index);
375
376         SFC_ASSERT(sw_index < sa->rxq_count);
377
378         rxq_info = &sa->rxq_info[sw_index];
379         rxq = rxq_info->rxq;
380         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
381
382         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
383         sa->eth_dev->data->rx_queue_state[sw_index] =
384                 RTE_ETH_QUEUE_STATE_STOPPED;
385
386         rxq->state &= ~SFC_RXQ_RUNNING;
387
388         if (sw_index == 0)
389                 efx_mac_filter_default_rxq_clear(sa->nic);
390
391         sfc_rx_qflush(sa, sw_index);
392
393         rxq->state = SFC_RXQ_INITIALIZED;
394
395         efx_rx_qdestroy(rxq->common);
396
397         sfc_ev_qstop(sa, rxq->evq->evq_index);
398 }
399
400 static int
401 sfc_rx_qcheck_conf(struct sfc_adapter *sa,
402                    const struct rte_eth_rxconf *rx_conf)
403 {
404         int rc = 0;
405
406         if (rx_conf->rx_thresh.pthresh != 0 ||
407             rx_conf->rx_thresh.hthresh != 0 ||
408             rx_conf->rx_thresh.wthresh != 0) {
409                 sfc_err(sa,
410                         "RxQ prefetch/host/writeback thresholds are not supported");
411                 rc = EINVAL;
412         }
413
414         if (rx_conf->rx_free_thresh != 0) {
415                 sfc_err(sa, "RxQ free threshold is not supported");
416                 rc = EINVAL;
417         }
418
419         if (rx_conf->rx_drop_en == 0) {
420                 sfc_err(sa, "RxQ drop disable is not supported");
421                 rc = EINVAL;
422         }
423
424         if (rx_conf->rx_deferred_start != 0) {
425                 sfc_err(sa, "RxQ deferred start is not supported");
426                 rc = EINVAL;
427         }
428
429         return rc;
430 }
431
432 static unsigned int
433 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
434 {
435         uint32_t data_off;
436         uint32_t order;
437
438         /* The mbuf object itself is always cache line aligned */
439         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
440
441         /* Data offset from mbuf object start */
442         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
443                 RTE_PKTMBUF_HEADROOM;
444
445         order = MIN(order, rte_bsf32(data_off));
446
447         return 1u << (order - 1);
448 }
449
450 static uint16_t
451 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
452 {
453         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
454         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
455         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
456         uint16_t buf_size;
457         unsigned int buf_aligned;
458         unsigned int start_alignment;
459         unsigned int end_padding_alignment;
460
461         /* Below it is assumed that both alignments are power of 2 */
462         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
463         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
464
465         /*
466          * mbuf is always cache line aligned, double-check
467          * that it meets rx buffer start alignment requirements.
468          */
469
470         /* Start from mbuf pool data room size */
471         buf_size = rte_pktmbuf_data_room_size(mb_pool);
472
473         /* Remove headroom */
474         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
475                 sfc_err(sa,
476                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
477                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
478                 return 0;
479         }
480         buf_size -= RTE_PKTMBUF_HEADROOM;
481
482         /* Calculate guaranteed data start alignment */
483         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
484
485         /* Reserve space for start alignment */
486         if (buf_aligned < nic_align_start) {
487                 start_alignment = nic_align_start - buf_aligned;
488                 if (buf_size <= start_alignment) {
489                         sfc_err(sa,
490                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
491                                 mb_pool->name,
492                                 rte_pktmbuf_data_room_size(mb_pool),
493                                 RTE_PKTMBUF_HEADROOM, start_alignment);
494                         return 0;
495                 }
496                 buf_aligned = nic_align_start;
497                 buf_size -= start_alignment;
498         } else {
499                 start_alignment = 0;
500         }
501
502         /* Make sure that end padding does not write beyond the buffer */
503         if (buf_aligned < nic_align_end) {
504                 /*
505                  * Estimate space which can be lost. If guarnteed buffer
506                  * size is odd, lost space is (nic_align_end - 1). More
507                  * accurate formula is below.
508                  */
509                 end_padding_alignment = nic_align_end -
510                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
511                 if (buf_size <= end_padding_alignment) {
512                         sfc_err(sa,
513                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
514                                 mb_pool->name,
515                                 rte_pktmbuf_data_room_size(mb_pool),
516                                 RTE_PKTMBUF_HEADROOM, start_alignment,
517                                 end_padding_alignment);
518                         return 0;
519                 }
520                 buf_size -= end_padding_alignment;
521         } else {
522                 /*
523                  * Start is aligned the same or better than end,
524                  * just align length.
525                  */
526                 buf_size = P2ALIGN(buf_size, nic_align_end);
527         }
528
529         return buf_size;
530 }
531
532 int
533 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
534              uint16_t nb_rx_desc, unsigned int socket_id,
535              const struct rte_eth_rxconf *rx_conf,
536              struct rte_mempool *mb_pool)
537 {
538         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
539         int rc;
540         uint16_t buf_size;
541         struct sfc_rxq_info *rxq_info;
542         unsigned int evq_index;
543         struct sfc_evq *evq;
544         struct sfc_rxq *rxq;
545
546         rc = sfc_rx_qcheck_conf(sa, rx_conf);
547         if (rc != 0)
548                 goto fail_bad_conf;
549
550         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
551         if (buf_size == 0) {
552                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
553                         sw_index);
554                 rc = EINVAL;
555                 goto fail_bad_conf;
556         }
557
558         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
559             !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
560                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
561                         "object size is too small", sw_index);
562                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
563                         "PDU size %u plus Rx prefix %u bytes",
564                         sw_index, buf_size, (unsigned int)sa->port.pdu,
565                         encp->enc_rx_prefix_size);
566                 rc = EINVAL;
567                 goto fail_bad_conf;
568         }
569
570         SFC_ASSERT(sw_index < sa->rxq_count);
571         rxq_info = &sa->rxq_info[sw_index];
572
573         SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
574         rxq_info->entries = nb_rx_desc;
575         rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
576
577         evq_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
578
579         rc = sfc_ev_qinit(sa, evq_index, rxq_info->entries, socket_id);
580         if (rc != 0)
581                 goto fail_ev_qinit;
582
583         evq = sa->evq_info[evq_index].evq;
584
585         rc = ENOMEM;
586         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
587                                  socket_id);
588         if (rxq == NULL)
589                 goto fail_rxq_alloc;
590
591         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
592                            socket_id, &rxq->mem);
593         if (rc != 0)
594                 goto fail_dma_alloc;
595
596         rc = ENOMEM;
597         rxq->sw_desc = rte_calloc_socket("sfc-rxq-sw_desc", rxq_info->entries,
598                                          sizeof(*rxq->sw_desc),
599                                          RTE_CACHE_LINE_SIZE, socket_id);
600         if (rxq->sw_desc == NULL)
601                 goto fail_desc_alloc;
602
603         evq->rxq = rxq;
604         rxq->evq = evq;
605         rxq->ptr_mask = rxq_info->entries - 1;
606         rxq->refill_mb_pool = mb_pool;
607         rxq->buf_size = buf_size;
608         rxq->hw_index = sw_index;
609         rxq->port_id = sa->eth_dev->data->port_id;
610
611         /* Cache limits required on datapath in RxQ structure */
612         rxq->batch_max = encp->enc_rx_batch_max;
613         rxq->prefix_size = encp->enc_rx_prefix_size;
614
615         rxq->state = SFC_RXQ_INITIALIZED;
616
617         rxq_info->rxq = rxq;
618
619         return 0;
620
621 fail_desc_alloc:
622         sfc_dma_free(sa, &rxq->mem);
623
624 fail_dma_alloc:
625         rte_free(rxq);
626
627 fail_rxq_alloc:
628         sfc_ev_qfini(sa, evq_index);
629
630 fail_ev_qinit:
631         rxq_info->entries = 0;
632
633 fail_bad_conf:
634         sfc_log_init(sa, "failed %d", rc);
635         return rc;
636 }
637
638 void
639 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
640 {
641         struct sfc_rxq_info *rxq_info;
642         struct sfc_rxq *rxq;
643
644         SFC_ASSERT(sw_index < sa->rxq_count);
645
646         rxq_info = &sa->rxq_info[sw_index];
647
648         rxq = rxq_info->rxq;
649         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
650
651         rxq_info->rxq = NULL;
652         rxq_info->entries = 0;
653
654         rte_free(rxq->sw_desc);
655         sfc_dma_free(sa, &rxq->mem);
656         rte_free(rxq);
657 }
658
659 int
660 sfc_rx_start(struct sfc_adapter *sa)
661 {
662         unsigned int sw_index;
663         int rc;
664
665         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
666
667         rc = efx_rx_init(sa->nic);
668         if (rc != 0)
669                 goto fail_rx_init;
670
671         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
672                 rc = sfc_rx_qstart(sa, sw_index);
673                 if (rc != 0)
674                         goto fail_rx_qstart;
675         }
676
677         return 0;
678
679 fail_rx_qstart:
680         while (sw_index-- > 0)
681                 sfc_rx_qstop(sa, sw_index);
682
683         efx_rx_fini(sa->nic);
684
685 fail_rx_init:
686         sfc_log_init(sa, "failed %d", rc);
687         return rc;
688 }
689
690 void
691 sfc_rx_stop(struct sfc_adapter *sa)
692 {
693         unsigned int sw_index;
694
695         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
696
697         sw_index = sa->rxq_count;
698         while (sw_index-- > 0) {
699                 if (sa->rxq_info[sw_index].rxq != NULL)
700                         sfc_rx_qstop(sa, sw_index);
701         }
702
703         efx_rx_fini(sa->nic);
704 }
705
706 static int
707 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
708 {
709         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
710         unsigned int max_entries;
711
712         max_entries = EFX_RXQ_MAXNDESCS;
713         SFC_ASSERT(rte_is_power_of_2(max_entries));
714
715         rxq_info->max_entries = max_entries;
716
717         return 0;
718 }
719
720 static int
721 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
722 {
723         int rc = 0;
724
725         switch (rxmode->mq_mode) {
726         case ETH_MQ_RX_NONE:
727                 /* No special checks are required */
728                 break;
729         default:
730                 sfc_err(sa, "Rx multi-queue mode %u not supported",
731                         rxmode->mq_mode);
732                 rc = EINVAL;
733         }
734
735         if (rxmode->header_split) {
736                 sfc_err(sa, "Header split on Rx not supported");
737                 rc = EINVAL;
738         }
739
740         if (rxmode->hw_vlan_filter) {
741                 sfc_err(sa, "HW VLAN filtering not supported");
742                 rc = EINVAL;
743         }
744
745         if (rxmode->hw_vlan_strip) {
746                 sfc_err(sa, "HW VLAN stripping not supported");
747                 rc = EINVAL;
748         }
749
750         if (rxmode->hw_vlan_extend) {
751                 sfc_err(sa,
752                         "Q-in-Q HW VLAN stripping not supported");
753                 rc = EINVAL;
754         }
755
756         if (!rxmode->hw_strip_crc) {
757                 sfc_warn(sa,
758                          "FCS stripping control not supported - always stripped");
759                 rxmode->hw_strip_crc = 1;
760         }
761
762         if (rxmode->enable_scatter) {
763                 sfc_err(sa, "Scatter on Rx not supported");
764                 rc = EINVAL;
765         }
766
767         if (rxmode->enable_lro) {
768                 sfc_err(sa, "LRO not supported");
769                 rc = EINVAL;
770         }
771
772         return rc;
773 }
774
775 /**
776  * Initialize Rx subsystem.
777  *
778  * Called at device configuration stage when number of receive queues is
779  * specified together with other device level receive configuration.
780  *
781  * It should be used to allocate NUMA-unaware resources.
782  */
783 int
784 sfc_rx_init(struct sfc_adapter *sa)
785 {
786         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
787         unsigned int sw_index;
788         int rc;
789
790         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
791         if (rc != 0)
792                 goto fail_check_mode;
793
794         sa->rxq_count = sa->eth_dev->data->nb_rx_queues;
795
796         rc = ENOMEM;
797         sa->rxq_info = rte_calloc_socket("sfc-rxqs", sa->rxq_count,
798                                          sizeof(struct sfc_rxq_info), 0,
799                                          sa->socket_id);
800         if (sa->rxq_info == NULL)
801                 goto fail_rxqs_alloc;
802
803         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
804                 rc = sfc_rx_qinit_info(sa, sw_index);
805                 if (rc != 0)
806                         goto fail_rx_qinit_info;
807         }
808
809         return 0;
810
811 fail_rx_qinit_info:
812         rte_free(sa->rxq_info);
813         sa->rxq_info = NULL;
814
815 fail_rxqs_alloc:
816         sa->rxq_count = 0;
817 fail_check_mode:
818         sfc_log_init(sa, "failed %d", rc);
819         return rc;
820 }
821
822 /**
823  * Shutdown Rx subsystem.
824  *
825  * Called at device close stage, for example, before device
826  * reconfiguration or shutdown.
827  */
828 void
829 sfc_rx_fini(struct sfc_adapter *sa)
830 {
831         unsigned int sw_index;
832
833         sw_index = sa->rxq_count;
834         while (sw_index-- > 0) {
835                 if (sa->rxq_info[sw_index].rxq != NULL)
836                         sfc_rx_qfini(sa, sw_index);
837         }
838
839         rte_free(sa->rxq_info);
840         sa->rxq_info = NULL;
841         sa->rxq_count = 0;
842 }